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Dynamics and perturbations in assisted chaotic inflation
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On compactification from higher dimensions, a single free massive scalar field gives rise to a set of effective
four-dimensional scalar fields, each with a different mass. These can cooperate to drive a period of inflation
known as assisted inflation. We analyze the dynamics of the simplest implementation of this idea, paying
particular attention to the decoupling of fields from the slow-roll regime as inflation proceeds. Unlike normal
models of inflation, the dynamics does not become independent of the initial conditions at late times. In
particular, we estimate the density perturbations obtained, which retain a memory of the initial conditions even
though a homogeneous, spatially flat universe is generated.

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

It was recently pointed out by Liddleet al. @1# that, under
certain circumstances, it is possible for a set of scalar fie
to act cooperatively to drive a period of cosmological infl
tion, even if none of the individual fields are capable of
doing. Such behavior is known asassisted inflation, and in
Ref. @1# investigation was made of the case of multiple fie
moving in exponential potentials with no interactions b
tween them. For uncoupled fields this behavior is gene
the physics is simply that the fields feel the downward fo
from their own potential gradient, but the collective frictio
from the whole set of fields through the expansion rateH. It
was however perhaps unexpected that assisted inflation
tions would be late-time attractors, confounding the expe
tion that only the field with the shallowest potential wou
dominate at late times. The dynamics of assisted infla
have subsequently been investigated by several aut
@2–5#; one important additional point is that direct intera
tions between the fields tend to inhibit assisted behavior

A particularly simple implementation of assisted dyna
ics arises in higher-dimensional theories with large comp
internal spaces, as pointed out by Kanti and Olive@3,6#.
There have been many studies of higher-dimensional th
ries with compact internal spaces with size larger than
fundamental scale, where the size could vary in the w
range between a millimeter@7#, over TeV21 @8#, up to only a
few orders of magnitude larger than the 4D Planck len
@9,10#. Some aspects of universe as a domain wall have b
considered before@11#. Most recently, a possibility that th
extra dimensions may even be in some sense infinite
been considered@12–14#. Cosmology in these theories ma
be very different from the conventional 4D theory@15–17#.
A single fundamental scalar living in the bulk of the highe
dimensional theory can give rise, upon compactification, t
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set of effective scalar fields corresponding to the Kalu
Klein modes. Provided the extra dimensions are sufficien
large, this yields a large number of scalar fields with simi
potentials, which can support assisted inflation. The m
advantage of this type of inflation is that individual field
need never exceed the fundamental Planck scale, which
allow supergravity corrections to remain consistently sm
Another possible benefit of this scheme is that provided
number of fields is sufficiently great, the fundamental se
couplings of the fields may be much greater than the us
requirement that they be of order 10212 or less.

In this paper, we analyze the dynamics of a simple imp
mentation of this idea, where the scalar fields are uncoup
but have different masses depending on the Kaluza-K
winding @6#. As inflation proceeds, the energy scale d
creases, which leads to a reduction in the number of sc
fields with mass less than the Hubble scale. Only such fie
can slow-roll. Therefore, the number of fields participating
the assisted behavior decreases as inflation proceeds. We
also study the effect of this on the density perturbation sp
trum. Our results will reveal a very interesting property
assisted chaotic dynamics. In contrast to the common in
tionary models, assisted chaotic models permit some in
mation about the initial conditions to be retained in the fo
of a soft dependence of the spectral index, and other pos
flationary predictions, on the number of fields which contr
uted to inflation.

II. THE MODEL

Following Kanti and Olive@6#, we consider a bulk theory
of gravity in five dimensions, with a minimally coupled ma
sive scalar fieldC. The action is

S55E d5xAg5F R5

2k5
2

2
1

2
~¹C!22

1

2
m2C2G . ~1!

The scalar fieldC is some weakly coupled light bulk field
and we assume that its self-interactions are negligible c

h-
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pared to the mass term. Such fields could arise in some
supergravity theories. After stabilization of the compactifi
dimension, the 5D metric can be split as

ds25gmndxmdxn1L2du2, ~2!

whereL is the constant size of the fifth dimension. The r
lationship between the 5D and 4D parameters is easy to c
pute: the 4D Planck mass, defined bymPl

2 51/G, is given in
terms of the 5D one asmPl

2 5M3L, whereM is the 5D uni-
fication scale~the string scale!. The wave function renormal
ization for the scalar field and its Kaluza-Klein siblings
F j5ALC j , whereF j is the projection of thej th Kaluza-
Klein state with mass

mj
25m21

j 2

L2
. ~3!

Of the infinite tower of the Kaluza-Klein states, only tho
which admit a description in the field theory limit should b
included here. They are those states which are lighter t
the fundamental scale of the theoryM. The states which are
heavier thanM can be described consistently only in the fu
quantum gravity limit, and hence are left out. Then, from t
mass formula Eq.~3!, the total number of the light Kaluza
Klein states isNmax5ML5mPl

2 /M2. Note that consistency
requiresm<M , otherwise none of the fields should be ke
in the field theory limit. Therefore the 4D reduced action

S4,eff5E d4xAgH mPl
2 R

16p
2(

i>0
F1

2
~¹F i !

21
1

2
mi

2F i
2G J .

~4!

In this model the 4D scalar fields are coupled only throu
gravity, whereas if the originalC field were self-coupled the
F j fields would be interacting.

Before exhibiting the calculation, let us overview the p
ture of the evolution. This more or less follows that outlin
by Kanti and Olive@6#, though they concentrated mainly o
the lightest fields, whose masses were taken to be ne
identical. Assuming compactification has occurred, then
in the chaotic inflation paradigm@18–20#, at early times the
fields may range over a wide variety of values in differe
regions of space. In the regime where the fields do not
ceed the 4D Planck scale, supergravity corrections are sm
In the original assisted picture using exponential potent
@1#, the assisted inflation solution was the unique late-ti
attractor, with all fields eventually participating. In th
model the situation is rather different. First, there is no la
time inflationary solution as eventually all fields will settle
the minima. Second, there is no attractor behavior; as we
see the fields tend to diverge from one another. Neverthe
there is a form of a transient assisted behavior, simply
cause there are many fields, and in particular the light o
are in a slow-roll regime where they evolve slowly and fe
the collective friction of all the fields.

An important feature of this model is that the fields do n
all have the same potential; they receive a contribution
their mass from the Kaluza-Klein windingj, and barring se-
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vere fine tuning this mass difference will lead to significa
effects during evolution. This is because for each mode
slow-roll regime can only be achieved if the mass of t
mode mj is less than the Hubble parameter; otherwise
field will instead evolve quickly to its minimum, with the
energy density redshifting as 1/a3 during the oscillations. As
assisted inflation proceeds, the Hubble scale is decrea
and so lighter and lighter fields enter the regimem.H and
end their assisted behavior. Consequently fewer and fe
fields are involved as time goes by.

Although there is no formal attractor behavior, neverth
less the collective effect of the fields may give desira
advantages over single-field chaotic inflation. The m
prominent of these is that, due to the collective friction,
flation becomes possible when all the fields have values
than the Planck mass. This means that supergravity cor
tions to the potential are much less likely to destroy inflati
than in the single-field case, where inflation is only possi
for f*mPl . In the assisted variant, due to the collecti
contribution to the friction, we will find that inflation is pos
sible down to field valuesF;mPl /AmL, where m is the
mass of the zero mode andL the size of the extra dimen
sions. As long asmL@1, this is well below the 4D Planck
scale; slow-roll can occur for sub-Planckian values of fiel
and its duration is prolonged. It is interesting to note th
becauseL5mPl

2 /M3 @7#, inflation ends atF;AM /m M.
Thus for a fixed fundamental scaleM, since m,M , it is
generally higher thanM, but it lies lower the largerm is. So
even for relatively heavy fields, if they start out atF
;mPl , there may be manye-foldings of inflation provided
M,mPl .

III. INFLATIONARY DYNAMICS

We now consider the dynamics in detail. Assuming
spatially flat homogeneous cosmology, the equations of m
tion for the assisted mass-driven chaotic inflation are

3H25
4p

mPl
2 (

j 50

N(t)

~Ḟ j
21mj

2F j
2!, ~5!

F̈ j13HḞ j1mj
2F j50. ~6!

Although in principle the sum in the Friedmann equati
goes over all the fields up toj 5Nmax, following the above
discussion the only fields which will contribute in practic
are those which are in the slow-roll regime. Therefore
can take the sum to only include those Kaluza-Klein sta
whose mass is smaller than the Hubble parameter. We i
cate this number byN(t), and it is time-dependent becaus
H is.

We are assuming initial conditions where all the fields a
displaced from their minima. We will experiment with dif
ferent choices. While one could adopt the weak condit
that the total energy density is below the Planck scale,
prefer to take the more stringent condition that supergra
corrections to the scalar field evolution can be neglected.
the five-dimensional modes, this condition isC j (t initial)
3-2
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DYNAMICS AND PERTURBATIONS IN ASSISTED . . . PHYSICAL REVIEW D 61 123513
&M3/2, and after projecting to effective 4D degrees of fre
dom this translates toF j (t initial)&mPl . With a single field,
this does not leave sufficient space for a prolonged slow-
regime, but with multiple fields slow-roll can continue un
F j!mPl @6#.

A. Numerical solutions

The system of equations described in Eqs.~5! and ~6! is
readily solved numerically, and we first describe the res
of some simulations to establish the general picture, be
going on to describe some analytical approximations wh
can be used. For a given choice of the parametersm andL,
and a choice of initial conditions used, one has to decide h
many scalar fields need to be evolved. In general the m
massive ones will always swiftly become negligible, and
long as we restrict ourselves to demanding an accurate
scription of only the observably accessible last 50 or
e-foldings of inflation, we need not necessarily simulate
entireNmax5mPl

2 /M2 fields.
Figures 1 and 2 show two separate simulations of

same model (m51024mPl and L55000/mPl) with different
initial conditions. With thisL, Nmax5(L mPl)

2/3.300 so that
many fields are included in the simulations. The fields
shown as a function of the number ofe-foldings of inflation
N[a ~here given as the number from the start of the sim
lation, rather than from the end of inflation!. In one simula-
tion all fields start with the same initial value, while in th
other they have a spread of initial values. The main pan

FIG. 1. This shows the result of a 300 field simulation, w
m51024 mPl andL55000/mPl . The initial condition for each field
wasF j5mPl , and evolution is shown as a function ofN[ ln a. The
main panel shows the fields withj 50, 25, 50, 75, 100 and 125
with the more massive fields decoupling first. The inset shows
lowest 15 fields at the end of inflation. Note that these fields ar
the process of decoupling during the last 50e-foldings.
12351
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show some fields up to quite large values ofj, while the
insets show just the fifteen lightest fields. Note that the to
number ofe-foldings is comfortably above the 70 or so r
quired to solve the horizon and flatness problems, and re
that it is only a fewe-foldings, centered around about 5
e-foldings from the end of inflation, that can be direct
probed by structure formation.

We see that the behavior is indeed that outlined earl
There is no evidence of a late-time attractor, but the fields
take a substantial time to evolve to the minimum and he
collectively drive inflation. In particular, we see from th
insets that at least the lightest 15 fields are still dynamica
relevant when structure-forming perturbations were i
printed. We also note that after decoupling most fields s
ply asymptote intoF j50; the other fields contribute enoug
friction that the heavier ones remain overdamped right to
minimum. Only the lightest few fields undergo oscillation
when they reach the minimum.

One vital result is to notice that, unlike usual inflation, t
initial conditions do not become irrelevant at late times, b
cause in our region of the Universe the fields have evol
from particular points in field space which determines th
time of decoupling. Studying Figs. 1 and 2, we see that
evolution of the fields is not identical even during only th
last 50e-foldings. The late-time behavior, and hence deriv
quantities such as the density perturbation spectrum, will
pend not only on the underlying model parametersm andL,
but also on the particular initial conditions for the fields pe
taining to our region. This gives a significant reduction in t
usefulness of observations in directly constraining the in
tionary potential.

With these numerical results in mind, we now explore th
further using the slow-roll approximation.

e
in

FIG. 2. As Fig. 1, with the same model parameters but now w
different initial conditions for the fields.
3-3
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B. Analytical approximations

At a given timet all the fields whose mass is smaller th
H are in the regime where the collective friction domina
over the acceleration, and hence are supporting infla
~perhaps with the exception of some which by chance sta
very near the origin!. The mass of the heaviest contributin
field is given by Eq.~3!, with j 5N(t). If we choose an
initial condition that all the fields were approximately th
same, one may suspect that by timet their values may have
become significantly different. In fact, we can give an ac
rate estimate of this spreading, and its effect on dynamics
follows. The slow-roll version of Eq.~6!, obtained by drop-
ping the second derivative term, implies@6#

F j~ t !

F j~ initial!
5F F0~ t !

F0~ initial!G
mj

2/m0
2

~7!

where index 0 refers to the zero mode, of massm. The initial
values for all modesF j (initial) 5F j (0) are taken to be o
the order ofmPl , as we have discussed above. However
the sake of generality we will retain them as an arbitrary
of input parameters, in order to study their influence on
dynamics. Then, we can approximate thej th mode by

F j~ t !5F j~0!expF2S 11
j 2

m2L2D s~ t !G ~8!

where the fields is the logarithm of the zero mode,s
52 ln@F0(t)/F0(0)# and the minimum of the potential corre
sponds tos→`.

Then, assuming that there are many light fields in
slow-roll regime so that we can replace the sum in Eq.~5! by
an integral*0

N(t)d j , and ignoring their kinetic terms, afte
some simple algebra we find that

H25
4p

3mPl
2

m3L

A2s
e22sE

0

A2sN(t)/mL
dy f 2~y!S 11

y2

2s De2y2
.

~9!

Here we have defined the functionf (y) by f (y)
5FmLy/A2s(0), since we can certainly view the initial dis
tribution of the Kaluza-Klein fields as a function of the
mass. In practice, in most cases the upper limit of the inte
can be taken to be of order unity. Indeed, at about
e-foldings before the end of inflation, the heaviest mod
which are still in the slow-roll regime requireN(t);HL. On
the other hand, by this time the fields will typically be of
order unity. In fact, even ifA2s N(t)@mL, the integrand
falls rapidly to zero, as exp(2y2), which effectively cuts off
the contributions to the integral to only those values
which A2s N(t)<mL, as long as the functionf (y) grows
slower than exp(y2). But this is a very natural assumption
the assisted inflation context: initially all the fields whic
contribute to the collective attractor should have similar v
ues, and in fact the heavier fields should be lower along
potential well. Therefore the functionf (y) should be
bounded byf (y)< f (0). Hencef 2(y) in the integrand can be
approximated by a polynomial,f 2(y);F0

2(0)1p(y), which
12351
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changes slowly compared to exp(2y2). So for as long as
inflation is proceeding with many fields still in the slow-ro
regime, we can safely replace the control parame
A2s N(t)/mL by a number.1 in the upper limit of inte-
gration.

On the other hand, for a certain subspace of the ph
space of the theory, the quantityA2s N(t)/mL can be
smaller than unity. Typically this happens for the choice
parameters in the Lagrangian where the zero mode is he
and so most of its Kaluza-Klein siblings are decouple
Therefore although generically assisted dynamics lead
many moree-foldings than the minimum of 60, for suffi
ciently large massm, the total number ofe-foldings can be
small. In this case the appropriate approximation for eva
ating Eq.~9! is to take 2s N(t)/mL!1, which we label as
short assisted inflation. We will return to this case belo
Here we must underscore that due to the strong nonlin
nature of the dynamics, we need to treat the approximati
in a floating manner. To decide which approximation is a
plicable atN e-foldings before the end of inflation, we mus
check the value of the control parameterA2s N(t)/mL, and
choose the relevant formulas for the spectra of perturbat
as it dictates.

1. Long assisted inflation

Armed with the above, in the case of long assisted in
tion we can estimate the integral by using the error funct
erf@x#5(2/Ap)*0

x dye2y2
. Since, as we said, the main con

tribution comes from the range of values for whichx<1, we
can use*0

1 dye2y2
;A2c, where c is a number of order

unity. The precise value ofc is not of immediate conse
quence here, and we will keep it as a free parameter for n
This gives

H2.
4pc

3

F0
2~0!

mPl
2

m3L

As
e22s. ~10!

Using the definition ofs, we can now rewrite this equatio
in terms of the zero modeF0(t), finding

H.A4p

3

~cmL!1/2

mPl ln
1/4@F0~0!/F0~ t !#

mF0~ t !. ~11!

This equation permits us to replace the collection of fields
the zero modeF0. Note the logarithmic dependence of th
Hubble parameter on the initial value of the zero mode fi
F0. This takes into account the decoupling of the hea
modes, which fall out of the slow-roll regime asF0(t) rolls
towards the minimum. Also note that because of the stro
cutoff in the integration in Eq.~9! effected by exp(2y2), the
dynamics is sensitive only to the average of the initial valu
of the Kaluza-Klein fieldsF0(0), and not to itsdispersion.
Hence, we can indeed safely assume that all the fields w
initially essentially the same.

Therefore to the lowest order we can rewrite the equati
of motion, using the slow-roll approximation, as
3-4
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3H254p
cmL

mPl
2 ln1/2@F0~0!/F0~ t !#

m2F0
2~ t !, ~12!

3HḞ0~ t !1m2F0~ t !50. ~13!

Since the fieldF0 is in slow-roll as long asm<H, it is now
easy to see that inflation continues as long as

F0>A 3

4p

mPl

AcmL
ln1/4SA4pcmL

3

F0~0!

mPl
D . ~14!

This equation is illustrative, since now we indeed see, as
have mentioned above, that in most cases during inflatio

A2s
N

mL
.A2s

H

m
>A2ln1/2

„F0~0!/F0…>1, ~15!

except during the first fewe-foldings immediately after the
start. One should bear in mind that the ‘‘first few’’e-foldings
could in principle be enough to solve all the usual cosm
logical problems. However, this will not be the case for t
most allowed values of the zero mode parameters. Le
define the quantity

a[
cmL

ln1/2@F0~0!/F0~ t !#
, ~16!

which is a slowly varying function of time through the tim
dependence ofF0. Now, we can combine Eqs.~12! and
~13!, and after some straightforward algebra obtain

dN
dF0

54pa
F0

mPl
2

, ~17!

whereN5 ln„a(final)/a… is the number ofe-foldings of in-
flation which occur after the field reachesF0 @not to be
confused withN(t), the number of slow-rolling fields#. It is
straightforward to integrate this equation: we find

N5~2p!3/2c mL
F0

2~0!

mPl
2 H 12erfFA2 ln1/2S F0~0!

F0
D G J .

~18!

Since initially F0(0);mPl , this equation shows that the to
tal number ofe-foldings isN(total);(2p)3/2c mL. Further,
it can be seen that at a time considerably before the en
inflation, the number ofe-foldings left to leading order scale
asO(F0

2). Indeed, ignoring the variation of the denominat
with F0 in Eq. ~17!, it follows that atN@1 e-foldings before
the end of inflation we can approximate Eq.~18! with

N.2pa
F0

2

mPl
2

1OS F0
3

mPl
3 D . ~19!

This formula is familiar from the usual chaotic inflation, e
cept for the factora which comes from the collective dy
namics. In fact, this formula gives an accurate approxima
12351
e
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n

for the relationship betweenN andF0 sufficiently far before
the end of inflation, and we will use it hereafter.

2. Short assisted inflation

Let us now return to the case of short assisted inflati
As we will see later it is helpful to place an upper bound
the mass of the zero modem which leads to significant as
sisted behavior. In this instance, the integral Eq.~9! is better
approximated by

H25
4pm2

3mPl
2

NF0
2S 11

N2

3m2L2D . ~20!

SinceN;HL, using Eq.~20! we find

N.
4pm2L2

3mPl
2

F0
2S 11

N2

3m2L2D . ~21!

Now, although the second term on the right-hand side~RHS!
of this equation dominates, we will approximateN by the
first term on the RHS, since using the second term in
subsequent framework would lead to an overestimation.
using the first term, the computation remains confined in
realm of perturbation theory, where errors are controllab
ThusN.4pm2L2 F0

2/3mPl
2 . Therefore,

H25
16p2m4L2

9mPl
4

F0
4S 11

16p2m2L2F0
4

9mPl
4 D . ~22!

Next, we will approximate the Hubble parameterH by re-
taining the second term on the RHS of this equation, sinc
clearly dominates over the first, while the perturbation the
is still valid using it. Hence taking the square root of Eq.~22!
we find

H5
16p2m3L2

9mPl
4

F0
4. ~23!

Clearly since inflation lasts as long asm<H, during it F0

>A3/4p mPl /AmL, which is in good agreement with Eq
~14!. We note that the authors of Ref.@6# treat assisted dy-
namics only in this regime whereAsN/mL!1, as is evident
from their equations of motion. However, their approxim
tion for the Hubble parameter consists of retaining only
linear term in Eq.~20!. The treatment here provides a mo
precise approximation. Then using Eq.~6!, we obtain

dN
dF0

5
256p4m4L4

27mPl
8

F0
7. ~24!

Its solution can be found immediately: it is

N5
32p4m4L4

27mPl
8

F0
8 . ~25!

This equation replaces Eq.~19! whenm is large, or equiva-
lently when the parametera given in Eq.~16! is small. We
3-5
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will consider this case in more detail in the next sectio
Note that the approximations in this subsection give a g
description of the assisted dynamics for the times when
control parameterA2s N(t)/mL is small, initially or by sub-
sequent dynamics.

The previous analysis shows that the dissipation due
the decoupling of the massive modes is the dominant cor
tion to the dynamics of the model. To estimate it, we need
establish how rapidly the modes decouple in the course
evolution. This can always be done by using the ruleN
;HL and the solutions presented so far. In general, altho
it is clear that the details are complicated, we can never
less obtain a good approximation for the decoupling rate

dN

N
5

dN
gN , ~26!

whereg measures the decoupling rate, and depends on
parametersm andL and the initial conditions. In general it i
a slowly-changing function, with the value within an order
magnitude or two of unity. Note, that the usual single-fie
chaotic inflation corresponds to the limitg→`. This is suf-
ficient for our purposes here.

IV. PERTURBATIONS

A. Density perturbations

Now we compute the density contrast, using the notat
of Ref. @21#. We will do this approximately, by using th
usual formula as applied to the lightest scalar field. Unfor
nately this ignores the effects of perturbations in the ot
fields, but in the absence of exact analytical solutions i
unclear how to include them. Ideally, one would follow th
approach of Malik and Wands@2#, in which a new set of
fields is defined such that the linear perturbations in all
one give no first-order contribution to the perturbation in t
total density, but this requires knowing the full solutions
advance. We hope to return to the question of a comp
computation of the adiabatic density contrast in a later wo

With the above caveats, the power spectrumN e-foldings
before the end of inflation is estimated as

dH~k!5
1

5p

H2

Ḟ0

5A64p

75

~cmL!3/2

ln3/4@F0~0!/F0#

mF0
2

mPl
3

5A 16

75p
Aa

m

mPl
N. ~27!

As always with inflation, the overall amplitude can b
adjusted to match the value observed by COBE,dH(khor)
.231025, by suitable choice of the mass parameter. A
suming that the present Hubble radius equaled the Hu
radius 50e-foldings from the end of inflation, this requires

a5052.3310212
mPl

2

m2
, ~28!
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wherea50 is the value ofa at the relevant epoch. The mod
has three input parameters,m, L, and F0(0), though the
dependence on the last is weak.

Another bound on the parameters can be obtained f
considering the initial energy density. Here we will at fir
ignore the precise aspects of the nonlinear assisted dyna
in order to estimate the range of allowed values of the z
mode mass. We will then reconsider some of the result
inequalities with more precision, since they will provide th
criteria for choosing the relevant approximation for comp
ing the spectral properties. By the usual arguments in th
ries with large extra dimensions@7#, the total energy density
in 5D cannot exceedM5. After the extra dimensions ar
stabilized, this places an upper bound on the projected
ergy density in 4D:r<M5L5M2mPl

2 . On the one hand, the
initial energy density of the collective inflaton isr
;m3LmPl

2 by Eq. ~9!. This and the upper bound give u
m3L<M2. On the other hand, by the definition ofa in Eq.
~16!, ignoring the logarithm in the denominator, we can s
that Eq.~28! implies m3L;2.3310212mPl

2 . Hence combin-
ing the inflationary and compactification constraints, we fi
the lower bound on the fundamental scaleM:

M>1.531026mPl . ~29!

However, using Eq.~28! again, and noting thatm3L
5mPl

2 m3/M3, we find thatm51.3231024M . Hence, com-
bining this and inequality~29!, we obtain a lower bound for
the mass of the zero modem:

m>2310210mPl . ~30!

Therefore we see that the assisted models of inflation co
be a phenomenologically viable scenario of inflation only
theories with a unification scale>1013GeV, which is still
considerably larger than the electroweak scale. Otherw
assisted chaotic inflation would not produce the density c
trast in the Cosmic Background Explorer~COBE! range.
This agrees with the conclusion that inflation after stabiliz
tion of extra dimensions could give density contrast as m
sured by COBE only if the unification scale is high@15,16#.

From this we find that the parametera50 is bounded from
above: combining Eqs.~28! and ~30! we obtain

a50<5.7531013. ~31!

Since ln@F0(0)/F0#<ln(2pa/N)/2;15, the approximation
made above in ignoring the logarithm was justified. Fina
from the fact that the total number ofe-foldings isN(total)
;(2p)3/2mL, we see thatN(total)<33108, implying that
generically it can be quite large.

The most useful predictions that can then be made ar
the shape of the spectrum, which is independent of the n
malization. As compared to single-field chaotic inflation, t
density contrast in assisted chaotic inflation has additio
dependence on the inflaton via the factora, which will cause
a deviation of the shape of the spectrum.

We begin by calculating the spectral indexn of the spec-
trum. This is defined by
3-6
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n215
d ln dH

2 ~k!

d ln k
, ~32!

where in the slow-roll approximationd ln k.2dN. The in-
teresting thing is that, unlike the usual case, this scale de
dence receives two contributions. The first is the usual
coming from theN term, and the second arises from theN
dependence ofa.

If initially we assumea is constant, we immediately find
using Eq.~19!, the usual result for single-field quadratic ch
otic inflation, namely

n512
2

N . ~33!

We can also compute the scale dependence of the spe
index

dn

d ln k
.2

dn

dN 52
2

N 2
. ~34!

If we assume the present Hubble scale equaled the Hu
scale 50e-foldings before the end of inflation, we haven
50.96 anddn/d ln k52831024. The Planck satellite is ca
pable of distinguishing the former from unity@22#, but not
the latter from zero@23#.

However, we need to include the speed up of the infla
field as heavy Kaluza-Klein modes fall out of the slow-ro
regime, through thea term. From Eqs.~19! and~27!, we find

n512
2

N F11
3

4ln@„2paF0
2~0!…/~mPl

2 N!#
G . ~35!

Its scale dependence is given by the equation

dn

d ln k
52

2

N 2 F11
5

4ln@„2paF0
2~0!…/~mPl

2 N!#

2
3

8ln2@„2paF0
2~0!…/~mPl

2 N!#
G . ~36!

In the limit a→`, these expressions correctly reduce to E
~33! and ~34!, as appropriate for single-field models. How
ever, for a generic assisted model, we see that the predic
for the spectral index and its scale dependence are diffe
from the usual single-field chaotic inflation. For example
F0(0);mPl and the mass of the zero modem is of order of
m;1027mPl , the parametera50 is, using Eq. ~28!, a50
5230, and hence the spectral index and its gradient an
50.95 and dn/d ln k521.131023, respectively. Clearly,
these numbers are sensitive to the massm: the smaller it is,
the more similar assisted chaotic inflation becomes to
usual single-field driven chaotic inflation.

A closer look at Eqs.~35! and~36! shows that the predic
tions depend on the initial conditionF0(0) through the pa-
rametera. Hence the spectral index can vary significan
with the initial condition. The explicit dependence ofn ~and
dn/ ln k) on the initial condition can be computed from th
12351
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above formulas. The important observation is that since
initial value of the fieldF0(0) appears only through th
logarithm, if F0(0) varies through its full range of admis
sible values, 1024mPl<F0(0)<mPl , the logarithm changes
by a factor of;3. Hence,n may vary in the range 0.94
<n<0.96, at the 50e-foldings. In a manner of speaking, th
assisted chaotic inflation does not impart amnesia on the
verse as efficiently as single-field chaotic inflation, and so
of the information about the initial state of the universe mu
before the last 60e-foldings is imprinted on the late epoc
too.

We note that Eqs.~35! and~36! suggest that for the value
of the massm wherea50525/p there is a divergence. Bu
this divergence is clearly completely spurious: it merely s
nifies that at the large values of the massm the approxima-
tions which led to Eqs.~35! and ~36! break down. Instead
there we need to resort to the approximation for short
sisted inflation, discussed at the end of the previous sec
Using Eqs.~23! and~25!, it is then easy to derive the densit
contrast in this case:

dH5
4096p5m6L6

1215mPl
11

m

mPl
F0

1151.5AmL
m

mPl
N 11/8. ~37!

Then, the COBE normalization condition gives

mL53.7310215
mPl

2

m2
. ~38!

The spectral index is

n512
11

4N , ~39!

and its gradient is

dn

d ln k
52

11

4N 2
. ~40!

From the requirement that there are at least 60e-foldings and
Eqs. ~25! and ~38! we can deduce the upper bound on t
massm. Clearly, the maximal number ofe-foldings will
come from the largest initial condition,F0(0).mPl . Thus,
N.50 givesm;1027mPl , and the spectral index and it
gradient aren50.945 anddn/d ln k521.131023. These
numbers are in a very good agreement with the correspo
ing numbers for the smallest attainable parametera50 dis-
cussed above. Therefore, since we limit the initial condit
of the fieldF0(0) to be below the 4D Planck scalemPl , the
largest massm which still leads to sufficient inflation ism
;1027mPl . In this case the assistance effect produces a
ferent spectrum of perturbations from the usual single-fi
chaotic inflation with quadratic potential.

We now turn to specifying the criteria for selecting th
relevant approximation on the basis of the values ofm. Since
the control parameter is
3-7
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C5A2s
N

mL
;A2s

H

m
, ~41!

using Eqs.~11! and ~19!, we can rewrite it asC;A4sN/3.
Hence atN550 e-foldings, this givesC50;8As50, and using
the relationship betweens50 and a50, and M3L5mPl

2 , we
finally find

C 50;3c31011
m3

M3
. ~42!

The parameterc is never larger thanAp/8;0.6264 . . . , and
while it can be smaller, we see that the control paramete
really dominated by the ratio of the zero mode mass to
5D Planck scale. This is a consequence of the high
dimensional origin of the effective inflaton field, as we ha
discussed before. Therefore, we finally have a clear-cut
terion for selecting one of the two approximate descriptio
discussed above: ifC50@1 we cannot ignore the nonlinear
ties and should use the approximations for the long assi
inflation, whereas forC50,1 we can use the~improved! qua-
silinear approximations appropriate for the short assisted
flation. Clearly, there is a transition region in between, wh
neither of our approximations will be very accurate, a
where the complete treatment of the evolution necessitat
numerical approach. However, this occurs on only a sm
part of the phase space, while the analytical approximati
which we have developed cover most of the admissible
rameter space.

B. Gravitational waves

The gravitational waves produced during inflation are
termined entirely by the evolution of the Hubble paramet
Following the notation of Ref.@24#, their amplitude is given
by

AG5
2

5Ap

H

mPl
5A16

75

~cmL!1/2

ln1/4@F0~0!/F0#

mF0

mPl
2

. ~43!

As the gravitational wave production depends only on
expansion ratea(t), unlike the case of density perturbation
the first expression forAG is exact up to the slow-roll ap
proximation.

The ratio of the gravitational to scalar perturbations
using Eqs.~19!, ~27! and ~43!,

AG

dH
5

1

2Ap

mPl

aF0
5

1

A2aN . ~44!

From the value ofa50 from Eq. ~28!, we see that the pre
dicted ratio of the gravitational to scalar perturbations at
e-foldings is

AG

dH
56.63104

m

mPl
. ~45!
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Hence, the precise value of the mass of the zero mode d
mines this ratio. Clearly the heavier field will produce mo
gravitational waves relative to the scalar density contra
Using the bound Eq.~30!, we find

AG

dH
>1.3231025. ~46!

V. CONCLUSIONS

We have considered dynamics of assisted chaotic infla
which can arise in theories with large internal dimensio
after compactification. In this work, we have focused on
simple model based on a single massive scalar field. If
field lives in the bulk of the fundamental theory, then up
compactification on manifolds larger than the fundamen
Planck scale, it will give rise to a tower of massive Kaluz
Klein states. Many of these Kaluza-Klein states will b
lighter than the 5D Planck scale, and hence can be treate
the field theory limit, where they can contribute to assis
inflation. The model is in agreement with COBE constrain
provided that the fundamental Planck scale is greater t
1013GeV. The main aspects of the ensuing assisted dyn
ics are rather interesting. Instead of the appearance o
asymptotic attractor for the multitude of the scalar fields d
placed from their respective minima, as in the original a
sisted inflation with exponential potentials@1#, here the fields
with a different mass never develop a completely coher
motion. Rather, the fields keep accelerating away from e
other. If they are viewed as a collective mode, this me
that there is a constant spreading of the collective m
throughout the evolution. However, the spreading is v
small compared to the expansion rate of the universe. Ind
since the effective Hubble parameter of the universe rece
contributions from all fields in the slow-roll regime, it i
larger, and hence gives a stronger resistance to acceler
of each field down its respective potential well. This in tu
prolongs the slow-roll regime for each field, and leads
longer inflation overall.

Furthermore, a combination of the assisted behavior
the higher-dimensional origin of the theory lowers very s
nificantly the value of the fieldsF where slow-roll ends,
giving Fend;M3/2/m1/2, rather thanmPl as is usual for infla-
tion with fields confined to 4D~hereM is the fundamental
Planck scale andm the zero mode mass!. So instead of in-
flation terminating at the 4D Planck scale, it can last w
below it, almost as low as the higher-dimensional Plan
scale. Therefore, to drive a long inflation, the zero mode a
all of its Kaluza-Klein siblings can start with values of ord
of mPl , at energy densities far below the 4D Planck sca
and with values in the regime where higher-loop supergr
ity corrections are much less likely to destroy inflation. Th
also means that there may be less fine-tuning in choosing
parameters of the theory. The higher-dimensional coupli
of order unity upon compactification can naturally produ
small couplings needed to satisfy the COBE constraints,
these numbers can be perturbatively stable.

A very interesting novel feature of the assisted chao
dynamics is that inflationary predictions depend softly on
3-8
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initial conditions preceding the stage of inflation. Most co
mon models of inflation with a small number of dynamic
scalar fields exert complete amnesia on the universe, w
forgets all about the initial state before inflation. This is se
as a typical consequence of cosmic no-hair theorems. H
ever assisted chaotic inflation appears to be more forgiv
Rather than completely washing away all the informat
about the state preceding inflation, at the level of precis
we have pursued here assisted dynamics gives a density
trast and spectral index which depend logarithmically on
initial value of the inflationary scalars. In fact, this effe
could have been expected due to the collective nature of
inflaton. To the subleading order in approximations, the p
dictions of dynamics should recognize how many fields c
tributed to inflation. On the other hand, the number of fie
and the initial value of the inflationary scalars are relat
Indeed, if we start with fewer fields higher up the potenti
we may produce the same number ofe-foldings as if we had
more fields initially closer to their minima. Hence while bo
scenarios give the same picture to leading order, they d
in the sub-leading order. Since it is at this level that t
density perturbations are produced, clearly they will depe
on the initial values of fields and their number. The COB
normalization permits one to eliminate the number of fie
in favor of the initial value of fields. Hence one, but not bo
D
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.

.
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of these parameters can be removed from the results for
sity perturbations and the spectral index, which theref
must depend softly on the initial value of fields. In the la
guage of no-hair theorems, this dependence is analogous
kind of discrete cosmic ‘‘hair.’’ Since it is soft, it will not
jeopardize the onset of inflation. However, it leads to t
possibility of getting different inflationary spectra from the
ries with the same zero mode parameters in the Lagrang
and hence reduces the usefulness of observations in
straining inflationary models.

It would be very interesting to study generation of dens
perturbations in assisted chaotic models beyond the s
leading order of approximations which we pursued here. T
presence of the multitude of scalars and the absence
late-time stable attractor could lead to additional interest
sub-leading corrections to the density spectrum. If such c
rections are within the observable region, they could lead
an interesting signature of additional dimensions of
world visible in our own sky.
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