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Gravitational properties of monopole spacetimes near the black hole threshold
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Although nonsingular spacetimes and those containing black holes are qualitatively quite different, there are
continuous families of configurations that connect the two. In this paper we use self-gravitating monopole
solutions as tools for investigating the transition between these two types of spacetimes. We show how
causally distinct regions emerge as the black hole limit is achieved, even though the measurements made by an
external observer vary continuously. We find that near-critical solutions have a naturally defined entropy,
despite the absence of a true horizon, and that this has a clear connection with the Hawking-Bekenstein
entropy. We find that certain classes of near-critical solutions display naked black hole behavior, although they
are not truly black holes at all. Finally, we present a numerical simulation illustrating how an incident pulse of
matter can induce the dynamical collapse of a monopole into an extremal black hole. We discuss the impli-
cations of this process for the third law of black hole thermodynamics.

PACS numbd(s): 04.70.Dy, 04.70.Bw

l. INTRODUCTION the order ofMp,. As we describe in more detail in Sec. Il
two distinct types of critical behavior are possible, depending
Nonsingular spacetimes and those containing black holesn the ratio of the Higgs and gauge boson masses. For lower
are qualitatively quite different. Nevertheless, it is possiblevalues of this ratio, one finds “Coulomb-type” critical solu-
to find sequences of spacetimes that, while remaining nonsions, in which the horizon occurs in the Coulomb region of
ingular, come arbitrarily close to having horizdis-4]. Ina  the monopole at,=47G/e?. Outside the horizon, the

previous pape[5] we studied a class of such solutions thatmetric is that of an extremal Reissner-Nordstrblack hole,
are associated with self-gravitating monopoles in a spontangyith

ously broken Yang-Mills theory. The emphasis there was on

the detailed behavior of the fields as one approaches the criti-

cal solution in which a horizon first appears. In this paper, B(r)=
we concentrate instead on the geometrical aspects of the

spacetimes associated with these objects near criticality and

on using these to gain insights into the properties of truavhile the massive fields take on their vacuum values. As the

1.2

black holes. Higgs self-coupling increases, there is a transition to “core-
As in Ref. [5], we restrict ourselves to Spherica”y sym- type” critical solutions that have a horizon inside the mono-
metric Spacetimes and write the metric in the form p0|e core and nontrivial matter f|e|C{9r ha”) outside the
horizon.
ds’=Bdt?—Adr’—r?(d@?+sirfod¢?). (1.1 In both types of critical monopole solutions the fields re-

main nonsingular at =0. However, it is also possible to
A horizon corresponds to a zero ofAt/the horizon is ex-  have solutions with singularities at=0 that can be viewed
tremal ifd(1/A)/dr also vanishes. We work in the context of gs self-gravitating monopoles with Schwarzschild black
an SU2) gauge theory with gauge couplirgand a triplet  holes at their center. As long as the mass of the central black
Higgs field ¢ whose vacuum expectation valuebreaks the  hole is not too great, the variation of these solutions with
symmetry down to (). In flat spacetime this theory pos- quite similar to that of the nonsingular monopoles, and one
sesses a finite energy monopole solution with magnetiginds the same two types of critical behavj6i.
chargeQy =4/e and masd/ ~v/e. It has a core region, of  After reviewing these solutions, we discuss in Sec. llI
radius~ 1/ev, with nontrivial Higgs and massive vector bo- how near-critical monopoles might appear to an outside ob-
son fields. Beyond this core is a Coulomb region in which allserver. One would expect the measurements made by such an
massive fields approach their vacuum values exponentiallgbserver to vary continuously with the parameters of the
rapidly, leaving only the Coulomb magnetic field. The ef- monopole and to show no discontinuity at the critical solu-
fects of adding gravitational interactions depend on the valu@ion. An external observer could probe the monopole with
of v. Forv much less than the Planck mads,, one finds either particles or waves. In the case of the particle, we find
that 1A is equal to unity at the origin, decreases to a mini-that the time needed for the particle to emerge from the in-
mum at a radius of order d#, and then increases again with terior (as measured by a static external observer using
A(*)=1. Asv is increased, this minimum becomes deeperSchwarzschild timediverges as the critical solution is ap-
until an extremal horizon develops at a critical valyg of  proached. When a wave is sent in, there is a reflected wave

due to the gravitational field just outside the horizon and a

transmitted wave that passes through the interior and then

*Email address: lue@phys.columbia.edu emerges with a time delay. As before, the time delay di-
"Email address: ejw@phys.columbia.edu verges asv —uv., While the reflected wave becomes indis-
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tinguishable from that due to a black hole. Using either typebring them closer to criticality. If the amount of matter en-
of probe, an observer whose lifetime is finite cannot distintering is just sufficient to create a zero ofAl/one would
guish between a true black hole and a nonsingular, subcritexpect an extremal solution to result. We will present nu-
cal solution that is sufficiently close to being critical. We merical arguments that support this expectation. Finally, we
discuss the implications for our understanding of black holgnake some concluding remarks in Sec. V.
entropy.

We also find that the near-critical Coulomb-type solutions
display what Horowitz and Rod¥,8] have termed naked- Il. REVIEW OF PREVIOUS RESULTS
black-hole behavior, even though there is no black hole at
all. This is characterized by the fact that a freely falling ~As in Ref.[5], we consider an S(2) gauge theory that is
observer passing through the minimum oA Zive shall refer ~ Spontaneously broken to(l) by the vacuum expectation
to the location of this minimum as the quasi-horizéeels a  valuev of a triplet Higgs field¢. This theory has magnetic
tidal force that diverges as the critical solution is approachednonopole solutions that can be described by the spherically
For core-type solutions, on the other hand, no such behavigiymmetric ansatz

is observed. .
In Sec. IV, we consider the effect of having additional pe=vreh(r) 2.9
matter fall into a near-critical solution, addressing in particu-
lar the question of whether this process could produce an A 1=u(r)
extremal black hole. Extremal black holes are especially in- Aia= Eiak! T er (2.2

teresting from the standpoint of black hole thermodynamics

because they have vanishing Hawking temperature. Thgjniteness of the energy requires thete)=0 and h(x)
analogies between black hole dynamics and thermodynamics 1. |f the solutions are also required to be nonsingular at
thus suggest that they should be rather difficult, if notimposy =g, thenu(0)=1 andh(0)=0.

sible, to create. Indeed, one of the formulatig@$ of the In a spacetime with a metric of the form of Eg..1), the
third law of black hole dynamics asserts the impossibilitystatic field equations for these matter fields can be derived

(under certain technical assumptipio$ making a nonextre-  from a (1+1)-dimensional action of the following for.1]:
mal black hole extremal. One could also envision producing

an extremal black hole starting from a nonsingular space- K(u,h)

time. Boulware[10] showed that this can be done by the Smatter:_47TJ dtdrr2|AB] A +U(U,h)}
collapse of a charged shell of matter. However, this mecha- 2.3
nism relies critically on the shell being infinitely thin; shells

of finite thickness and density do not collapse to an extremajynere U(u,h) involves the fields but not their derivatives,

configuration. while
It is easy to understand the difficulty of making an ex-
tremal black hole if one recalls that the extremal Reissner- 1 (du\?2 p2/dh\>2
Nordstran black hole is characterized by having a mass and K= ?(—> + —(—) . (2.9
a charge that(in appropriately rescaled Planck unitare e?r2\dr 2 \dr

equal. Forming such an object by the collapse of a shell with ) _
equal charge and mass densities involves a delicate balance The Euler-Lagrange equations for the matter fields that
between electromagnetic and gravitational forces. One coulfpllow from Eq. (2.3) must be supplemented by the gravita-
instead try to achieve extremality by adding matter to a prenona}l flelq equations. For static, spherically symmetric field
existing nonextremal Reissner-Nordstroblack hole (i.e. ~ configurations these reduce to
one with greater mass than chargelowever, because the
added matter would have to have more charge than mass, the 1 d
Coulomb repulsion between the black hole and the infalling Gii=53% —[r(
matter would tend to overcome their gravitational attraction.

The situation is rather different in our case, because thgnd
nonsingular monopole solutions aoeerchargedi.e., their
long range fields are those of a Reissner-Norastsolution
with greater charge than mas#llowing uncharged matter
to fall into these objects increases their mass and should G{{+G;;=—<

(2.5

2\ 1 dJAB  16mGK
= . (2.6

A ag dr A

In the pure Reissner-Nordstrocase, this leads to a naked sin- Here carets indicate orthonormal components.
gularity. The singularity is avoided here by the same mechanism Equation(2.6) can be immediately integrated to obtain
that makes the mass of the flat-space monopole finite: the orienta-
tion of the massive gauge fields in the monopole core is such that

their magnetic dipole energy just cancels the singular Coulomb en- B(r)= Lex B l67TGder’ 'Kl 2.7
ergy at the origin. A(r) r
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Using this to eliminateB, one is left with two second order the horizor® The radial derivatives of both matter fields are
and one first order equation for the functionsh, and A. finite at the horizon, s& remains finite and there is no sharp
These equations must be solved numerically. Up to a rescathange inAB at the horizon. Becaus®B remains finite and
ing of distances, the solutions of these equations depend onhonzero,B has a zero at the horizon that coincides with the
on the two dimensionless parameteas-87Gv? and b zero of 1A.
= (my/2my)2. These solutions can be generalized to include a black hole
For small values ob (roughly b=<25 for a quartic Higgs in the center of the monopole. Instead of requiring that the
field) [5,6] one finds Coulomb-type solutions in which the fields be nonsingular at=0, one instead requires that there
minimum of 1A is located outside the monopole core. Thisbe a zero of & at a nonzero radiusy. At this zero, the
minimum decreasé@swith increasinga, until the critical so-  equations for the matter fields become constraint equations
lution is reached ai.=87GuZ . In the critical solution, the relating the fields and their first derivative; solving these con-
matter fieldsu andh reach their asymptotic values=0 and  Straints yields enough boundary conditions to determine a
h=1 at the horizon and are then constant forrafir,; be-  solution.
cause both fields fall as fractional powersrgf-r, the de- If ryy is not too large, the effect of increasiags similar
rivativesdu/dr anddh/dr both diverge as approaches, to whatitis in the absence of a central black Hblnere is
from below. (This nonanalytic behavior is possible becausean outer minimum of & that moves downward, finally
an extremal horizon is a singular point of the matter fieldreaching zero and becoming an extremal horizon at some
equations. critical valuea,(ry). For small values ob the solutions are
The metric of the critical solution is identical to the ex- Coulomb type, while for largé one finds core-type critical
tremal Reissner-Nordstno metric outside the horizon, but solutions.
differs from it forr <r,. The metric function I varies rela- Rather than increasing with ry, fixed, one can instead
tively smoothly, falling monotonically from unity at the ori- increase y with a held fixed; this is much more analogous to
gin to a zero at the horizon. Just inside the horizoA 1/ the process of actually dropping matter into a near-critical
~k(ro—r)?, with k being larger than for the corresponding solution that we will consider in Sec. IV. For initial values of
Reissner-Nordstro solution. The behavior oB contrasts athat are sufficiently close ta.(r4=0), this gives a family
sharply with this. Equatiori2.7) shows that the produ¢tB  of solutions with a critical limit. In Figs. 1 and 2 we illustrate
(which is identically equal to unity in both the Schwarzschild this with a Coulomb-type solution witb=1.0 and a core-
and Reissner-Nordstno solutions is given by an integral of ~type solution withb=10°.
the functionalK (u,h). The singularities in the derivatives of
u andh at the horizon are strong enough to cause this inte-

gra| to di\/erge, so that the ratio IIl. PROBING THE QUASI-BLACK HOLE
For anya<a,,, the self-gravitating monopole solution is
\/AB|outsider0 a nonsingular spacetime with a Penrose diagram of the same
c=——— (2.8  form as that of Minkowski spacetim@ig. 3a. The critical
VABinsige o solution, on the other hand, can be extended beyond the

original coordinate patch to yield a spacetime with the Pen-

is infinite in the critical limit. If we adopt the conventional rose diagram shown in Fig. 3b. This diagram is quite similar
normalizationB(<)=1, thenB vanishes identically inside O that of an extremal Reissner-Nordstrdolack hole, but
the horizon. If we instead s&(0)=1, thenB is finite and  differs from it by not having a singularityat r=0. The
varying inside the horizon and infinite for>ro; depending difference between the two diagrams is striking and seems to
on the value ob, the minimum ofB may be atr=0 or at indicate a discontinuity aa=a,,, in contradiction with the
some finite radius, but in neither case d8dsave a zero. For usual expectation that physical quantities should vary con-

near-critical solutions where the minimum value A)4;,  tinuously with the parameters of a theory. _
=€ is small but nonzero, we find that the ratiovaries as However, this discontinuity can been seen as an artifact of

€9, whereq ranges from about 0.7 to unity. the conformal transformation that produces the Penrose dia-
A rather different type of critical solution is found for gram from an infinite spacetime. This can be illustrated by

largerb. For these core-type solutions the horizon occurs at a

radiusr, <rg, with the valuesi, andh, of the matter fields

at this point being different than their asymptotic values. 3For intermediate values df, subcritical monopoles exhibit both

Although the solutions are still nonanalytic at the horizon,core-type and Coulomb-type quasi-horizons. However, as one ap-

this nonanalyticity occurs only in subdominant terms. ThusProaches criticality for a given value @ only one quasi-horizon

1/A again vanishes ag {r)? as one approaches the hori- actually becomes a horizon. The other quasi-horizon, though inter-

zon, but the coefficient is now the same inside and outsid§StNg: IS essentially irrelevant for our purposes.
For larger values of , see the discussion {13].

SAlthough there is no singularity at the origin for a critical mono-
pole black hole, there are singularities at the extremal horizon re-
sulting from nonanalytic behavior of the monopole fields. These

2This behavior is modified slightly for very smdil For a detailed  singularities are relatively mild in the core-type case, but are more
description, se¢2,3,12,13. dramatic in the Coulomb-type case.
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FIG. 1. Monopole solutions
for a=2.0, b=1.0 and various
values of central black hole ra-
[ dius, ry. The progression from
solid line, dot-dashed line, to
dashed line, to dotted line and to
solid line corresponds tcevry
=0.0, 0.1, 0.2, 0.28 and 0.288.
The panels depict the functiols
VA(r), (b) (AB)¥Ar), (c) u(r)
and(d) h(r).

FIG. 2. Monopole solutions
for a=1.002 ancb= 10 and vari-
ous values of central black hole
radius, ry. Here ag(ry=0)
=1.011654 and the minimuna
using this scenario is 1.001. The
progression from solid line, dot-
I dashed line, to dashed line, to dot-
ted line and to solid line corre-
© @ sponds toevry=0, 0.001, 0.002,

1 1 0.004 and 0.00628. The panels de-

L L pict the functions(a) 1/A(r), (b)
(AB)YAr), (c) u(r) and(d) h(r).
Note that the monopole fields are
virtually unchanged as the internal
black hole size is varied. Note that
the radial scale foh(r) is exag-
gerated to show detail.

=205 = 05

0 1 2 [] 0.01 0.02
evr evr
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considering the points A and B that lie on the curves of
constantr that are shown in Figs. 3a and 3b. These have
been chosen so that it is possible for an object to start at A
move in tor=0 at C, and then travel out again to B. The
total proper time along this world linéor the total affine
parameter, if the world line is lightlikes finite. This should

be compared with the proper time along the world line of
constantr. This is finite for the subcritical case, whereas in
the critical case the proper times along the segments AD ant
DB are both infinite, corresponding to the fact that an ob-
server in the exterior region containing A cannot detect ob-
jects behind the horizon PD. In order to obtain consistency
with our physical expectations of continuity, we should re-
quire that the proper time along the worldline of constant r=0
should diverge aa—a.,. More generally, the time required
for an external observer to receive information from a probe
of the interior region should diverge in the critical limit.

A. Particle and wave probes

To see how this works out, we consider probing the inte-
rior region (i.e., the regionr<r, , wherer, is the quasi-
horizon of a near-critical solution by sending in either a

particle or a wave. In both cases, we assume that the prob (3) (b)
interacts only gravitationally, and has no direct interaction
with the monopole fields. FIG. 3. Penrose diagrams féa) subcritical monopole an¢b)

To begin, imagine releasing a massive particle from areritical monopole black hole. In the former casg represents the
initial radiusr,>r, that is large enough that we may ap- quasi-horizon, whereas in the latter case that radius represents a true
proximate B(r,)~1. The rotational and time-translation horizon.
symmetries of the metric allow us to take the motion to lie in _ _ _
the 6=n/2 plane and guarantee the conservation of the anWe are interested in the proper time measured by an observer

gular momentum per unit mass who remains at =r,;. Assuming that the observer is not
moving at relativistic speeds, this is approximately the same
_ ,do y the Schwarzschild coordinate tinie which over the
J=r dr (3.9) course of the entire trajectory increases by an amount
and the energy per unit mass r, dt/dr rno A B [J? -1z
At=2 dr =2 dr—|1- —| 5+1
dt rmn dr/dr rmn  VAB E2\r2
E=B(r) . (3.2 (3.9
dr
) ) There are two potential sources of divergences in this inte-
These, together with Eq1.1), imply that gral as e=(1/A),;»—0 and the critical solution is ap-
proached. In both types of critical solutions there is a contri-
dar 1 [ J? 12 bution fromr~r, associated with the growth &(r,). In
—=—=|E"—B| 5+1 3.3 R i -vanishi
dr \/ﬁ 2 (3.3 the Coulomb-type solutions the near-vanishing/&B [see

Eq. (2.7)] gives a second contribution from the entire region
r<r, . Let us examine these in more detail.

If 3=0, the particle falls radially in, passes through the ori-  For core-type solutions, in the regior-r, we can write
gin, and emerges on the other side of the monopole. If in-

steadJ+# 0, the particle turns around after reaching a mini- 2

-1

r—r
mum radiusr ,,(J) and returns tor; with its trajectory A=k, ( ; *| +e (3.6
advanced by an angle *
0 deldr with k, of order unity, while JAB is roughly constant and
A¢:2f dr independent ok. BecauseB(r, ) is small, theJ-dependent
fmn A/dT term in At can be neglected for anysuch that the particle
] B /J2 ~1/2 could have reached, . By a similar argument, we see that
=2 dr—z\/ﬁ[l— —|—=+1 (3.4  any particle that reaches goes through the peak @f be-
fmin T E=Lr fore turning around. Hence,
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2k, 7T, For both core- and Coulomb-type solutions the quan€ibi
At~ —— = 124 (3.7 remains finite in the critical limit, while the second term in
\/Eh:r the brackets is zero at the quasi-horizon. SiA@&=<1, it is
¥ clear thatU(r,) vanishes at least as fast ass the critical
where the ellipsis represents subdominant terms. limit is approached. Hence, in the limit the scattering poten-

For Coulomb solutions the dominant effect is due to thetial splits into two parts, one inside and one outside the ho-
fact that JAB~ €Y is almost vanishing throughout the inte- fizon. The outer potential is equal either to that of an ex-
rior region. Because our numerical solutions show that tremal Reissner-Nordstmoblack hole(in the Coulomb case
ranges between 0.7 and unity, the divergence due to thigr that of a black hole with haifin the core case Because
effect is greater than that from the region near. Further-  the variation of the outer potential withis smooth in both
more, the near-vanishing & in the interior implies that any cases, our conditions on the reflection coefficients are satis-
particle that enters the interior almost reaches the origin, sfed if we can ignore reflection from the inner part of the

thatr,i;=~0. Thus, potential.
This can be understood by noting that the natural distance
At=~kor, e 9+ .. (3.8 variable in which to discuss the motion of the wavesy.iBy
. ) integrating Eq.(3.11) inward from some reference poing
wherek, is of order unity. >r, , we obtain

Rather than sending in a particle, one can also probe the
qguasi black hole by sending in a wave packet. As an ex- r A
ample, let us consider a free massive scalar figldvhose y(r)=y(ry)— fr dr\/ﬁ' (3.19
field equation in curved spacetime takes the form

1 The behavior of this integral as the critical limit is ap-
0=—9 19 b+ mie. 3.9  proached is very similar to that of the integral in the expres-

\/§ ol \/69 ¢] ¢ (3.9 sion for At, Eq. (3.5). For either type of solution, the region
near the quasi-horizon gives a contribution that diverges at

This can be put into a more tractable form by writing least as fast as~ *2 There is a corresponding growth in both
B 31 the effective distance from the inner portion of the potential
y=r¢ (3.10 to any external point and in the time delay of the correspond-

ing reflected wave. Asg is increased, an external observer at
fixedr first sees the reflections from the inner and outer parts
dr JAB of the potential split into two distinct reflected waves, and
PV (3.11 then finds that the time delay of the second reflected wave
y (from the inner potentialgrows without bound.
Equation (3.9) then takes the form of a one-dimensional ~ The portion of the wave that is transmitted through the
wave equation region near the quasi-horizon either continues through the
origin and then outward or reflects off a central centripetal

and defining a new coordinatdr) satisfying

Py Py ) barrier, according to whether or ndtvanishes. In either
T F“L[U(r” m°Bly (312 (ase, the time delay accumulated by this wave before it re-
y turns to the quasi-horizon grows in essentially the same man-
with a scattering potential ner as the travel time for a massive particle traversing the
same path: as~ 2 for a core-type solution and as 9 for a
1 d|AB| JJ+1)B Coulomb-type solution.
uirn=——|—|+——- (3.13
2r dr| A? r2

o B. Information and entropy
When a wave packet incident from largereaches the

region near the quasi-horizon, a portion is reflected by the Thus, rega_rdless of the type_ of probe used, an external
scattering potential, while a portion is transmitted andObser\ﬂeJ at fixedrqps must wait for at least a timeit
emerge with some time delay. If a near-critical solution is to> (€ ?) before the probe emerges from the region inside
appear essentially indistinguishable from a black hole to af® duasi-horizon. To leading order, this time delay is inde-
outside observer, two conditions must hold. First, the reflecPendent of the energy or angular momentum of the probe,
tion coefficient as a function of wave number must approactind i instead determined solely by the spacetime geometry.
that of the black hole as— 0. Second, the time delay in the H€Nce to an observer with a finite lifetime the |n_t(23r|'or
emergence of the transmitted wave should diverge in th&89ion of any near-critical configuration wite<T * is
critical limit. inaccessibl&. He would most naturally describe any larger
To see how the first of these conditions comes about, let
us use Eq(2.6) to rewrite the scattering potential as

_AB 87GK d /1 J(J+1)
YA A adr\A) T T

5Note that oncee is less thanT ~2, the boundary of the inacces-
(3.14 sible region depends only very weakly @drandr 4,5, and is essen-

u(r
(r) tially indistinguishable from the quasi-horizon.
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system containing this configuration by a density magrix the quasi-horizon leads to a corresponding decrease in
obtained by tracing over the degrees of freedom inside the7/dr, so that the proper time elapsed while the probe is
quasi-horizon. From this density matrix one can derive arwithin the quasi-horizon s
entropy Syyerior= — 1t p In p that can be associated with the )
interior of the quasi black hole. s . q

One could, of course, proceed in this manner to define an Ar E \/ﬁhzo € (316
entropy for any arbitrary region in space, just as one can
choose to make the information in any subsystem inacces-
sible by putting the subsystem behind a locked door. Thén the critical limit AB vanishes identically for<r, , and
crucial difference here is that the inaccessibility is due to thed 7=0.
intrinsic properties of the spacetime, and that the boundary This vanishing ofAr is related to another interesting
of the inaccessible region is defined by the system itselproperty of these solutions. It is well known that the Rie-
rather than by some arbitrary external choice. It is thus reamann tensor is nonsingular at a black hole horizon. It there-
sonable to defin&, o as the entropy of the quasi black fore does not seem surprising that in the most familiar black
hole. hole solutions, the Schwarzschild and Reissner-Norasteo

A precise calculation of this entropy is clearly infeasible. particle suffers no unusual effects as it crosses the horizon.
Among other problems, such a calculation would require &However, Horowitz and RosB7] showed that this is not
correct implementation of an ultraviolet cutoff, which always the case. Because of the acceleration of a particle as
presumably would require a detailed understanding of hovit approaches the horizon, the components of the Riemann
to perform the calculation in the context of a consistenttensor in a coordinate frame that is freely falling with the
theory of quantum gravity. As an initial effort, one can particle can be quite different from the components mea-
take the ultraviolet cutoff as the Planck m&gg, and ask for  sured in a static frame. With a metric of the form of Eq.
an order of magnitude calculation. Such a calculation wagl.1), the component®&; . (Wwherek denotes a transverse
done by Srednick[14], who showed that tracing over the spatial direction and’ the time in the boosted frameare
degrees of freedom of a scalar field inside a region of flagiven by
spacetime with surface ardaled to an entropyS=«xM?A
whereM is the ultraviolet cutoff andc is a numerical con-
stant. Furthermore, although the precise calculations depend 1d { E? l}

on the details of the theory, Srednicki gave general argu- Rok™ = 57 gr|AB A (3.179
ments suggesting that such an entropy should always be pro-
portional to the surface area. This leads us to expect that
Sinterior™ ME,,A. whereE is the energy per unit mass of the infalling particle.
This result is, of course, consistent with the possibility The fact that this curvature component is never large
that in the critical limitSy,erior g0€S precisely to the standard (with E of order unity for the Schwarzschild and Reissner-
black hole resultSgy= M,%,A/4. However, in contrast with Nordstran black holes is a consequence of the fact thBt
the usual black hole case, our spacetime configurations aie constant in both cases. This is not true in general. Horow-
topologically trivial. The “interior” region enclosed by the itz and Ross found several examples of dilaton black holes
quasi-horizon is nonsingular and static. Furthermore, this refor which R/, and thus the tidal forces felt by an infall-
gion can be unambiguously defined, so that it is conceptuallyhg particle, could be made arbitrarily large near the horizon
clear what is meant by tracing over the interior degrees oby taking the solution to be sufficiently close to extremality.
freedom, even though it may not yet be possible to imple-They introduced the term “naked black hole” to indicate the
ment this calculation in complete detail. We find it quite ¢5¢¢ that this(almost singular behavior occurs outside the
striking that by this approach one can arrive so nearly at the ,i-on. Subsequently8], they showed that in these ex-
standard entropy result. amplesR, ', was inversely proportional to the square of the
proper time remaining before the particle reached the singu-
larity atr=0.
C. Curvature and naked-black-hole behavior Applying their results to our solutions, we find that near-
critical Coulomb-type solutions display naked black hole be-
In our discussion above of the trajectory of a particlehavior, even though they are not black holes at all. This can
probe, we focused on the coordinate time that elapses ové€e seen by noting that E¢.6) implies that
the course of the particle’s passage through the monopole.
However, it also of interest to consider the elapsed proper
time, which can be found by integrating=/dr [see EQ.  7The drop inAB also has consequences for the shape of the tra-
(3.3)]. For core-type solutions this gives a finite nonzero re4ectory through the interior. By combining Eq8.1) and(3.3), one
sult with no unusual behavior as the critical limit is ap- finds that in the critical limit all probes follow a straight line passing
proached. The situation with Coulomb-type solutions is, onthrough the origin, regardless of the incident angle with which they
the other hand, quite striking. The sharp decreasABnat  hit the horizon.
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ar'aB/ = AB (3.18 ideas. We begin with a core-type monopole solution that, for
numerical convenience, has a small Schwarzschild black

Inside the quasi-horizomB~ €29, while the radial deriva- hole with horizon radius at its center. The parameters are
tives of u andh, and hence, are of order unity. Inserting chosen to be such that the solution is near criticality, so that

d ( 1 ) 167GrK We have carried out numerical simulations to test these

this result into Eq(3.17), gives only a small amount of additional matter is needed for the
quasi-horizon at=r, to collapse to a true horizon. We add
Ropri~e€ 2. (3.19 to the theory a massive scalar fieidr,t) that is coupled

only to gravity. We then send a spherically symmetric

Note that this is proportional toAr) "2, giving a relation- ~Gaussian pulse of field in toward the monopole and watch
ship between tidal forces and proper time reminiscent of théhe system evolve. To simplify the computation, we freeze
examples described in RgB]. the matter field variableg andh at their initial values; be-
cause the fields for near-critical core-type monopoles are not
very sensitive to the metritcf. Fig. 2), this approximation
should cause little error.
IV. COLLAPSE TO AN EXTREMAL BLACK HOLE When the pulse amplitude is larger than some threshold

. L . . value, the pulse falls into the monopole until the metric func-
To gain an insight into the third law of thermodynamics, .. . )

. o . . tion 1/A develops a simple zero near the location of the
as noted in Sec. |, it is of interest to determine whether i_horizon of the initial mon | nfiquration. Thi
systems with either initially nonsingular spacetimes or inj-duast-norizon ‘ot the al monopole conniguration. S

tially non-extremal black holes can evolve into systemsneWIy formed horizon is non-extremal. More interesting is

with an extremal horizon. It appears that under reasonabl € ?;]tuat;]or:dwhelzre tE_e puls:) ahmplltude IS at, or “;St belor\:v,t
conditions of finiteness and causality this cannot be done b) IS thréshold value. Figure 4 Snows a Ssequénce of Snapshots
adding charge to an undercharged objE&fL0]. The dis- lustrating t.h|s.scenar|o at f(_)ur d_|fferent points dynng the
cussion in the previous two sections, however, suggests 6{ﬂ.ﬂse’s motion inward.(The distortion of_the pulse is due to
alternative. Recall that our subcritical monopoles are overt eAbackregct(ljor;) oféhihmf?popr?le memZ'/. disturbed
charged; i.e., they have a charge larger than their mass S required by Birkhoff's theorem, A/is undisturbe

In the normal Reissner-Nordétro case, such a system ahead_of the puI_se, but undergoes a shift as the pulse passes.
would exhibit a naked singularity. However, in the monopole | "US: in the region ahead of the pulsé\1s the same as it
the Coulomb core is screened by the massive particles i as in the original conﬂguratlon, Wh.'le behind the_pulse I
such a way that no gravitational singularity exists. This sug-'aS the form corresponding to a static monopole with a cen-

gests a scenario by which an extremal black hole is dynamif@ black hole whose horizon radius exceeds by an

cally formed from a monopole by dropping in unchargedamount determined by the energy-momentum of the infalling
matter. pulse. These two are joined by a kink at the pulse position.

Let us add to our theory a chargeless matter field that i§'S the pulse passes through the quasi-horizoh, réaches
coupled to the monopole fields only through gravity. We!'tS minimum.
then allow a spherical shelof small, but finite thicknegsof ~ Similarly, the plot of JAB appears as nearly a step func-
this matter fall into the monopole. If the mass of the shell istion centered at the pulse position, with the inner and outer
sufficiently small, we do not expect a horizon to be formed."€9ions corresponding to the initial and final configurations.
On the other hand, if the shell contains enough matter, th&he jump inVAB at the pulse position varies with time. It
system should collapse to form a black hole. It seems plaueaches its maximum when the pulse is passing through the
sible that threshold case between these two regimes shoufpasi-horizon, and then decreas@he resulting variation in
produce an extremal horizon. the value of/AB at larger may appear to violate causality,

In the case of a Coulomb-type solution, one mightbut is actually a just a consequence of the gauge choice im-
run into difficulties because of the naked-black-hole behavioplicit in our choice of coordinatek.
it exhibits. This concern, however, should not be an issue As the pulse continues past the quasi-horizon into the
for the case of a core-type solution. Here the fields of thenonopole core, the metric functionAlkemains static out-
critical solution are much better behaved; what nonanalyside the pulse. Howevex/AB,siqedecreases from its maxi-
ticities exist at the horizon are mild, and become increasinglynum value as the pulse continues inward. Eventually, the
S0 as one increasds Nothing unusual happens to the near-
critical core solutions as one parametrically approaches
criticality. Moreover, adding a smgll Schwarzschild black 8\ote that we have chosen a normalization of time such that
hole _at ,the center of the self-grav_ltatlng m0n0p0|e Shou'qﬁ\B—& asr—ry, the horizon of the internal black hole; this
not significantly change the scenario. The infall of a spheriorresponds to using a time variable appropriate to an observer
cal shell of appropriate mass should still turn the quasiin the interior of the monopole. If we had used the more con-
horizon of a near-critical solution into an extremal horizon.yentional normalization withAB equal to unity at spatial infinity,
The black hole would essentially play a spectator roleghe time coordinate would be that appropriate to an external ob-
as its presence is largely irrelevant to the dynamics of theerver and would grow rapidly as the pulse approached the quasi-
system. horizon.
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pulse bounces off the central black holeith a small restore themselves to almost the original values they had
amount of its energy being absorheahd the process re- before the insertion of the pulse.

verses itself. The pulse passes by the quasi-horizon and re- As the initial pulse amplitude is increased towards its
treats to infinity. As it does so, one sees the metric variablethreshold value, the minimum value achieved by Hp-
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proaches zero, while the maximum value\#B appears to A somewhat unexpected result from this analysis is that
grow without bound. The timé,, at which the pulse passes for Coulomb-type solutions the proper time required to
through the quasi-horizon does not vary apprecidbly. traverse the interior region vanishes in the critical limit. This

A numerical simulation will not, of course, be able to is closely associated with the fact that near-critical Coulomb
produce a precisely extremal horizon. In our simulations, wesolutions display naked black hole behavior; these are the
have been able to adjust the pulse amplitude to make thigrst examples of configurations without horizons that do so.
minimum 1A be as small as 2:310 °. In analyzing the However, the absence of this behavior in core-type solutions
behavior of the solutions as the pulse amplitude is varied, wehows that this is not a universal property of near-critical
see no indication of any singularity as the threshold is apsolutions.
proached. We therefore expect that a pulse precisely at Our analysis also sheds light on some aspects of black
threshold would produce a nonsingular extremal horizon. Iholes themselves. We have seen that the region bounded by
this case of critical collapse, the subsequent evolution of théhe quasi-horizon becomes effectively inaccessible to outside
system would be quite similar to the subcritical case, withobservers when the solution is sufficiently close to criticality.
the pulse continuing inward, bouncing off the central blackThe interior degrees of freedom thus become unmeasurable.
hole, and then retreating outward. However, in this case thé&racing over them then leads a naturally defined entropy that
spacetime into which it moves is causally distinct from thecan be attributed to this configuration. An order of magni-
one where the pulse had originated; i.e., it is a new sector dlide estimate of this entropy agrees with the Hawking-
the Penrose diagram. Bekenstein formula for the entropy of a black hole; it seems

As a final comment, in all this analysis, dropping in pres-plausible that in the critical limit the agreement would be
sureless dust should give analogous results. One can involgecise. These nonsingular near-critical solutions thus pro-
Birkhoff's law so that the metric behind theadially thick  vide a concrete and unambiguous framework for implement-
dust shell must be represented by a static metric. But onig the old idea that black hole entropy might be understood
should expect the same sorts of naked singularity behavidh terms of the degrees of freedom hidden behind the hori-
since this results from the interaction of metric variables. zon.

Finally, we have argued that an extremal black hole can
V. CONCLUDING REMARKS be produced by allowing additional matter to fall into a near-
critical monopole. We have illustrated this by numerical

In this paper we have used near-critical self-gravitatingsimulations. Starting with an initially nonsingular monopole,
monopoles as tools for studying the transition from a non+his leads to a zero-temperature black hole where there had
singular spacetime to one with a horizon. By analyzing thepreviously been no horizon at all. Alternatively, one can start
properties of trajectories that pass through the quasi-horizowith a small black hole at the center of the monopole. In this
and then emerge again, we have seen that the observatiogter case, a configuration with a nonzero Hawking tempera-
made by an external observer vary continuously and show ngure evolves into one witfi=0. The existence of these pos-
evidence of discontinuity when the critical limit is reached. sipilities gives additional clues for, and constraints on, a
This analysis also shows how the many causally distinct remore precise formulation of the third law of black hole ther-
gions of the extremal black hole spacetime naturally emergenodynamics.
from the simple Penrose diagram of the subcritical mono-
pole.
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