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Cosmological evolution of general scalar fields and quintessence

A. de la Macorra*
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We study the cosmological evolution of scalar fields with arbitrary potentials in the presence of a baryotro-
pic fluid ~matter or radiation! without making any assumption on which term dominates. We determine what
kind of potentialsV(f) permits a quintessence interpretation of the scalar fieldf and to obtain interesting
cosmological results. We show that all model dependence is given in terms ofl[2V8/V only and we study
all possible asymptotic limits:l approaching zero, a finite constant, or infinity. We determine the equation of
state dynamically for each case. For the first class of potentials, the scalar field quickly dominates the universe
behavior, with an inflationary equation of state allowing for a quintessence interpretation. The second case
gives the extensively studied exponential potential, while in the last case, whenl approaches infinity, if it does
not oscillate, then the energy density redshifts faster than the baryotropic fluid, but ifl oscillates, then the
energy density redshift depends on the specific potential.

PACS number~s!: 98.80.Cq, 95.35.1d, 98.80.Hw
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Models with a cosmological constant term, intended a
constant vacuum contribution or as a slowly decaying sc
field, have recently received considerable attention for s
eral reasons, both theoretical and observational.

From the theoretical point of view, we have to face t
possible conflict between the age of the universe in the s
dard Einstein–de Sitter model and the age of the oldest s
in globular clusters. Estimates of the Hubble expansion
rameter from a variety of methods seem to point toH0'70
610 km/s/Mpc~a recent review can be found in@1#; see,
e.g.,@2# for specific projects!, leading to an expansion age o
tU'961 Gyr for a spatially flat universe with null cosmo
logical constant. On the other hand, the age of globular c
ters has been estimated in the range.13–15 Gyr@3#, al-
though revised determinations based on the Hyppa
distance scale are lower by approximately 2 Gyr@4#.

The requirements of structure formation models also s
gest a cosmological constant term. Simulations of struc
formation profit from the presence of matter that resi
gravitational collapse andL cold dark matter~CDM! models
provide a better fit to the observed power spectrum of gal
clustering than does the standard CDM model@5,6#.

On the observational side, we find direct evidence in
cent works on spectral and photometric observations on
Ia supernova@7# that favor eternally expanding models wi
positive cosmological constant. Statistical fits to several
dependent astrophysical constraints support these result@8#.
See, however,@9# for a different explanation of these obse
vations. More indirect evidence comes from the obser
tional support for a low matter density universe from x-r
mass estimations in clusters@10,11#. In these works, if the
nucleosynthesis limits on the baryonic mass are to be
spected, the total matter that clusters gravitationally is l
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ited to &0.3. In such a case, a cosmological term wou
reconcile the low dynamical estimates of the mean mass d
sity with total critical density suggested by inflation and t
flatness problem.

Many models with a scalar field playing the role of
decaying cosmological constant have been proposed u
now. Some of them are specific models motivated by phy
cal considerations but most of them are phenomenolog
proposals for the desired energy density redshift@12–15#. As
a first step in the study of these models, the age of the
verse is calculated for several redshift laws of the ene
density that resides in the dynamical scalar field@16,17#.
Observational consequences of an evolvingL component
decaying to matter and/or radiation have been studied
@18,19#, obtaining severe constraints on such models. A
other possibility, the one that we consider here, is that
scalar field couples to matter only through gravitation. T
kind of scalar field, with negative pressure and a tim
varying, spatially fluctuating energy density, received t
name of quintessence@20#. Its effects on the cosmic micro
wave background anisotropy are analyzed in@20# and @21#
and the phenomenological difficulties of quintessence h
been studied in@22#. Constraints on the equation of state of
quintessencelike component have been placed from obse
tional data@23#. Recently, a potential for a cosmological
successful decayingL term has been constructed in@24#.

As we have discussed above, the behavior of scalar fi
is fundamental in understanding the evolution of the u
verse. In this paper we are interested in giving a gene
approach to the analysis of the cosmological evolution
scalar fields and to determine what kinds of potentials lea
a possible interpretation of the scalar field as quintesse
and to a dominating energy density. However, we will n
assume any kind of scale dependence for the potentia
impose any condition on which energy density domina
@13–15,19,26,25,27#. We will show that all model depen
dence is given only in terms of the quantityl[2V8/V,
©2000 The American Physical Society03-1
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where the prime denotes derivative with respect to the sc
field f, and its limiting behavior at late times determines t
evolution of the scalar field.

Our starting point is a universe filled with a baryotrop
energy density, which can be either matter or radiation,
the energy density of a scalar field. The scalar fieldf will
have a self-interaction, given in terms of the scalar poten
V(f), but it will interact with all other fields only gravita
tionally. The baryotropic fluid is described by an energy de
sity rg and a pressionpg with a standard equation of sta
pg5(gg21)rg , wheregg51 for matter andgg54/3 for
radiation. We do not make any hypothesis on which ene
density dominates, that of the barotropic fluid or that of t
scalar field.

The equations to be solved, for a spatially flat Friedma
Robertson-Walker~FRW! universe, are then given by

Ḣ52
1

2
~rg1pg1ḟ2!,

ṙ523H~r1p!, ~1!

f̈523Hḟ2
dV~f!

df
,

whereH is the Hubble parameter,V(f) is the scalar field
potential,ḟ[df/dt, r(p) is the total energy density~pres-
sion!, and we have taken 8pG51. It is useful to make a
change of variables@27# x[ḟ/A6H, y[AV/A3H and Eqs.
~1! become

xN523x1A3

2
ly21

3

2
x@2x21gg~12x22y2!#,

yN52A3

2
lxy1

3

2
y@2x21gg~12x22y2!#, ~2!

HN52
3

2
H@gg~12x22y2!12x2#,

where N is the logarithm of the scale factora, N[ ln(a),
f N[d f /dN for f 5x,y,H, and l(N)[2V8/V. Notice that
all model dependence in Eqs.~2! is through the quantities
l(N) and the constant parametergg . Equations~2! must be
supplemented by the Friedmann or constraint equation f
flat universe,rg/3H21x21y251, and they are valid for any
scalar potential as long as the interaction between the sc
field and matter or radiation is gravitational only. This mea
that it is possible to separate the energy and pression d
ties into contributions from each component, i.e.,r5rg
1rf andp5pg1pf , whererf (pf) is the energy density
~pressure! of the scalar field. We do not assume any equat
of state for the scalar field. This is indeed necessary s
one cannot fix the equation of state and the potential in
pendently. For arbitrary potentials the equation of state
the scalar field,pf5(gf21)rf , is determined oncerf ,pf
have been obtained. Alternatively we can solve forx,y using
12350
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Eqs. ~2! and the quantitygf5(rf1pf)/rf52x2/(x21y2)
is, in general, time or scale dependent.

As a result of the dynamics, the scalar field will evolve
its minimum, and if we do not wish to introduce any kind
unnatural constant or fine-tuning problem, the minimum
the potential must have zero energy, i.e.,Vumin5V8umin50
at fmin . We will consider here only these kind of potentia
For finitefmin the scalar field will naturally oscillate aroun
its vacuum expectation value~VEV!. If the scalar field has a
nonzero mass or if the potentialV admits a Taylor expansion
around fmin , then, using the Hoˆpital rule, one has
limt→`ulu5` and it will oscillate. On the other hand, i
fmin5`, thenf will not oscillate andl will approach either
zero, a finite constant, or infinity. The oscillating behavior
f or l is important in determining the cosmological evol
tion of x,y andVf[rf /r5x21y2, and we will show that
any scalar field with a nonvanishing mass redshifts as a m
ter field.

Before solving Eqs.~2! we define the useful cosmologica
acceleration parametera and expansion rate parameterG.
The acceleration parameter is defined as

a[
r13p

~3gg22!r
5

3g22

3gg22
, ~3!

with g5(r1p)/r. If a51, then the acceleration of the un
verse is the same as that of the baryotropic fluid and
deviation ofa from 1 implies a different cosmological be
havior of the universe due to the contribution of the sca
field. A positive accelerating universe requires a negativea
while for 0,a,1 the acceleration of the universe is neg
tive ~deceleration! but smaller than that of the baryotrop
fluid. For a.1 the deceleration is larger than for the bary
tropic fluid. In terms of the standard deceleration parame
q[2äa/ȧ2 one hasa52q/(3gg22) or in terms ofx,y one
finds

a512
3gg

3gg22 S y22x2
22gg

gg
D5123Vf

gg2gf

3gg22
.

It is also useful to define the normalized equation of the s
parameter,

G5
g

gg
, ~4!

which gives the relative expansion rate of the universe w
respect to the baryotropic fluid. AG smaller than 1 means
that the universe expands slower than the baryotropic fl
and aG larger than 1 says that the universe expands fa
due to the contribution of the scalar field. In our casea and
G are not independent sinceG512(12a)(3gg22)/3gg
512Vf(gg2gf)/gg .

A general analysis of Eqs.~2! can be done by noting that
given the constant parametergg , all model dependence i
through the quantityl(N). For an arbitrary potentialV, Eqs.
~1! or ~2! will be, in general, nonlinear and there will be n
analytic solutions. We can, of course, solve them num
cally but we need to do it for each particular case and ini
3-2
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COSMOLOGICAL EVOLUTION OF GENERAL SCALAR . . . PHYSICAL REVIEW D61 123503
conditions separately. In order to have an understandin
the evolution of the scalar field we will study the asympto
limit. It is useful to distinguish the different limiting case
for the cosmologically relevant quantitiesx, y, and Vf
5x21y2. Vf will either approach 0, 1, or a finite consta
value. ForVf→0 the scalar field dilutes faster than ordina
matter or radiation, and ifVf→1, then the scalar dominate
the energy density of the universe. When 0,Vf→cte,1,
the scalar and barotropic energy density redshift at the s
speed. Which behavior willx,y,Vf have depends onl and
on gg . We will separate the analysis of Eqs.~2! into three
different behaviors ofulu at late times. In the first case w
considerl a finite constant~or approaching 1!, l5c. Sec-
ond, we study the limitl→0. In the third case, we takel
→`, which is the natural case if the VEV off is finite but
we can have the same limit forf→`. We divide in this case
the analysis into an oscillating and a not oscillatingulu→`.

Equations~2! admit five different critical solutions forx,y
with l constant@27#. A constant value ofH requiresH50 or
y51. The latter case is a critical point of Eqs.~2! only if
l50 while the former is the trivialx5y5H50 case. For
x,y the five different critical solutions (xc51, yc50), (xc
521, yc50), and (xc50, yc50) are unstable~extreme!
critical points. The other two depend on the value ofl(N).
For l2.3gg @27# one finds the critical and late time attract
values

xc5A3

2

gg

l
, yc5A3~22gg!gg

2l2
, Vfc5

3gg

l2
,

gf5gg ~5!

for the quantitiesx, y, andVf and an effective equation o
state equivalent to that of the barotropic fluid@i.e., gf
5(rf1pf)/rf5gg#. In this limiting case the redshift of the
barotropic fluid and the scalar field is the same.

On the other hand, ifl2,6, then one obtains

xc5
l

A6
, yc5A12

l2

6
, Vfc51, gf5

l2

3
, ~6!

and the scalar energy density dominates the universe at
times. If the scalar field hasgf,gg , then the solutions in
Eq. ~6! are stable, and the redshift of the scalar field is slow
than that of the barotropic fluid. However, ifgf5l2/3
.gg , then the solution in Eq.~6! is unstable and the scala
field ends up in the regime of the solution given in Eq.~5!.

If l(N) is constant, then Eqs.~5! or ~6! are indeed solu-
tions to xN5yN50, but if l(N) is not constant, then the
critical values in Eqs.~5! and ~6! solvexN5yN50 only on
single points, not an interval. This means that the attra
solution to Eqs.~2! is only valid as an asymptotic limit an
xc(N),yc(N),l(N) are functions ofN. If x,y do not oscil-
late, since their value is constrained touxu<1,uyu<1, this
implies that at late times they will approach a constant va
given by the attractor solutions of Eqs.~2!, andxN ,yN will
vanish. Therefore, we can generalize the attractor solut
of x,y given in Eqs.~5! and~6! for more complicated poten
12350
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tials that have a nonconstantl(N). It is the asymptotic be-
havior of l which determines to which attractor solutio
x, y will evolve. If l→` ~without oscillating!, then x, y
have an asymptotic behavior given by Eqs.~5! and they end
up at x5y50 which is in this case a stable point. Forl
→0, x,y are given by Eq.~6! and they go tox50 andy
51.

Let us now start with our first case, i.e.,l constant. Ifl
52V8/V5c, the scalar potential has an exponential fo
V5he2cf. This case has been extensively studied@19,26,27#
and one finds critical~i.e., constant! points forx andy at late
times. The value ofx,y depends on the value ofl5c, and
their solutions is given by Eqs.~5! or ~6!. Since this case ha
been amply documented in the literature@19,26,27#, we do
not include its numerical analysis here. The cosmologi
parameters area5G51 for l5c.A3gg and a5(c2

22)/(3gg22), G5c2/3gg for l5c5A6. Note that in the
first caseVf is finite, and even if it dominates the univers
the acceleration and expansion of the universe are the s
as for the baryotropic fluid. On the other hand, forl5c
5A6 one hasVf51 and the acceleration parametera is in
general different than 1; it is negative ifc2,2 ~assuming
gg.2/3, i.e., matter or radiation!. In this case we could have
interesting quintessence models.

For more complicated potentials,l is not a constant and
its evolution determines that ofx andy. The evolution of the
scalar field leads to nonlinear equations, and critical po
may exist but analytic solutions are either more difficult
impossible to obtain. However, the solutions given in E
~5! and ~6! may give a good approximation of the limitin
behavior ofx andy.

Let us now consider the second case, i.e.,l→0. In this
limit we can eliminate in Eq.~2! the term proportional tol,
and since23,HN /H,0 for all values ofx, y, andgg , we
have

xN

x
52S 31

HN

H D,0,
yN

y
52

HN

H
.0. ~7!

From Eqs.~7! we conclude thatx will approach its minimum
value~i.e.,x→0) while y will increase to its maximum value
~i.e., y→1). In the asymptotic region withuxu!1, ulu!1
one can solve Eqs.~2! for x,y,H, giving

x~N!5
e23N

A12ce23ggN
, y~N!5

1

A12ce23ggN
,

H~N!5dA12ce23ggN/2, ~8!

with c,d integration constants. These solutions show tha
the asymptotic region the scalar field dominates the ene
density of the universe and the Hubble parameter goes
constant value.

In the limit l→0, the first derivative of the potential ap
proaches zero faster than the potential itself and example
this kind of behavior are given by potentials of the formV
5V0f2n,n.0. The scalar field will dominate the energy o
the universe, leading to a ‘‘true’’ nonvanishing cosmologic
3-3
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constant at late times withx→0, y→1, Vf→1, and gf
→0. The analytic solution to Eq.~2! for x,y can be approxi-
mated by the expressions given in Eqs.~6!. However,x,y are
no longer constant sincexc ,yc depend onl(N), which is
itself not constant, but these expressions are a good app
mation at late times@see Fig. 1~d!# to the numerical results

The cosmological parameters are in this casea5
22/(3gg22) andG50. This means that the acceleration
the universe is positive~sincea,0) and the expansion o
the universe is exponential. In Fig. 1 we show the behav
of x, y, gf , andVf for a potentialV5V0f21. In Fig. 1~a!
we can see that the scalar field quickly dominates the
verse behavior and the Hubble parameter tends to a con
different than zero; i.e., the universe enters in an acceler
regime. This can also be seen in Fig. 1~b! where the accel-
eration parametera is smaller than 0 andgf ; G are infla-
tionary almost all the time. Figure 1~c! shows the behavior o
l(N) for this case and in Fig. 1~d! we can see that the nu
merical solution has as asymptotic limit the solutions
Eqs.~6!.

As our final case we take the limitl→`, and we will
separate this case into two different possibilities. The fi
one is whenl approaches its limiting value without oscilla
ing and the second case is whenl does oscillate.

FIG. 1. Evolution of the universe filled with matter and a sca
field with V5V0f21. The initial conditions arex050.1, y050.5,
andH051. In ~a! we showVf ~solid curve! quickly approaching 1;
the Hubble parameter~dot-long-dashed curve! tends to a finite con-
stant, and for comparison, we have drawnHm for a standard matter
dominated universe~dotted curve!; notice that with this type of
potential the difference in the rate of expansion with the stand
model is remarkable. In~b! we plot gf ~dot-long-dashed curve!, G
~solid curve!, and acceleration parametera ~dotted curve!. In ~c! l
slowly evolves to zero withN. In ~d!, the numericalx andy solu-
tions are plotted~short and long dashed curves, respectively! and
compared to their attracting solutions, Eqs.~6!, lower and upper
solid curves, respectively.
12350
xi-

r

i-
ant
ed

f

t

In the nonoscillating case, in the regionulu@1 the leading
term of Eqs.~2! is the one proportional tol if uyu,uxu are not
much smaller than 1. In such a case the equations forxN ,yN
are

xN5A3

2
y2l, yN52A3

2
xyl. ~9!

The sign ofxN is given byl, and if it does not oscillate, then
x would reach its maximum valuex51 while y→0 for l
.0 andx→21, y→0 for l,0. However, in the regiony
→0 the other terms in Eqs.~2! become relevant and Eq.~9!
is no longer a good approximation. In the regionuxu>uluy2

the evolution ofx is given byxN /x52(31HN /H),0 and
x will approach its minimum absolute valuex→0 like y.
This region is the scaling region characterized by alm
constant values ofx, y, andl. The end of the scaling region
is whenyN /y changes sign and becomes positive. This h
pens atA3/2lx1HN /H.0 with HN /H.23gg/2. After a
brief increase fory andx, they finally end up approaching th
values given by the solution of Eqs.~5!, x→xc , y→yc , and
going to the extreme values ofx5y50. In this casexc ,yc
are not really critical~constant! points sincel is not con-
stant. The kinetic and potential scalar energies will decre
faster thanr, i.e., faster than ordinary matter or radiation.
is interesting to note that even thoughx,y approach zero, the
equation of state of the scalar field becomes constant,
gf52x2/(x21y2)5cte, becausex,y decrease at the sam
velocity. This leads togf approaching the value ofgg ; i.e.,
the equation of state of the scalar field will be the same
that of the baryotropic fluid~matter or radiation!. Even
though the equation of state of the scalar field approac
that of the baryotropic fluid, its kinetic and potential energ
decrease faster than that of the baryotropic fluid, the rea
being thatgf>gg at late times and the equality is only vali
at t5`. The cosmological parameters area5G51, giving
the same asymptotic behavior for the universe with or wi
out the scalar field.

Examples of this kind of behavior are given by potentia
like V5e2af2

, V5e2aef
. In Fig. 2 we show the behavio

of the dynamical variables and the cosmological parame
as a function ofN for V5Ae2cef

with l52V8/V5cef.
This potential gives the asymptotic limit for string modu
fields @28#. The solution of Eqs.~2! shows thatf→` mini-
mizes the potential andl→` at late times@Fig. 2~d!#. The
limiting values arex5y5Vf50, as we can see in Figs. 2~a!
and 2~h!. In Fig. 2~a! we also show the evolution of th
Hubble parameter in our model, as compared with the s
dard matter-dominated case; we can see that the scalar
can influence universe development only at early times
Fig. 2~g! we show x,y for small N with gg51. For N
@1, x and y approach the value given in Eqs.~5! (l2 is
larger than 3gg); see Fig. 2~h!. Figure 2~b! shows the behav-
ior of the gf parameter asx andy evolve and the effective
total G parameter@cf. Eq. ~4!# for the ‘‘fluid’’ composed of
matter and the scalar field. Figure 2~c! is the acceleration
parameter defined in Eq.~3! Finally, Fig. 2~e! represents the
phase space structure for (x,y) obtained with different initial

r

rd
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FIG. 2. Cosmological solution forV5Ae2cef
, gg51, with ini-

tial conditions x050.1, y050.5, l051, and H051. In ~a! the
solid curve shows the evolution ofVf , and the dashed line is th
numerical solution forH, while the dotted line is the compariso
value ofHm for a standard matter-dominated universe, as a func
of N. In ~b! we show the evolution ofgf ~dot-long-dashed curve!
and of the effective totalG parameter~solid curve!. In ~c! the ac-
celeration parametera is displayed as a function ofN. In ~d! we
have l(N). We show in ~e! the phase plane (x,y) for different
initial conditions (x0 ,y0): ~0.0,1.0!, ~0.1,0.9!, ~0.1,0.7!, ~0.1,0.5!,
and ~0.1,0.3!, and the final evolution is amplified in~f!. In ~g! we
showx andy ~short and long dashed curves, respectively! for small
N. Finally, ~h! displays the asymptotic behavior ofx andy @curves
are marked in the same way as in~g!#, showing the good agreemen
with the attracting solution, Eq.~5! ~solid curve!.
12350
conditions, where the final behavior is amplified in Fig. 2~f!.
The plateau in the graph forl in Fig. 2~d!, for approximately
20 e-folds, corresponds to the scaling region, wherex andy
are constants~almost zero in this case!, preceding the final
evolution where the scalar field recovers a small quantity
kinetic and potential energy that finally go to zero.

We conclude that such fields arenot good candidates for
quintessence~parametrizing a slow varying cosmologic
constant! and they do not play a significant role at late tim
unless they are produced at a late stage. We would like
emphasize that these results are completely general and
out a great number of candidate fields such as string mo
@28#. The only condition we have used to derive these res
is thatl→` without oscillating.

We will now consider the case whenulu→` but with an
oscillating f field. In this case the VEV off is finite and
without loss of generality we can take it to be zero. Arou
the minimum the potential can be expressed as a power
ries in f and keeping only the leading term we haveV
5V0fn with n.0, even since the potential must b
bounded. The condition thatV8umin50 requiresn.1 and a
finite scalar mass requiresn52. For this potentiall5
2n/f and it oscillates approaching a valueulu5`; see Fig.
3, below. As a first guess we could think that the limitin
behavior ofx,y is also given by Eq.~5! and therefore tends
to zero asl→`. However, this asymptotic behavior is n
longer a good approximation and we must solve the dyna
cal nonlinear equations~see Fig. 3 for the numerical solutio
of a quadratic potential!.

We will now determine under which conditionsVf will
either dominate~approach 1!, oscillate around a finite con
stant value, or vanish. Since asymptoticallyH}1/t, a finite
Vf (Þ1) requires thatḟ,(f)n/2}1/t or equivalently that
x,y are either constant or oscillate. We can thus writey

5fn/2/3H5BF1
n/2@G(t)#, x5ḟ/6H5A F2@G(t)# where

F1 ,F2 are arbitrary oscillating functions depending on
single argumentG(t), andA,B are constants. The functio
G(t) is for the time being an unspecified function oft. Of
course,F1 and F2 are not independent since the function
dependence off determines the functional dependence ofḟ;
however, this is not important at this stage. Taking the
rivative with respect toN, we haveyN5(nF1G/2F1)GNy
and xN5(F2G /F2)GNx, whereFiG[dFi /dG, f N[d f /dN
with f 5x,y,G and i 51,2. SinceF1 ,F2 are oscillating func-
tions with a single argumentG(t), we have that the averag
of ^Fi

2&5^FiG
2 & and the average ofy2,x2 is then

^yN
2 &5

n2

4
^GN

2 y2&, ^xN
2 &5^GN

2 x2&. ~10!

In the asymptotic limit withx2,y2 oscillating andl→` the
evolution ofx,y is given by Eqs.~9!. Using Eqs.~10! and~9!
we find that a potentialV5V0fn may have finite values o
x,y at late times and

^y2&

^x2&
5

2

n
, ~11!

n
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giving ^gf&52/(11^y2&/^x2&)52n/(21n). Depending on
whethergg is larger, equal, or smaller thangf , Vf will go
to 1, finite constant, or 0, respectively. Notice that this res
is completely general and any massive scalar field reds
at late times as matter fields withgf5gg51 ~i.e., n52).

In order to obtain the asymptotic solution analytically, w
will solve Eqs.~2! in a region where only one component
the energy density dominates. This will be valid always
the asymptotic regime. However, we do not make any
sumptions on which term dominates. If it is the baryotrop
fluid which dominates, then the equation of state forr will
have a parameterg5gg ; however, if it is the scalar field
that dominates, then we takeg5^gf& ~average in time! since
in this casegf oscillates. In this regime we can solve fo
the Hubble parameter and we get the standard fo
H(t)52/(3gt). To determine the evolution of the scal
field we have to solve its equation of motio

f̈13Hḟ1dV(f)/df50, with V5V0fn and n positive
and even, i.e.,

FIG. 3. Examples of evolution of the cosmological paramet
for a universe filled with a perfect fluid (gg51,3/4,1/2) and a scala
field with potentialV5V0f2. The initial conditions arex050.1,
y050.5, H051, andV053p2/32. In ~a! the numerical solution for
Vf ~dot-long-dashed curve! with gg51 is compared to the analyti
expressionVf5x21y2, calculated from Eq.~14! ~solid curve!.
Also shown in the figure areVf for gg53/4 ~dot-short-dashed
curve! andgg51/2 ~dashed curve!. In ~b! the equation of state an
acceleration parameters are displayed as a function ofN: gf ~dot-
long-dashed line!, G ~solid line! and acceleration parameter~dotted
line!. In ~c! we plotl21, in order to display the oscillating behavio
of l(N), as it approaches̀ . In ~d! we plot the evolution ofH for
two different models. The solid curve represents the numerical
lution for H, with V5V0f2 andgg51 and is compared toH for a
standard matter-dominated universe~dotted curve!. The dot-long-
dashed curve corresponds to our numerical solution forH, with V
5V0f4 and gg54/3, following a similar evolution as a standar
radiation-dominated model~dashed curve!.
12350
lt
ts

s-

m

f̈1
2

g t
ḟ1nV0fn2150. ~12!

For n52 the solution of Eq.~12! is given in terms ofJm and
Ym , the Bessel functions of the first and second kinds,
spectively,f(z)5z2m(2V0)m/2@c1Jm(z)1c2Ym(z)# and ḟ
52z2m(2V0)(m21)/2@c1Jm11(z)1c2Ym11(z)# with c1 ,c2

constants,m[(g21/2), z[tA2V0, and we have used tha
d@z2mKm(z)#/dz52zmKm11 with Km5Jm ,Ym @14#. Using
these solutions we have

y5rz12m@k Jm~z!1Ym~z!#,

x52rz12m@k Jm11~z!1Ym11~z!#,
~13!

with r 5(3g/8)c2(2V0)m/2, k[c2 /c1. A simple analytic ex-
pression can be obtained using the asymptotic limit
the Bessel functionsJm.A2/pzcos@z2p(2m11)/4#,Ym

.A2/pzsin@z2p(2m11)/4# for z@1 ~i.e., t@1). The ampli-
tude ofx andy in Eqs. ~13! in the limit z@1 goes asx.y
.z1/22m. A finite value of x,y requires m5g21/251/2
~i.e., g51). For g.1 (g,1), x,y→1 (x,y→0) at large
times. Furthermore, in the asymptotic limitgf52$cos@z
2p(2m11)/4#2k sin@z2p(2m11)/4#%2/(11k2) is an oscil-
lating function with an average value^gf&51. We can con-
clude, therefore, that if the barotropic fluid hasgg,1, i.e.,
smaller than gf , then Vf5x21y2→0, but if gg.1
5^gf&, then the dominant energy density in the asympto
regime will be that of the scalar field leading toVf51.
Finally, if gg515^gf&, then the energy density of the sc
lar field dilutes as fast as the barotropic fluid andVf tends to
a constant finite value. The solutions in Eq.~13! for g51
can be given a completely analytic expression since in
casem51/2 and the Bessel functions take simple formJ1/2

5A2/pzsin(z), Y1/252A2/pzcos(z), J3/25A2/pz@sin(z)/z
2cos(z)# and Y3/252A2/pz@cos(z)/z1sin(z)#. Putting these
expressions into the definitions ofx,y, Eq. ~13!, we get

y5y0sin~z!2S x01
y0

z0
D cos~z!,

x52y0S sin~z!

z
2cos~z! D1S x01

y0

z0
D

3S cos~z!

z
1sin~z! D , ~14!

where the initial conditions are given byy0 ,x0 at z05p/2. In
the limit z@1 we haveVf.y0

21(x01y0 /z0)2.
The analytic solution in Eqs.~14! agrees reasonably we

with the one obtained by solving Eqs.~2! numerically. This
can be seen in Fig. 3~a!, where we plotVf obtained numeri-
cally for gg51 as a dot-long-dashed line and expressio
~14! as a solid line for a potentialV5V0f2. We also plotVf
for gg54/3 andgg51/2 to illustrate the different asymptoti
limits. For gg,1 we haveVf→0, and gg51 gives Vf
→cte, and for gg54/3 we haveVf→1. These different

s

o-
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TABLE I. Asymptotic behavior ofVf , gf , the acceleration parametera(f)5(3g22)/(3gg22), and
the expansion rate parameterG5g/gg for different limiting cases ofl(f). In the last column we give an
example of potentialV(f) which satisfies this limit.

l(f)52V8/V Vf5rf /r gf a(f) G(f) V(f)

c5cte (.A3gg)
3gg

c2
gg 1 1 V0e2cf

c5cte (,A6) 1
c2

3

c222

3gg22

c2

3gg
V0e2cf

` (no oscil.) 0 gg 1 1 V0e2cef

` (oscil.) 0
2n

21n
~.gg! 1 1

cte
2n

21n
~5gg! 1 1 V0fn, n.0 even

1
2n

21n
~,gg!

3gf22

3gg22

gf

gg

0 1 0 2
2

3gg22
0 V0f2n, n.0
e

el
tin

let

re

s

in
o

r-
e

.

, of

e

or
en

rst
ni-

hed
s a
limits can be understood by noting that the average of^gf&
51, and therefore, ifgg.gf(gg,gf), the baryotropic fluid
redshifts faster~slower! than the scalar field, while forgg
5^gf&51 both energy densities dilute at the same spe
The asymptotic value ofVf in the limiting casel→` with
an oscillatingf field depends on the value ofgg and on the
initial conditionsx05x(N0),y05y(N0). Figure 2~b! shows
the oscillating effective equations of state for the scalar fi
and the mixture of matter and scalar fields, and the resul
acceleration features of the universe,a.

We have obtained an analytic solution of Eq.~12! for n
52. This is clearly the simplest case since Eq.~12! is linear
in f and its derivatives. Forn.2, Eq.~12! becomes nonlin-
ear inf and no simple analytic solution exits. However,
us use in Eq.~12! the ansatz

f5t22/n@c1cos~bt2/n!1c2sin~bt2/n!#. ~15!

It can be easily seen that this ansatz has the cor
asymptotic behaviorfn/2,ḟ,H}1/t andf̈}fn21 if we wish
to havex, y finite. The t exponents in Eq.~15! are deter-
mined by solving Eqs.~12! and this equation also impose
the conditionsg52n/(21n) andb5 1

4 V0n3c2
n22@sin(bt2/n)

1k cos(bt2/n)#n22. Notice that the value ofg is precisely the
value we obtained using general arguments only@cf. Eq.
~11!#. Notice as well that the ansatz in Eq.~15! is not a
‘‘complete’’ answer to Eq.~12! sinceb is not a true con-
stant. Only forn52 is b indeed constant and the solution
Eq. ~15! is the one we had previously obtained in terms
the Bessel functions@see Eqs.~13!#. For nÞ2 we must take
the average ofb and work in the asymptotic region. Neve
theless, Eq.~15! gives a good analytic approximation to th
numerical solution. In terms of Eq.~15!, x,y take the follow-
ing expressions:
12350
d.

d
g

ct

f

x5
x0

2/p1k S k sin~at2/n!2cos~at2/n!

1
t22/n

a
@sin~at2/n!1k cos~at2/n!# D ,

y5y0@sin~at2/n!1k cos~at2/n!#n/2, ~16!

with x05(1/n)A3/2bc2g, y05 1
2 A3V0c2

n/2g, and the initial
conditions are taken att0

2/n5p/2b. Using Eq.~16! we obtain
^y2&/^x2&52/n, at late times, as in Eq.~11!. We have, there-
fore, ^gf&52n/(21n) andg5^gf&, i.e., the ansatz in Eq
~15! is a ‘‘solution’’ to Eq. ~12! only when the dominant
energy density redshifts as fast as the scalar field. This is
course, no surprise since we imposed on the ansatz, Eq.~15!,
the limit x,y→cte.

The cosmological parameters are in this casea51
23Vf(gg2gf)/(3gg22) and G512Vf(gg2gf)/gg
with gf52n/(21n). From these expression we conclud
that whenVf remains finitea5G51 since in this casegg
5gf , leading to the same behavior of the universe with
without the contribution of the scalar field. However, wh
Vf→1, a5(3gf22)/(3gg22), G5gf /gg , and one
could have an accelerating universe ifgf,2/3 which re-
quires thatn,1 and this is not acceptable since the fi
derivative of the scalar potential must vanish at the mi
mum. If Vf→0, then clearlya5G51 and the scalar field
plays asymptotically no important role.

To conclude this part of the analysis, we have establis
that if the initially dominant energy density component ha
g parameter larger~smaller! than ^gf&52n/(21n), then
Vf will approach 1~0!. For n52 we havê gf&51; for n
54 we have^gf&54/3. Since the conditionV8umin50 re-
quires 1,n, we have thatgf.2/3 for all n and the scalar
field will not give an accelerating universe. Forn.4 the
3-7
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energy density will decrease faster than radiation, and s
at late times the universe is matter dominated, only a sc
field with a nonvanishing mass could lead to a signific
contribution to the energy density of the universe. Howev
since its redshift goes as matter, it is not a candidate fo
cosmological constant but it could serve as dark matter. F
ure 3~d! illustrates these characteristics of a power-law p
tential for the Hubble parameterH for V5V0fn, n52,4, a
radiation- and a matter-dominated universe.

To summarize and conclude, we have studied the cos
logical evolution of the universe filled with a baryotrop
fluid and a scalar field with an arbitrary potential but on
with a gravitational interaction with all other fields. Th
analysis done is completely general, and we do not ass
any kind of scale or time dependence of the scalar poten
or any assumption on which the energy density~baryotropic
or scalar! dominates. Our results are summarized in Tabl
s
S.
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We showed that all model dependence is given byl[
2V8/V and gg . Any scalar potential leads to one of th
three different limiting cases ofl: finite constant, zero, or
infinity. In the first case,Vf approaches a finite constan
~different than zero! depending on the value ofl5c. For
l→0 we obtainedx→0, y→1 with a constant Hubble pa
rameterH and an accelerating universe. Finally, forl→`
we concluded that ifl does not oscillate,x,y,Vf→0, and if
l oscillates, then all cases are possible~i.e., Vf→0, 1, or a
finite constant! depending on the value ofgg and the power
of the leading term in the scalar potential.
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