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Cosmological evolution of general scalar fields and quintessence
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We study the cosmological evolution of scalar fields with arbitrary potentials in the presence of a baryotro-
pic fluid (matter or radiationwithout making any assumption on which term dominates. We determine what
kind of potentialsV(¢) permits a quintessence interpretation of the scalar ffeland to obtain interesting
cosmological results. We show that all model dependence is given in terkes 6fV'/V only and we study
all possible asymptotic limitss approaching zero, a finite constant, or infinity. We determine the equation of
state dynamically for each case. For the first class of potentials, the scalar field quickly dominates the universe
behavior, with an inflationary equation of state allowing for a quintessence interpretation. The second case
gives the extensively studied exponential potential, while in the last case,wapproaches infinity, if it does
not oscillate, then the energy density redshifts faster than the baryotropic fluid, butstillates, then the
energy density redshift depends on the specific potential.

PACS numbgs): 98.80.Cq, 95.35-d, 98.80.Hw

Models with a cosmological constant term, intended as dted to <0.3. In such a case, a cosmological term would
constant vacuum contribution or as a slowly decaying scalareconcile the low dynamical estimates of the mean mass den-
field, have recently received considerable attention for sevsity with total critical density suggested by inflation and the
eral reasons, both theoretical and observational. flatness problem.

From the theoretical point of view, we have to face the Many models with a scalar field playing the role of a
possible conflict between the age of the universe in the stardecaying cosmological constant have been proposed up to
dard Einstein—de Sitter model and the age of the oldest starapw. Some of them are specific models motivated by physi-
in globular clusters. Estimates of the Hubble expansion paeal considerations but most of them are phenomenological
rameter from a variety of methods seem to pointig~70  proposals for the desired energy density red$h#-15. As
+10 km/s/Mpc(a recent review can be found fi]; see, a first step in the study of these models, the age of the uni-
e.g.,[2] for specific projects leading to an expansion age of verse is calculated for several redshift laws of the energy
ty~9=1 Gyr for a spatially flat universe with null cosmo- density that resides in the dynamical scalar figld,17.
logical constant. On the other hand, the age of globular clus©bservational consequences of an evolvihgcomponent
ters has been estimated in the rang&3—15 Gyr[3], al-  decaying to matter and/or radiation have been studied in
though revised determinations based on the Hypparcdd8,19, obtaining severe constraints on such models. An-
distance scale are lower by approximately 2 G4f other possibility, the one that we consider here, is that the

The requirements of structure formation models also sugscalar field couples to matter only through gravitation. This
gest a cosmological constant term. Simulations of structur&ind of scalar field, with negative pressure and a time-
formation profit from the presence of matter that resistsvarying, spatially fluctuating energy density, received the
gravitational collapse andl cold dark mattefCDM) models  name of quintessend0]. Its effects on the cosmic micro-
provide a better fit to the observed power spectrum of galaxyvave background anisotropy are analyzed 20] and[21]
clustering than does the standard CDM mqddg6). and the phenomenological difficulties of quintessence have

On the observational side, we find direct evidence in rebeen studied if22]. Constraints on the equation of state of a
cent works on spectral and photometric observations on typguintessencelike component have been placed from observa-
la supernovd7] that favor eternally expanding models with tional data[23]. Recently, a potential for a cosmologically
positive cosmological constant. Statistical fits to several insuccessful decaying term has been constructed[i24].
dependent astrophysical constraints support these r¢8lilts As we have discussed above, the behavior of scalar fields
See, howevel9] for a different explanation of these obser- is fundamental in understanding the evolution of the uni-
vations. More indirect evidence comes from the observaverse. In this paper we are interested in giving a general
tional support for a low matter density universe from x-rayapproach to the analysis of the cosmological evolution of
mass estimations in clustef$0,11. In these works, if the scalar fields and to determine what kinds of potentials lead to
nucleosynthesis limits on the baryonic mass are to be rea possible interpretation of the scalar field as quintessence
spected, the total matter that clusters gravitationally is lim-and to a dominating energy density. However, we will not

assume any kind of scale dependence for the potential or

impose any condition on which energy density dominates
*Email address: macorra@fenix.ifisicacu.unam.mx [13-15,19,26,25,247 We will show that all model depen-
"Email address: gabriela@astroscu.unam.mx dence is given only in terms of the quantiy=—V'/V,
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where the prime denotes derivative with respect to the scaldgs. (2) and the quantityy,=(p4+ p¢)/p¢=2X2/(X2+y2)
field ¢, and its limiting behavior at late times determines theis, in general, time or scale dependent.
evolution of the scalar field. As a result of the dynamics, the scalar field will evolve to
Our starting point is a universe filled with a baryotropic its minimum, and if we do not wish to introduce any kind of
energy density, which can be either matter or radiation, andinnatural constant or fine-tuning problem, the minimum of
the energy density of a scalar field. The scalar figlavill the potential must have zero energy, i¥|min=V'|min="0
have a self-interaction, given in terms of the scalar potentiaht ¢,;,. We will consider here only these kind of potentials.
V(¢), but it will interact with all other fields only gravita- For finite ¢,,;,, the scalar field will naturally oscillate around
tionally. The baryotropic fluid is described by an energy den-its vacuum expectation valU®EV). If the scalar field has a
sity p,, and a pressiop,, with a standard equation of state nonzero mass or if the potentiladmits a Taylor expansion
p,=(y,~1)p,, wherey,=1 for matter andy,=4/3 for  around ¢y,, then, using the Hgital rule, one has
radiation. We do not make any hypothesis on which energyim,_...|]\|=c and it will oscillate. On the other hand, if
density dominates, that of the barotropic fluid or that of theg,,;,==, then¢ will not oscillate and\ will approach either

scalar field. zero, a finite constant, or infinity. The oscillating behavior of
The equations to be solved, for a spatially flat Friedmann- or \ is important in determining the cosmological evolu-
Robertson-Walke(FRW) universe, are then given by tion of x,y andQ¢Ep¢/p=x2+y2, and we will show that
any scalar field with a nonvanishing mass redshifts as a mat-

ter field.

Before solving Eqs(2) we define the useful cosmological
acceleration parameter and expansion rate parameter
p=—3H(p+p), (1) The acceleration parameter is defined as

. 1 o
H:_E(py+py+¢ )1

p+3p  3y-2
(3v,=2)p 3y,—2’
) . i with y=(p+p)/p. If =1, then the acceleration of the uni-
whereH is the Hubble parametek/(#) is the scalar field ygrse is the same as that of the baryotropic fluid and any
potential,p=d¢/dt, p(p) is the total energy densitipres-  deviation ofa from 1 implies a different cosmological be-
sion), and we have taken®8G=1. It is useful to make a havior of the universe due to the contribution of the scalar

change of variableg27] x=¢/J6H, y=+V/y/3H and Egs. field. A positive accelerating universe requires a negative
(1) become while for 0<a<1 the acceleration of the universe is nega-
tive (deceleratiop but smaller than that of the baryotropic

) dV( ) a=

=—3Ho——5 =, )

3 3 fluid. For >1 the deceleration is larger than for the baryo-
XN= —3X+ \/;7\)/24r §X[2X2+ 77(1—X2—y2)], tropic fluid. In terms of the standard deceleration parameter
= —aa/a’ one hasy= 29/(3y,—2) orin terms o,y one
3 3 finds
Yn= - \ﬁhxw SY[2X*+y,(1=x2=y?)], 2
2 2 Y - 3y, ( 2—X22_y7>—1—39 Yy~ Ve
“ 3y,—2 y Yy ¢3yy—2'

3
-_° —x2—y2) 4 2%2 . . . '
Hi 2 HLy,(1=X=y5) +2x7], It is also useful to define the normalized equation of the state

parameter,
where N is the logarithm of the scale fact@, N=In(a),
fy=df/dN for f=x,y,H, and \(N)=—-V'/V. Notice that Y
all model dependence in EgE) is through the quantities I'= 7_7
A(N) and the constant parametgy. Equations(2) must be
supplemented by the Friedmann or constraint equation for which gives the relative expansion rate of the universe with
flat universepy/3H2+x2+y2= 1, and they are valid for any respect to the baryotropic fluid. K smaller than 1 means
scalar potential as long as the interaction between the scalérat the universe expands slower than the baryotropic fluid
field and matter or radiation is gravitational only. This meansand al’ larger than 1 says that the universe expands faster
that it is possible to separate the energy and pression denglue to the contribution of the scalar field. In our casand
ties into contributions from each component, i.p5p, I are not independent sindé=1—-(1—a)(3y,—2)/3y,
+pg andp=p,+p,, wherep, (py) is the energy density =1-Q ,(y,—v4)/v,.
(pressurgof the scalar field. We do not assume any equation A general analysis of Eq$2) can be done by noting that,
of state for the scalar field. This is indeed necessary sincgiven the constant parameter,, all model dependence is
one cannot fix the equation of state and the potential indethrough the quantity (N). For an arbitrary potentia¥, Egs.
pendently. For arbitrary potentials the equation of state fo(1) or (2) will be, in general, nonlinear and there will be no
the scalar fieldpy=(v,—1)p,, is determined oncp,,p,  analytic solutions. We can, of course, solve them numeri-
have been obtained. Alternatively we can solvexigrusing  cally but we need to do it for each particular case and initial

4
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conditions separately. In order to have an understanding dfals that have a nonconstar{N). It is the asymptotic be-
the evolution of the scalar field we will study the asymptotichavior of A which determines to which attractor solution
limit. It is useful to distinguish the different limiting cases x, y will evolve. If A—o (without oscillating, thenx, y
for the cosmologically relevant quantities y, and {1,  have an asymptotic behavior given by E¢S. and they end
=x2+y?, Q4 will either approach 0, 1, or a finite constant up atx=y=0 which is in this case a stable point. For
value. For() ,— 0 the scalar field dilutes faster than ordinary —0, x,y are given by Eq(6) and they go tx=0 andy
matter or radiation, and ) ,— 1, then the scalar dominates =1.
the energy density of the universe. Whex Q ,—cte<1, Let us now start with our first case, i.a.,constant. Ifx
the scalar and barotropic energy density redshift at the same —V'/V=c, the scalar potential has an exponential form
speed. Which behavior wilt,y,(} , have depends ok and V= he ©¢. This case has been extensively studit®, 26,217
on v,. We will separate the analysis of Eq®) into three  and one finds criticali.e., constantpoints forx andy at late
different behaviors of\| at late times. In the first case we times. The value ok,y depends on the value af=c, and
consider\ a finite constantor approaching . A\=c. Sec- their solutions is given by Eq$5) or (6). Since this case has
ond, we study the limih— 0. In the third case, we take  been amply documented in the literatld®9,26,27, we do
—oo, which is the natural case if the VEV @f is finite but  not include its numerical analysis here. The cosmological
we can have the same limit fgf— . We divide in this case parameters arex=I'=1 for A=c>3y, and a=(c?
the analysis into an oscillating and a not oscillatjng— . —-2)/(3y,—2), I'=c?3y, for \=c= V6. Note that in the
Equationg2) admit five different critical solutions for,y first case(} , is finite, and even if it dominates the universe,
with A constan{27]. A constant value off requiresH=0 or  the acceleration and expansion of the universe are the same
y=1. The latter case is a critical point of Eq®) only if  as for the baryotropic fluid. On the other hand, forc
A=0 while the former is the triviak=y=H=0 case. For =./6 one had) ,=1 and the acceleration parameteis in
x,y the five different critical solutionsxc=1, y.=0), (X  general different than 1; it is negative ¢f<2 (assuming
=-1, y.=0), and &:=0, y;=0) are unstabldextreme  y >2/3, i.e., matter or radiationin this case we could have

critical points. The other two depend on the valuexgN). interesting quintessence models.
For\?>37y,,[27] one finds the critical and late time attractor ~ For more complicated potentials,is not a constant and
values its evolution determines that afandy. The evolution of the
scalar field leads to nonlinear equations, and critical points
\FYY 3(2=v,) vy 3y, may exist but analytic solutions are either more difficult or
Xe= 2N Ye= T Q¢C=F, impossible to obtain. However, the solutions given in Egs.

(5) and (6) may give a good approximation of the limiting
5) behavior ofx andy.
Let us now consider the second case, e 0. In this
limit we can eliminate in Eq(2) the term proportional ta.,
and since-3<Hy/H<O0 for all values ok, y, andy, , we

Yo=Yy

for the quantitiex, y, and(}, and an effective equation of
state equivalent to that of the barotropic fluide., vy,

=(py+Pg)lps=7v,] In this limiting case the redshift of the have
barotropic fluid and the scalar field is the same. « H H
On the other hand, k<6, then one obtains N__ 34 WN <0, IN__ WN>O' (7)
y
A A \? : N
Xe=—"=, Y=1\1— 5 Qye=1, Y=g (6)  From Eqgs(7) we conclude that will approach its minimum

%

and the scalar energy density dominates the universe at |
times. If the scalar field hag,<vy,, then the solutions in

value(i.e.,x—0) whiley will increase to its maximum value
i.e.,, y—1). In the asymptotic region withx|<1, |[\|<1
e can solve Eq42) for x,y,H, giving

Eq. (6) are stable, and the redshift of the scalar field is slower o 3N 1
than that of the barotropic fluid. However, %:)\2/3 X(N)= ——, y(N)= —,
>, then the solution in Eq®) is unstable and the scalar V1-ce 3N V1—ce 37N
field ends up in the regime of the solution given in ).
If X(N) is constant, then Eq$5) or (6) are indeed solu- H(N)=dy1—ce 3?2 (8)

tions to xy=yn=0, but if N(N) is not constant, then the

critical values in Eqs(5) and(6) solvexy=yn=0 only on  with c,d integration constants. These solutions show that in

single points, not an interval. This means that the attractothe asymptotic region the scalar field dominates the energy
solution to Egs(2) is only valid as an asymptotic limit and density of the universe and the Hubble parameter goes to a
Xe(N),y(N),N(N) are functions ofN. If x,y do not oscil- constant value.

late, since their value is constrained [xd<1,y|<1, this In the limit A— 0, the first derivative of the potential ap-
implies that at late times they will approach a constant valueproaches zero faster than the potential itself and examples of
given by the attractor solutions of Eg®), andxy,yy will this kind of behavior are given by potentials of the fokm

vanish. Therefore, we can generalize the attractor solutions V¢~ ",n>0. The scalar field will dominate the energy of
of x,y given in Egs.(5) and(6) for more complicated poten- the universe, leading to a “true” nonvanishing cosmological
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L L B R In the nonoscillating case, in the regipr> 1 the leading
i ] term of Egs(2) is the one proportional ta if |y|,|x| are not
much smaller than 1. In such a case the equationg oy

are
3 ) 3
XN= N YN YNT T\ XY 9)

o 1 2 3 4 s 2 1 2 3 The sign ofxy is given by\, and if it does not oscillate, then
fig.(12) N fig.(10) N x would reach its maximum valug=1 while y—0 for A
1 e R e A Rn Banas >0 andx— —1, y—0 for A\<0. However, in the regioy
1 W ] —0 the other terms in Eq$2) become relevant and E()
o8 f , ] is no longer a good approximation. In the regloh=|\|y?
E/ 1 the evolution ofx is given byxy/x=—(3+Hy/H)<0 and
% 1 x will approach its minimum absolute value—0 like vy.
E ] This region is the scaling region characterized by almost
constant values of, y, and\. The end of the scaling region
: ] . is whenyy /y changes signh and becomes positive. This hap-
oo"“1'0‘"‘2‘0"";0""‘:0“"50 001';;4 pens aty3/2A\x+Hy/H=0 with Hn/H=—3y,/2. After a
fig.(1e) N fig.(1d) N brief increase foy andx, they finally end up approaching the
values given by the solution of Eq®), X—X., Y—Y., and
FIG. 1. Evolution of the universe filled with matter and a scalar going to the extreme values m&yzo In this casex;,Y.
field with V=V,¢~*. The initial conditions are,=0.1, YO:_0-5'_ are not really critical(constant points since\ is not con-
andHo=1. In (@) we show}, (solid curve quickly approaching 1, gtant. The kinetic and potential scalar energies will decrease
the Hubble parametédot-long-dashed curydends to a finite con-  ¢q10r thary, i.e., faster than ordinary matter or radiation. It
stant, and for comparison, we have drakg for a standard matter- e resting to note that even thously approach zero, the
dominated universédotted curvg notice that with this type of quation of state of the scalar field becomes consta,\nt ie
potential the difference in the rate of expansion with the standar(? — 232/(x2+v2) =cte. b d t th T
model is remarkable. Itb) we plot y,, (dot-long-dashed curyel’ Yg— <X (X. y) =cte, ecause,y decrease at Ine same
velocity. This leads toy, approaching the value of,; i.e.,

(solid curve, and acceleration parameter(dotted curve In (c) A . ’ .
slowly evolves to zero wittN. In (d), the numericak andy solu- the equation of state of the scalar field will be the same as

tions are plottedshort and long dashed curves, respectivelgd ~ that of the baryotropic fluid(matter or radiation Even
compared to their attracting solutions, EG6), lower and upper though the equation of state of the scalar field approaches
solid curves, respectively. that of the baryotropic fluid, its kinetic and potential energies
decrease faster than that of the baryotropic fluid, the reason
being thaty,= v, at late times and the equality is only valid
att=o0. The cosmological parameters ate=I"=1, giving

the same asymptotic behavior for the universe with or with-

0.8
06 T
<

04 [

02 |

constant at late times witk—0, y—1, Q,—1, andy,
—0. The analytic solution to Ed2) for x,y can be approxi-
mated by the expressions given in E(. However x,y are ,
no longer constant since.,y. depend on\(N), which is out the scalar f|e|<_j. . . . .
itself not constant, but these expressions are a good approxi- Exampleszof this k'n(i of behavior are given by potentials
mation at late time§see Fig. 1d)] to the numerical results. like V=g 2 ,» V=e"%¢.In Fig. 2 we show the behavior
The cosmological parameters are in this case of the dynamical variables and the cosmological parameters
—2/(3y,—2) andI'=0. This means that the acceleration of as a function ofN for V=Ae ¢ with A=—V'/V=ce?.
the universe is positivésince «<0) and the expansion of This potential gives the asymptotic limit for string moduli
the universe is exponential. In Fig. 1 we show the behaviofields[28]. The solution of Eqs(2) shows thatp— c mini-
of X, y, v4,andQ,fora potentiaV=V,¢ 1. In Fig. 1(a) mizes the potential anil— at late timeqFig. 2(d)]. The
we can see that the scalar field quickly dominates the uniimiting values arex=y={( ,=0, as we can see in Figs.&@
verse behavior and the Hubble parameter tends to a constaand Zh). In Fig. 2a we also show the evolution of the
different than zero; i.e., the universe enters in an acceleratddubble parameter in our model, as compared with the stan-
regime. This can also be seen in Figb)lwhere the accel- dard matter-dominated case; we can see that the scalar field
eration parametes is smaller than 0 ang/,; I' are infla-  can influence universe development only at early times. In
tionary almost all the time. Figure(d) shows the behavior of Fig. 2(g) we showx,y for small N with y,=1. For N
M (N) for this case and in Fig.(d) we can see that the nu- >1, x andy approach the value given in Eg&) (\? is
merical solution has as asymptotic limit the solutions oflarger than 3,); see Fig. 2h). Figure 2b) shows the behav-
Egs. (6). ior of the y,, parameter ag andy evolve and the effective
As our final case we take the limk—«, and we will  total I" parametefcf. Eq. (4)] for the “fluid” composed of
separate this case into two different possibilities. The firsmatter and the scalar field. Figuréc® is the acceleration
one is when\ approaches its limiting value without oscillat- parameter defined in E¢3) Finally, Fig. 2e) represents the
ing and the second case is wherdoes oscillate. phase space structure fot,) obtained with different initial
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FIG. 2. Cosmological solution fOI:Ae’Ced’, v,=1, with ini-
tial conditions xg=0.1, yy=0.5, \y=1, andHy=1. In (a) the
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conditions, where the final behavior is amplified in Fi¢f)2

1 The plateau in the graph farin Fig. 2(d), for approximately

3 20 e-folds, corresponds to the scaling region, wherndy

1 are constantgalmost zero in this cagepreceding the final
evolution where the scalar field recovers a small quantity of

] kinetic and potential energy that finally go to zero.
. We conclude that such fields anet good candidates for
] quintessencgparametrizing a slow varying cosmological

fig.(2b)

20

constant and they do not play a significant role at late times
unless they are produced at a late stage. We would like to

emphasize that these results are completely general and leave
“ out a great number of candidate fields such as string moduli
1 [28]. The only condition we have used to derive these results
is thatA — oo without oscillating.

We will now consider the case wheéR|—c but with an
1 oscillating ¢ field. In this case the VEV of is finite and
5 without loss of generality we can take it to be zero. Around
1 the minimum the potential can be expressed as a power se-
ries in ¢ and keeping only the leading term we haVe

20 30
fig.(2d)

40
N

50 =Vy¢" with n>0, even since the potential must be

bounded. The condition that'|,,;,=0 requiresn>1 and a

1 finite scalar mass requires=2. For this potential\ =

3 —n/¢ and it oscillates approaching a valjd =«; see Fig.

1 3, below. As a first guess we could think that the limiting
behavior ofx,y is also given by Eq(5) and therefore tends
to zero as\—o. However, this asymptotic behavior is no

1 longer a good approximation and we must solve the dynami-
3 cal nonlinear equationsee Fig. 3 for the numerical solution

] of a quadratic potential

002 0.04 0.06 0.08

fig.(2f)

x

We will now determine under which conditior , will
either dominatgapproach }, oscillate around a finite con-

stant value, or vanish. Since asymptoticaly: 1/, a finite

Q4 (#1) requires thatd, (¢)"2c 1/t or equivalently that
X,y are either constant or oscillate. We can thus wiite
=¢p"BH=BFYG(t)], x=¢/6H=A F,[G(t)] where
F,,F, are arbitrary oscillating functions depending on a
1 single argumenG(t), andA,B are constants. The function
3 G(t) is for the time being an unspecified function tofOf

1 course,F; andF, are not independent since the functional

dependence op determines the functional dependencepof
however, this is not important at this stage. Taking the de-
rivative with respect toN, we haveyy=(nF;g/2F )Gy
and XN= (FZG/FZ)GNX! WhereFiGEdFi /dG, fNEdf/dN

with f=x,y,G andi=1,2. SinceF,,F, are oscillating func-
tions with a single argumer(t), we have that the average
of (F2=(FZ%) and the average of?,x? is then

solid curve shows the evolution 61 ,, and the dashed line is the

numerical solution foH, while the dotted line is the comparison
value ofH,, for a standard matter-dominated universe, as a function
of N. In (b) we show the evolution ofy, (dot-long-dashed curye

I.]2
(VR= (D). OR=(GhA. (10

and of the effective total’ parametei(solid curve. In (c) the ac-

celeration parameter is displayed as a function df.. In (d) we
have A(N). We show in(e) the phase planex(y) for different
initial conditions &g,Y,): (0.0,1.0, (0.1,0.9, (0.1,0.3, (0.1,0.5,
and (0.1,0.3, and the final evolution is amplified iff). In (g) we

In the asymptotic limit withx2,y? oscillating and\ — o the
evolution ofx,y is given by Eqs(9). Using Eqs(10) and(9)
we find that a potentia/ =V,¢" may have finite values of
X,y at late times and

showx andy (short and long dashed curves, respectivédy small

N. Finally, (h) displays the asymptotic behavior »fandy [curves
are marked in the same way as(@], showing the good agreement

with the attracting solution, Ed5) (solid curve.

% _2

o) N "

n
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b+ %iﬁ nVeé" 1=0. (12)

Forn=2 the solution of Eq(12) is given in terms ofl;, and
Y., the Bessel functions of the first and second kinds, re-
spectively, ¢(z) =z ™(2Vo) ™4 ¢1Im(2) +c,Ym(2)] and ¢
=-2""(2Ve) ™ V" c1dimi1(2) +CoYmi1(2)] with cy,cp

S : constantsm=(y—1/2), z=t\2V,, and we have used that
fig.(3a) N " tig() N d[z "Kn(2)]/dz= — 2K 41 With Kiy=J,,, Y [14]. Using
P — N — ————y these solutions we have
0.1 — /\ — 08 -\‘;x\ — y=rz"""k J(2)+ Y(2)1,
of P 06 [ 1) ]
o VY 1= £ ; x= =12k I 1(2) + Vi 1(2)],
-0.1 { 04 [ \\l\l 7 (13)
] HEEEANGN 1
02 1 oer \\\\\ B with r = (3y/8)c,(2V,)™?, k=c,/c;. A simple analytic ex-
05 Dol S T ] pression can be obtained using the asymptotic limit of
0 ! e (Si) . 0 1 e (3d)2 . the Bessel functionsJ,,= 2/mzcod§z—m(2m+1)/4],Y,

= 2/7zsinz—m(2m+1)/4] for z=1 (i.e.,t>1). The ampli-
FIG. 3. Examples of evolution of the cosmological parameterstude ofx andy in Egs.(13) in the limit z>1 goes ax=y
for a universe filled with a perfect fluichy(,= 1,3/4,1/2) and a scalar =z2"™_A finite value of x,y requiresm=y—1/2=1/2
field with potentiaIV=Vo¢2. The initial conditions arexg=0.1, (i.e., y=1). Fory>1 (y<1), x,y—1 (x,y—0) at large
¥0=0.5,Ho=1, andV,=3?/32. In (@) the numerical solution for times. Furthermore, in the asymptotic limit, = 2{cogz
Q, (dot-long-dashed curyavith y,,=1 is compared to the analytic —m(2m+1)/4] — k sinz— =(2m+ 1)/4]}2/(1+ k?) is an oscil-
expression9¢:x2+y2, calculated from Eq(14) (solid curve. lating function with an average VaM@,¢>: 1. We can con-
Also shown in the figure arél, for y,=3/4 (dot-short-dashed - ¢),de, therefore, that if the barotropic fluid has<1, i.e.,
curve andy,=1/2 (dashed curve In (b) the equation of state and smaller than Yo, then Q¢=x2+y2HO, but if y,>1

acceleration parameters are displayed as a functidh of y,, (dot- _ . - .

long-dashed ling I" (solid line) and acceleration parametelotted re< iyr‘;lbzs wiﬁnbtgethd;;n:)lpirr]t esncearlg)r/ (fjig? dSI}Z;girt]he (;S{rq_ptonc

line). In (c) we plotA ™1, in order to display the oscillating behavior .g ) . g 10,=21.
Finally, if v,=1=(y,), then the energy density of the sca-

of A(N), as it approaches. In (d) we plot the evolution oH for . . ; :
two different models. The solid curve represents the numerical sol-ar field dilutes as fast as the barotropic fluid &(hgj tends to

lution for H, with V=Vo¢? andy,=1 and is compared til fora & constant finite value. The solutions in E43) for y=1
standard matter-dominated univer@®otted curvé The dot-long- ~ €an be given a completely analytic expression since in this
dashed curve corresponds to our numerical solutiorHfowithn V' casem=1/2 and the Bessel functions take simple fa¥mp,
=Vo¢* and y,=4/3, following a similar evolution as a standard = v2/7zsin@), Yi,=—2/mzcose), Jz,=2/mz[sin@)/z
radiation-dominated modé¢tiashed curve —cos@)] and Y= — \2/mz[ cos@)/z+sin(z)]. Putting these
expressions into the definitions grfy, Eq. (13), we get

giving (y4) = 2/(1+(y?)/{x?)) = 2n/(2+n). Depending on

whethery, is larger, equal, or smaller thayy,, €, will go y=YoSiNz)—| Xo+ Yo cog2),
to 1, finite constant, or O, respectively. Notice that this result Zo
is completely general and any massive scalar field redshifts )
at late times as matter fields witp,=y,=1 (i.e.,n=2). x= _yo( sin(z) —co92) | +| Xo+ Yo
In order to obtain the asymptotic solution analytically, we z Zy
will solve Egs.(2) in a region where only one component of cogz)
the energy density dominates. This will be valid always in ( +sin(z)), (14

the asymptotic regime. However, we do not make any as-
sumptions on which term dominates. If it is the baryotropic
fluid which dominates, then the equation of state gowill
have a parametey=y,; however, if it is the scalar field

that dominates, then we take-(y;) (average in timesince with the one obtained by solving Eg&) numerically. This

in this casey,, oscillates. In this regime we can solve for ., pe seen in Fig.(8), where we plo€) , obtained numeri-
the Hubble parameter and we get the standard for ’ ¢ i

P : get t MEally for y,=1 as a dot-long-dashed line and expressions
H(t)=2/(3yt). To determine the evqut|_on of the scglar (14) as a solid line for a potential= V2. We also plot2,,
field we have to solve its equation of motion, for, =4/3 andy,=1/2 to illustrate the different asymptotic
$+3Hp+dV(¢)/dp=0, with V=V,¢" and n positive  limits. For y,<1 we have(),—0, andy,=1 givesQ,
and even, i.e., —cte, and for y,=4/3 we have(),—1. These different

where the initial conditions are given lyy,Xq atzo= /2. In
the limit z>1 we haveQ ;=y§+ (Xo+Yo/Zo)>.
The analytic solution in Eqg14) agrees reasonably well
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TABLE I. Asymptotic behavior of} 4, v, the acceleration paramete(¢)=(3y—2)/(3y,—2), and
the expansion rate parameter y/y,, for different limiting cases ok (¢). In the last column we give an
example of potential/(¢) which satisfies this limit.

ANp)=—V'IV Qy=pylp Y a(®) I'(¢) V(¢)
c=cte (>\3y,) %/ Yy 1 1 Ve ¢
2 - c?
c=cte (<\6) 1 ¢ ¢-2 o Voe ¢
3 3y,~2 Yy
% (no oscil.) 0 Y, 1 1 Ve e
. 2n
o (oscil. 0 — 1 1
(oscil.) (>
2n
cte (= 1 1 Voop", n>0 even
2+n( 7y of
n 3ys—2 Yo
2+n 3y,—2 Yy
0 1 0 o2 0 Voo ", n>0
3y,—2

limits can be understood by noting that the averagéof) Xo _ " "
=1, and therefore, ify,> v,(v,<v,), the baryotropic fluid X= o | ksin(at™) —cog at™)
redshifts fasterslowey than the scalar field, while foy,

=(7y4)=1 both energy densities dilute at the same speed. —2h

The asymptotic value o2, in the limiting casex — = with T [sin(at®™) +k cog at?M] |,
an oscillatingg field depends on the value of, and on the
initial conditionsxg=X(Ng),Yo=Y(Np). Figure Zb) shows y=Vyo[sinat?M) + k cog at?M) ]2, (16)

the oscillating effective equations of state for the scalar field

and the mixture of matter and scalar fields, and the resultin%ith xo= (1) \328C,7, y — 1 /3V4c22y, and the initial
0~ 27/ 0~ 2 o2 ’

acceleration features of the universe I f ; .
. . - conditions are taken a§”= 7/283. Using Eq.(16) we obtain
We h I I f £§2) f ) )
e have obtained an analytic solution of Eg2) for n (y?)I{(x?)=2In, at late times, as in Eq411). We have, there-

=2. This is clearly the simplest case since ELR) is linear X .

- : L . fore, (y4)=2n/(2+n) and y=(1y,), i.e., the ansatz in Eq.
. > . - N ) 4 .

in ¢ and its derivatives. Fan>2, Eq.(12) becomes nonlin (15) is & “solution” to Eq. (12) only when the dominant

ear in ¢- and no simple analytic solution exits. However, let energy density redshifts as fast as the scalar field. This is, of
us use in Eq(12) the ansatz ) ) .
course, no surprise since we imposed on the ansatz16y.
the limit x,y—-cte.
d=t"?"c,coq Bt?M) + c,sin( Bt2M)]. (15 The cosmological parameters are in this casel
—3Qy(vy=79)(By,—2) and I'=1-Q4(y,~vy)lv,
] ] with y,=2n/(2+n). From these expression we conclude
It can be easily seen that this ansatz has the corregfat whenQ,, remains finitee=1T"=1 since in this case,
asymptotic behaviop"?, ¢,Hoc 1/t and g ¢~ * if we wish =1, leading to the same behavior of the universe with or
to havex, vy finite. Thet exponents in Eq(15) are deter- without the contribution of the scalar field. However, when
mined by solving Eqs(12) and this equation also imposes O ,—1, a=(3y,—2)/(3y,~2), '=vy4/y,, and one
the conditionsy=2n/(2+n) andﬂz%von%g‘z[sin(ﬁtz’“) could have an accelerating universeyf,<2/3 which re-
+k cos(Bt?")]"~2. Notice that the value of is precisely the quires thatn<1 and this is not acceptable since the first
value we obtained using general arguments dufiy Eq.  derivative of the scalar potential must vanish at the mini-
(11)]. Notice as well that the ansatz in E(L5) is not a mum. If Q,—0, then clearlya=T"=1 and the scalar field
“complete” answer to Eq.12) since B is not a true con- plays asymptotically no important role.
stant. Only fom=2 is 8 indeed constant and the solution in  To conclude this part of the analysis, we have established
Eqg. (15 is the one we had previously obtained in terms ofthat if the initially dominant energy density component has a
the Bessel functionfsee Eqs(13)]. Forn#2 we must take +y parameter largefsmalley than (y,)=2n/(2+n), then
the average oB and work in the asymptotic region. Never- Q, will approach 1(0). Forn=2 we have(y,)=1; for n
theless, Eq(15) gives a good analytic approximation to the =4 we have(y,)=4/3. Since the conditioV’|;,=0 re-
numerical solution. In terms of E¢L5), X,y take the follow-  quires 1<n, we have thaty,>2/3 for all n and the scalar
ing expressions: field will not give an accelerating universe. For-4 the
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energy density will decrease faster than radiation, and sincé/e showed that all model dependence is given Noy
at late times the universe is matter dominated, only a scalar V'/V and y,. Any scalar potential leads to one of the
field with a nonvanishing mass could lead to a significantthree different limiting cases of: finite constant, zero, or
contribution to the energy density of the universe. Howeverjnfinity. In the first case(), approaches a finite constant
since its redshift goes as matter, it is not a candidate for &different than zerp depending on the value of=c. For
cosmological constant but it could serve as dark matter. Figh —0 we obtainedk—0, y—1 with a constant Hubble pa-
ure 3d) illustrates these characteristics of a power-law pofameterH and an accelerating universe. Finally, for-
tential for the Hubble parametét for V=Vy¢", n=2,4,a We concluded that ik does not oscillatex,y,( ,— 0, and if
radiation- and a matter-dominated universe. A oscillates, then all cases are possitile., 1,—0, 1, ora
To summarize and conclude, we have studied the cosmdinite constantdepending on the value of, and the power
logical evolution of the universe filled with a baryotropic ©f the leading term in the scalar potential.

fluid and a scalar field with an arbitrary potential but only  G.p. would like to thank the Instituto de Astronani
with a gravitational interaction with all other fields. The UNAM, for their kind hospitality during the realization of
analysis done is completely general, and we do not assuntais work and partial support from DGAPA, UNAM, project
any kind of scale or time dependence of the scalar potentidN-109896. A.M. research was supported in part by
or any assumption on which the energy denflitgryotropic  CONACYT project 32415-E and by DGAPA, UNAM,
or scalay dominates. Our results are summarized in Table Iproject IN-103997.
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