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On compactification from higher dimensions, a single free massive scalar field gives rise to a set of effective
four-dimensional scalar fields, each with a different mass. These can cooperate to drive a period of inflation
known as assisted inflation. We analyze the dynamics of the simplest implementation of this idea, paying
particular attention to the decoupling of fields from the slow-roll regime as inflation proceeds. Unlike normal
models of inflation, the dynamics does not become independent of the initial conditions at late times. In
particular, we estimate the density perturbations obtained, which retain a memory of the initial conditions even
though a homogeneous, spatially flat universe is generated.

PACS numbd(s): 98.80.Cq

[. INTRODUCTION set of effective scalar fields corresponding to the Kaluza-
Klein modes. Provided the extra dimensions are sufficiently
It was recently pointed out by Liddlet al.[1] that, under large, this yields a large number of scalar fields with similar
certain circumstances, it is possible for a set of scalar fieldgotentials, which can support assisted inflation. The main
to act cooperatively to drive a period of cosmological infla-advantage of this type of inflation is that individual fields
tion, even if none of the individual fields are capable of soneed never exceed the fundamental Planck scale, which may
doing. Such behavior is known a@ssisted inflationand in  allow supergravity corrections to remain consistently small.
Ref.[1] investigation was made of the case of multiple fieldsAnother possible benefit of this scheme is that provided the
moving in exponentia| potentia|s with no interactions be-number of fields is Sufficiently great, the fundamental self-
tween them. For uncoupled fields this behavior is genericeouplings of the fields may be much greater than the usual
the physics is simply that the fields feel the downward forcerequirement that they be of order 18 or less.
from their own potential gradient, but the collective friction  In this paper, we analyze the dynamics of a simple imple-
from the whole set of fields through the expansion tdtdt mentation of this idea, where the scalar fields are uncoupled
was however perhaps unexpected that assisted inflation sol@ut have different masses depending on the Kaluza-Klein
tions would be late-time attractors, confounding the expectawinding [6]. As inflation proceeds, the energy scale de-
tion that only the field with the shallowest potential would creases, which leads to a reduction in the number of scalar
dominate at late times. The dynamics of assisted inflatiofields with mass less than the Hubble scale. Only such fields
have subsequently been investigated by several authog&n slow-roll. Therefore, the number of fields participating in
[2—5]; one important additional point is that direct interac- the assisted behavior decreases as inflation proceeds. We will
tions between the fields tend to inhibit assisted behavior. also study the effect of this on the density perturbation spec-
A particularly simple implementation of assisted dynam-trum. Our results will reveal a very interesting property of
ics arises in higher-dimensional theories with large compacéssisted chaotic dynamics. In contrast to the common infla-
internal spaces, as pointed out by Kanti and OIj&#]. tionary models, assisted chaotic models permit some infor-
There have been many studies of higher-dimensional thednation about the initial conditions to be retained in the form
ries with compact internal spaces with size larger than th@f a soft dependence of the spectral index, and other postin-
fundamental scale, where the size could vary in the widdlationary predictions, on the number of fields which contrib-
range between a millimet§¥], over TeV 1 [8], upto only a  uted to inflation.
few orders of magnitude larger than the 4D Planck length
[9,10]. Some aspects of universe as a domain wall have been Il. THE MODEL
considered beforgll]. Most recently, a possibility that the . . . .
extra dimensions may even be in some sense infinite has Follqwmg .Kant_| and QI'Ve[G].’ we cqn_S|der a bulk theory
been considerefll2—14. Cosmology in these theories may O.f gravity in f|ve d|menS|on§, W.'th a minimally coupled mas-
be very different from the conventional 4D theds—17.  Sve scalar fieldV’. The action is
A single fundamental scalar living in the bulk of the higher-
dimensional theory can give rise, upon compactification, to a So= f d5x\/g—5

Rs 1 21 ou2
Z—KEZ_)—E(V‘P)—EI'T]‘P . (1)

*Present address: Astronomy Centre, University of Sussex, BrighThe scalar fieldV' is some weakly coupled light bulk field,
ton BN1 9QJ, United Kingdom. and we assume that its self-interactions are negligible com-
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pared to the mass term. Such fields could arise in some bublkere fine tuning this mass difference will lead to significant
supergravity theories. After stabilization of the compactifiedeffects during evolution. This is because for each mode the

dimension, the 5D metric can be split as slow-roll regime can only be achieved if the mass of the
o modem; is less than the Hubble parameter; otherwise the
ds’=g,,dx*dx"+L%d6?, (2)  field will instead evolve quickly to its minimum, with the

energy density redshifting asaf/during the oscillations. As

WhereL'|s the constant size of the fifth d|men§|on. The r'e- assisted inflation proceeds, the Hubble scale is decreasing,
lationship between the 5D and 4D parameters is easy to com;

i ) o o . ind so lighter and lighter fields enter the regime-H and
pute: the 4D Planck mass, defined = 1/G, is given in g their assisted behavior. Consequently fewer and fewer

2 _ . .
terms of the 5D one ami=M?3L, whereM is the 5D uni-  fiads are involved as time goes by.

fication scalgthe string scale The wave function renormal-  Ajthough there is no formal attractor behavior, neverthe-
ization for the scalar field and its Kaluza-Klein siblings is |ess the collective effect of the fields may give desirable
@=LV, where®; is the projection of thg'"" Kaluza-  advantages over single-field chaotic inflation. The most
Klein state with mass prominent of these is that, due to the collective friction, in-
flation becomes possible when all the fields have values less
than the Planck mass. This means that supergravity correc-
tions to the potential are much less likely to destroy inflation
than in the single-field case, where inflation is only possible
Of the infinite tower of the Kaluza-Klein states, only thosefor ¢=mpg,. In the assisted variant, due to the collective
which admit a description in the field theory limit should be contribution to the friction, we will find that inflation is pos-
included here. They are those states which are lighter thasible down to field valuesb~mg/\mL, wherem is the
the fundamental scale of the thedw; The states which are mass of the zero mode arndthe size of the extra dimen-
heavier tharM can be described consistently only in the full sions. As long asnL>1, this is well below the 4D Planck
guantum gravity limit, and hence are left out. Then, from thescale; slow-roll can occur for sub-Planckian values of fields,
mass formula Eq(3), the total number of the light Kaluza- and its duration is prolonged. It is interesting to note that
Klein states isNya=ML=m3/M2. Note that consistency becauseL=mz/M? [7], inflation ends at®~M/m M.
requiresm<M, otherwise none of the fields should be keptThus for a fixed fundamental scal, sincem<M, it is
in the field theory limit. Therefore the 4D reduced action is generally higher thaM, but it lies lower the largem is. So
even for relatively heavy fields, if they start out dt
R E ~mp,, there may be mang-foldings of inflation provided
T =0 M<mp,.

j2
2_ 2
mj—m +L2. ©)

2
Mpy

SA,eff:f d4x\/§| 16

1 1 5o
E(V(I)i)z‘f'zmi O ” .
4

In this model the 4D scalar fields are coupled only through

gravity, whereas if the original’ field were self-coupled the We now consider the dynamics in detail. Assuming a

®; fields would be interacting. spatially flat homogeneous cosmology, the equations of mo-
Before exhibiting the calculation, let us overview the pic- tion for the assisted mass-driven chaotic inflation are

ture of the evolution. This more or less follows that outlined

by Kanti and Olive[6], though they concentrated mainly on , 4m o 5o

the lightest fields, whose masses were taken to be nearly 3H =— 2 (P +mid5), 6)

identical. Assuming compactification has occurred, then, as My 170

in the chaotic inflation paradigifl8—2Q, at early times the } .

fields may range over a wide variety of values in different O+ 3HD;+m’P;=0. (6)

regions of space. In the regime where the fields do not ex-

ceed the 4D Planck scale, supergravity corrections are smallthough in principle the sum in the Friedmann equation

In the original assisted picture using exponential potentialgoes over all the fields up tp=N,,,, following the above

[1], the assisted inflation solution was the unique late-timediscussion the only fields which will contribute in practice

attractor, with all fields eventually participating. In this are those which are in the slow-roll regime. Therefore we

model the situation is rather different. First, there is no latean take the sum to only include those Kaluza-Klein states

time inflationary solution as eventually all fields will settle in whose mass is smaller than the Hubble parameter. We indi-

the minima. Second, there is no attractor behavior; as we wiltate this number by(t), and it is time-dependent because

see the fields tend to diverge from one another. Nevertheleshl is.

there is a form of a transient assisted behavior, simply be- We are assuming initial conditions where all the fields are

cause there are many fields, and in particular the light onedisplaced from their minima. We will experiment with dif-

are in a slow-roll regime where they evolve slowly and feelferent choices. While one could adopt the weak condition

the collective friction of all the fields. that the total energy density is below the Planck scale, we
An important feature of this model is that the fields do notprefer to take the more stringent condition that supergravity

all have the same potential; they receive a contribution taorrections to the scalar field evolution can be neglected. For

their mass from the Kaluza-Klein windirjgand barring se- the five-dimensional modes, this condition &;(t;a)

IIl. INFLATIONARY DYNAMICS

N(t)
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FIG. 1. This shows the result of a 300 field simulation, with  FIG. 2. As Fig. 1, with the same model parameters but now with
m=10"*mp, andL =5000inp,. The initial condition for each field different initial conditions for the fields.
was®;=mp, and evolution is shown as a function®&=Ina. The
main panel shows the fields with=0, 25, 50, 75, 100 and 125,
with the more massive fields decoupling first. The inset shows the
lowest 15 fields at the end of inflation. Note that these fields are i
the process of decoupling during the lastésfbldings.

show some fields up to quite large valuesjpfwhile the
r{nsets show just the fifteen lightest fields. Note that the total
number ofe-foldings is comfortably above the 70 or so re-
quired to solve the horizon and flatness problems, and recall

— 132 _— , _that it is only a fewe-foldings, centered around about 50
=M*', and after projecting to effective 4D degrees of free e-foldings from the end of inflation, that can be directly

dom this translates t@®;(t.i4)=mp,. With a single field, .
j(tiniiar) = Mo g pprobed by structure formation.

this does not leave sufficient space for a prolonged slow-rolP
b P 9 We see that the behavior is indeed that outlined earlier.

regime, but with multiple fields slow-roll can continue until . : > )
O <mp, [6] There is no evidence of a late-time attractor, but the fields do

take a substantial time to evolve to the minimum and hence
collectively drive inflation. In particular, we see from the
insets that at least the lightest 15 fields are still dynamically
The system of equations described in E@8.and(6) is  relevant when structure-forming perturbations were im-
readily solved numerically, and we first describe the resultprinted. We also note that after decoupling most fields sim-
of some simulations to establish the general picture, beforgly asymptote intaP; =0; the other fields contribute enough
going on to describe some analytical approximations whickriction that the heavier ones remain overdamped right to the
can be used. For a given choice of the parameteasidL,  minimum. Only the lightest few fields undergo oscillations
and a choice of initial conditions used, one has to decide howhen they reach the minimum.
many scalar fields need to be evolved. In general the more One vital result is to notice that, unlike usual inflation, the
massive ones will always swiftly become negligible, and sainitial conditions do not become irrelevant at late times, be-
long as we restrict ourselves to demanding an accurate deause in our region of the Universe the fields have evolved
scription of only the observably accessible last 50 or sdrom particular points in field space which determines their
e-foldings of inflation, we need not necessarily simulate thetime of decoupling. Studying Figs. 1 and 2, we see that the
entire Njax= mp/M fields. evolution of the fields is not identical even during only the
Figures 1 and 2 show two separate simulations of théast 50e-foldings. The late-time behavior, and hence derived
same model th=10"*mp, and L =5000inp) with different  quantities such as the density perturbation spectrum, will de-
initial conditions. With thisL, Nya= (L mp)?3=300 so that pend not only on the underlying model parametarandL,
many fields are included in the simulations. The fields arebut also on the particular initial conditions for the fields per-
shown as a function of the number @foldings of inflation  taining to our region. This gives a significant reduction in the
N=a (here given as the number from the start of the simu-usefulness of observations in directly constraining the infla-
lation, rather than from the end of inflatiprin one simula- tionary potential.
tion all fields start with the same initial value, while in the  With these numerical results in mind, we now explore this
other they have a spread of initial values. The main panelfurther using the slow-roll approximation.

A. Numerical solutions
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B. Analytical approximations changes slowly compared to expf?). So for as long as

At a given timet all the fields whose mass is smaller than inflation is proceeding with many fields still in the slow-roll
H are in the regime where the collective friction dominatesredime, we can safely replace the control parameter
over the acceleration, and hence are supporting inflation2c N(t)/mL by a number=1 in the upper limit of inte-
(perhaps with the exception of some which by chance startegiration.
very near the origin The mass of the heaviest contributing ~ On the other hand, for a certain subspace of the phase
field is given by Eq.(3), with j=N(t). If we choose an space of the theory, the guantity2o N(t)/mL can be
initial condition that all the fields were approximately the smaller than unity. Typically this happens for the choice of
same, one may suspect that by tiindeir values may have parameters in the Lagrangian where the zero mode is heavy,
become significantly different. In fact, we can give an accu-and so most of its Kaluza-Klein siblings are decoupled.
rate estimate of this spreading, and its effect on dynamics, aBherefore although generically assisted dynamics leads to
follows. The slow-roll version of Eq(6), obtained by drop- many moree-foldings than the minimum of 60, for suffi-

ping the second derivative term, impligs] ciently large massn, the total number oé-foldings can be
» small. In this case the appropriate approximation for evalu-

D(t) Dy(t)  ]™Mi’mo ating Eq.(9) is to take 2r N(t)/mL<1, which we label as
® (initial) | o(initial) (7)  short assisted inflation. We will return to this case below.

Here we must underscore that due to the strong nonlinear
where index 0 refers to the zero mode, of masJhe initial  nature of the dynamics, we need to treat the approximations
values for all modesp;(initial) =®;(0) are taken to be of in a floating manner. To decide which approximation is ap-
the order ofmp,, as we have discussed above. However forplicable at\ e-foldings before the end of inflation, we must
the sake of generality we will retain them as an arbitrary setheck the value of the control paramet&a N(t)/mL, and

of input parameters, in order to study their influence on thechoose the relevant formulas for the spectra of perturbations
dynamics. Then, we can approximate jffemode by as it dictates.

j? 1. Long assisted inflation

8

®i(t)=>d;(0)exg —| 1+ o(t) . . ) ,
m2L2 Armed with the above, in the case of long assisted infla-

tion we can estimate the integral by using the error function

where the fieldo is the Ioggr_ithm of the zero r_nodex erf[x]:(Z/\/;)fgdye—yz_ Since, as we said, the main con-
=~ In[(t)/Po(0)] and the minimum of the potential corre- i tion comes from the range of values for whick 1, we

sponds tor— ., 1 v .
Then, assuming that there are many light fields in theo@n usefpdye V2c, wherec is a number of order

slow-roll regime so that we can replace the sum in Ggby unity. The precise Vall_le ot IS not of immediate conse-
. N(t) . . S quence here, and we will keep it as a free parameter for now.
an integral [*’dj, and ignoring their kinetic terms, after

some simple algebra we find that This gives
3 “ 2 2 3
2= 20 T e [ ™ aygay)| 14 1 e e 72O o2 (10
3m2, \20 0 20 3 m o

©)

Here we have defined the functiori(y) by f(y)
= 25(0), since we can certainly view the initial dis-
tribution of the Kaluza-Klein fields as a function of their \/E

Using the definition ofr, we can now rewrite this equation
in terms of the zero mod®(t), finding

(CmL)I/Z

mass. In practice, in most cases the upper limit of the integral H=~
3 mp I Do(0)/Do(1)]

- md(t). 11
can be taken to be of order unity. Indeed, at about 50

e-foldings before the end of inflation, the heaviest modes

which are still in the slow-roll regime requité(t)~HL. On  This equation permits us to replace the collection of fields by
the other hand, by this time the fietd will typically be of  the zero modeb,. Note the logarithmic dependence of the
order unity. In fact, even iff20 N(t)>mL, the integrand Hubble parameter on the initial value of the zero mode field
falls rapidly to zero, as exp(y®), which effectively cuts off ~ @,. This takes into account the decoupling of the heavy
the contributions to the integral to only those values formodes, which fall out of the slow-roll regime dg(t) rolls
which \/%N(t)smL, as long as the functiofi(y) grows  towards the minimum. Also note that because of the strong
slower than expf). But this is a very natural assumption in cutoff in the integration in Eq(9) effected by expty?), the

the assisted inflation context: initially all the fields which dynamics is sensitive only to the average of the initial values
contribute to the collective attractor should have similar val-of the Kaluza-Klein fieldsby(0), and not to itsdispersion.
ues, and in fact the heavier fields should be lower along thé&lence, we can indeed safely assume that all the fields were
potential well. Therefore the functiorf(y) should be initially essentially the same.

bounded byf (y)=<f(0). Hencef?(y) in the integrand can be Therefore to the lowest order we can rewrite the equations
approximated by a polynomiaf?(y)~®3(0)+ p(y), which  of motion, using the slow-roll approximation, as
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for the relationship betweelN and®, sufficiently far before
the end of inflation, and we will use it hereafter.

cmL

3H?=4x
ma INY4 D (0)/Po(1)]

m>d(t),

(12

2. Short assisted inflation

BHD () + m?Dy(t)=0. (13

Let us now return to the case of short assisted inflation.
As we will see later it is helpful to place an upper bound on
the mass of the zero mode which leads to significant as-
sisted behavior. In this instance, the integral &).is better
approximated by

Since the fieldD is in slow-roll as long asn<H, it is now
easy to see that inflation continues as long as

3 mp| 47TCmLCI)0(O)
b= \/——Inl"‘( \— . (14
° A7 \JemL 3 Mp) (9

47m? 2 2
H?=——-N®g| 1+ —— 1. (20)
This equation is illustrative, since now we indeed see, as we Mp 3m°L
have mentioned above, that in most cases during inflation _. . ,
v I v ! Hring | I SinceN~HL, using Eq.(20) we find
N H
20 — =20 —=2In""4D4(0)/Dy)=1, (15 Amrm?L? 2
V20 =20 — (Do(0)/Dy) (15) N AT el g N o1
3mg, 3m2L2

except during the first feve-foldings immediately after the

start. One should bear in mind that the “first fewetfoldings ~ Now, although the second term on the right-hand éRldS)
could in principle be enough to solve all the usual cosmo-of this equation dominates, we will approximaieby the
logical problems. However, this will not be the case for thefirst term on the RHS, since using the second term in the
most allowed values of the zero mode parameters. Let usubsequent framework would lead to an overestimation. By

define the quantity

cmL
INY @ o(0)/dy(t)]

(16)

o

which is a slowly varying function of time through the time
dependence ofb,. Now, we can combine Eqg12) and
(13), and after some straightforward algebra obtain

AV
dd,

P

2 1
Mpy

dra

7

where N=In(a(final)/a) is the number of-foldings of in-
flation which occur after the field reachds, [not to be
confused withN(t), the number of slow-rolling fields It is
straightforward to integrate this equation: we find

20

(18

®3(0
N=(2m)%% mL#[ 1- er{ V2 Inl’z(

Mpy

Since initially ®4(0)~mp,, this equation shows that the to-
tal number ofe-foldings is\{total)~ (27)%% mL. Further,

using the first term, the computation remains confined in the
realm of perturbation theory, where errors are controllable.
ThusN=47m?L? ®2/3m3,. Therefore,

, 16m’m*L? [ 16m*m?L2dg
H?=———®&g| 1+ —————|. (22
4 0 4
9mp, 9mp,

Next, we will approximate the Hubble parametérby re-
taining the second term on the RHS of this equation, since it
clearly dominates over the first, while the perturbation theory
is still valid using it. Hence taking the square root of E2R)

we find

B 1671-2m3L2q)4 23
omg, o
Clearly since inflation lasts as long as<H, during it ®
= 3/4 mp/ymL, which is in good agreement with Eq.
(14). We note that the authors of R¢b] treat assisted dy-
namics only in this regime whergoN/mL<1, as is evident
from their equations of motion. However, their approxima-
tion for the Hubble parameter consists of retaining only the
linear term in Eq.(20). The treatment here provides a more

it can be seen that at a time considerably before the end direcise approximation. Then using E@), we obtain

inflation, the number oé-foldings left to leading order scales

asO(dbg). Indeed, ignoring the variation of the denominator

with &g in Eq.(17), it follows that at\>1 e-foldings before
the end of inflation we can approximate E8) with

2

CDO
./\/2277a—2+(’)
Mp)

®3

. (29
mg,

dv 2567 m*L*
dd, 27me,

D/ (24)

Its solution can be found immediately: it is

3 327*mAL?

8. (25)
27mg,

This formula is familiar from the usual chaotic inflation, ex-
cept for the factora which comes from the collective dy- This equation replaces E¢L9) whenm is large, or equiva-
namics. In fact, this formula gives an accurate approximatiorently when the parameter given in Eq.(16) is small. We
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will consider this case in more detail in the next section.whereas, is the value ofx at the relevant epoch. The model
Note that the approximations in this subsection give a goodhas three input parametens, L, and ®,(0), though the
description of the assisted dynamics for the times when thdependence on the last is weak.
control parametet/2o N(t)/mL is small, initially or by sub- Another bound on the parameters can be obtained from
sequent dynamics. considering the initial energy density. Here we will at first
The previous analysis shows that the dissipation due tégnore the precise aspects of the nonlinear assisted dynamics
the decoupling of the massive modes is the dominant corredn order to estimate the range of allowed values of the zero
tion to the dynamics of the model. To estimate it, we need tonode mass. We will then reconsider some of the resulting
establish how rapidly the modes decouple in the course ahequalities with more precision, since they will provide the
evolution. This can always be done by using the rile criteria for choosing the relevant approximation for comput-
~HL and the solutions presented so far. In general, althoughng the spectral properties. By the usual arguments in theo-
it is clear that the details are complicated, we can nevertheies with large extra dimensiong], the total energy density
less obtain a good approximation for the decoupling rate asn 5D cannot exceed®. After the extra dimensions are
stabilized, this places an upper bound on the projected en-
AN dN ergy density in 4Dp<M°5L=M?m3,. On the one hand, the
NN (26) initial energy density of the collective inflaton ip
Y ~m3Lm§,I by Eqg. (9). This and the upper bound give us

meL<M?2. On the other hand, by the definition afin Eq.
h(‘16), ignoring the logarithm in the denominator, we can see
that Eq.(28) implies m3L ~2.3x 10~ *?m2,. Hence combin-
ing the inflationary and compactification constraints, we find
the lower bound on the fundamental sckle

where y measures the decoupling rate, and depends on t
parametersn andL and the initial conditions. In general it is
a slowly-changing function, with the value within an order of
magnitude or two of unity. Note, that the usual single-field
chaotic inflation corresponds to the limjt—o. This is suf-

ficient for our purposes here. M=1.5x 10 ®mp,. (29)
IV. PERTURBATIONS Hovgever, using .Eq.(28) again, and noting thatm3L

_ _ =mim3/M3, we find thatm=1.32<10 *M. Hence, com-

A. Density perturbations bining this and inequality29), we obtain a lower bound for

Now we compute the density contrast, using the notatiorihe mass of the zero moade
of Ref. [21]. We will do this approximately, by using the
usual formula as applied to the lightest scalar field. Unfortu- m=2Xx10""mg,. (30
nately this ignores the effects of perturbations in the other
fie|dsl but in the absence of exact ana'ytica' solutions it isTherefore we see that the assisted models of inflation could
unclear how to include them. Ideally, one would follow the be & phenomenologically viable scenario of inflation only in
approach of Malik and Wandg?], in which a new set of theories with a unification scale10'*GeV, which is still
fields is defined such that the linear perturbations in all bugonsiderably larger than the electroweak scale. Otherwise,
one give no first-order contribution to the perturbation in theassisted chaotic inflation would not produce the density con-
total density, but this requires knowing the full solutions in trast in the Cosmic Background Exploré€€OBE) range.
advance. We hope to return to the question of a completéhis agrees with the conclusion that inflation after stabiliza-
computation of the adiabatic density contrast in a later worktion of extra dimensions could give density contrast as mea-
With the above caveats, the power spectvfe-foldings ~ sured by COBE only if the unification scale is hifftb,16].

before the end of inflation is estimated as From this we find that the parameteg, is bounded from
above: combining Eq€28) and (30) we obtain
5.0k 1 HZ  [e4r  (cmbD¥?  md} 6 75 100 a
H == —= E— A5p=2. .
57 by V75 In¥{dy(0)/do] m} >

16 m Since INdy(0)/Dg]<In(2malN)/2~15, the approximation
=\/=— Ja—WN. (27 made above in ignoring the logarithm was justified. Finally
75m " Mg, from the fact that the total number effoldings is \{total)
~(27)%mL, we see that\{total)<3x 10°, implying that
As always with inflation, the overall amplitude can be generically it can be quite large.
adjusted to match the value observed by COBE(k,) The most useful predictions that can then be made are of
=2x10"°, by suitable choice of the mass parameter. Asthe shape of the spectrum, which is independent of the nor-
suming that the present Hubble radius equaled the Hubblmalization. As compared to single-field chaotic inflation, the
radius 50e-foldings from the end of inflation, this requires density contrast in assisted chaotic inflation has additional
dependence on the inflaton via the factgrwhich will cause
m2 a deviation of the shape of the spectrum.
@gg=2.3x 10 12_:', (29) We bggi'n by galculating the spectral indexf the spec-
trum. This is defined by
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din 5&(") above formulas. The important observation is that since the
= dnk (32)  initial value of the field®y(0) appears only through the
logarithm, if ®4(0) varies through its full range of admis-
where in the slow-roll approximatiod Ink=—d\/. The in-  Sible values, 10mp=d,(0)<mp, the logarithm changes
teresting thing is that, unlike the usual case, this scale depeRY a factor of~3. Hence,n may vary in the range 0.94
dence receives two contributions. The first is the usual on&N<0.96, at the 5@-foldings. In a manner of speaking, the

Coming from theN term, and the second arises from the assisted chaotic inflation does not impart amnesia on the uni-
dependence of. verse as efficiently as single-field chaotic inflation, and some

If initially we assumex is constant, we immediately find, of the information about the initial state of the universe much
using Eq.(19), the usual result for single-field quadratic cha- before the last 6@-foldings is imprinted on the late epoch

n—

otic inflation, namely too.
We note that Eq935) and(36) suggest that for the value
2 of the masan where a5p=25/7 there is a divergence. But
n=1- N B3 this divergence is clearly completely spurious: it merely sig-

nifies that at the large values of the masshe approxima-
We can also compute the scale dependence of the specttains which led to Eqs(35) and (36) break down. Instead,

index there we need to resort to the approximation for short as-
sisted inflation, discussed at the end of the previous section.
dn dn 2 Using Egs(23) and(25), it is then easy to derive the density
dink~ dN N2 (34 contrast in this case:
If we assume the present Hubble scale equaled the Hubble 40967°m°L® m 1 m e
scale 50e-foldings before the end of inflation, we hawve 5H:T5mlll m—Pl‘po =1.5/mL m_mN . (37
P

=0.96 anddn/d Ink=—8x10"%. The Planck satellite is ca-
pable of distinguishing the former from unif22], but not
the latter from zerd23].

However, we need to include the speed up of the inflaton
field as heavy Kaluza-Klein modes fall out of the slow-roll
regime, through ther term. From Eqgs(19) and(27), we find

Then, the COBE normalization condition gives

2
m

mL=3.7x10" 15— (38)
m

2 3 . .
n=1-—l1+ . (35  The spectral index is
N7 4 @ma®?(0))/(MEM)]
. . 11
Its scale dependence is given by the equation n=1-— N (39
dn 1+ 5 Ji y _
= t t
dink N2 4In[(2wa®§(0))/(m,%M] and its gradient is
3 dn 11 40
- : 36 =——.
8IN[ (2ma®(0))/(ME\)] (%9 dink N2

In the limit a— o, these expressions correctly reduce to EqsFrom the requirement that there are at lease-®6ldings and
(33) and (34), as appropriate for single-field models. How- Egs. (25) and (38) we can deduce the upper bound on the
ever, for a generic assisted model, we see that the predictiomsass m. Clearly, the maximal number oé-foldings will
for the spectral index and its scale dependence are differecbme from the largest initial conditiom®(0)=mp,. Thus,
from the usual single-field chaotic inflation. For example, if =50 givesm~10" 'mp,, and the spectral index and its
®,(0)~mp, and the mass of the zero modeis of order of  gradient aren=0.945 anddn/dInk=—1.1x10"3. These
m~10 'mp;, the parameteras, is, using Eq.(28), as, numbers are in a very good agreement with the correspond-
=230, and hence the spectral index and its gradientnare ing numbers for the smallest attainable parametgy dis-
=0.95 anddn/dInk=—1.1x103, respectively. Clearly, cussed above. Therefore, since we limit the initial condition
these numbers are sensitive to the masshe smaller it is, of the field®(0) to be below the 4D Planck scates,, the
the more similar assisted chaotic inflation becomes to théargest massn which still leads to sufficient inflation isn
usual single-field driven chaotic inflation. ~10 'mg,. In this case the assistance effect produces a dif-
A closer look at Eqs(35) and(36) shows that the predic- ferent spectrum of perturbations from the usual single-field
tions depend on the initial conditiodr(0) through the pa- chaotic inflation with quadratic potential.
rametera. Hence the spectral index can vary significantly We now turn to specifying the criteria for selecting the
with the initial condition. The explicit dependencermmfand relevant approximation on the basis of the valuemoSince
dn/Ink) on the initial condition can be computed from the the control parameter is

123513-7



NEMANJA KALOPER AND ANDREW R. LIDDLE PHYSICAL REVIEW D61 123513

N H Hence, the precise value of the mass of the zero mode deter-
C=V20 H~\/20 o (4)  mines this ratio. Clearly the heavier field will produce more
gravitational waves relative to the scalar density contrast.

using Eqgs.(11) and (19), we can rewrite it a&~ 4o NI3. Using the bound Eq(30), we find

Hence at\/=50 e-foldings, this give€sy~ 805, and using

the relationship betweensy and a5y, andM3L=m3,, we 5—6 =>1.32x10°°. (46)
finally find H
m3 V. CONCLUSIONS
~3cx 10t —. 42 : . . o
Cso M3 42 We have considered dynamics of assisted chaotic inflation

which can arise in theories with large internal dimensions

The parametec is never larger thar'#/8~0.6264 . . . , and after compactification. In this work, we have focused on a
while it can be smaller, we see that the control parameter i§imPleé model based on a single massive scalar field. If the
really dominated by the ratio of the zero mode mass to thdi€ld lives in the bulk of the fundamental theory, then upon
5D Planck scale. This is a consequence of the highe,gompactlflcanon on manifolds larger than the fundamental
dimensional origin of the effective inflaton field, as we havePlanck scale, it will give rise to a tower of massive Kaluza-
discussed before. Therefore, we finally have a clear-cut criKlein states. Many of these Kaluza-Klein states will be
terion for selecting one of the two approximate descriptiondighter than the 5D Planck scale, and hence can be treated in
discussed above: #s,>1 we cannot ignore the nonlineari- the field theory limit, where they can contribute to assisted
ties and should use the approximations for the long assistd@flation. The model is in agreement with COBE constraints
inflation, whereas fo€s,< 1 we can use thémproved qua- provided that the fundamental Planck scale is greater than
L 3 . - .

silinear approximations appropriate for the short assisted int0'°GeV. The main aspects of the ensuing assisted dynam-
flation. Clearly, there is a transition region in between, wherdCS are rather interesting. Instead of the appearance of an
neither of our approximations will be very accurate, andasymptotic attractor for the multitude of the scalar fields dis-
where the complete treatment of the evolution necessitatesP42ced from their respective minima, as in the original as-
numerical approach. However, this occurs on only a Sma|§|_sted |nflat|on with exponential potentidls|, here the fields
part of the phase space, while the analytical approximation®ith @ different mass never develop a completely coherent

which we have developed cover most of the admissible Ioar_notion. Rather, the_fields keep accelerating away from each
rameter space. other. If they are viewed as a collective mode, this means

that there is a constant spreading of the collective mode
throughout the evolution. However, the spreading is very
small compared to the expansion rate of the universe. Indeed,
The gravitational waves produced during inflation are de-since the effective Hubble parameter of the universe receives
termined entirely by the evolution of the Hubble parametercontributions from all fields in the slow-roll regime, it is
Following the notation of Ref.24], their amplitude is given larger, and hence gives a stronger resistance to acceleration

B. Gravitational waves

by of each field down its respective potential well. This in turn
prolongs the slow-roll regime for each field, and leads to
A 2 H _\/1\6 (cmb?2  md, “3 longer inflation overall.
G 5o Me 75 N4 dy(0)/Dg] M3 Furthermore, a combination of the assisted behavior and

the higher-dimensional origin of the theory lowers very sig-

As the gravitational wave production depends only on thenlflcantly the value of the fieldsb where slow-roll ends,

. . ; . iving @ o,~ M ¥4 m'2, rather tharmg, as is usual for infla-
expansion rat@(t), unlike the case of density perturbations '?ion \?vitherf]fglds confined to 4uhere'l:\|/l is the fundamental
the first expression foAg is exact up to the slow-roll ap-

imati Planck scale anth the zero mode magsSo instead of in-

proximation. i . ._flation terminating at the 4D Planck scale, it can last well

.The ratio of the gravitational to scalar perturbations IS.helow it, almost as low as the higher-dimensional Planck
using Eqs(19), (27) and(43), scale. Therefore, to drive a long inflation, the zero mode and
all of its Kaluza-Klein siblings can start with values of order
Ac_ 1 mp 1 (44 of mp, at energy densities far below the 4D Planck scale,
Sy _ZJ; ad, 2aN’ ) gnd with yalues in the regime_where higher-lo_op supergrav-
ity corrections are much less likely to destroy inflation. This

From the value ofag, from Eq. (28), we see that the pre also means that there may be less fine-tuning in choosing the
5 . ’ -

dicted ratio of the gravitational to scalar perturbations at Sooarameters_of the theory. Th_e_ h|gher-d|men5|onal couplings
e-foldings is of order unity upon compactification can naturally produce

small couplings needed to satisfy the COBE constraints, and
A these numbers can be perturbatively stable.
26 _6.6x 1042_ (45) A very interesting novel feature of the assisted chaotic
On Mpy dynamics is that inflationary predictions depend softly on the

123513-8



DYNAMICS AND PERTURBATIONS IN ASSISTED . .. PHYSICAL REVIEW D 61 123513

initial conditions preceding the stage of inflation. Most com- of these parameters can be removed from the results for den-
mon models of inflation with a small number of dynamical sity perturbations and the spectral index, which therefore
scalar fields exert complete amnesia on the universe, whicimust depend softly on the initial value of fields. In the lan-
forgets all about the initial state before inflation. This is seerguage of no-hair theorems, this dependence is analogous to a
as a typical consequence of cosmic no-hair theorems. Howkind of discrete cosmic “hair.” Since it is soft, it will not
ever assisted chaotic inflation appears to be more forgivingeopardize the onset of inflation. However, it leads to the
Rather than completely washing away all the informationpossibility of getting different inflationary spectra from theo-
about the state preceding inflation, at the level of precisiomies with the same zero mode parameters in the Lagrangian,
we have pursued here assisted dynamics gives a density coemd hence reduces the usefulness of observations in con-
trast and spectral index which depend logarithmically on thestraining inflationary models.

initial value of the inflationary scalars. In fact, this effect It would be very interesting to study generation of density
could have been expected due to the collective nature of thgerturbations in assisted chaotic models beyond the sub-
inflaton. To the subleading order in approximations, the preteading order of approximations which we pursued here. The
dictions of dynamics should recognize how many fields conpresence of the multitude of scalars and the absence of a
tributed to inflation. On the other hand, the number of fieldslate-time stable attractor could lead to additional interesting
and the initial value of the inflationary scalars are relatedsub-leading corrections to the density spectrum. If such cor-
Indeed, if we start with fewer fields higher up the potential,rections are within the observable region, they could lead to
we may produce the same numberedbldings as if we had an interesting signature of additional dimensions of the
more fields initially closer to their minima. Hence while both world visible in our own sky.

scenarios give the same picture to leading order, they differ
in the sub-leading order. Since it is at this level that the
density perturbations are produced, clearly they will depend
on the initial values of fields and their number. The COBE We thank Ed Copeland and David Wands for helpful dis-
normalization permits one to eliminate the number of fieldscussions. The work of N.K. has been supported in part by
in favor of the initial value of fields. Hence one, but not both, NSF Grant PHY-9870115.
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