PHYSICAL REVIEW D, VOLUME 61, 124004

Mass hierarchy from recoiling D-branes

G. K. Leontaris
Theoretical Physics Division, loannina University, GR-45110 loannina, Greece
and CERN, Theory Division, 1211 Geneva 23, Switzerland

N. E. Mavromatos
Theoretical Physics Group, Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
(Received 5 January 2000; published 4 May 2000

Using conformal field theory methods we construct a metric that describes the distortion of space-time
surrounding a Drichlet)-brane (solitonic) defect after being struck by another D-brane. By viewing our
four-dimensional universe as such a struck brane, embedded in a five-dimensional space-time, we argue on the
appearance of a band of massive Kaluza-Klein excitations for the bulk graviton which is localized in a region
of the fifth dimension determined by the inverse size of the band. The band incorporates the massless mode
(ordinary gravitom and its thickness is determined essentially by the width of the Gaussian distribution
describing thetarget-spacequantum fluctuations of the intersecting-brane configuration.

PACS numbse(s): 04.50:+h, 11.10.Kk, 98.80.Cq

I. INTRODUCTION domain wall which, in the simplest case of five dimensions,
separates two regions of five-dimensional anti—de Sitter
Considerable scientific interest has been concentrated r¢AdS) space-time. In its simplest versi¢8], the scenario is
cently on the revival and extension of the rather old idea thatealized by introducing a positive energy brane at the origin
space-time is actually #n dimensional, with our four- and a negative energy brane at distaneénere our world is
dimensional world being a membraf®irichlet brane[1,2])  located and where the graviton amplitude is exponentially
of some string theory living in a (#n) dimensional bulk suppressed. Modifications to the above picture with positive
space-timg 3—8. energy branes allowing also the possibility of infinite extra
In some of these models, the exttaulk) dimensions are dimensions, multibrane solutions, and supergravity embed-
taken to be relatively large, compared to the traditionalded versions were considered in the literafr@-22. Thus,
Planck scale, implying, for instance, a bulk gravitationalit is worth noticing that the bulk dimensions are not neces-
scale at the range of a few Te)8—7]. Considerable effort sarily compact. The rather important point of REg], how-
has been devoted to a discussion of possible phenomenologiver, was the demonstration of the localization of the bulk
cal consequences of these scenarios in immediate-future agravitational fluctuations on the three-dimensional brane,
celerators such as the CERN Large Hadron Collid@¢#C).  which plays the role of our world. This localization property
In the case of extra compact dimensions, which is the ongvas demonstrated by mapping the problem of the dynamics
assumed in Refd5-7], there are induced modifications of of these fluctuations into a one-dimensional Sdimger ei-
the four-dimensional Newton’s law, which may become phe-genvalue problem.
nomenologically important for TeV scale gravit9,10]. No- A characteristic feature of such models was the presence
tice that such modifications are distinct from earlier modifi- of a massless mode for the gravittn agreement with Lor-
cations proposed in the context of supergrayityi]. It is  entz covariance on the bran@gether with a continuum of
straightforward to check that at least two extra dimensionsnassive Kaluza-KleiflKK) states on the four-dimensional
are needed in order to avoid contradiction with the knownworld. These KK modes have different properties as com-
laws of gravity at largésola) distances. On the other hand, pared with the factorizable case. The presence of such KK
for n=2, astrophysical consideratiorj42] imply a scale states leads to corrections of the four-dimensional Newton's
M=10 TeV which marginally solves the hierarchy problem.law; such corrections, however, are suppressed by quadratic
For largern there are less restrictions; however, it has beerpowers of the inverse Planck mass scale, and hence are un-
argued that in this approach the hierarchy problem essermbservable for all practical purposes. In some variants of the
tially is reformulated in terms of another parameter which ismodel[23] one considers a periodic lattice of three branes,
now the compactification volume. which generates bands in the Kaluza-Klein spectrum, sepa-
In the above scenario, the experimental suc¢@8$ of rated from the massless graviton mode by a gap.
the inverse-square law of Newton seemed to imply precisely As a result of the above localization, a solution to the
four noncompact dimensions only. More recently, howevermass hierarchy emerges in the sense that the weak scale is
the work of Ref.[8] has demonstrated that the situation isgenerated from a large scale of the order of Planck mass
completely different in cases where the higher-dimensionathrough an exponential hierarchy, induced by the presence of
metric was not factorizabl¢14]: namely; the case where the warp factor in the metric of the four-dimensional world.
there is awarp factor in front of the four-dimensional metric The above models are very attractive, and indeed may
which depends on the coordinates of the bulk extra dimeneffer a viable solution to the hierarchy problem. However,
sions. According to this approach, our universe is a static flatve find it rather restrictive that the discussions so far were
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concetrated only on static brane configurations without in- Il. WORLD-SHEET APPROACH TO D-BRANE /D-BRANE
cluding dynamics. SCATTERING: A REVIEW

_Indee;cd, 't. IS knovxg[24,23 ;Pat wht;an one rc]:ons@ers scat- We first review the world-sheet formalism based on loga-
tering o st_rlngs(or ranes o a D', rane, there Is a non- i mic operators that was developed in a series of papers
trivial recoil of the latter which distorts the surrounding [24,25,29,30 for the mathematical description of the recoil
space-time[26], implying a sort of back reaction. Such a ot 5 p-prane when struck by a closed-string state or by an-

back reaction curves the space-time around the stringy defegiher D-prane. Logarithmic conformal field thedd7] lies

in an nontrivial way. What we shall argue in this article is on the border between finite conformal field theories and

that, as a result of such a back reaction, one can obtain general renormalizable two—dimensional quantum field theo-

different sort of mass hierarchy from that of RE8], though  ries. It is the relevant todl24,25,29 for this problem, be-

the concept of an induced nonfactorizable bulk metric als@ause the recoil process involves a change of Staa@si-

appears here. tion) in the string background, and as such is not described
The recoil problem is treated at present perturbatively foby a conformal field theory. This change of state induced by

heavy branes, within the context of a world-sheet logarithmidhe recoil process can be described as a change in the

conformal field theory24,25,27. What we shall do in this o-model background, and as such is a nonequilibrium pro-

work is to construct explicitly the space-time deformationcess. This is reflectef29,25 in the logarithmic operator

due to the recoil of a 4-brane, viewed as our Euclideanize@!gebra itself.

four-dimensional space-time embedded in a higffize-) As discussed in Ref424,29,2§ in the case of D-brane

dimensional bulk space-time, after being struck by anothe?tr?”g solitqns, their rgcoil after in.teraction with a closed-

brane. We shall demonstrate the localization dhia band ~ String (graviton state is characterized by @ model de-

of KK massive bulk graviton modegncluding the massless formed by a pair of logarithmic operatof27]

one on our four-dimensional world, with thickness deter- | |

mined by a weak supersymmetry breaking scalelue to Ce=e0 X)), D=X0X), 1€{0,....3 (1)

recoil [28]. We shall also demonstrate the formation of a efined on the boundars3. of the string world sheet. Here

horizon at distances given by the inverse of the thickness A {0 3 obey Neumann boundary conditions on the

the b_and_ of the localized KK modes. Qn this horizon thert_a ISstring world sheet, and denote the brane coordinates, while
localization of the rest of the massive KK modes, with

: . O (X") is the regularized step function, to be defined below.
masses hlgher thary a. We shall al's.o d.emonstrate that in The remainingy',i {4, ...,9 denote the transverse bulk
this scenario the induced modifications of the four-jirections.
d|me2n3|onal Newton's law are suppressed by powers of |, the case of D particles, which were examined in Refs.
alMg, whereMj is the string scale which in our case may [24,29,25, the indexl takes the value 0 only, in which case
be taken to be close to the Planck scMe~10'® GeV.  the operatorg1) act as deformations of the conformal field
Hence, such corrections are essentially unobservable<for theory on the world sheet. The operatdyf ;s9,X'D. de-
TeV, which is the case dictated by the gauge hierarchy in ouscribes the movement of the D brane induced by the scatter-
universe, given that is the scale of the induced supersym-ing, whereU; is its recoil velocity, andY;f ,sd,X'C, de-
metry breaking on the 4-brane. scribes quantum fluctuations in the initial positighof the

The structure of the article is the following. In Sec. Il we D particle. It has been shown rigoroudl5] that the loga-
present the salient features of the world-sheet approach to thighmic conformal algebra ensures energy-momentum con-
D-brane struck by another D-brane or string. In Sec. I1l, weservation during the recoil process=1.gq(ki+k?), where
construct the space-time deformation due to the recoil effects’(k?) is the momentum of the propagating closed string
and show that a nonfactorizable five-dimensional metricstate beforgafter) the recoil, andys is the string coupling,
arises. We show the existence of a horizon located at a digvhich is assumed here to be weak enough to ensure that
tancez=1/a and discuss analytic continuation beyond theD-branes are very massive, with mads, = 1/(1sgs), where
horizon. In Sec. IV we show that this metric is a solution tols iS the string length. _ _
the Einstein equations describing an AdS universe with [N the case of P-branes, the pertinent deformations are
negative bulk-cosmological constant which vanisheszat Slightly more complicated. As discussed in RE24], the
—0. We further show in the same section that the linearize§€formations are given by
Einstein equation leads to a ScHiager-type equation with
attractive potential for graV|.ton modes in a thin bapd of mass E gﬁf &nxiDle and E gﬁf anxicls. @)
up to orderm= \2a, including the massless graviton mode [ a3 [ a3
(expected on account of Lorentz covariance on the observ-
able brane world We associate the scale with that of The O components of the two-index couplinggi, «
supersymmetry breaking on the 4-brane, as a result of the {C,D} include the collective momenta and coordinates of
recoil procesg28], and demonstrate that the corrections tothe D-brane as in the D-particle case above, but now there
the four-dimensional Newton’s law are suppressed by poware additional couplingg;i, | #0, which describe the fold-
ers of a/M?2, with M4~ 10'® GeV in our scenario. Conclu- ing of the D-brane. Such a folding may be caused by scat-
sions and outlook are presented in Sec. V. tering with another macroscopic object, namely, another
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; #0, and the theory requires Liouville dressifif1,32,29.
; Momentum conservation is assured during the scattering pro-
/ ’ T cess[25].
The folding couplingsgP=g;;, 1€{0,...p}, ie{p
+1,...,9, are relevant couplings with world-sheet
renormalization-grougB functions of the form

d 1

DI 'Bgnzﬁg”:_z_tg” . tee )

D3 v This implies that one may construct an exactly marginal set
/ L of couplingsg,; by redefining

@ 3 ®

— G
=, 6
FIG. 1. Schematic representation of the folding effect in 9 € ©

D-brane/D-brane collisionga) A D1 brane moving with velocity)

along a “bulk” direction perpendicular to a D3 brane embedded inThe renormalized couplinggo- were shown in Ref[25] to
I

a D-dimensional Euclidean space-tirkg strikes the D3 brané), lav the role of the phvsical recoil velocity of the D-brane
which is then folded, and the space-time around it is distorted int(P y B y y ’

AdS,®Ep_5. The dashed circle around the D1 direction (i while the remainingg,;, | #0, describe the foldlng.o.f the
indicates the angular deficit that appears when the bulk directiof?P-Prane forp#0. Here we shall assume, generalizing the
along which the D1 brane was moving is compactified to a circle. ACase of Ref[25] that the(barg recoil couplings for all are
generalization to a higher-dimensional case for the incident brane i@f €qual strength and related to the transverse momentum
straightforward. In that case the defi¢it the compact cagds a  transfer as
higher-dimensional solid hyperangle.

AP, )
D-brane, propagating in a transverse direction, as shown  9i=9sp;—» [=0,...m i=m+1,...D (7)
schematically in Fig. 1 for the case of a D1-brane hitting a s

D3-brane. This situation is the most interesting to us, since if ;. - b_yrane embedded in R-dimensional(bulk) space-
generates an AdSspace, as we show below. For symmetry ;.

reasons, in the situation depicted in Fig. 1, the folding of the A technical but important remark is now in order, con-

D3-brane oceurs symmetrpally aroqnd t_he axis of the Dl'cerning the world-sheet recoil formaligi24]. For reasons of
brane. In this case, the precise logarithmic operator deform

fions Shown in Eq.(2). which pertain only to the spatial "’l:onvergence of the world-sheet path integral, the Neumann

: ) . inatex® t be Eucli ized. It is only in thi
regiony; >0 for the Dirichlet coordinates, should be supple- coordinateX  must be Euclideanized. It is only in this case

ted with thei " s for t 0 ; I that the identificatior{4), with €2>0, leads to a mathemati-
mented with their counterparts for 'WK region as weil. cally consistent logarithmic algebra of operators. This can be
This would, in principle, require addition® (*y;) factors,

hich \d i h vsis with introduci understood simply by the fact that in the pertinent world-
which would complicate the analysis without introducing g e et computations of correlation functions of logarithmic
any new points of principle. Therefore, for simplicity, we

restrict ourselves here to tlye> 0. patf:h of s.pac.ettir.ne, away grpc?gggogtsérl)ofo ?f?e eﬁgj;gﬁ;%g{;rgiizgs £q.(3), the free
from the hypersurfacg;=0. This will be implicit in what
follows.

The correct specification of the logarithmic pair in E&).
entails a regulating parameter-0", which appears inside
the O (t) operator

Go=lim,_o(X'(0)X(0)), ~ myIn[L/a], )

where(- - -}, denotes world-sheet partition function with re-
spect to the free-string world-sheet action on a flat target
. space-time manifoldX'}, and 5" is the target space metric.
el (3)  For Euclidean world sheets one takgS= 8", and this is

essential for the convergence of world-sheet path integral
In order to realize the logarithmic algebra between the opeXpressions entering in the respective correlators. Indeed, let
eratorsC andD, one takeg24] us illustrate this by a simple example of the one-point func-
tion (C). This involves[see Eq.3)] the computation of

| do 1
0X)= 27 w—ie

e °~In[L/a]=A, (4)
+o d
where L(a) are infrared(ultravioley world-sheet cutoffs. < f w exp(—in°)>
The recoil operatorg2) are relevant, in the sense of the —= 0 1€ *

renormalization group for the world-sheet field theory, hav- i g 5
ing small conformal dimensiond = —€%/2. Thus theo NJ @ exp(—w—<X°X°> )
model perturbed by these operators is not conformalefor 2 *

—oW—IlE€E
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There are world-sheet ultraviolet infinities coming from the by multiplying it by a factore®i®, where¢ is the Liouville
coincidence limit of thex® propagator in this expression, field ande; is the gravitational conformal dimension, which
which after regularization givg24] is related to the flat-world-sheet anomalous dimension
o g ) — €212 of the recoil operator, viewed as a bulk world-sheet
* w w H .
f s ex;{ -2 20In[L/a] deformation, as follow$32]:

2 62
Such integrals are convergent only for Euclide¢h which @ =— % + Tb MY (10
we have assumed in RgR24] and here.

The Euclideanization of the Neumann coordinates 'mpl'eﬁvhereQb is the central-charge deficit of the bulk world-sheet
that in our picture, of viewing th¢3+1)-dimensional world theory. In the recoil problem at hand, as discussed in Ref
as a brane, thdongitudina) Neumann coordinates will de- [26] ' ' '
fine a D4 domain wall in the bulk space-time, which, after= '
analytic continuation of the coordina¥’, will result in our Q2~ e*g?>0 (11)
four-dimensional space-time. However, the analytic continu- b~ €70s
ation will take place only at the very end of the calculations
This will be very important for our purposes here, and will
always be understood in what follows.

‘for weak folding deformationsg),;, and hence one is con-
fronted with asupercritical Liouville theory. This implies a
Minkowskian signaturé&iouville-field kinetic term in the re-
spectivec model [34], which prompts one to interpret the
lll. RECOIL-INDUCED SPACE-TIME METRIC Liouville field as a timelike target-space field. However, in
DEFORMATIONS our context, this will be aecondime coordinat¢35], which

As discussed in Ref§29,26), the deformationl) create IS independent of théEuclideanizeyi X°. The presence of
a local distortion of the space-time surrounding the recoilingthis second “time” for us will not affect the physical observ-
folded D-brane, which may be determined using the metho@bles, which will be defined for appropriate slices of fixed
of Liouville dressing. In Refs[29,26 we concentrated on Liouville coordinate, e.g.,¢—, or equivalently e—0.
describing the resulting space-time in the case when &rom the expressiorill) we conclude[cf. Eq. (10)] that
D-particle, embedded in B-dimensional space-time, recoils @i~ € to leading order in perturbation theory & to which
after the scattering of a closed string off tBeparticle de- We restrict ourselves here.
fect. To leading order in the recoil velocity; of the We next remark that, as the analysis of Ref9] indi-
D-particle, the resulting space-time was found, for times cates, theX'-dependent field operato8.(X') scale as fol-
>0 long after the scattering event@t 0, to be equivalent lows with e:0 (X')~e~ X' ©(X'), where® (X') is a Heavy-
to a Rindler wedge, with apparent “acceleratioel); [26], side step function without any field content, evaluated in the
wheree is defined above Eq4). For timest<0, the space- limit e—0". The bulk deformations, therefore, yield the fol-

time is flat Minkowskit lowing o-model terms:
This situation is easily generalized tgpEbraneqd 33]. The
folding or recoil deformations of the brane(2) are rel- 1

evant deformations, with anomalous dimensiene?/2,
which disturbs the conformal invariance of themodel, and
restoration of conformal invariance requires Liouville dress-
;npgagg?gi'mzogggtrﬁg; eittigeesgeer?ttia?ft; Lxgmc}r?ss Igguﬁg_theﬂchere the subscripts (0) denote world-sheet zero modes, and
ary recoil deformations as bulk world-sheet deformations  Y90i = Vi -
Upon the interpretation of the Liouville zero mogey) as
— — N a (secondl timelike coordinate, the deformatiori$2) yield
nglzX@)e(X)anzz Lﬁa[glzX@e(X)a z], 9 space-time metric deformatiorief the generalized space-
time with two timeg. The metric components for fixed
Liouville-time slices can be interpreted [i29] as expressing
the distortion of the space-time surrounding the recoiling
brane soliton.
For clarity, we now drop the subscripts (0) for the rest of
this paper, and we work in a region of space-time on the
D3-brane such thaté(¢—X') is finite in the limit e—0".
The resulting space-time distortion is therefore described by
the metric elements

3
— |
477'2 fz ZO (526“:"' Eg”XI)e6(¢(0)7x(0))®(xl(0))ﬁad)aayi ’
S

(12

where theg,, denote the renormalized folding or recoil cou-
plings (6), in the sense discussed in RE25]. As we have
already mentioned, such couplings are marginal on a fIaP'
world sheet. The operato(9) are marginal also on a curved
world sheet, provided32] one dresses théulk) integrand

There is hence a discontinuity &0, which leads to particle

production and decoherence for a I0\_N-energy spectator field theory Gye=—1, G;=&;, Gy=d,, G;=0,
observer who performs local scattering experiments long after the (13)
scattering, and far away from the location of the collision of the TT, = i | .

closed string with théd particle[26]. Gyi=(€gi+€g; X)O(X), i=4,...,9, 1=0,....3,
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where the indexp denotes Liouville “time,” not to be con- where in the last expression we wanted to make clear that,
fused with the Euclideanized time which is one of ¥leTo  upon utilizing Eqs.(6),(7), one can actually express the pa-
|eading order ineai, we may ignore th&zgﬁ‘ term. The rametera (ln the limit E—>0+) in telij Of the(recoil) mo-
presence 0B (X') functions and the fact that we are working mentum trz_insfer along _the bulk d_|rect|0n. As we sh_all see
in the regiony;>0 indicate that the induced space-time is !ater on, this paramete.r is respon5|blg for the mass hierarchy
piecewise continuousin the general recoil or folding case N the problem, assuming that the _strmg sqmlgrls close to
considered in this article, the form of the resulting patch ofPlanck mass scale 10Gev, for ordinary string-theory cou-
the surrounding space-time can be determined fully if onélings of orderg/2m=1/20. The above metric element is
computes the associated curvature tensors, along the lines d@érived in the case wherey,,z<1.
Ref. [26]. A last comment concerns the case in which the metric
We now conclude this section with some remarks aboutg) is exact i.e., it holds to all orders im,,z. This is the
the metric(13). First we restrict ourselves to the case of acase where there is no world-sheet tree level momentum
single Dirichlet dimensiorz, playing the role of a bulk di- transfer. This naively corresponds to the case of static inter-
mension in a setup where there afe 1 =0, ... ,.3Neumann  secting branes. However, the whole philosophy of recoil
coordinates parametrizing a Euclidean brane(our four- 24,25 implies that even in that case there are quantum fluc-
dimensional space-timeUpon performing the time transfor-  tyations induced by summing up genera on the world sheet.
mation ¢— ¢ — 3 €9,,X'z, the line element of the abovemen- The latter implies the existence of a statistical distribution of

tioned space-time becomes logarithmic deformation couplings of Gaussian type about a
1 mean field valuay;,=0. Physically, the couplingg,, repre-

ds?=—d¢?+| 85— —625253222>dx'de sent recoil velocities of the intersecting branes, hence the

4 situation of a Gaussian fluctuation about a zero mean value

1 - represents the effects of quantum fluctuations about the zero
+| 1+ —ezg|ZngX|XJ)d22— €g,zdXde, (14)  recoil velocity case, which may be considered as a quantum
4 correction to the static intersecting brane case. Such Gauss-
ian quantum fluctuations arise quite naturally by summing up
|higher world-sheet topologie?5]. We therefore consider
taking a statistical averagg- - -)) of the line element{14),

where ¢ is the Liouville field (which, we remind the reader,
has Minkowskian signature, in the case of supercritica
strings we are dealing with here

One may now invoke a general coordinate transformation 1
on the braneX' so as to diagonalize the pertinent induced-  ((ds”))=—d¢*+| 1~ Zez«glzgh))zz dX'dx’
metric elements in Ec{14).3_F2r instance, to leading order in
the deformation couplingg,g;,, one may redefine thi' 1 _
coordinates by +| 1+ £—1L=2<<g,ngz)>X'XJ dz
62 — — ~
X|—>X|——ZZ 1z g_]ZxJ, _€<<g|Z>>Z d)ddd)! (17)

(15  Where

2
. €N T iy too R
z—z| 1+ 8 ;} glngzX X, << ">>:f_w dglz(ﬁr)—le—glzlr ( _)' (18)

which leaves only the diagonal elements of the metric tensor ) )

on the (redefined hyperplaneX'. In that case, the metric Where the widthI has been calculated in Ref25], after

becomesto leading order irg,z)' proper summation over world-sheet genera, and in fact is
)

found to be proportional to the string coupling.

ds?’= —d ¢+ (1— a?Z?)(dX")? Obviously, from Eq.(18), and assuming thag,,=|U;|,
o whereU;=g,AP; /Mg is the recoil velocity{ 24,25, the av-
+[14 @?(X"?]dZ— eg,,z dXd g, erage line elemerds’ becomes
16
1 (18 ({ds?)y=—dp?+ (1— a?2?)(dX"2+[1+ a?(X")?]dZ,
a= Eeglzwgs|APz|/Msv (19
! r
o= €l .
2\2

2The important implications for nonthermal particle production o _ .
and decoherence for a spectator low-energy field theory in sucfhe definition of « comes from evaluating the quantity

space-times were discussed in Ref26,29, where only the ((g?)) using the statistical distributiofil8). Thus, in that

D-particle recoil case was considered. case, averaging over quantum fluctuations leads to a metric
3Note that general coordinate invariance is assumed to be a god?f the form(16), but with a paramete much smaller, being
symmetry on the brane, away from the “boundang’=0. determined by the widtkuncertainty of the pertinent quan-
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tum fluctuationg 25]. The metric(19) is exact, in contrast to may consider amirror extension of the space-time for the
the metric(16) which was derived foz<<1/a. However, for  regionz<0, which we assume in this article. From now on,
our purposes below we shall treat both metrics as exact sdherefore, we treat the metri21) as being defined over the
lutions of some string theory associated with recoil. entire real axis for the bulk coordinate= R. However, to

An important feature of the line eleme(it9) is the exis- make contact with the original recoil picture we restrict our-
tence of ahorizonat z= 1/« for EuclideanNeumann coor- selves in regions of space-time for whi¥h>0.
dinatesX'. Also notice that the Liouville fields has decou-
pled, upon the averaging procedure, and this allows one t¢vV. A MASS HIERARCHY FROM RECOILING D-BRANES
consider slices of this field, defined lay=const, on which
the physics of the observable world can be studied. From
world-sheet renormalization-group viewpoint this slicing
procedure corresponds to selecting a specific point in th
noncritical string theory space. Usually, the infrared fixed
pplnt ¢HOO. IS selectgd. ;n that case, from He), ON€ CON- i front of the four-dimensional part of the metric. With the
siders a slice for whicke“—0. But any other choice could L .

. X . above in mind we now write the metri@1) as

do, soa may be considered a small but otherwise arbitrary

In this section we show that the metric obtained by the
8ynamical mechanism of D-brane scattering predicts a natu-
ral scale hierarchy. A crucial role is played by the value of
the only parameter of the theory, i.ex, which is directly
related to the D-brane recoil and appears inwaep factor

parameter of our effective theory. ds?=e 2°@(dX")2+dZ,

The presence of a horizon raises the issue of how one 23)
could analytically continue so as to pass to the space beyond 1
the horizon. The simplest way, compatible, as we shall show o(z)=—5In(|1- a?2?).

later with the low-energy Einstein’s equations, is to take the
absolute value of + «?z? in the metric element16). We  The only nonzero components of the Christoffel symbol cor-
therefore consider the following metric defined in all spaceresponding to the metri@3) read(in Euclidean signature for

ze R at a slice of the Liouville timep=const: x'1=0,...,3)
0O _y0 _
d?=|1— a222|(dX")2+[1+a¥(X")2]dZ2.  (20) I'o=T40=0"(2),

4 _ —20(2)
For smalla, which is the case studied here, and for Euclid- o= —o'(2)e ’
ean Neumann coordinat®d, the scale factor in front of the 4= o'(2)e 27, =123 (24)
dZ term does not introduce any singular behavior, and " ’ Y
hence for all qualitative purposes we may study the follow- rl,=rl=-0¢'(2),

ing metric element:
where the prime denotes differentiation with respectzto

ds§=|1—a222|(dx')2+dzz, (21) Notice that in the case of Minkowskian signature for the
Neumann time coordinat&®, the only change will bd'g,
which is expected to share all the qualitative features of thea—l“go. This implies a similar sign change for the corre-
full metric (20) induced by the recoil process in the case ofsponding components of the Ricci curvatuRgy— — Ryp.
an uncompactified “bulk” Dirichlet dimensioz we restrict  The curvature scalar therefore remains unchanged upon the
ourselves heré. analytic continuation of the time variabk.
A point that we would like to make concerns the fact that, For future use we note the following mathematical iden-
formally, our analysis leading to Ed21) is valid in the tities:
region of bulk space-time for whick>0. However, one

o
’ — _ + — -1 =
o' (2) > —|1+az|[®(1 az)—0(—1—-az)]
“For the case of compact dimensintthe situation changes dras- 1 a
tically, since in that case, for compazand at fixedX'~ 1/e>0 and + > m[@(l— az)—0(—1+az)],
t>0, such than®X?=g%_/4, we observe from the metri@0) that
there exists a deficit angle in the circle arouni83|: 1 o2 (25
5=(mg/4) (22 0"(2)= 5 ——[0(1+az2)~O(-1-az)]
implying the dynamical formation of a conical-like singularity. (1+az)
Such singularities in general break bulk space-time supersymmetry 2
[28]. However, in view of the fact that the folded D-brane is an n o1
. : A — —az)—0(—1+az
excited state of the string or D-brane system, the phenomenon 2 (1_az)2[ (1~a2) ( a2)]

should be viewed as a symmetry obstruction rather than a sponta-
neous breaking of symmetry, in the sense that, although the ground a
state of the string/D-brane system is supersymmetric, recoil pro- a m
duces a particular excited state that does not respect that symmetry

[36]. We shall not, however, deal any further with the compact case We next check on whether the met(R3) is a solution of
in what follows, but instead assume a noncompact bulk dimensiorEinstein’s equations

2 2

a
o(1+ aZ)— m&(l—aZ).
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R 1G RoT ablesX' andz, as far agsmal) quantum fluctuations of the
wro o Tmv Tur bulk graviton stateh(X',z) about the backgroun¢R3) are
concerned
1 1 (i) g r ipEx!
T,,= G,,A— > JGWG{ 4,5, h(X',z)=\(z)ePrX, (28)

R V - V
_ _ where the notatiom):E in the momenta on the brane has been
XV (@G, pr=0,...,4],3=0,....3, explicitly stated to remind the reader that we are working on
(26)  a Euclidean set up fofX'}, and hence for massive KK ex-
citations, of mass squareth>>0 the on-shell condition
whereMy is the string mass scale ard is a cosmological should read
constant in the bulk space-time, and the sujis over pos-
sible D-brane defects. The indéX¥ denotes quantities per- (D.E)2: —m?<0. (29
taining strictly to such D-brane domain walls. In our case we
can assume= 1, since originally we have @truck D-brane  The equation for such small fluctuations can be obtained by
at the originz=0. Note that, in a similar spirit to Refi8], we  linearizing Einstein’s equation&6) around the AdS back-
have subtracted a vacuum energy contribution, proportiongground and choosing appropriate gauge for the fluctuations

to V(z) from such D-brane defects. of the metric. The final equation then reads
It is easy to check from Eq25) that, by placing such R
domain walls at the horizon points= * 1/a, one obtains [—3,0'—a,0*+V(z)]h(X',z)=0, (30)
that the metrig23) is indeed a solution of E426), provided
that where the “potential”’V(z) arises from curvature.
Upon introducing the ansat28), and using Eq(29), the

1 JGOGY) 1 above equation becomes a one-dimensional “Sibhger-

30"(2)=— > Vi (2 —=——. (0')=— A type eigenvalue equation for the bulk modegs) [8]
am3 5 JGe %7 24Mm3

—\"(2)+[4(0')?—20"IN(2)= —m?e*’\(2), (3D
For a single D-brane a=0, the solution is ) N ) )
where the various quantities are given in ER5) for the
problem at hand. It is important to note tha&nussign in

2 2 2
A _ 1 o 1 a +E * ¢ front of the mass term on the right-hand-side of E&f),
2aM% 4 (1+a2)? 4(1-a2)? 2(1-a2)? which is due to the Euclidean nature Xf hyperplang29).
(27 As we shall see soon this will play an important physical
V(z) 3 o? 3 o2 role. Substituting Eq(25) in Eq. (31) one obtains after some
== += straightforward algebra:
aM3 2 (1+a2)? 2 (1-az)?
3a? 3a? \'(2) 2a° c ’ 8(1+ az)
—m5(1+a2)—m5(1—a2), (Z |1_a222|v |1+az| ( az
2 2
where £=[O(1+az)—0(—1—a2)][O(1—az)—O(—1 Y s-an+—1 |\(2)=0,
+az)]=+1, if —1lla<z<lla, andé=—1 otherwise. |1—-az| 11— a?2|
The negative cosmological constdiinti—de Sitter type (32
Universe is a generic feature of intersecting bran8§ but E=+1 —la<z<lla, E=-1 otherwise.

also of the recoil formalisnh35,33, and signals compatibil-
ity with space-time supersymmetry in the case of static nonEquation (31) has the form of a one-dimensional Schro
recoiling intersecting brang$8]. Notice, however, that the dinger equation. The potential is drawn in Fig. 2 for various
cosmological constantanisheson the original brang=0  values of the mass parameter
and becomes infinitely negative on the horidah=1/a. We observe the following. For mass parametersn®
On the other hand, the vacuum energy distribution on the<m,,= 2« the potential is attractive, and the wave func-
brane hypersurfacey,, is positive [V(0)=12a?] at z tion peaks atz=0 (see Fig. 3 For mass parametem
=0, which is compatible with the fact that the recoil excites>/2« the wave functions are sharply peaked at the horizon
the D-brane ax=0, and the excitation energy is of the same|z| = 1/a.
order as the kinetic energy transfer, due to energy- For illustration purposes, the wave functio@hbitrarily
momentum conservatidi25]. V, also blows up negative at normalized for three distinct casesn=0, m=0.2m,, and
the horizon, signaling the formation of domain walls there. m=0.8m, are depicted in Fig. 3. Fon=0 (massless gravi-
Next we consider the issue of localization of bulk gravi- ton state, the corresponding wave functiosolid curve
ton states inside the horizonl/a<z<1/a. To this end, we peaks at the D4-brane at0. As m approaches the critical
follow [8] and use the following ansatz for separating vari-valuem,, the wave fuctior(dashed-dotted curyspreads out
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are generated by the exchange of massive modes with

v masses up tq2a:
. o m;m; 2aGy
N 15 ;o V(r)~Gy 1+ —me "dm
H N 2 [ r 0 M2
t \ i S
| . / )
: \ 10 P ! G
\ S . ! m;m; N _
{ R SR g ! =Gy + 3 2(1—e ‘Z”)mlmz
\ 5 : r r°*Ms
: oz m;m, Gn\2a
-1 -0.5 0.5 1 =Gy Ltz =N m;m, (33
r I’2M2
S
-5
for small thickness of the band. Thus, we see that the

presence of massive Kaluza-Klein modes in the space-time
FIG. 2. Schematic representation of the potential of the equiva{23), due to the presence of a recoiling braje&r world),
lent Schralinger equation in the bulk direction. The solid curve struck by another string soliton, results in attractive correc-
corresponds to the massless case while the dashed one represeigsis to Newton’s law of ~2 scaling, which are suppressed
the potential for the critical valum= V2a. Beyond this value, the by a power ofa/M,. In our case above the string scale may
massive gravitons wave functions are no longer localized oz the he assumed to be the conventional one, unlike the models of
=0 D3-brane; the dashed-dotted curve represents the potential fggefs [5,7], M ~10'® GeV. In the(formal) limit «— one
such a case. recovers the situation discussed[B], but as we have ex-
plained above our logarithmic formalism is valid for small

along thez direction. Wave functions fom>m,, (shown in The existence of thin bands of Kaluza-Klein modes sets a
the figure with a dashed-dotted cuyvare localized on the new mass hierarchy, in the sense that masses of ardeay
two boundariez= *1/a. determine the supersymmetry-breaking scale on the brane

The spectrum is continuous in both cases and these ai, due to the recoil process, as discussed in Rgfg],
not bound states, in contrast to the case of R&ffor the  where we refer the reader for details. Here we simply men-
massless graviton mode. This is easily seen from the form afon that the fact that the vacuum enengy,_ o) on the initial
the corresponding zero energy eigenvalues in the "Schrdrane located at=0 is positive and of order 12 [cf. Eq.
dinger equation32). However,there is localizationwithin  (27)] signals supersymmetry breaking on the brane at a scale
the horizon of athin band of Kaluza-Klein modes, with determined bya<Mg, which may be taken to be of TeV

masses up tq/2a. scale, according to standard arguments on the gauge hierar-
This leads to modifications of Newton’s law on the branechy problem of quadratic divergencies in four-dimensional
hypersurfacgX'},I=0, . ..,3 atz=0 (where the light band spontaneously broken gauge theories. Notice that our picture

of modes including the massless one peaks, and where tlier the hierarchy is different from that of R¢B], where the
cosmological constant vanishe§his can be easily calcu- low mass scalécompared toMg) on our world arises be-
lated from the corresponding Green’s function in the statiaccause of the small overlap of the bulk graviton wave function
potential between two mass soureas,m,. The corrections with that on the brane. In our picture, such small scale fac-
tors are valid only on the horizon &|=1/a, which, how-
h ever, lies far away from the observable world.

The above considerations concern one noncompact bulk
direction. The issue of compact bulk directions is compli-
cated in our case because of the form of the metti®),
which implies deficits[cf. Eqg. (22)], as discussed in Ref.
[33]. It will be left for a future publication. Nevertheless, we
believe that the results presented here are sufficient to dem-
onstrate the important role of rec¢dnd in general quantum
fluctuationg on the physics of large extra dimensions in
string theory. The formation of bands of Kaluza-Klein
modes, localized within the horizon of the met{&S) occurs
here without the necessity of considering periodic lattice of
branes. And actually the localization is obtained in a dynami-
-1 -0.5 0.5 1 cal way, consistent with conformal field theory on the world
sheet of the underlying string theory.

FIG. 3. The solution of the Schdinger equation for three

Kaluza-Klein modes with masses<in<\2«. Solid curve corre- V. CONCLUSIONS

sponds tom=0 wave function. We observe that the modes are

localized within the horizonz| <1/a, while they start to spread as In this paper, we have made an attempt to generate dy-
m grows. Form= |2« they are peaked on the boundaried/a. namically theM p,nac My Scale hierarchy in the context of
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D-brane scattering. Assuming a D4-brane embedded in generates dynamically a mass hierarchy, given the smallness
five-dimensional space-time we showed that scattering witlof « as compared to the string scale,, which in our ap-
another D-brane generates a bulk AdS5 space-time. Theroach is assumed of order£GGeV. There is also the ap-
original D4-brane located at the origin of the fifth dimension pearance of a horizon located|a~ 1/a.
is interpeted as our Euclideanized four-dimensional space- At present, our considerations pertain to noncompact fifth
time, where the cosmological constant is found to be zerodimension. In the case of compact bulk dimensions there is a
Taking into account deformations due to incorporated recoitliscrete set of allowed KK states, with masses quantized in
effects, we calculated the space-time metric and showed thahits of the radius of the compact dimension. However, in
it satisfies the classical Einstein equations. Solving the linthat case, within the context of the recoil approach, there are
earized equation for the graviton modes, we find that therénduced deficits[33] which complicate the analysis. Such
appears a band of massive lower Kaluza-Klein excitationsissues, together with the extension of the above approach to
including the massless ordinary graviton state, which is loinclude more than one extra bulk dimension, are left for fu-
calized in a small region of the fifth dimension around theture work. However, we believe that the results presented
origin where the D4-brane is located. here are of sufficient interest to motivate further studies
More precisely, due to the recoil quantum fluctuations ofalong this direction.
the D4-brane there is localization of eontinuous$ thin band
of massive KK states with masses up{@a, for small «
<My, where the parameter is related to the strength of the
guantum fluctuations and sets the supersymmetry-breaking The work of N.E.M. is partially supported by P.P.A.R.C.
scale on the D4-brane. In this sense, the above approacb.K.)

ACKNOWLEDGMENTS

[1] A. Sen, Invited talk to be published in the proceedings of the[21] H. Davoudiasl, J. L. Hewett, and T. G. Rizzo, Phys. Lett. B

29th International Conference on High-Energy Physics

(ICHEP 98, Vancouver, Canada, 1998, hep-ph/9810356.
[2] J. Polchinski, Phys. Rev. Leff5, 4724(1995.
[3] V. A. Rubakov and M. E. Shaposhnikov, Phys. Le&t25B,
136 (1983; 125B, 136(1986.
[4] I. Antoniadis, Phys. Lett. 46, 377 (1990.

473, 43(2000; Phys. Rev. Lett84, 2080(2000.

[22] P. Kanti, I. Kogan, K. Olive, and M. Pospelov, Phys. Lett. B

468 31(1999; P. Binetruy, C. Deffayet, U. Ellwanger, and D.
Langlois, hep-th/9910219.

[23] H. Hatanakeet al, hep-th/9909076; S. Nam, hep-th/9911237;

E. G. Floratos and G. K. Leontarisnpublished

[5] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B [24] I. I. Kogan, N. E. Mavromatos, and J. F. Wheater, Phys. Lett.

429 263(1998.

B 387, 483(1996.

[6] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, [25] N. E. Mavromatos and R. J. Szabo, Phys. Re\69)104018

Phys. Lett. B436, 257 (1998.
[7] I. Antoniadis and B. Pioline, Nucl. Phy8550, 41 (1999.
[8] L. Randall and R. Sundrum, Phys. Rev. L&8, 3370(1999;
83, 4690(1999.
[9] A. Kehagias and C. Sfetsos, hep-ph/9905417.

[10] E. G. Floratos and G. K. Leontaris, Phys. Lett.485 95
(1999.

[11] J. Scherk, Phys. LetB8B, 265 (1979; K. Zachos,ibid. 76B,
329 (1978; T. Taylor and G. Veneziano, Phys. Lett. B3
450 (1988.

[12] S. Cullen and M. Pelerstein, Phys. Rev. L&®3, 268 (1999;
L. Hall and D. Smith, Phys. Rev. B0, 085008(1999; V.
Bargeret al, Phys. Lett. B461, 34 (1999.

[13] D. Krause and E. Fischbach, hep-ph/9912276.

[14] M. Visser, Phys. Lett159B, 22 (1985; M. Gogberashvili,
hep-ph/9812296; Europhys. Le#t9, 396 (2000.

[15] A. Kehagias, Phys. Lett. B69 123(1999.

(1999.

[26] J. Ellis, P. Kanti, N. E. Mavromatos, D. V. Nanopoulos, and E.

Winstanley, Mod. Phys. Lett. A3, 303(1998.

[27] V. Gurarie, Nucl. PhysB410, 535 (1993; J. S. Caux, I. I.

Kogan, and A. M. Tsvelikjbid. B466, 444 (1996; M. A. 1.
Flohr, Int. J. Mod. Phys. A1, 4147(1996; M. R. Gaberdiel
and H. G. Kausch, Nucl. PhyB489 293(1996; I. I. Kogan
and N. E. Mavromatos, Phys. Lett. &5 111(1996; M. R.
Rahimi-Tabar, A. Aghamohammadi, and M. Khorrami, Nucl.
Phys. B497, 555 (1997; I. I. Kogan, A. Lewis, and O. A.
Soloviev, Int. J. Mod. Phys. A3, 1345(1998.

[28] A. Campbell-Smith and N. E. Mavromatos, Phys. Lett4 B,

149 (2000.

[29] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, Int. J. Mod.

Phys. A13, 1059(1998.

[30] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, Int. J. Mod.

Phys. A13, 5093(1998.

[16] W. D. Goldberger and M. B. Wise, Phys. Rev.@D, 107505 [31] F. David, Mod. Phys. Lett. A3, 1651(1988.

(1999. [32] J. Distler and H. Kawai, Nucl. Phy&321, 509 (1989.
[17] J. Lykken and L. Randall, hep-th/9908076. [33] John Ellis, N. E. Mavromatos, and Elizabeth Winstanley, Phys.
[18] C. Csaki, M. Graesser, C. Kolda, and J. Terning, Phys. Lett. B Lett. B 476, 165 (2000.

462, 34 (1999; T. Nihei, ibid. 465 81 (1999; N. Kaloper, [34] I. Antoniadis, C. Bachas, J. Ellis, and D. V. Nanopoulos, Nucl.

hep-th/9912125.

[19] I. Oda, hep-th/9908104; Phys. Lett.A2, 59 (2000.

[20] A. Brandhuber and K. Sfetsos, J. High Energy PHy3.013
(1999; K. Behrndt and M. Cvetic, hep-th/9909058.

124004-9

Phys.B328 117 (1989.

[35] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, Int. J. Mod.

Phys. A13, 5093(1998.

[36] E. Witten, Int. J. Mod. Phys. A0, 1247(1995.



