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Nonequilibrium dynamics of quantum tunneling
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We consider dynamics during phase transitions by quantum tunneling using nonequilibrium quantum field
theory. We define an order parameter to represent a state of the system. The evolution equation of this order
parameter and fluctuations around it are derived. In some cases long wave fluctuations are increased by
instabilities during tunneling processes and these fluctuations enhance the tunneling.

PACS numbefs): 98.80.Cq, 05.70.Fh, 64.66i

[. INTRODUCTION ability per unit time per unit volumé'/V and quantum me-
chanics is only related to it. For the calculation of the decay
Phase transitions in the early Universe are very importantonstant, we usually use bounce metH@¥,2§. In this
processes since they affected the time evolution of the Unimethod, time is rotated to imaginary time and quantum prob-
verse[1,2]. Therefore, to understand these phase transitionkem becomes solving a classical equation of motion in imagi-
it is necessary to set up a formalism for describing the dynary time.
namics during phase transitions. Since in this process the This method has been used in various areas but there are
system deviates from the equilibrium state, static quantitiesome difficulties. First, we calculate the decay constant in
such as effective potential in quantum field theory at finitethomogeneous false vacuum. Certainly in tunneling we usu-
and zero temperatures are not suitable for understandinglly compute a tunneling rate in homogeneous circum-
these dynamical aspects of phase transitions. stances. This is because environment effects are model de-
Recently there has been great progress in nonequilibriurpendent and, if we do not concern these specific effects, we
field theory and it is applied to cosmolod®—15. These assume the system is initially inhomogeneous. However,
methods enable us to describe the evolution of the out-ofeven before true vacuum bubbles larger than the critical
equilibrium situation including phase transitions. For in-bubble are created, quantum mechanically true vacuum
stance, these descriptions are utilized for parametric particlbubbles that are smaller than the critical bubble are produced
decay in preheating of chaotic inflatiph6—21 and spinodal and disappearing continuously. This production and collapse
instability in new inflation[22,23. In these phenomena the of subcritical bubbles will produce some fluctuations inher-
static description is not applicable and the method includingently and it is unclear whether these quantum fluctuations in
time evolution in quantum field theory can be used to undera metastable false vacuum remain small or not. It is probable
stand these processes. that these fluctuations have a strong influence on the tunnel-
In addition to new and chaotic inflation, there is anothering. The formulation including the dynamics during tunnel-
mechanism of inflation, old inflation, in which the inflation ing enables us to consider this effect.
proceeds by quantum tunneling4]. Although the original This is similar to the subcritical bubble effect in a weakly
old inflation was unsuccessf{iR5], there are still inflation first-order phase transition in electroweak baryogenesis
models including tunneling process. Since in chaotic and29,30. In this scenario, if the electroweak phase transition
new inflation the dynamical description revealed propertiess weakly first order, this phase transition proceeds by pro-
unknown in ordinary methods, we would expect that the dy-duction of subcritical bubbles not the formation of critical
namical description is also important to understand tunnelbubbles. Recently this problem has been discussed in a dif-
ing. Therefore it will be needed to describe tunneling in aferent way in Ref[31].
formulation including the nonequilibrium dynamics during  Second, in imaginary time the evolution of wave function
this process. However, until now such an approach has na$ not unitary. Moreover, when a Lagarangian has direct de-
existed. (There are many papers discussing dynamics opendence on time, for example, expansion of the universe, or
bubbles, i.e., growth and percolation, but we do not considethere are another fields not tunneling, it is difficult to inter-
it in this paper). pret the meaning of time expansion or time evolution. For
Our ordinary picture of tunneling is as follows. At first a example, simple harmonic oscillator becomes inverted har-
true vacuum bubble appears in a false vacuum quantum meaonic oscillator.
chanically. If this bubble is larger than the critical bubble, in  Moreover the amplification of fluctuations is thought as
which the loss of the surface energy is compensated by thearticle creation during tunneling. This problem is treated in
gain of the volume energy, then this bubble expands. Finallwarious method§32—-34 but all of these methods use imagi-
these bubbles percolate each other and the entire system b®ry time. Owing to this, nonunitary Bogoliubov transforma-
comes true vacuum. This picture is an analogy of a first ordetion is used in Ref[32]. Therefore we think that describing
phase transition in statistical mechanj@6] except that in  the dynamics of tunneling in real time is essential for more
statistical mechanics bubbles are created thermally not quamnderstanding and application of tunneling.
tum mechanically. Motivated by these reasons we treat the dynamics during
In this scenario, the basic quantity is a nucleation probtunneling process in flat space time with real time. To inves-
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tigate the dynamics of tunneling we use the functional Schrowhere the overdot means time derivative ddds the vol-
dinger equation. This formulation makes it possible to de-ume of the system we are considering. The canonical mo-
scribe the evolution of the system including the dynamicshentum conjugate te, is 7= Q¢ _, and the Hamiltonian
during tunneling. As in statistical phase transitions, we deq
fine the order parameter to represent the state of the system.
We also consider the evolution of fluctuations around the
order parameter.

In tunneling not all of these fluctuations are important. In H= i E T+ Q E 2 (M2 +k?) b _ by
a decay process with a survival probabiliB=exp(—I't) 20 % 2%
wherel is aldecay constant, the typical time scale of this g N
Fro_cess_ i~ In 'Funnellng,l“ is extremely small and the + 3 > brdpd——pt il > brbpdad—k—p—qf -
ypical time scale is greatly large. Therefore we are usually kp kp.g
concerned only an event rate par tilneHowever, to under- (2.5

stand the dynamics we need to know the time evolution of

the system over the long period of time and then rapid fluc-

tuations compared to this large time scale are neglected Qg this Hamiltonian the Scfidinger equation becomes

thought of as noise. The effect of noise surely influences the

transition rate/35] but this does not drastically change the

tunneling process and the orderlof Therefore in this paper P

we do not consider these rapid fluctuations. i— W =HW. (2.6
This article is organized as follows. In the next section we at

formulate the equations to describe the dynamics of tunnel-

ing, one for order parameter and other for fluctuations

around an order parameter. In Secs. Ill and IV the evolutiowhereW is a wave functional and fields in the Hamiltonian

of an order parameter and fluctuations around it are consicare in the Schrdinger representation.

ered. In Sec. V the back reaction of fluctuations to an order To specify the state of the system we define the order

parameter is discussed. Finally in Sec. VI we conclude thiparameterp. as

paper with some comments.

Il. EVOLUTION EQUATIONS OF ORDER PARAMETER 1 3 1 3 .
AND FLUCTUATIONS be=g | IXHB(tX)=q | dX [ [d]V* () ¥,
In this section we derive the equations to describe the 2.7
evolution of the system during tunneling. The Lagrangian we

consider is
where[d¢]=11,d¢(y). The vacuum in which the state re-

1 sides is represented by the value of this parameter. If the
L:f dX3{§(3u¢)2_V(¢)}v (2.9) system is in the symmetric false vacuum, the value of the
order parameter is zero. If the system is in symmetry break-
m? g A ing true vacuum, the value of the order parameter.is
V(g)= 7¢2+ §¢3+ m¢4’ (2.2) Ordinarily we derive the equation of motion fef, using
above definition ofp. and the Schidinger equation and then

wherem? and\ are positive and is negative. This potential determine the evolution of the order parameter. This is a
V(¢) has two minima, one is a symmetric false vacuum atclassical equation with quantum corrections. For phase tran-
¢=0, and other is a symmetry breaking true vacuungat sitions in statistical physics and new and chaotic inflations,

=o¢. We assume the system is in a finite volume and introthis equation will be suitable for describing the evolution of

duce the discrete Fourier transform of the field as the system. However, tunneling is basically quantum phe-
nomenon and cannot be described by the classical equation
d(X)=D, P kX 2.3y  of motion for the order parametef.. For this reason we
K

will take the following way. Since the order parameter is
independent to spatial coordinates, only the zero momentum
mode of¢ contributes top.. Therefore instead of the clas-
1 o 1 sical equation of motion for the order parameter, we derive
L=0Q > ; b-xb—3 ZK (K2+m?) ¢ _y i the Schrdinger equation for the zero mode and define the
evolution of the order parameter, .
g N We assume the wave functional of the system can be fac-
~37 > Tl > dkbpbqbk—p-q| torized to the wave functions of zero mode and nonzero
- ke " kpa modesW =WV W onsere THiS is possible for the homoge-
(2.4  neous configuration, which is an initial condition we take.

Then the above Lagrangian becomes
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ProductW¥},,er0t0 the Schrdinger equation(2.6) and integrate out non zero modes. Then the Qtihger equation for the
zero mode is

d

iﬁwzero: Hzero? zeros (2.9

with the Hamiltonian

2

1 9
Moo= = 900 g2+ O V(90 V"<¢o )2 (ki) t 3 V'"<¢o) 2 (Scdodoip)

k+p¢0

"

1 J
+ 4|V (¢’0) 2 <¢k¢p¢q¢ k—p— q>+<( nonzero_ia)>} (2-9)
k,p.g

k+p+q#0

where primes stand for derivatives with respeciggpand
(---) are expectation values with nonzero mode wave func- L= Q[2¢c V(o) = [+ V' (¢)lmot 5 2 7K
tion W onzero@Nd H 1onzeroinCludes only nonzero mode @f.
The terms independent t$, only contribute to an over all 1
phase factor of the wave functioh,., and we will neglect 5 > (K2 V" (b -k
them in the following. K
This is the evolution equation of the order parameter dur- 1
ing tunneling. The terms include expectation valueggfis - §V"’(¢C)E N MpT—k—p
back reaction of fluctuations to the evolution of the order kP
parameter. The value of the order paramesgiis evaluated
by the definition(2.7) with the wave function of this Schfo V"'(¢c) E Mo —k—p—q| (2.11)
dinger equation. kp.q
Next we consider fluctuations around the order parameter.
At first we write the field as where we have partially integrated and discarded the surface
term. The momentum conjugate ig is

b= ot 1= et > me ', (2.10 _
K =Q07n_y (2.12
where 7, are equivalent tap, for k# 0. Substitute this into
the Lagrangian(2.2) and obtain and the Hamiltonian for fluctuations is

1 . 1 1
Ho=3g 2 Tmch Q) V(@0 etV ($0]mot 5 2 | [ HV (S0 ]t 37V (do) 2 ok

n

V (be) %q Mk 77p77q77—k—p—q} . (2.13

The quantum fluctuations around the order parameter is de- Ill. ORDER PARAMETER

termined by the Schrbinger equation In this section we consider time evolution of the order

J parameterg,. in the Schrdinger equation without back re-
at\If =H,¥, (2.149  action
Equations(2.8), (2.9, (2.13, and (2.14 are equations to
describe the dynamics during tunneling process and we con-

d
) ; : , . i—V=HW¥ )
sider each equations in the following sections. Iat ' @D
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(92

1
H:—EF&JFQV(QS),

(92

~ * 1 ~

whereH andV areH e, and W e in the previous section,  For >0, ¥ is an eigenfunctiofsee Eq.(3.6)] and the

respgctlvely. In _th|s equation the poter)t_lal has two mlnlma’integrand becomeE yrgr. However, in this region this inte-
03? IS symhmetnc. \{acuun&, whoshe positions we eaglg)andk_ gration is negligible ags is extremely small and the integral
adjust to the origin, and another Is symmetry breakingg yegyricted in the regiopp<<o,. By partial integrations, this

vacuum, vv_e_callaz. _ .__integration becomes
For sufficiently deep wells we can approximately define

eigenstates near the bottoms of each minimum and expand 1 a9 oy ]
the state with these eigenstates. As we are concerned to the (,/,H:@: =3
transition from one minimum to another minimum, we ex- 2|79 dd|_,

pand a statél with these eigenfunctions in two minima: 5

o1~ 1 9
+J_md¢lﬁ(—mr¢2+ﬂv . (3.10

V=2 Coihnt X it 3.3

n
The last term is negligible by the same argument applied to

the integration in the regiop>o;. Since y=4y=0 at ¢

wexd — [“dow— [ doW|. @1
p(f 5 quﬁ) (3.19

where ¢, and s, are eigenfunctions in the minima, and
o5, respectively. This is an extention of Ref2]. After sub-
stitution of this expansion into Eq3.1) and production of

., andyr,, we obtain an evolution equation for coefficients
(see the Appendix in detail

Cm

cn)’

i d Cn ( Hnm

|— | ~ =

dt\c; Him
whereH 7= (y,Hm) andc,, andcy, are column vectors. In In the cas&E =E
this expression we omitted the terms whose order is '

O((nthm)).

We calculate the matrix elements. As the statgsand
Ur,, we use approximate solutions of equations:

¢<O’1,

~ 1
(yHip)=—5C*T

71
Hnm

o (3.4

- - b
<¢//H¢//):—C*Cexp(—f d¢W). (3.12
a
To gain a qualitative picture we restrict to two states, one
localized ing~ oy and other ingp~ 0. In this case Eq3.4)
can be easily solved and the solution is

Hy=Ey at (3.9

Hy=Ey at ¢>oq, (3.6

(C) 1 (e ™M(\,—E)—e M{(A_—E)
whereo, is a value where the potential is local maximum T :7\—7\+( —A(e Mt gTirh )
and is small ingp> o andys is small inp<o,. Therefore (3.13
Hom=En6nm and Hym=E;dhm. As the matrix elements

() is extremely small, we use WKB approximation for the Where . =3[E+E=(E—E)*+4A%] and A=(yH).

off diagonal elementéy/H ) [36]. In the classically forbid-
den region WKB solutions are

—iex%—f(/)d W) (3.7
lﬂ—\/v—v . W, .
- C bd -

= WVEX —L) qﬁW), (3.9

where W= 20(QV-E), W=2Q(QV-E), and W(a)
=0 and W(b)=0. C, C are constants and we s&

The order parameter ig.=|c|?c. This shows oscillatory
behavior between two states with a peridd=2/(\
—\_). This period is

T= 27 (3.14
|E-E]|
for two states with large energy difference and
T b
T= mexp( quﬁw), (3.19

=(Qwo/2m)Y? and C= (Qwy/27) Y2 with wy=V" (o) and
wo=V"(0,). This normalizesyy and i in ¢<o; and ¢
> g4, respectively.

Then consider

for two states withE=E. The oscillation is rapid when the

energy gap is large and slow when the energy gap of two
states is small. In general, the solution is superposition of
these oscillations. Since in these oscillations the rapid fluc-
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tuations can be considered as noise, the state of the system isThe oscillational property of this solution will be termi-
mainly ruled by the slowest motion, i.e., the oscillation be-nated by the dissipative effect ignored in this paper. But until
tween the false vacuum and the nearest energy state in tralee dissipation becomes effective, the above time evolution
minimum. Therefore the order parametgyris regarded as a is preserved and the conclusion in this paper is consistent at
slowly oscillating variable between 0 and It looks effec- the early stage. The decay rate of this oscillation is approxi-
tively as if the classical fieldb. moves in an extremely flat mately proportional td’(%HinthZ whereH;,, is an interac-
potential with effective mass\(, =\ _). tion term with another degree of freedont. is a false

From the ) dependence off for E=E, the periodT  vacuum state ang, are lower energy states. By definitign

grows with ) except small). Therefore for largel) the g he |owest energy state localizeddr=0 and theny;, are
order parametes varies slowly. all localized in ¢=o. Therefore the matrix elements

In the thin-wall approximationa=0 andb=o0 and fora ,~ . .
false vacuunE=0 Imhis case the inverse of the half period <¢r“H‘”."’/’> are gxpone_nt_lally suppressgd and the oscillatory
: ’ behavior remains sufficiently long period.

IS

(T/Z)—locgexp( _QJUd(lg @) _ (3.16 V. FLUCTUATIONS AROUND THE ORDER PARAMETER
0

In this section we consider the evolution of fluctuations
For the critical bubble in the thin wall approximation the around the order parameteér.(t). Once the motion of the

bubble radius i$27] order parameter is specified the treatment of fluctuations
around the order parameter follows the previous wdBs
o2 We deal with the equation
JO dp\2V(h) a
R=3N0) Vo) (317 .
|E\If,,:H,7\Ifﬂ 4.1
and the exponent of Eq3.16) agrees with that of a decay
constant of the false vacuum that is calculated with the
bounce method, except numerical factor. with the Hamiltonian
|
H,= ! > > + Ol [+ V' +1Z K2+ V" +1V”’ >
=720 4% an i [P+ V' (de)Ino 22 [ (be) ] 37 (¢c) & Mk MpN—k—p
1 "
+ _IV (¢be) 2 MpMqM—k-p—q| 4.2
4. k'p'q

where we have discarded the terms independent to the fieldge region with the volumé&), the minimum value ofk| is
7k because it becomes over all phase factor of wave funcz (=13 then|k|>27Q 12,
tion. Therefore if the system we consider has the volume
At first we concentrate on the terms quadraticzipbe-  smaller than|V”, | %2 the square of the frequenay? re-
cause as an initial condition we assume there are no fluctugnains positive for alks, and the long wave fluctuations does
tions. As derived in the previous section, the order parameteiot increase. This indicates that the fluctuations remain ini-
¢, moves slowly from 0 tos. During this, the square of tial small quantum fluctuations and the system stays in ho-
frequency mogeneous and the entire volume transits to the true vacuum
simultaneously.
wﬁz K2+ V"(pe) 4.3 On the contrary, if the region has the volume larger than
|Vrinl 32 the square of the frequenayf can be negative for
can be negative for small wavenumblerin some period some value ofp, and the long wave modes are amplified.
because the potential is nonconvex, W'(¢.) <0 whend.  This indicates that the fluctuations are amplified and the sys-
is in spinodal region. When the square of frequency is negaem becomes inhomogeneous and phase separation occurs
tive this mode increases exponentially. This amplification ingnd domains are formed. Therefore the entire volume will
the long wave modes of fluctuations is common to the phasfot transit to the true vacuum simultaneously but each region
transitions in statistical physics and quantum field theory. transits to the true vacuum separately. This is the spinodal
The maximum value ofk|? with negative wf is the  decomposition in statistical mechanics.

square root of the absolute value of the minimum value of In usual picture of tunneling, the phase transition pro-
V", we call Vi, then|k|<|Vi| Y% On the other hand, in ceeds by the production of the critical bubbles. The radius of
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this critical bubble is larger thafV.. | *? in a nearly de- By=—iB2+iw?, (4.9

generated potential. This suggests that for the models we

usually use thin wall approximation, that is the nearly degen- C=—iBoC+ b+ V' (o) (4.9
[ c/ .

erate potential, the homogeneous bubble formation is im-

probable. Before formation of critical bubbles, subcritical gy the first equationA, can be expressed witB, and C.

bubbles are produced and these make the system inhomogghe second equation becomes a linearized equation by the
neous. This will be quantum mechanical counterpart of subreplacement

critical bubbles in a weakly first-order phase transition in
electroweak baryogenedigg].

In tunneling phase transition, quantum mechanically true By=—i—, (4.10
vacuum subcritical bubbles are formed and destroyed con- Pk
tinuously. These attempts produce fluctuations. Owing to th‘ﬁwen
instability of the system, some of these fluctuations do not
remain small but amplified. On the other hand, in the tunnel- Pt wie=0. .11

ing process we assume that the entire space is in the false
vacuum and there is no inhomogeneity. Therefore, we argne solution of this equation increases exponentially when
concerned with the bubble nucleation rate in the homogeg,q square of frequency is negative.

neous background in the ordinary method. However, the
above amplified fluctuations are originated to the quantum,
fluctuations and the instability of this system. These effects

Initial conditions areB,(ty) = w(tp) and for convenience
e take forpy

are, for that reason, intrinsic and we cannot ignore these 1
effects in the tunneling process. When we treat the tunneling, olto)= , (4.12
we must include these effects in some cases. Va(to)

In each region, except near the boundary, the order pa- _
rameter defined in this region takes the definite value, that is er(tg)=iVwy(ty). (4.13
zero for false vacuum ana for true vacuum. The original
order parameter is average of these order parameters in eachFrom Eg.(4.9) and an initial conditiorC(ty) =0,
regdic;?: b= (OQfEﬁIse"_ U?trup)ll(ﬂfal_se"}(lltrue)’ \(/there Qtaise 1 )
and Qe mean the total volume in false and true vacuum, _ Pe_NE (4 , ' ,
respectively. Therefore the approximate fraction of the vol- €= goo(t)jtodt (G TV Lde(t) I} eolt').
ume in true vacuum i€y e/ Qiota= P/ 0. (4.14

. N With theses quantities two point functions are expressed
A. Linear approximation

simply

We consider the equation quadraticn ol
Pk

d 1 R 1 (men-)=—q- for k#0, (415
o e AT 20

I(?t\II ; 20 (?ﬂk(?ﬂ,k-‘rzﬂwknkn_k
; <772>=—|<P0|2 =+ 0] g(ReC)? (4.16
+ Qe+ V' (d0) 17080 V- (4.4 o a2 ° ’ '

) ) where R€ is a real part ofC. These increase exponentially
In this case wave function decompose to each mode. In eagy, long wave modes duringﬁ is negative.

mode this equation can be solved by the Gaussian ansatz | this wave function the expectation value of a linear
term

v=11 v @5 (70)=| 9o ’ReC, (4.17)

is nonzero by the existence @funlessC is pure imaginary.
This contradicts with the fadtn)=0 that follows from the
1 definition of % in Eq. (2.10. This is due to the linear ap-
\Pk:AkeX% — OB 7+ QCnodeo|. (4.6)  Proximation in this subsection and then we redefine the two
2 ' point function of zero mode as

where

The Schrdinger equation becomes equation Af and By | @ol?
andC. <77(2>>|new:<77(2>>_<770>zzﬁ- (4.18

In the following (72) means this redefined expectation

. i
- _ _ 2
Ak 2 (Bk Qc 5K,O)Ak1 (47) value.
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The solution of Eq(4.11) is solved by WKB approxima-  This length grows in time agt) ~ (t—t,)¥*in the beginning

tion. In the regiont<t, wheret, is a timew,(t,)=0, andl (t)~ (t—to)¥? in the late times.
) 1 [t B. Hart imati
o) =g’ ex;{ _'f dtpk(t)) 4.19 artree approximation
VPk(t) t Until now we have neglected the termg and z* but

since the fluctuations increase exponentially we cannot ne-
then glect these terms. Furthermore we cannot use the perturba-
tion for the terms withy® and »* as these are large even if
:L, (4.20 small couplings. We need nonperturbative method.
Pk(t) Nonperturbative method we can use in this paper is Har-
tree approximation. This is achieved by the replacement

lo(D)|?

where py(t) = \/wk2 and § is a constant. In the regior>t,
the solution is

<pk<t>=ei6+iw/4Lexp( f tdtwk<t>) 421
VWk(t) tx

kzp nknpn—k—,ﬁkEp 3(mmp) N-k—p, (429

nknpnqufpfwkip:q (6¢ 7 7p) MqM—k-p-q

K.p.g
then
_3< 77k77p><77q777k7p7q>)
1 t
lok(1)|%= ex 2f dtar(t) (4.22 (4.30
(1) ty
in the Hamiltonian(4.2).
Wherewk(t)=~/—w2k. By Hartree approximation, the square of the frequency

With these quantities we consider two point correlationPecomes
function. For large2, which is a case in thin wall approxi-

: 1
mation, o{M?=K2+ V" () + 3 ; (n-wm), (431

el @il ik
(ﬂ(X,t)ﬂ(O,t»:; ek T EJ dikle™ gy where superscriptl means this quantity is Hartree approxi-
(4.23 mation. Last term prevents the square of frequency becomes
' negative for larges{ n_ 7).

For late timet>ty, |¢y/? is given by Eq.(4.22. In this By the last term in Eq(4.3D), fu(lfH)Z does not take nega-
integration smalk region contribute to this integration. The tive value for large{#?). In a finite volume, there exists
result is minimum value of k|, we callk,,;,. Therefore the maximum

value of 2\ (n_ 7 is

1 e°e"2’4d| 11 1

1
O e g |V ATy 2 (1 wlma= =V (P lmin— K- (4-32
r2
x| 3= E) ’ (4.24 V. BACK REACTION OF FLUCTUATIONS
TO TUNNELING
whereV"=d%V/dt* and In this section we will consider a back reaction of non-

zero mode fluctuations to zero mode. Before including this
effect in the zero mode Schdimger equation we will need to
. subtract the ultraviolet divergences in the expectation value
szf dty/— V7, (4.26) (n?). This is implemented by ordinary renormalization.
to Since this subtracts only ultraviolet divergences, the infrared
part, i.e., long wave mode amplification, remains almost un-
t 1 changed.
d= [ dt = (4.27 Formally we must renormalize in dynamical situations but
to -V in this paper we simply subtract expectation value at initial
From this expression a typical length of the correlated do:“me<772(0)> f.r0m<772(t)>' This is becaqse uItraonet partis
main is not strongly mfluence.d_py the evoll_mon dunng_ tunne]mg
process and hence, initially regularized, ultraviolet diver-
gence will not appear. In the following;?) means this sub-

1/2
t 1
I[(t)~2yd=2 fdt— . 4.2 tracted value.
() ( t \/—_V”) (4.28

After the subtraction of ultraviolet divergence the Sehro

r=|x| (4.295
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dinger equation for zero mode becomes derived the evolution equation of fluctuations around the or-
der parameter. In this formalism we obtain the quantum time
evolution of the order parameter and fluctuations around it.
In some cases the long wave fluctuations are amplified by
instability during tunneling process. This enhances the tun-
whereV,,, is a corrected potential neling of this region. This will be interpreted that creation
and destruction of small bubbles, subcritical bubbles, en-
1 hance the transition of this region. This effect is purely in-
Veor= V(o) + EV”(%);O (n-k7m0) trinsic property and cannot be ignored when we consider the
tunneling phase transition even initially inhomogeneous.

d 32

IE\P=< —E—Z‘FQVCON

v, (5.1
ddg

1 This amplification of fluctuations cannot be included in
T av (o) kéo (Mcp7-k~p) the bounce method and other static treatments in previous
p+k#0 works. Only the dynamical treatment by nonequilibrium
1 quantum field theory can achieve this result.
+ 4—|V (o) ) > (T g~k p—q) - Fma_lly, a few comments. We h_ave not mclgded the re-
: k¥pf§£0 scattering effect in this paper. This becomes important for

rate time when the system approaches equilibrium state.
(5.2 Transition of volume energy to surface energy of the true
In this potential the last term ig, independent and in our Va%'lzjrmm%l:it\)/ t;',[?gn\/\f['lol ggni?c;g??hzyécésa;fifgtbf tnneling is
approximation, (77, 7757 - p) = 0. Therefore this potential to investigate tunneling in the early Universe. In this case the

2 .
depends only on(zxn_). As (»") becomes larger, this expansion of regions suppresses the transition rate. On the
back reaction lower the potential barrier and tunneling tran- . : . .
.. P : other hand, this expansion causes the redshift of physical
sition enhanced. Extreme large“) potential has only one

- wave vectors and leads to the amplification of these red
minimum.

This disagrees with Caldeira-Legget result, i.e., the enVi_shlfted modes. This results in the enhancement of tunneling

ronment prevents tunnelin@5]. This is due to the fact that of this region.
we have neglected the dissipative effect. To include the non-
perturbative effect we have employed the Hartree approxi- ACKNOWLEDGMENTS

mation. As is well known, this approximation cannot include  The author would like to thank the staff of the particle

collision effect. Since these effects transfer energy to anothgheory group at Tohoku University for valuable comments.
mode, they become important especially in late times when

the system approaches asymptotic state. This effect causes
nonzero( 7 7,7m-x-p) and the third term in Eq(5.2) pre-
vents tunneling process. However, if these dissipative effects
are not so strong, then before these effect becomes signifi- In this appendix we derive Ed3.4) in more detail. We
cant the above conclusion that tunneling is enhanced by theeat the time evolution of the system described by the
fluctuations is correct. To include collision effect nonpertur- Schralinger equation
batively, we can use the classical approximafid].

The above alteration of the potential is also subject to the
volume ) of the system we are considering as the amplifi-
cation of fluctuations depend on it. For sm@l| fluctuations
remain small and the potential is almost unchanged. Foln this equation a potential has two minimum, one for false
large Q, fluctuations are enhanced and the potential isvacuum and other for true vacuum. In each minimum we
strongly changed. define the eigenfunctions);, for false vacuum and;, for

In the statistical phase transition the supercooled state isue vacuum. Since we are interested in the evolution of the
unstable and even a small fluctuation from the external eninitial false vacuum state we expand the wave function such
vironment enhances the transition to the true vacuum. Buas
the increase of fluctuations and the enhance of the transition
in quantum tunneling is by itself.

APPENDIX: DERIVATION OF THE EQUATION
OF THE COEFFICIENTS

9
i W=HV. (A1)

Chthn, (A2)

31M 21

N
v= z Cn‘/’n"'
VI. CONCLUSION "

We have investigated in this paper the dynamics duringvhereN andN are finite integers as we are concerned with
tunneling phase transition. We set up the problem in a manthe slow movement of the system. Insert to the Sdimger
ner similar to the phase transition in statistical physics, exequation, we obtain
cept the Langevin equation replaced with a Sdiger

equation. . _i A _£~ _ ~ i~
We defined the order parameter to specify the state of the ICnifnt Cpl ot Yt 'Cn‘”ﬁ“LCﬁ'(gt‘/rn CoH ¢+ crH YR,
system and derived the evolution equation of it. We also (A3)

123502-8
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where an overdot means time derivative. Prodigt and
Ym: , We obtain the differential equation for the coefficients

( 1 <lﬂn7ﬂmr>)(én’) (Mnn’ Mnm’)(cn/)
I - . = _ ,

<¢m¢n’> 1 Em’ an’ Mmm' Cr
(A4)

where
Mnn’:<‘/’nH‘//n <1//n| lﬂn'>, (A5)
0~
M = (@nH ) = { i (A6)
mn’ <¢mH ¢n < ﬁt ¢n’> ’ (A7)
~ ~ ~ O~

Mmm’:<’pmH ‘/’m’>_< wmlﬁl/’m’>- (A8)

In this equation 4,0 ¢,y (whereQO is some operatpmeans
the matrix with elements

(O = f dxy% Oy, (A9)

The condition that this equation does not degenerate is
1

de( _ <¢n¢m’>
<¢mwn’>

1
For small(:,bnTpm) this determinant becomes approximately
1

de( -
<¢m¢n’>

In this case the inverse of this matrix is
1

( <¢n<7fm>) ‘L(
_<Tﬂm¢n>

1
+O((Ynthm)?).

#0. (A10)

( ’ﬁn@m»

L ) =1+ 0((¢nihi)?). (ALD)

1
(Umibra)

- < ‘/’n@m)
1

(A12)
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,d(%)_( Lo —<¢n7ﬁmf>)
) | ) Lo
x(M”'”" M”’"“”)(f”"). (AL3)
Mmnr Mure )\ Copr

This equation becomes with the neglect of the terms

O nthim?),

. d [ Cn (Hnn” Hnm(’) C””) (A14)
i—|~ |= -~ |,
dt Cm Her’ Hmm/ CI’T‘I”
where
. d
Hnnrr:<lanl//nu>_ l/lnlﬁlﬁnu ’ (A15)

~ Jd~ ~ ~ ~
Hnm”:<¢nH ’//m"> - < ‘ﬂniﬁdlm”> _<l/fn¢m’><l/lm’ H 'r//m”>

~ ~ 0~
+<‘r//n‘r/fm’>< 'r/’m’iﬁwm”> ) (A16)

Hmw= <"ZmH ‘ﬂn”) < Il — ¢n"> <"Zm¢n’>< U H ¢n”>

+<Tﬂm¢n’>< lﬂn" ¢n"> ' (A17)

~  ~ ~ 0~
H o= (¥mH o) — < P E¢m”> . (A18)

For time-independen,, and the neglect o®({y¢)) this
equation becomes

Hom = (¢nH ), (A19)
H o= (@nH Pay) = (Wi )G H i), (A20)
H oy = (imH trr) = (Gt Y H ), (A21)
H = (mH ) (A22)

Therefore the differential equation of the coefficients be-

comes

ForN=1 andN=1 this is Eq.(3.4).
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