
PHYSICAL REVIEW D, VOLUME 61, 124003
Gravitational properties of monopole spacetimes near the black hole threshold

Arthur Lue* and Erick J. Weinberg†

Department of Physics, Columbia University, New York, New York 10027
~Received 24 January 2000; published 3 May 2000!

Although nonsingular spacetimes and those containing black holes are qualitatively quite different, there are
continuous families of configurations that connect the two. In this paper we use self-gravitating monopole
solutions as tools for investigating the transition between these two types of spacetimes. We show how
causally distinct regions emerge as the black hole limit is achieved, even though the measurements made by an
external observer vary continuously. We find that near-critical solutions have a naturally defined entropy,
despite the absence of a true horizon, and that this has a clear connection with the Hawking-Bekenstein
entropy. We find that certain classes of near-critical solutions display naked black hole behavior, although they
are not truly black holes at all. Finally, we present a numerical simulation illustrating how an incident pulse of
matter can induce the dynamical collapse of a monopole into an extremal black hole. We discuss the impli-
cations of this process for the third law of black hole thermodynamics.

PACS number~s!: 04.70.Dy, 04.70.Bw
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I. INTRODUCTION

Nonsingular spacetimes and those containing black h
are qualitatively quite different. Nevertheless, it is possi
to find sequences of spacetimes that, while remaining no
ingular, come arbitrarily close to having horizons@1–4#. In a
previous paper@5# we studied a class of such solutions th
are associated with self-gravitating monopoles in a sponta
ously broken Yang-Mills theory. The emphasis there was
the detailed behavior of the fields as one approaches the
cal solution in which a horizon first appears. In this pap
we concentrate instead on the geometrical aspects of
spacetimes associated with these objects near criticality
on using these to gain insights into the properties of t
black holes.

As in Ref. @5#, we restrict ourselves to spherically sym
metric spacetimes and write the metric in the form

ds25Bdt22Adr22r 2~du21sin2u df2!. ~1.1!

A horizon corresponds to a zero of 1/A; the horizon is ex-
tremal if d(1/A)/dr also vanishes. We work in the context
an SU~2! gauge theory with gauge couplinge and a triplet
Higgs fieldf whose vacuum expectation valuev breaks the
symmetry down to U~1!. In flat spacetime this theory pos
sesses a finite energy monopole solution with magn
chargeQM54p/e and massM;v/e. It has a core region, o
radius;1/ev, with nontrivial Higgs and massive vector bo
son fields. Beyond this core is a Coulomb region in which
massive fields approach their vacuum values exponent
rapidly, leaving only the Coulomb magnetic field. The e
fects of adding gravitational interactions depend on the va
of v. For v much less than the Planck massMPl , one finds
that 1/A is equal to unity at the origin, decreases to a mi
mum at a radius of order 1/ev, and then increases again wi
A(`)51. As v is increased, this minimum becomes deep
until an extremal horizon develops at a critical valuevcr of
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the order ofMPl . As we describe in more detail in Sec. I
two distinct types of critical behavior are possible, depend
on the ratio of the Higgs and gauge boson masses. For lo
values of this ratio, one finds ‘‘Coulomb-type’’ critical solu
tions, in which the horizon occurs in the Coulomb region
the monopole atr 05A4pG/e2. Outside the horizon, the
metric is that of an extremal Reissner-Nordstro¨m black hole,
with

B~r !5
1

A
512

2MG

r
1

Q2G

4pr 2 , ~1.2!

while the massive fields take on their vacuum values. As
Higgs self-coupling increases, there is a transition to ‘‘co
type’’ critical solutions that have a horizon inside the mon
pole core and nontrivial matter fields~or hair! outside the
horizon.

In both types of critical monopole solutions the fields r
main nonsingular atr 50. However, it is also possible to
have solutions with singularities atr 50 that can be viewed
as self-gravitating monopoles with Schwarzschild bla
holes at their center. As long as the mass of the central b
hole is not too great, the variation of these solutions withv is
quite similar to that of the nonsingular monopoles, and o
finds the same two types of critical behavior@6#.

After reviewing these solutions, we discuss in Sec.
how near-critical monopoles might appear to an outside
server. One would expect the measurements made by suc
observer to vary continuously with the parameters of
monopole and to show no discontinuity at the critical so
tion. An external observer could probe the monopole w
either particles or waves. In the case of the particle, we fi
that the time needed for the particle to emerge from the
terior ~as measured by a static external observer us
Schwarzschild time! diverges as the critical solution is ap
proached. When a wave is sent in, there is a reflected w
due to the gravitational field just outside the horizon and
transmitted wave that passes through the interior and t
emerges with a time delay. As before, the time delay
verges asv→vcr , while the reflected wave becomes indi
©2000 The American Physical Society03-1
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ARTHUR LUE AND ERICK J. WEINBERG PHYSICAL REVIEW D61 124003
tinguishable from that due to a black hole. Using either ty
of probe, an observer whose lifetime is finite cannot dist
guish between a true black hole and a nonsingular, subc
cal solution that is sufficiently close to being critical. W
discuss the implications for our understanding of black h
entropy.

We also find that the near-critical Coulomb-type solutio
display what Horowitz and Ross@7,8# have termed naked
black-hole behavior, even though there is no black hole
all. This is characterized by the fact that a freely fallin
observer passing through the minimum of 1/A ~we shall refer
to the location of this minimum as the quasi-horizon! feels a
tidal force that diverges as the critical solution is approach
For core-type solutions, on the other hand, no such beha
is observed.

In Sec. IV, we consider the effect of having addition
matter fall into a near-critical solution, addressing in partic
lar the question of whether this process could produce
extremal black hole. Extremal black holes are especially
teresting from the standpoint of black hole thermodynam
because they have vanishing Hawking temperature.
analogies between black hole dynamics and thermodyna
thus suggest that they should be rather difficult, if not imp
sible, to create. Indeed, one of the formulations@9# of the
third law of black hole dynamics asserts the impossibi
~under certain technical assumptions! of making a nonextre-
mal black hole extremal. One could also envision produc
an extremal black hole starting from a nonsingular spa
time. Boulware@10# showed that this can be done by th
collapse of a charged shell of matter. However, this mec
nism relies critically on the shell being infinitely thin; shel
of finite thickness and density do not collapse to an extre
configuration.

It is easy to understand the difficulty of making an e
tremal black hole if one recalls that the extremal Reissn
Nordström black hole is characterized by having a mass a
a charge that~in appropriately rescaled Planck units! are
equal. Forming such an object by the collapse of a shell w
equal charge and mass densities involves a delicate bal
between electromagnetic and gravitational forces. One co
instead try to achieve extremality by adding matter to a p
existing nonextremal Reissner-Nordstro¨m black hole ~i.e.
one with greater mass than charge!. However, because th
added matter would have to have more charge than mass
Coulomb repulsion between the black hole and the infall
matter would tend to overcome their gravitational attracti

The situation is rather different in our case, because
nonsingular monopole solutions areovercharged; i.e., their
long range fields are those of a Reissner-Nordstro¨m solution
with greater charge than mass.1 Allowing uncharged matter
to fall into these objects increases their mass and sh

1In the pure Reissner-Nordstro¨m case, this leads to a naked si
gularity. The singularity is avoided here by the same mechan
that makes the mass of the flat-space monopole finite: the orie
tion of the massive gauge fields in the monopole core is such
their magnetic dipole energy just cancels the singular Coulomb
ergy at the origin.
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bring them closer to criticality. If the amount of matter e
tering is just sufficient to create a zero of 1/A, one would
expect an extremal solution to result. We will present n
merical arguments that support this expectation. Finally,
make some concluding remarks in Sec. V.

II. REVIEW OF PREVIOUS RESULTS

As in Ref. @5#, we consider an SU~2! gauge theory that is
spontaneously broken to U~1! by the vacuum expectation
valuev of a triplet Higgs fieldf. This theory has magnetic
monopole solutions that can be described by the spheric
symmetric ansatz

fa5v r̂ ah~r ! ~2.1!

Aia5e iakr̂
k
12u~r !

er
. ~2.2!

Finiteness of the energy requires thatu(`)50 and h(`)
51. If the solutions are also required to be nonsingular
r 50, thenu(0)51 andh(0)50.

In a spacetime with a metric of the form of Eq.~1.1!, the
static field equations for these matter fields can be deri
from a ~111!-dimensional action of the following form@11#:

Smatter524pE dt dr r2AABFK~u,h!

A
1U~u,h!G

~2.3!

whereU(u,h) involves the fields but not their derivatives
while

K5
1

e2r 2 S du

dr D
2

1
v2

2 S dh

dr D
2

. ~2.4!

The Euler-Lagrange equations for the matter fields t
follow from Eq. ~2.3! must be supplemented by the gravit
tional field equations. For static, spherically symmetric fie
configurations these reduce to

Gt̂ t̂5
1

2r 2

d

dr F r S 1

A
21D G524pGS K

A
1U D ~2.5!

and

Gt̂ t̂1Gr̂ r̂52S 2

rA
D 1

AAB

dAAB

dr
52

16pGK

A
. ~2.6!

Here carets indicate orthonormal components.
Equation~2.6! can be immediately integrated to obtain

B~r !5
1

A~r !
expF216pGE

r

`

dr8 r 8KG . ~2.7!
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GRAVITATIONAL PROPERTIES OF MONOPOLE . . . PHYSICAL REVIEW D61 124003
Using this to eliminateB, one is left with two second orde
and one first order equation for the functionsu, h, and A.
These equations must be solved numerically. Up to a res
ing of distances, the solutions of these equations depend
on the two dimensionless parametersa58pGv2 and b
5(mH/2mW)2.

For small values ofb ~roughly b&25 for a quartic Higgs
field! @5,6# one finds Coulomb-type solutions in which th
minimum of 1/A is located outside the monopole core. Th
minimum decreases2 with increasinga, until the critical so-
lution is reached atacr58pGvcr

2 . In the critical solution, the
matter fieldsu andh reach their asymptotic valuesu50 and
h51 at the horizon and are then constant for allr .r 0; be-
cause both fields fall as fractional powers ofr 02r , the de-
rivativesdu/dr anddh/dr both diverge asr approachesr 0
from below. ~This nonanalytic behavior is possible becau
an extremal horizon is a singular point of the matter fie
equations.!

The metric of the critical solution is identical to the e
tremal Reissner-Nordstro¨m metric outside the horizon, bu
differs from it for r ,r 0. The metric function 1/A varies rela-
tively smoothly, falling monotonically from unity at the ori
gin to a zero at the horizon. Just inside the horizon 1A
;k(r 02r )2, with k being larger than for the correspondin
Reissner-Nordstro¨m solution. The behavior ofB contrasts
sharply with this. Equation~2.7! shows that the productAB
~which is identically equal to unity in both the Schwarzsch
and Reissner-Nordstro¨m solutions! is given by an integral of
the functionalK(u,h). The singularities in the derivatives o
u andh at the horizon are strong enough to cause this in
gral to diverge, so that the ratio

c[

AABuoutside r 0

AABu inside r 0

~2.8!

is infinite in the critical limit. If we adopt the conventiona
normalizationB(`)51, thenB vanishes identically inside
the horizon. If we instead setB(0)51, thenB is finite and
varying inside the horizon and infinite forr .r 0; depending
on the value ofb, the minimum ofB may be atr 50 or at
some finite radius, but in neither case doesB have a zero. For
near-critical solutions where the minimum value (1/A)min
[e is small but nonzero, we find that the ratioc varies as
e2q, whereq ranges from about 0.7 to unity.

A rather different type of critical solution is found fo
largerb. For these core-type solutions the horizon occurs
radiusr * ,r 0, with the valuesu* andh* of the matter fields
at this point being different than their asymptotic value
Although the solutions are still nonanalytic at the horizo
this nonanalyticity occurs only in subdominant terms. Th
1/A again vanishes as (r 2r 0)2 as one approaches the ho
zon, but the coefficient is now the same inside and outs

2This behavior is modified slightly for very smallb. For a detailed
description, see@2,3,12,13#.
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the horizon.3 The radial derivatives of both matter fields a
finite at the horizon, soK remains finite and there is no sha
change inAB at the horizon. BecauseAB remains finite and
nonzero,B has a zero at the horizon that coincides with t
zero of 1/A.

These solutions can be generalized to include a black h
in the center of the monopole. Instead of requiring that
fields be nonsingular atr 50, one instead requires that the
be a zero of 1/A at a nonzero radiusr H . At this zero, the
equations for the matter fields become constraint equat
relating the fields and their first derivative; solving these co
straints yields enough boundary conditions to determin
solution.

If r H is not too large, the effect of increasinga is similar
to what it is in the absence of a central black hole.4 There is
an outer minimum of 1/A that moves downward, finally
reaching zero and becoming an extremal horizon at so
critical valueacr(r H). For small values ofb the solutions are
Coulomb type, while for largeb one finds core-type critica
solutions.

Rather than increasinga with r H fixed, one can instead
increaser H with a held fixed; this is much more analogous
the process of actually dropping matter into a near-criti
solution that we will consider in Sec. IV. For initial values o
a that are sufficiently close toacr(r H50), this gives a family
of solutions with a critical limit. In Figs. 1 and 2 we illustrat
this with a Coulomb-type solution withb51.0 and a core-
type solution withb5106.

III. PROBING THE QUASI-BLACK HOLE

For anya,acr , the self-gravitating monopole solution i
a nonsingular spacetime with a Penrose diagram of the s
form as that of Minkowski spacetime~Fig. 3a!. The critical
solution, on the other hand, can be extended beyond
original coordinate patch to yield a spacetime with the P
rose diagram shown in Fig. 3b. This diagram is quite sim
to that of an extremal Reissner-Nordstro¨m black hole, but
differs from it by not having a singularity5 at r 50. The
difference between the two diagrams is striking and seem
indicate a discontinuity ata5acr , in contradiction with the
usual expectation that physical quantities should vary c
tinuously with the parameters of a theory.

However, this discontinuity can been seen as an artifac
the conformal transformation that produces the Penrose
gram from an infinite spacetime. This can be illustrated

3For intermediate values ofb, subcritical monopoles exhibit both
core-type and Coulomb-type quasi-horizons. However, as one
proaches criticality for a given value ofb, only one quasi-horizon
actually becomes a horizon. The other quasi-horizon, though in
esting, is essentially irrelevant for our purposes.

4For larger values ofr H , see the discussion in@3#.
5Although there is no singularity at the origin for a critical mon

pole black hole, there are singularities at the extremal horizon
sulting from nonanalytic behavior of the monopole fields. The
singularities are relatively mild in the core-type case, but are m
dramatic in the Coulomb-type case.
3-3
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FIG. 1. Monopole solutions
for a52.0, b51.0 and various
values of central black hole ra
dius, r H . The progression from
solid line, dot-dashed line, to
dashed line, to dotted line and t
solid line corresponds toevr H

50.0, 0.1, 0.2, 0.28 and 0.288
The panels depict the functions~a!
1/A(r ), ~b! (AB)1/2(r ), ~c! u(r )
and ~d! h(r ).

FIG. 2. Monopole solutions
for a51.002 andb5106 and vari-
ous values of central black hol
radius, r H . Here acr(r H50)
51.011654 and the minimuma
using this scenario is 1.001. Th
progression from solid line, dot-
dashed line, to dashed line, to do
ted line and to solid line corre-
sponds toevr H50, 0.001, 0.002,
0.004 and 0.00628. The panels d
pict the functions~a! 1/A(r ), ~b!
(AB)1/2(r ), ~c! u(r ) and~d! h(r ).
Note that the monopole fields ar
virtually unchanged as the interna
black hole size is varied. Note tha
the radial scale forh(r ) is exag-
gerated to show detail.
124003-4
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GRAVITATIONAL PROPERTIES OF MONOPOLE . . . PHYSICAL REVIEW D61 124003
considering the points A and B that lie on the curves
constantr that are shown in Figs. 3a and 3b. These ha
been chosen so that it is possible for an object to start a
move in to r 50 at C, and then travel out again to B. Th
total proper time along this world line~or the total affine
parameter, if the world line is lightlike! is finite. This should
be compared with the proper time along the world line
constantr. This is finite for the subcritical case, whereas
the critical case the proper times along the segments AD
DB are both infinite, corresponding to the fact that an o
server in the exterior region containing A cannot detect
jects behind the horizon PD. In order to obtain consiste
with our physical expectations of continuity, we should r
quire that the proper time along the worldline of constanr
should diverge asa→acr . More generally, the time require
for an external observer to receive information from a pro
of the interior region should diverge in the critical limit.

A. Particle and wave probes

To see how this works out, we consider probing the in
rior region ~i.e., the regionr ,r * , where r * is the quasi-
horizon! of a near-critical solution by sending in either
particle or a wave. In both cases, we assume that the p
interacts only gravitationally, and has no direct interact
with the monopole fields.

To begin, imagine releasing a massive particle from
initial radius r 1@r * that is large enough that we may a
proximate B(r 1)'1. The rotational and time-translatio
symmetries of the metric allow us to take the motion to lie
the u5p/2 plane and guarantee the conservation of the
gular momentum per unit mass

J5r 2
df

dt
~3.1!

and the energy per unit mass

E5B~r !
dt

dt
. ~3.2!

These, together with Eq.~1.1!, imply that

dr

dt
5

1

AAB
FE22BS J2

r 211D G1/2

. ~3.3!

If J50, the particle falls radially in, passes through the o
gin, and emerges on the other side of the monopole. If
steadJÞ0, the particle turns around after reaching a mi
mum radiusr min(J) and returns tor 1 with its trajectory
advanced by an angle

Df52E
r min

r 1
dr

df/dt

dr/dt

52E
r min

r 1
dr

J

r 2AABF12
B

E2 S J2

r 211D G21/2

. ~3.4!
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We are interested in the proper time measured by an obse
who remains atr 5r 1. Assuming that the observer is no
moving at relativistic speeds, this is approximately the sa
as the Schwarzschild coordinate timet, which over the
course of the entire trajectory increases by an amount

Dt52E
r min

r 1
dr

dt/dt

dr/dt
52E

r min

r 1
dr

A

AAB
F12

B

E2 S J2

r 211D G21/2

.

~3.5!

There are two potential sources of divergences in this in
gral as e5(1/A)min→0 and the critical solution is ap
proached. In both types of critical solutions there is a con
bution from r'r * associated with the growth ofA(r * ). In
the Coulomb-type solutions the near-vanishing ofAAB @see
Eq. ~2.7!# gives a second contribution from the entire regi
r ,r * . Let us examine these in more detail.

For core-type solutions, in the regionr'r * we can write

A'k1F S r 2r *
r *

D 2

1eG21

~3.6!

with k1 of order unity, whileAAB is roughly constant and
independent ofe. BecauseB(r * ) is small, theJ-dependent
term in Dt can be neglected for anyJ such that the particle
could have reachedr * . By a similar argument, we see tha
any particle that reachesr * goes through the peak ofA be-
fore turning around. Hence,

FIG. 3. Penrose diagrams for~a! subcritical monopole and~b!
critical monopole black hole. In the former caser * represents the
quasi-horizon, whereas in the latter case that radius represents
horizon.
3-5
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Dt'
2k1pr *

AABur 5r
*

e21/21••• ~3.7!

where the ellipsis represents subdominant terms.
For Coulomb solutions the dominant effect is due to

fact thatAAB;eq is almost vanishing throughout the inte
rior region. Because our numerical solutions show thaq
ranges between 0.7 and unity, the divergence due to
effect is greater than that from the region nearr * . Further-
more, the near-vanishing ofB in the interior implies that any
particle that enters the interior almost reaches the origin
that r min'0. Thus,

Dt'k2r * e2q1••• ~3.8!

wherek2 is of order unity.
Rather than sending in a particle, one can also probe

quasi black hole by sending in a wave packet. As an
ample, let us consider a free massive scalar fieldf, whose
field equation in curved spacetime takes the form

05
1

Ag
]m@Aggmn]nf#1m2f. ~3.9!

This can be put into a more tractable form by writing

c5rf ~3.10!

and defining a new coordinatey(r ) satisfying

dr

dy
5

AAB

A
. ~3.11!

Equation ~3.9! then takes the form of a one-dimension
wave equation

05
]2c

]t2
2

]2c

]y2
1@U~r !1m2B#c ~3.12!

with a scattering potential

U~r !5
1

2r

d

dr
FAB

A2 G1
J~J11!B

r 2
. ~3.13!

When a wave packet incident from larger reaches the
region near the quasi-horizon, a portion is reflected by
scattering potential, while a portion is transmitted a
emerge with some time delay. If a near-critical solution is
appear essentially indistinguishable from a black hole to
outside observer, two conditions must hold. First, the refl
tion coefficient as a function of wave number must appro
that of the black hole ase→0. Second, the time delay in th
emergence of the transmitted wave should diverge in
critical limit.

To see how the first of these conditions comes about
us use Eq.~2.6! to rewrite the scattering potential as

U~r !5
AB

rA F8pGK

A
2

d

dr S 1

AD1
J~J11!

r G . ~3.14!
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For both core- and Coulomb-type solutions the quantityK/A
remains finite in the critical limit, while the second term
the brackets is zero at the quasi-horizon. SinceAB<1, it is
clear thatU(r * ) vanishes at least as fast ase as the critical
limit is approached. Hence, in the limit the scattering pote
tial splits into two parts, one inside and one outside the
rizon. The outer potential is equal either to that of an e
tremal Reissner-Nordstro¨m black hole~in the Coulomb case!
or that of a black hole with hair~in the core case!. Because
the variation of the outer potential withe is smooth in both
cases, our conditions on the reflection coefficients are sa
fied if we can ignore reflection from the inner part of th
potential.

This can be understood by noting that the natural dista
variable in which to discuss the motion of the waves isy. By
integrating Eq.~3.11! inward from some reference pointr 1
@r * , we obtain

y~r !5y~r 1!2E
r

r 1
dr

A

AAB
. ~3.15!

The behavior of this integral as the critical limit is ap
proached is very similar to that of the integral in the expr
sion for Dt, Eq. ~3.5!. For either type of solution, the regio
near the quasi-horizon gives a contribution that diverges
least as fast ase21/2. There is a corresponding growth in bo
the effective distance from the inner portion of the poten
to any external point and in the time delay of the correspo
ing reflected wave. Ase is increased, an external observer
fixed r first sees the reflections from the inner and outer pa
of the potential split into two distinct reflected waves, a
then finds that the time delay of the second reflected w
~from the inner potential! grows without bound.

The portion of the wave that is transmitted through t
region near the quasi-horizon either continues through
origin and then outward or reflects off a central centripe
barrier, according to whether or notJ vanishes. In either
case, the time delay accumulated by this wave before it
turns to the quasi-horizon grows in essentially the same m
ner as the travel time for a massive particle traversing
same path: ase21/2 for a core-type solution and ase2q for a
Coulomb-type solution.

B. Information and entropy

Thus, regardless of the type of probe used, an exte
observer at fixedr obs must wait for at least a timeDt
>O(e21/2) before the probe emerges from the region ins
the quasi-horizon. To leading order, this time delay is ind
pendent of the energy or angular momentum of the pro
and is instead determined solely by the spacetime geom
Hence, to an observer with a finite lifetimeT, the interior
region of any near-critical configuration withe&T22 is
inaccessible.6 He would most naturally describe any larg

6Note that oncee is less thanT22, the boundary of the inacces
sible region depends only very weakly onT andr obs, and is essen-
tially indistinguishable from the quasi-horizon.
3-6
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system containing this configuration by a density matrixr
obtained by tracing over the degrees of freedom inside
quasi-horizon. From this density matrix one can derive
entropySinterior52Tr r ln r that can be associated with th
interior of the quasi black hole.

One could, of course, proceed in this manner to define
entropy for any arbitrary region in space, just as one
choose to make the information in any subsystem inac
sible by putting the subsystem behind a locked door. T
crucial difference here is that the inaccessibility is due to
intrinsic properties of the spacetime, and that the bound
of the inaccessible region is defined by the system it
rather than by some arbitrary external choice. It is thus r
sonable to defineSinterior as the entropy of the quasi black
hole.

A precise calculation of this entropy is clearly infeasib
Among other problems, such a calculation would requir
correct implementation of an ultraviolet cutoff, whic
presumably would require a detailed understanding of h
to perform the calculation in the context of a consiste
theory of quantum gravity. As an initial effort, one ca
take the ultraviolet cutoff as the Planck massMPl and ask for
an order of magnitude calculation. Such a calculation w
done by Srednicki@14#, who showed that tracing over th
degrees of freedom of a scalar field inside a region of
spacetime with surface areaA led to an entropyS5kM2A
whereM is the ultraviolet cutoff andk is a numerical con-
stant. Furthermore, although the precise calculations dep
on the details of the theory, Srednicki gave general ar
ments suggesting that such an entropy should always be
portional to the surface area. This leads us to expect
Sinterior;MPl

2 A.
This result is, of course, consistent with the possibil

that in the critical limitSinterior goes precisely to the standa
black hole resultSBH5MPl

2 A/4. However, in contrast with
the usual black hole case, our spacetime configurations
topologically trivial. The ‘‘interior’’ region enclosed by the
quasi-horizon is nonsingular and static. Furthermore, this
gion can be unambiguously defined, so that it is conceptu
clear what is meant by tracing over the interior degrees
freedom, even though it may not yet be possible to imp
ment this calculation in complete detail. We find it qui
striking that by this approach one can arrive so nearly at
standard entropy result.

C. Curvature and naked-black-hole behavior

In our discussion above of the trajectory of a partic
probe, we focused on the coordinate time that elapses
the course of the particle’s passage through the monop
However, it also of interest to consider the elapsed pro
time, which can be found by integratingdt/dr @see Eq.
~3.3!#. For core-type solutions this gives a finite nonzero
sult with no unusual behavior as the critical limit is a
proached. The situation with Coulomb-type solutions is,
the other hand, quite striking. The sharp decrease inAB at
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the quasi-horizon leads to a corresponding decrease
dt/dr, so that the proper time elapsed while the probe
within the quasi-horizon is7

Dt'
2r *
E

AABur 50;eq. ~3.16!

In the critical limit AB vanishes identically forr ,r * , and
Dt50.

This vanishing ofDt is related to another interestin
property of these solutions. It is well known that the Ri
mann tensor is nonsingular at a black hole horizon. It the
fore does not seem surprising that in the most familiar bla
hole solutions, the Schwarzschild and Reissner-Nordstro¨m, a
particle suffers no unusual effects as it crosses the horiz
However, Horowitz and Ross@7# showed that this is no
always the case. Because of the acceleration of a particl
it approaches the horizon, the components of the Riem
tensor in a coordinate frame that is freely falling with th
particle can be quite different from the components m
sured in a static frame. With a metric of the form of E
~1.1!, the componentsRt8kt8k ~wherek denotes a transvers
spatial direction andt8 the time in the boosted frame! are
given by

Rt8kt8k52
1

2r

d

dr F E2

AB
2

1

AG , ~3.17!

whereE is the energy per unit mass of the infalling particl
The fact that this curvature component is never la

~with E of order unity! for the Schwarzschild and Reissne
Nordström black holes is a consequence of the fact thatAB
is constant in both cases. This is not true in general. Hor
itz and Ross found several examples of dilaton black ho
for which Rt8kt8k , and thus the tidal forces felt by an infal
ing particle, could be made arbitrarily large near the horiz
by taking the solution to be sufficiently close to extremali
They introduced the term ‘‘naked black hole’’ to indicate th
fact that this~almost! singular behavior occurs outside th
horizon. Subsequently@8#, they showed that in these ex
amplesRt8kt8k was inversely proportional to the square of t
proper time remaining before the particle reached the sin
larity at r 50.

Applying their results to our solutions, we find that nea
critical Coulomb-type solutions display naked black hole b
havior, even though they are not black holes at all. This
be seen by noting that Eq.~2.6! implies that

7The drop inAB also has consequences for the shape of the
jectory through the interior. By combining Eqs.~3.1! and~3.3!, one
finds that in the critical limit all probes follow a straight line passin
through the origin, regardless of the incident angle with which th
hit the horizon.
3-7
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d

dr S 1

ABD5
16pGrK

AB
. ~3.18!

Inside the quasi-horizonAB;e2q, while the radial deriva-
tives of u and h, and henceK, are of order unity. Inserting
this result into Eq.~3.17!, gives

Rt8kt8k;e22q. ~3.19!

Note that this is proportional to (Dt)22, giving a relation-
ship between tidal forces and proper time reminiscent of
examples described in Ref.@8#.

IV. COLLAPSE TO AN EXTREMAL BLACK HOLE

To gain an insight into the third law of thermodynamic
as noted in Sec. I, it is of interest to determine whet
systems with either initially nonsingular spacetimes or i
tially non-extremal black holes can evolve into syste
with an extremal horizon. It appears that under reasona
conditions of finiteness and causality this cannot be done
adding charge to an undercharged object@9,10#. The dis-
cussion in the previous two sections, however, suggest
alternative. Recall that our subcritical monopoles are ov
charged; i.e., they have a charge larger than their m
In the normal Reissner-Nordstro¨m case, such a system
would exhibit a naked singularity. However, in the monopo
the Coulomb core is screened by the massive particle
such a way that no gravitational singularity exists. This s
gests a scenario by which an extremal black hole is dyna
cally formed from a monopole by dropping in uncharg
matter.

Let us add to our theory a chargeless matter field tha
coupled to the monopole fields only through gravity. W
then allow a spherical shell~of small, but finite thickness! of
this matter fall into the monopole. If the mass of the shel
sufficiently small, we do not expect a horizon to be forme
On the other hand, if the shell contains enough matter,
system should collapse to form a black hole. It seems p
sible that threshold case between these two regimes sh
produce an extremal horizon.

In the case of a Coulomb-type solution, one mig
run into difficulties because of the naked-black-hole behav
it exhibits. This concern, however, should not be an is
for the case of a core-type solution. Here the fields of
critical solution are much better behaved; what nonana
ticities exist at the horizon are mild, and become increasin
so as one increasesb. Nothing unusual happens to the nea
critical core solutions as one parametrically approac
criticality. Moreover, adding a small Schwarzschild bla
hole at the center of the self-gravitating monopole sho
not significantly change the scenario. The infall of a sphe
cal shell of appropriate mass should still turn the qua
horizon of a near-critical solution into an extremal horizo
The black hole would essentially play a spectator ro
as its presence is largely irrelevant to the dynamics of
system.
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We have carried out numerical simulations to test th
ideas. We begin with a core-type monopole solution that,
numerical convenience, has a small Schwarzschild bl
hole with horizon radiusr H at its center. The parameters a
chosen to be such that the solution is near criticality, so t
only a small amount of additional matter is needed for
quasi-horizon atr 5r * to collapse to a true horizon. We ad
to the theory a massive scalar fieldx(r ,t) that is coupled
only to gravity. We then send a spherically symmet
Gaussian pulse ofx field in toward the monopole and watc
the system evolve. To simplify the computation, we free
the matter field variablesu andh at their initial values; be-
cause the fields for near-critical core-type monopoles are
very sensitive to the metric~cf. Fig. 2!, this approximation
should cause little error.

When the pulse amplitude is larger than some thresh
value, the pulse falls into the monopole until the metric fun
tion 1/A develops a simple zero near the location of t
quasi-horizon of the initial monopole configuration. Th
newly formed horizon is non-extremal. More interesting
the situation where the pulse amplitude is at, or just belo
this threshold value. Figure 4 shows a sequence of snaps
illustrating this scenario at four different points during th
pulse’s motion inward.8 ~The distortion of the pulse is due t
the backreaction of the monopole metric.!

As required by Birkhoff’s theorem, 1/A is undisturbed
ahead of the pulse, but undergoes a shift as the pulse pa
Thus, in the region ahead of the pulse 1/A is the same as it
was in the original configuration, while behind the pulse
has the form corresponding to a static monopole with a c
tral black hole whose horizon radius exceedsr H by an
amount determined by the energy-momentum of the infall
pulse. These two are joined by a kink at the pulse positi
As the pulse passes through the quasi-horizon, 1/A reaches
its minimum.

Similarly, the plot ofAAB appears as nearly a step fun
tion centered at the pulse position, with the inner and ou
regions corresponding to the initial and final configuratio
The jump inAAB at the pulse position varies with time.
reaches its maximum when the pulse is passing through
quasi-horizon, and then decreases.~The resulting variation in
the value ofAAB at larger may appear to violate causality
but is actually a just a consequence of the gauge choice
plicit in our choice of coordinates.!

As the pulse continues past the quasi-horizon into
monopole core, the metric function 1/A remains static out-
side the pulse. However,AABoutsidedecreases from its maxi
mum value as the pulse continues inward. Eventually,

8Note that we have chosen a normalization of time such t
AB→1 as r→r H , the horizon of the internal black hole; thi
corresponds to using a time variable appropriate to an obse
in the interior of the monopole. If we had used the more co
ventional normalization withAB equal to unity at spatial infinity,
the time coordinate would be that appropriate to an external
server and would grow rapidly as the pulse approached the qu
horizon.
3-8
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FIG. 4. Evolution of rx and
the metric functions 1/A and
(AB)1/2 with time. ~a! At t50, a
radial Gaussian pulse inx is sent
into a monopole witha51.002,
b5106, and a small Schwarzs
child black hole of radiusr H

50.004(ev)21 at its center. The
scalar field is coupled only to
gravity and has a massm51.0ev.
~b! The configuration at t
556.07(ev)21. ~c! At t
590.72(ev)21, (1/A)min first at-
tains the smallest value it exhibit
in this process, with (1/A)min

'2.331025. At the same time,
(AB)1/2 behind the pulse achieve
its maximum value. ~d! At t
5113.87(ev)21, the pulse first
hits the internal black hole.
-
d
le

had

its
pulse bounces off the central black hole~with a small
amount of its energy being absorbed! and the process re
verses itself. The pulse passes by the quasi-horizon an
treats to infinity. As it does so, one sees the metric variab
12400
re-
s

restore themselves to almost the original values they
before the insertion of the pulse.

As the initial pulse amplitude is increased towards
threshold value, the minimum value achieved by 1/A ap-
3-9
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proaches zero, while the maximum value ofAAB appears to
grow without bound. The timetqh at which the pulse passe
through the quasi-horizon does not vary appreciably.9

A numerical simulation will not, of course, be able
produce a precisely extremal horizon. In our simulations,
have been able to adjust the pulse amplitude to make
minimum 1/A be as small as 2.331025. In analyzing the
behavior of the solutions as the pulse amplitude is varied,
see no indication of any singularity as the threshold is
proached. We therefore expect that a pulse precisely
threshold would produce a nonsingular extremal horizon
this case of critical collapse, the subsequent evolution of
system would be quite similar to the subcritical case, w
the pulse continuing inward, bouncing off the central bla
hole, and then retreating outward. However, in this case
spacetime into which it moves is causally distinct from t
one where the pulse had originated; i.e., it is a new secto
the Penrose diagram.

As a final comment, in all this analysis, dropping in pre
sureless dust should give analogous results. One can in
Birkhoff’s law so that the metric behind the~radially thick!
dust shell must be represented by a static metric. But
should expect the same sorts of naked singularity beha
since this results from the interaction of metric variables.

V. CONCLUDING REMARKS

In this paper we have used near-critical self-gravitat
monopoles as tools for studying the transition from a n
singular spacetime to one with a horizon. By analyzing
properties of trajectories that pass through the quasi-hor
and then emerge again, we have seen that the observa
made by an external observer vary continuously and show
evidence of discontinuity when the critical limit is reache
This analysis also shows how the many causally distinct
gions of the extremal black hole spacetime naturally eme
from the simple Penrose diagram of the subcritical mo
pole.

9This would not be the case if we had fixed the normalization
AB at spatial infinity;tqh would then diverge as the threshold am
plitude was approached.
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A somewhat unexpected result from this analysis is t
for Coulomb-type solutions the proper time required
traverse the interior region vanishes in the critical limit. Th
is closely associated with the fact that near-critical Coulo
solutions display naked black hole behavior; these are
first examples of configurations without horizons that do
However, the absence of this behavior in core-type soluti
shows that this is not a universal property of near-criti
solutions.

Our analysis also sheds light on some aspects of b
holes themselves. We have seen that the region bounde
the quasi-horizon becomes effectively inaccessible to out
observers when the solution is sufficiently close to criticali
The interior degrees of freedom thus become unmeasura
Tracing over them then leads a naturally defined entropy
can be attributed to this configuration. An order of mag
tude estimate of this entropy agrees with the Hawkin
Bekenstein formula for the entropy of a black hole; it see
plausible that in the critical limit the agreement would
precise. These nonsingular near-critical solutions thus p
vide a concrete and unambiguous framework for impleme
ing the old idea that black hole entropy might be understo
in terms of the degrees of freedom hidden behind the h
zon.

Finally, we have argued that an extremal black hole c
be produced by allowing additional matter to fall into a ne
critical monopole. We have illustrated this by numeric
simulations. Starting with an initially nonsingular monopo
this leads to a zero-temperature black hole where there
previously been no horizon at all. Alternatively, one can st
with a small black hole at the center of the monopole. In t
latter case, a configuration with a nonzero Hawking tempe
ture evolves into one withT50. The existence of these pos
sibilities gives additional clues for, and constraints on,
more precise formulation of the third law of black hole the
modynamics.
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