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Mass hierarchy from recoiling D-branes
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Using conformal field theory methods we construct a metric that describes the distortion of space-time
surrounding a D~irichlet!-brane ~solitonic! defect after being struck by another D-brane. By viewing our
four-dimensional universe as such a struck brane, embedded in a five-dimensional space-time, we argue on the
appearance of a band of massive Kaluza-Klein excitations for the bulk graviton which is localized in a region
of the fifth dimension determined by the inverse size of the band. The band incorporates the massless mode
~ordinary graviton! and its thickness is determined essentially by the width of the Gaussian distribution
describing the~target-space! quantum fluctuations of the intersecting-brane configuration.

PACS number~s!: 04.50.1h, 11.10.Kk, 98.80.Cq
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I. INTRODUCTION

Considerable scientific interest has been concentrated
cently on the revival and extension of the rather old idea t
space-time is actually 41n dimensional, with our four-
dimensional world being a membrane~Dirichlet brane@1,2#!
of some string theory living in a (41n) dimensional bulk
space-time@3–8#.

In some of these models, the extra~bulk! dimensions are
taken to be relatively large, compared to the traditio
Planck scale, implying, for instance, a bulk gravitation
scale at the range of a few TeV@5–7#. Considerable effort
has been devoted to a discussion of possible phenomeno
cal consequences of these scenarios in immediate-future
celerators such as the CERN Large Hadron Collider~LHC!.

In the case of extra compact dimensions, which is the
assumed in Refs.@5–7#, there are induced modifications o
the four-dimensional Newton’s law, which may become ph
nomenologically important for TeV scale gravity@9,10#. No-
tice that such modifications are distinct from earlier mod
cations proposed in the context of supergravity@11#. It is
straightforward to check that at least two extra dimensi
are needed in order to avoid contradiction with the kno
laws of gravity at large~solar! distances. On the other han
for n52, astrophysical considerations@12# imply a scale
M>10 TeV which marginally solves the hierarchy proble
For largern there are less restrictions; however, it has be
argued that in this approach the hierarchy problem es
tially is reformulated in terms of another parameter which
now the compactification volume.

In the above scenario, the experimental success@13# of
the inverse-square law of Newton seemed to imply precis
four noncompact dimensions only. More recently, howev
the work of Ref.@8# has demonstrated that the situation
completely different in cases where the higher-dimensio
metric was not factorizable@14#: namely; the case wher
there is awarp factor in front of the four-dimensional metri
which depends on the coordinates of the bulk extra dim
sions. According to this approach, our universe is a static
0556-2821/2000/61~12!/124004~9!/$15.00 61 1240
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domain wall which, in the simplest case of five dimensio
separates two regions of five-dimensional anti–de Si
~AdS! space-time. In its simplest version@8#, the scenario is
realized by introducing a positive energy brane at the ori
and a negative energy brane at distancez where our world is
located and where the graviton amplitude is exponentia
suppressed. Modifications to the above picture with posit
energy branes allowing also the possibility of infinite ex
dimensions, multibrane solutions, and supergravity emb
ded versions were considered in the literature@15–22#. Thus,
it is worth noticing that the bulk dimensions are not nec
sarily compact. The rather important point of Ref.@8#, how-
ever, was the demonstration of the localization of the b
gravitational fluctuations on the three-dimensional bra
which plays the role of our world. This localization proper
was demonstrated by mapping the problem of the dynam
of these fluctuations into a one-dimensional Schro¨dinger ei-
genvalue problem.

A characteristic feature of such models was the prese
of a massless mode for the graviton~in agreement with Lor-
entz covariance on the brane! together with a continuum o
massive Kaluza-Klein~KK ! states on the four-dimensiona
world. These KK modes have different properties as co
pared with the factorizable case. The presence of such
states leads to corrections of the four-dimensional Newto
law; such corrections, however, are suppressed by quad
powers of the inverse Planck mass scale, and hence are
observable for all practical purposes. In some variants of
model @23# one considers a periodic lattice of three bran
which generates bands in the Kaluza-Klein spectrum, se
rated from the massless graviton mode by a gap.

As a result of the above localization, a solution to t
mass hierarchy emerges in the sense that the weak sca
generated from a large scale of the order of Planck m
through an exponential hierarchy, induced by the presenc
the warp factor in the metric of the four-dimensional worl

The above models are very attractive, and indeed m
offer a viable solution to the hierarchy problem. Howev
we find it rather restrictive that the discussions so far w
©2000 The American Physical Society04-1
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concetrated only on static brane configurations without
cluding dynamics.

Indeed, it is known@24,25# that when one considers sca
tering of strings~or branes! off a D-brane, there is a non
trivial recoil of the latter which distorts the surroundin
space-time@26#, implying a sort of back reaction. Such
back reaction curves the space-time around the stringy de
in an nontrivial way. What we shall argue in this article
that, as a result of such a back reaction, one can obta
different sort of mass hierarchy from that of Ref.@8#, though
the concept of an induced nonfactorizable bulk metric a
appears here.

The recoil problem is treated at present perturbatively
heavy branes, within the context of a world-sheet logarithm
conformal field theory@24,25,27#. What we shall do in this
work is to construct explicitly the space-time deformati
due to the recoil of a 4-brane, viewed as our Euclideani
four-dimensional space-time embedded in a higher~five-!
dimensional bulk space-time, after being struck by anot
brane. We shall demonstrate the localization of athin band
of KK massive bulk graviton modes~including the massles
one! on our four-dimensional world, with thickness dete
mined by a weak supersymmetry breaking scalea due to
recoil @28#. We shall also demonstrate the formation of
horizon at distances given by the inverse of the thicknes
the band of the localized KK modes. On this horizon there
localization of the rest of the massive KK modes, w
masses higher than;a. We shall also demonstrate that
this scenario the induced modifications of the fou
dimensional Newton’s law are suppressed by powers
a/Ms

2 , whereMs is the string scale which in our case ma
be taken to be close to the Planck scaleMs;1018 GeV.
Hence, such corrections are essentially unobservable fora;
TeV, which is the case dictated by the gauge hierarchy in
universe, given thata is the scale of the induced supersym
metry breaking on the 4-brane.

The structure of the article is the following. In Sec. II w
present the salient features of the world-sheet approach to
D-brane struck by another D-brane or string. In Sec. III,
construct the space-time deformation due to the recoil eff
and show that a nonfactorizable five-dimensional me
arises. We show the existence of a horizon located at a
tancez51/a and discuss analytic continuation beyond t
horizon. In Sec. IV we show that this metric is a solution
the Einstein equations describing an AdS universe w
negative bulk-cosmological constant which vanishes az
50. We further show in the same section that the lineari
Einstein equation leads to a Schro¨dinger-type equation with
attractive potential for graviton modes in a thin band of m
up to orderm<A2a, including the massless graviton mod
~expected on account of Lorentz covariance on the obs
able brane world!. We associate the scalea with that of
supersymmetry breaking on the 4-brane, as a result of
recoil process@28#, and demonstrate that the corrections
the four-dimensional Newton’s law are suppressed by p
ers of a/Ms

2 , with Ms;1018 GeV in our scenario. Conclu
sions and outlook are presented in Sec. V.
12400
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II. WORLD-SHEET APPROACH TO D-BRANE ÕD-BRANE
SCATTERING: A REVIEW

We first review the world-sheet formalism based on log
rithmic operators that was developed in a series of pap
@24,25,29,30#, for the mathematical description of the reco
of a D-brane when struck by a closed-string state or by
other D-brane. Logarithmic conformal field theory@27# lies
on the border between finite conformal field theories a
general renormalizable two–dimensional quantum field th
ries. It is the relevant tool@24,25,29# for this problem, be-
cause the recoil process involves a change of state~transi-
tion! in the string background, and as such is not descri
by a conformal field theory. This change of state induced
the recoil process can be described as a change in
s-model background, and as such is a nonequilibrium p
cess. This is reflected@29,25# in the logarithmic operator
algebra itself.

As discussed in Refs.@24,29,25# in the case of D-brane
string solitons, their recoil after interaction with a close
string ~graviton! state is characterized by as model de-
formed by a pair of logarithmic operators@27#

Ce
I 5eQe~XI !, De

I 5XIQe~XI !, I P$0, . . . ,3% ~1!

defined on the boundary]S of the string world sheet. Here
XI ,I P$0, . . . ,3% obey Neumann boundary conditions on t
string world sheet, and denote the brane coordinates, w
Qe(X

I) is the regularized step function, to be defined belo
The remainingyi ,i P$4, . . . ,9% denote the transverse bul
directions.

In the case of D particles, which were examined in Re
@24,29,25#, the indexI takes the value 0 only, in which cas
the operators~1! act as deformations of the conformal fie
theory on the world sheet. The operatorUi*]S]nXiDe de-
scribes the movement of the D brane induced by the sca
ing, whereUi is its recoil velocity, andYi*]S]nXiCe de-
scribes quantum fluctuations in the initial positionYi of the
D particle. It has been shown rigorously@25# that the loga-
rithmic conformal algebra ensures energy-momentum c
servation during the recoil processUi5 l sgs(ki

11ki
2), where

k1(k2) is the momentum of the propagating closed stri
state before~after! the recoil, andgs is the string coupling,
which is assumed here to be weak enough to ensure
D-branes are very massive, with massMD51/(l sgs), where
l s is the string length.

In the case of Dp-branes, the pertinent deformations a
slightly more complicated. As discussed in Ref.@24#, the
deformations are given by

(
I

gIi
DE

]S
]nXiDe

I and (
I

gIi
CE

]S
]nXiCe

I . ~2!

The 0i components of the two-index couplingsgIi
a , a

P$C,D% include the collective momenta and coordinates
the D-brane as in the D-particle case above, but now th
are additional couplingsgIi

a , IÞ0, which describe the fold-
ing of the D-brane. Such a folding may be caused by sc
tering with another macroscopic object, namely, anot
4-2
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MASS HIERARCHY FROM RECOILING D-BRANES PHYSICAL REVIEW D61 124004
D-brane, propagating in a transverse direction, as sh
schematically in Fig. 1 for the case of a D1-brane hitting
D3-brane. This situation is the most interesting to us, sinc
generates an AdS3 space, as we show below. For symme
reasons, in the situation depicted in Fig. 1, the folding of
D3-brane occurs symmetrically around the axis of the D
brane. In this case, the precise logarithmic operator defor
tions shown in Eq.~2!, which pertain only to the spatia
regionyi.0 for the Dirichlet coordinates, should be supp
mented with their counterparts for theyi,0 region as well.
This would, in principle, require additionalQ(6yi) factors,
which would complicate the analysis without introducin
any new points of principle. Therefore, for simplicity, w
restrict ourselves here to theyi.0 patch of space-time, awa
from the hypersurfaceyi50. This will be implicit in what
follows.

The correct specification of the logarithmic pair in Eq.~2!
entails a regulating parametere→01, which appears inside
the Qe(t) operator

Qe~XI !5E dv

2p

1

v2 i e
eivXI

. ~3!

In order to realize the logarithmic algebra between the
eratorsC andD, one takes@24#

e22; ln@L/a#[L, ~4!

where L(a) are infrared~ultraviolet! world-sheet cutoffs.
The recoil operators~2! are relevant, in the sense of th
renormalization group for the world-sheet field theory, ha
ing small conformal dimensionsDe52e2/2. Thus thes
model perturbed by these operators is not conformal foe

FIG. 1. Schematic representation of the folding effect
D-brane/D-brane collisions.~a! A D1 brane moving with velocityU
along a ‘‘bulk’’ direction perpendicular to a D3 brane embedded
a D-dimensional Euclidean space-timeED strikes the D3 brane~b!,
which is then folded, and the space-time around it is distorted
AdS3^ ED23. The dashed circle around the D1 direction in~b!
indicates the angular deficit that appears when the bulk direc
along which the D1 brane was moving is compactified to a circle
generalization to a higher-dimensional case for the incident bran
straightforward. In that case the deficit~in the compact case! is a
higher-dimensional solid hyperangle.
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Þ0, and the theory requires Liouville dressing@31,32,29#.
Momentum conservation is assured during the scattering
cess@25#.

The folding couplingsgIi
D[gIi , I P$0, . . . ,p%, i P$p

11, . . . ,9%, are relevant couplings with world-shee
renormalization-groupb functions of the form

bgIi
5

d

dt
gIi 52

1

2t
gIi , t;e22. ~5!

This implies that one may construct an exactly marginal
of couplingsḡIi by redefining

ḡIi [
gIi

e
. ~6!

The renormalized couplingsḡ0i were shown in Ref.@25# to
play the role of the physical recoil velocity of the D-bran
while the remainingḡIi , IÞ0, describe the folding of the
Dp-brane forpÞ0. Here we shall assume, generalizing t
case of Ref.@25# that the~bare! recoil couplings for allI are
of equal strength and related to the transverse momen
transfer as

gIi 5gs

DPi

Ms
, I 50, . . . ,m, i 5m11, . . . ,D ~7!

for a D-brane embedded in aD-dimensional~bulk! space-
time.

A technical but important remark is now in order, co
cerning the world-sheet recoil formalism@24#. For reasons of
convergence of the world-sheet path integral, the Neum
coordinateX0 must be Euclideanized. It is only in this cas
that the identification~4!, with e2.0, leads to a mathemati
cally consistent logarithmic algebra of operators. This can
understood simply by the fact that in the pertinent wor
sheet computations of correlation functions of logarithm
operators~1! one encounters@24#, due to Eq.~3!, the free
propagator of the Neumann coordinatesXI :

G05 lims→0^X
I~s!XJ~0!&* ;h IJ ln@L/a#, ~8!

where^•••&* denotes world-sheet partition function with re
spect to the free-string world-sheet action on a flat tar
space-time manifold$XI%, andh IJ is the target space metric
For Euclidean world sheets one takesh IJ5d IJ, and this is
essential for the convergence of world-sheet path inte
expressions entering in the respective correlators. Indeed
us illustrate this by a simple example of the one-point fun
tion ^C&. This involves@see Eq.~3!# the computation of

K E
2`

1` dv

v2 i e
exp ~2 ivX0!L

*

;E
2`

1` dv

v2 i e
exp S 2

v2

2
^X0X0&* D .

o

n

is
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There are world-sheet ultraviolet infinities coming from t
coincidence limit of theX0 propagator in this expression
which after regularization give@24#

E
2`

1` dv

v2 i e
expS 2

v2

2
h00 ln@L/a# D .

Such integrals are convergent only for EuclideanX0, which
we have assumed in Ref.@24# and here.

The Euclideanization of the Neumann coordinates imp
that in our picture, of viewing the~311!-dimensional world
as a brane, the~longitudinal! Neumann coordinates will de
fine a D4 domain wall in the bulk space-time, which, af
analytic continuation of the coordinateX0, will result in our
four-dimensional space-time. However, the analytic conti
ation will take place only at the very end of the calculation
This will be very important for our purposes here, and w
always be understood in what follows.

III. RECOIL-INDUCED SPACE-TIME METRIC
DEFORMATIONS

As discussed in Refs.@29,26#, the deformations~1! create
a local distortion of the space-time surrounding the recoil
folded D-brane, which may be determined using the met
of Liouville dressing. In Refs.@29,26# we concentrated on
describing the resulting space-time in the case whe
D-particle, embedded in aD-dimensional space-time, recoi
after the scattering of a closed string off theD-particle de-
fect. To leading order in the recoil velocityui of the
D-particle, the resulting space-time was found, for timet
@0 long after the scattering event att50, to be equivalent
to a Rindler wedge, with apparent ‘‘acceleration’’eui @26#,
wheree is defined above Eq.~4!. For timest,0, the space-
time is flat Minkowski.1

This situation is easily generalized to Dp-branes@33#. The
folding or recoil deformations of the Dp-brane~2! are rel-
evant deformations, with anomalous dimension2e2/2,
which disturbs the conformal invariance of thes model, and
restoration of conformal invariance requires Liouville dre
ing @32#. To determine the effect of such dressing on t
space-time geometry, it is essential to write@29# the bound-
ary recoil deformations as bulk world-sheet deformations

E
]S

ḡIzxQe~x!]nz5E
S
]a@ ḡIzxQe~x!]az#, ~9!

where theḡIz denote the renormalized folding or recoil co
plings ~6!, in the sense discussed in Ref.@25#. As we have
already mentioned, such couplings are marginal on a
world sheet. The operators~9! are marginal also on a curve
world sheet, provided@32# one dresses the~bulk! integrand

1There is hence a discontinuity att50, which leads to particle
production and decoherence for a low-energy spectator field th
observer who performs local scattering experiments long after
scattering, and far away from the location of the collision of t
closed string with theD particle @26#.
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by multiplying it by a factorea I i f, wheref is the Liouville
field anda I i is the gravitational conformal dimension, whic
is related to the flat-world-sheet anomalous dimens
2e2/2 of the recoil operator, viewed as a bulk world-she
deformation, as follows@32#:

a I i 52
Qb

2
1AQb

2

4
1

e2

2
, ~10!

whereQb is the central-charge deficit of the bulk world-she
theory. In the recoil problem at hand, as discussed in R
@26#,

Qb
2;e4/gs

2.0 ~11!

for weak folding deformationsgIi , and hence one is con
fronted with asupercriticalLiouville theory. This implies a
Minkowskian signatureLiouville-field kinetic term in the re-
spectives model @34#, which prompts one to interpret th
Liouville field as a timelike target-space field. However,
our context, this will be asecondtime coordinate@35#, which
is independent of the~Euclideanized! X0. The presence of
this second ‘‘time’’ for us will not affect the physical observ
ables, which will be defined for appropriate slices of fix
Liouville coordinate, e.g.,f→`, or equivalently e→0.
From the expression~11! we conclude@cf. Eq. ~10!# that
a I i ;e to leading order in perturbation theory ine, to which
we restrict ourselves here.

We next remark that, as the analysis of Ref.@29# indi-
cates, theXI-dependent field operatorsQe(X

I) scale as fol-
lows with e:Qe(X

I);e2eXI
Q(XI), whereQ(XI) is a Heavy-

side step function without any field content, evaluated in
limit e→01. The bulk deformations, therefore, yield the fo
lowing s-model terms:

1

4p l s
2 E

S
(
I 50

3

~e2ḡIi
C1eḡIi X

I !ee(f(0)2X(0)
I )Q~X(0)

I !]af]ayi ,

~12!

where the subscripts (0) denote world-sheet zero modes,
ḡ0i

C 5yi .
Upon the interpretation of the Liouville zero modef (0) as

a ~second! timelike coordinate, the deformations~12! yield
space-time metric deformations~of the generalized space
time with two times!. The metric components for fixed
Liouville-time slices can be interpreted in@29# as expressing
the distortion of the space-time surrounding the recoil
D-brane soliton.

For clarity, we now drop the subscripts (0) for the rest
this paper, and we work in a region of space-time on
D3-brane such thate(f2XI) is finite in the limit e→01.
The resulting space-time distortion is therefore described
the metric elements

Gff521, Gi j 5d i j , GIJ5d IJ , GiI 50,
~13!

Gf i5~e2ḡIi
C1eḡIi X

I !Q~XI !, i 54, . . . ,9, I 50, . . . ,3,

ry
e

4-4
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MASS HIERARCHY FROM RECOILING D-BRANES PHYSICAL REVIEW D61 124004
where the indexf denotes Liouville ‘‘time,’’ not to be con-
fused with the Euclideanized time which is one of theXI . To
leading order ineḡIi , we may ignore thee2ḡIi

C term. The
presence ofQ(XI) functions and the fact that we are workin
in the regionyi.0 indicate that the induced space-time
piecewise continuous.2 In the general recoil or folding cas
considered in this article, the form of the resulting patch
the surrounding space-time can be determined fully if o
computes the associated curvature tensors, along the lin
Ref. @26#.

We now conclude this section with some remarks ab
the metric~13!. First we restrict ourselves to the case of
single Dirichlet dimensionz, playing the role of a bulk di-
mension in a setup where there areXI , I 50, . . . ,3Neumann
coordinates parametrizing a D4~Euclidean! brane~our four-
dimensional space-time!. Upon performing the time transfor
mationf→f2 1

2 eḡIzX
Iz, the line element of the abovemen

tioned space-time becomes

ds252df21S d IJ2
1

4
e2ḡIzḡJzz

2DdXIdXJ

1S 11
1

4
e2ḡIzḡJzX

IXJDdz22eḡIzz dXIdf, ~14!

wheref is the Liouville field~which, we remind the reader
has Minkowskian signature, in the case of supercriti
strings we are dealing with here!.

One may now invoke a general coordinate transforma
on the braneXI so as to diagonalize the pertinent induce
metric elements in Eq.~14!.3 For instance, to leading order i
the deformation couplingsḡIzḡJz , one may redefine theXI

coordinates by

XI→XI2
e2

8
z2ḡIz(

JÞI
ḡJzX

J,

~15!

z→zS 11
e2

8 (
IÞJ

ḡIzḡJzX
IXJD ,

which leaves only the diagonal elements of the metric ten
on the ~redefined! hyperplaneXI . In that case, the metric
becomes~to leading order ingIz

2 ):

ds252df21~12a2z2!~dXI !2

1@11a2~XI !2#dz22eḡIzz dXIdf,
~16!

a5
1

2
eḡIz;gsuDPzu/Ms ,

2The important implications for nonthermal particle producti
and decoherence for a spectator low-energy field theory in s
space-times were discussed in Refs.@26,29#, where only the
D-particle recoil case was considered.

3Note that general coordinate invariance is assumed to be a
symmetry on the brane, away from the ‘‘boundary’’XI50.
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where in the last expression we wanted to make clear t
upon utilizing Eqs.~6!,~7!, one can actually express the p
rametera ~in the limit e→01) in terms of the~recoil! mo-
mentum transfer along the bulk direction. As we shall s
later on, this parameter is responsible for the mass hiera
in the problem, assuming that the string scaleMs is close to
Planck mass scale 1018 GeV, for ordinary string-theory cou
plings of ordergs

2/2p51/20. The above metric element

derived in the case whereeḡIzz!1.
A last comment concerns the case in which the me

~16! is exact, i.e., it holds to all orders inḡIzz. This is the
case where there is no world-sheet tree level momen
transfer. This naively corresponds to the case of static in
secting branes. However, the whole philosophy of rec
@24,25# implies that even in that case there are quantum fl
tuations induced by summing up genera on the world sh
The latter implies the existence of a statistical distribution
logarithmic deformation couplings of Gaussian type abou
mean field valueḡIz

c 50. Physically, the couplingsḡIz repre-
sent recoil velocities of the intersecting branes, hence
situation of a Gaussian fluctuation about a zero mean va
represents the effects of quantum fluctuations about the
recoil velocity case, which may be considered as a quan
correction to the static intersecting brane case. Such Ga
ian quantum fluctuations arise quite naturally by summing
higher world-sheet topologies@25#. We therefore conside
taking a statistical averagê̂•••&& of the line element~14!,

^^ds2&&52df21S 12
1

4
e2^^ḡIzḡJz&&z

2DdXIdXJ

1S 11
1

4
e2^^ḡIzḡJz&&X

IXJDdz2

2e^^ḡIz&&z dXIdf, ~17!

where

^^•••&&5E
2`

1`

dḡIz~ApG!21e2ḡIz
2 /G2

~••• !, ~18!

where the widthG has been calculated in Ref.@25#, after
proper summation over world-sheet genera, and in fac
found to be proportional to the string couplinggs .

Obviously, from Eq.~18!, and assuming thatgIz5uUi u,
whereUi5gsDPi /Ms is the recoil velocity@24,25#, the av-
erage line elementds2 becomes

^^ds2&&52df21~12a2z2!~dXI !21@11a2~XI !2#dz2,
~19!

a5
1

2A2
eG.

The definition of a comes from evaluating the quantit

^^ḡIz
2 && using the statistical distribution~18!. Thus, in that

case, averaging over quantum fluctuations leads to a m
of the form~16!, but with a parametera much smaller, being
determined by the width~uncertainty! of the pertinent quan-

ch

od
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tum fluctuations@25#. The metric~19! is exact, in contrast to
the metric~16! which was derived forz!1/a. However, for
our purposes below we shall treat both metrics as exact
lutions of some string theory associated with recoil.

An important feature of the line element~19! is the exis-
tence of ahorizon at z51/a for EuclideanNeumann coor-
dinatesXI . Also notice that the Liouville fieldf has decou-
pled, upon the averaging procedure, and this allows on
consider slices of this field, defined byf5const, on which
the physics of the observable world can be studied. Fro
world-sheet renormalization-group viewpoint this slicin
procedure corresponds to selecting a specific point in
noncritical string theory space. Usually, the infrared fix
point f→` is selected. In that case, from Eq.~4!, one con-
siders a slice for whiche2→0. But any other choice could
do, soa may be considered a small but otherwise arbitr
parameter of our effective theory.

The presence of a horizon raises the issue of how
could analytically continue so as to pass to the space bey
the horizon. The simplest way, compatible, as we shall sh
later with the low-energy Einstein’s equations, is to take
absolute value of 12a2z2 in the metric element~16!. We
therefore consider the following metric defined in all spa
zPR at a slice of the Liouville timef5const:

dsf
25u12a2z2u~dXI !21@11a2~XI !2#dz2. ~20!

For smalla, which is the case studied here, and for Eucl
ean Neumann coordinatesXI , the scale factor in front of the
dz2 term does not introduce any singular behavior, a
hence for all qualitative purposes we may study the follo
ing metric element:

dsf
25u12a2z2u~dXI !21dz2, ~21!

which is expected to share all the qualitative features of
full metric ~20! induced by the recoil process in the case
an uncompactified ‘‘bulk’’ Dirichlet dimensionz we restrict
ourselves here.4

A point that we would like to make concerns the fact th
formally, our analysis leading to Eq.~21! is valid in the
region of bulk space-time for whichz.0. However, one

4For the case of compact dimensionz the situation changes dras
tically, since in that case, for compactz and at fixedXI;1/e@0 and
t@0, such thata2X2.gXz

2 /4, we observe from the metric~20! that
there exists a deficit angle in the circle aroundz @33#:

d.~pgIz
2 /4! ~22!

implying the dynamical formation of a conical-like singularit
Such singularities in general break bulk space-time supersymm
@28#. However, in view of the fact that the folded D-brane is
excited state of the string or D-brane system, the phenome
should be viewed as a symmetry obstruction rather than a spo
neous breaking of symmetry, in the sense that, although the gro
state of the string/D-brane system is supersymmetric, recoil
duces a particular excited state that does not respect that symm
@36#. We shall not, however, deal any further with the compact c
in what follows, but instead assume a noncompact bulk dimens
12400
o-

to
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may consider amirror extension of the space-time for th
regionz,0, which we assume in this article. From now o
therefore, we treat the metric~21! as being defined over th
entire real axis for the bulk coordinatezPR. However, to
make contact with the original recoil picture we restrict ou
selves in regions of space-time for whichXI.0.

IV. A MASS HIERARCHY FROM RECOILING D-BRANES

In this section we show that the metric obtained by t
dynamical mechanism of D-brane scattering predicts a n
ral scale hierarchy. A crucial role is played by the value
the only parameter of the theory, i.e.,a, which is directly
related to the D-brane recoil and appears in thewarp factor
in front of the four-dimensional part of the metric. With th
above in mind we now write the metric~21! as

dsf
25e22s(z)~dXI !21dz2,

~23!

s~z!52
1

2
ln~ u12a2z2u!.

The only nonzero components of the Christoffel symbol c
responding to the metric~23! read~in Euclidean signature for
XI ,I 50, . . . ,3)

G04
0 5G40

0 5s8~z!,

G00
4 52s8~z!e22s(z),

~24!
G i i

4 5s8~z!e22s(z), i 51,2,3,

G i4
i 5G4i

i 52s8~z!,

where the prime denotes differentiation with respect toz.
Notice that in the case of Minkowskian signature for t
Neumann time coordinateX0, the only change will beG00

4

→2G00
4 . This implies a similar sign change for the corr

sponding components of the Ricci curvatureR00→2R00.
The curvature scalar therefore remains unchanged upon
analytic continuation of the time variableX0.

For future use we note the following mathematical ide
tities:

s8~z!52
1

2

a

u11azu @Q~11az!2Q~212az!#

1
1

2

a

u12azu @Q~12az!2Q~211az!#,

~25!

s9~z!5
1

2

a2

~11az!2
@Q~11az!2Q~212az!#

1
1

2

a2

~12az!2
@Q~12az!2Q~211az!#

2
a2

u11azu
d~11az!2

a2

u12azu
d~12az!.

We next check on whether the metric~23! is a solution of
Einstein’s equations

try

on
ta-
nd
o-
try
e
n.
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Rmn2
1

2
GmnR5Tmn ,

Tmn52
1

4Ms
3

GmnL2
1

4Ms
3 (

i
AG( i )GIJ

( i )dm
I dn

J

3V( i )~z!/AG, m,n50, . . . ,4,I ,J50, . . . ,3,

~26!

whereMs is the string mass scale andL is a cosmological
constant in the bulk space-time, and the sum( i is over pos-
sible D-brane defects. The index~i! denotes quantities per
taining strictly to such D-brane domain walls. In our case
can assumei 51, since originally we have a~struck! D-brane
at the originz50. Note that, in a similar spirit to Ref.@8#, we
have subtracted a vacuum energy contribution, proportio
to V(z) from such D-brane defects.

It is easy to check from Eq.~25! that, by placing such
domain walls at the horizon pointsz561/a, one obtains
that the metric~23! is indeed a solution of Eq.~26!, provided
that

3s9~z!5
1

4Ms
3 (

i
V( i )~z!

AG( i )G00
( i )

AGe22s
, ~s8!252

1

24Ms
3
L.

For a single D-brane atz50, the solution is

L

24Ms
3

52
1

4

a2

~11az!2
2

1

4

a2

~12az!2
1

1

2

a2

~12az!2
E,

~27!

V~z!

4Ms
3

5
3

2

a2

~11az!2
1

3

2

a2

~12az!2

2
3a2

u11azu
d~11az!2

3a2

u12azu
d~12az!,

where E5@Q(11az)2Q(212az)#@Q(12az)2Q(21
1az)#511, if 21/a,z,1/a, andE521 otherwise.

The negative cosmological constant~anti–de Sitter type
Universe! is a generic feature of intersecting branes@8#, but
also of the recoil formalism@35,33#, and signals compatibil-
ity with space-time supersymmetry in the case of static n
recoiling intersecting branes@8#. Notice, however, that the
cosmological constantvanisheson the original branez50
and becomes infinitely negative on the horizonuzu51/a.

On the other hand, the vacuum energy distribution on
brane hypersurface,V(z) , is positive @V(0)512a2# at z
50, which is compatible with the fact that the recoil excit
the D-brane atz50, and the excitation energy is of the sam
order as the kinetic energy transfer, due to ener
momentum conservation@25#. V(z) also blows up negative a
the horizon, signaling the formation of domain walls ther

Next we consider the issue of localization of bulk gra
ton states inside the horizon21/a,z,1/a. To this end, we
follow @8# and use the following ansatz for separating va
12400
e

al

-

e

-

-

ablesXI andz, as far as~small! quantum fluctuations of the

bulk graviton stateĥ(XI ,z) about the background~23! are
concerned

ĥ~XI ,z!5l~z!eipI
EXI

, ~28!

where the notationpI
E in the momenta on the brane has be

explicitly stated to remind the reader that we are working
a Euclidean set up for$XI%, and hence for massive KK ex
citations, of mass squaredm2.0 the on-shell condition
should read

~pI
E!252m2,0. ~29!

The equation for such small fluctuations can be obtained
linearizing Einstein’s equations~26! around the AdS back-
ground and choosing appropriate gauge for the fluctuati
of the metric. The final equation then reads

@2] I]
I2]z]

z1V~z!#ĥ~XI ,z!50, ~30!

where the ‘‘potential’’V(z) arises from curvature.
Upon introducing the ansatz~28!, and using Eq.~29!, the

above equation becomes a one-dimensional Schro¨dinger-
type eigenvalue equation for the bulk modesl(z) @8#

2l9~z!1@4~s8!222s9#l~z!52m2e2sl~z!, ~31!

where the various quantities are given in Eq.~25! for the
problem at hand. It is important to note theminus sign in
front of the mass term on the right-hand-side of Eq.~31!,
which is due to the Euclidean nature ofXI hyperplane~29!.
As we shall see soon this will play an important physic
role. Substituting Eq.~25! in Eq. ~31! one obtains after some
straightforward algebra:

2l9~z!2S 2a2

u12a2z2u
E2

a2

u11azu
d~11az!

2
a2

u12azu
d~12az!1

m2

u12a2z2u
D l~z!50,

~32!
E511 21/a,z,1/a, E521 otherwise.

Equation ~31! has the form of a one-dimensional Schr¨-
dinger equation. The potential is drawn in Fig. 2 for vario
values of the mass parameterm.

We observe the following. For mass parameters 0,m
,mcr[A2a the potential is attractive, and the wave fun
tion peaks atz50 ~see Fig. 3!. For mass parameterm
.A2a the wave functions are sharply peaked at the horiz
uzu51/a.

For illustration purposes, the wave functions~arbitrarily
normalized! for three distinct cases,m50, m50.2mcr , and
m50.8mcr are depicted in Fig. 3. Form50 ~massless gravi-
ton state!, the corresponding wave function~solid curve!
peaks at the D4-brane atz50. As m approaches the critica
valuemcr the wave fuction~dashed-dotted curve! spreads out
4-7
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along thez direction. Wave functions form.mcr ~shown in
the figure with a dashed-dotted curve! are localized on the
two boundariesz561/a.

The spectrum is continuous in both cases and these
not bound states, in contrast to the case of Ref.@8# for the
massless graviton mode. This is easily seen from the form
the corresponding zero energy eigenvalues in the Sc¨-
dinger equation~32!. However,there is localizationwithin
the horizon of athin band of Kaluza-Klein modes, with
masses up toA2a.

This leads to modifications of Newton’s law on the bra
hypersurface$XI%,I 50, . . . ,3 atz50 ~where the light band
of modes including the massless one peaks, and where
cosmological constant vanishes!. This can be easily calcu
lated from the corresponding Green’s function in the sta
potential between two mass sourcesm1 ,m2. The corrections

FIG. 2. Schematic representation of the potential of the equ
lent Schro¨dinger equation in the bulk direction. The solid curv
corresponds to the massless case while the dashed one repr
the potential for the critical valuem5A2a. Beyond this value, the
massive gravitons wave functions are no longer localized on thz
50 D3-brane; the dashed-dotted curve represents the potentia
such a case.

FIG. 3. The solution of the Schro¨dinger equation for three
Kaluza-Klein modes with masses 0<m,A2a. Solid curve corre-
sponds tom50 wave function. We observe that the modes a
localized within the horizonuzu,1/a, while they start to spread a
m grows. Form>A2a they are peaked on the boundaries61/a.
12400
re

of
o

the

c

are generated by the exchange of massive modes
masses up toA2a:

V~r !;GN

m1m2

r S 11E
0

A2aGN

Ms
2

me2mrdmD
5GN

m1m2

r
1

GN

r 3Ms
2 ~12e2A2ar !m1m2

.GN

m1m2

r
1

GNA2a

r 2Ms
2

m1m2 ~33!

for small thickness of the banda. Thus, we see that the
presence of massive Kaluza-Klein modes in the space-t
~23!, due to the presence of a recoiling brane~our world!,
struck by another string soliton, results in attractive corr
tions to Newton’s law ofr 22 scaling, which are suppresse
by a power ofa/Ms . In our case above the string scale m
be assumed to be the conventional one, unlike the mode
Refs.@5,7#, Ms;1018 GeV. In the~formal! limit a→` one
recovers the situation discussed in@8#, but as we have ex-
plained above our logarithmic formalism is valid for smalla.

The existence of thin bands of Kaluza-Klein modes se
new mass hierarchy, in the sense that masses of ordera may
determine the supersymmetry-breaking scale on the b
XI , due to the recoil process, as discussed in Refs.@28#,
where we refer the reader for details. Here we simply m
tion that the fact that the vacuum energyV(z50) on the initial
brane located atz50 is positive and of order 12a2 @cf. Eq.
~27!# signals supersymmetry breaking on the brane at a s
determined bya!Ms , which may be taken to be of TeV
scale, according to standard arguments on the gauge hi
chy problem of quadratic divergencies in four-dimension
spontaneously broken gauge theories. Notice that our pic
for the hierarchy is different from that of Ref.@8#, where the
low mass scale~compared toMs! on our world arises be-
cause of the small overlap of the bulk graviton wave funct
with that on the brane. In our picture, such small scale f
tors are valid only on the horizon atuzu51/a, which, how-
ever, lies far away from the observable world.

The above considerations concern one noncompact
direction. The issue of compact bulk directions is comp
cated in our case because of the form of the metric~14!,
which implies deficits@cf. Eq. ~22!#, as discussed in Ref
@33#. It will be left for a future publication. Nevertheless, w
believe that the results presented here are sufficient to d
onstrate the important role of recoil~and in general quantum
fluctuations! on the physics of large extra dimensions
string theory. The formation of bands of Kaluza-Kle
modes, localized within the horizon of the metric~23! occurs
here without the necessity of considering periodic lattice
branes. And actually the localization is obtained in a dyna
cal way, consistent with conformal field theory on the wor
sheet of the underlying string theory.

V. CONCLUSIONS

In this paper, we have made an attempt to generate
namically theMPlanck-MW scale hierarchy in the context o

-

ents

for
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D-brane scattering. Assuming a D4-brane embedded
five-dimensional space-time we showed that scattering w
another D-brane generates a bulk AdS5 space-time.
original D4-brane located at the origin of the fifth dimensi
is interpeted as our Euclideanized four-dimensional spa
time, where the cosmological constant is found to be ze
Taking into account deformations due to incorporated re
effects, we calculated the space-time metric and showed
it satisfies the classical Einstein equations. Solving the
earized equation for the graviton modes, we find that th
appears a band of massive lower Kaluza-Klein excitatio
including the massless ordinary graviton state, which is
calized in a small region of the fifth dimension around t
origin where the D4-brane is located.

More precisely, due to the recoil quantum fluctuations
the D4-brane there is localization of a~continuous! thin band
of massive KK states with masses up toA2a, for small a
!Ms , where the parametera is related to the strength of th
quantum fluctuations and sets the supersymmetry-brea
scale on the D4-brane. In this sense, the above appr
th
ic

B

li,

t.
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generates dynamically a mass hierarchy, given the small
of a as compared to the string scaleMs , which in our ap-
proach is assumed of order 1018 GeV. There is also the ap
pearance of a horizon located atuzu;1/a.

At present, our considerations pertain to noncompact fi
dimension. In the case of compact bulk dimensions there
discrete set of allowed KK states, with masses quantize
units of the radius of the compact dimension. However,
that case, within the context of the recoil approach, there
induced deficits@33# which complicate the analysis. Suc
issues, together with the extension of the above approac
include more than one extra bulk dimension, are left for
ture work. However, we believe that the results presen
here are of sufficient interest to motivate further stud
along this direction.
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