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Nonequilibrium dynamics of quantum tunneling

Kenji Hirota
Department of Physics, Tohoku University, Sendai 980-8578, Japan

~Received 15 November 1999; published 3 May 2000!

We consider dynamics during phase transitions by quantum tunneling using nonequilibrium quantum field
theory. We define an order parameter to represent a state of the system. The evolution equation of this order
parameter and fluctuations around it are derived. In some cases long wave fluctuations are increased by
instabilities during tunneling processes and these fluctuations enhance the tunneling.

PACS number~s!: 98.80.Cq, 05.70.Fh, 64.60.2i
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I. INTRODUCTION

Phase transitions in the early Universe are very impor
processes since they affected the time evolution of the U
verse@1,2#. Therefore, to understand these phase transit
it is necessary to set up a formalism for describing the
namics during phase transitions. Since in this process
system deviates from the equilibrium state, static quanti
such as effective potential in quantum field theory at fin
and zero temperatures are not suitable for understan
these dynamical aspects of phase transitions.

Recently there has been great progress in nonequilibr
field theory and it is applied to cosmology@3–15#. These
methods enable us to describe the evolution of the out
equilibrium situation including phase transitions. For i
stance, these descriptions are utilized for parametric par
decay in preheating of chaotic inflation@16–21# and spinodal
instability in new inflation@22,23#. In these phenomena th
static description is not applicable and the method includ
time evolution in quantum field theory can be used to und
stand these processes.

In addition to new and chaotic inflation, there is anoth
mechanism of inflation, old inflation, in which the inflatio
proceeds by quantum tunneling@24#. Although the original
old inflation was unsuccessful@25#, there are still inflation
models including tunneling process. Since in chaotic a
new inflation the dynamical description revealed proper
unknown in ordinary methods, we would expect that the
namical description is also important to understand tunn
ing. Therefore it will be needed to describe tunneling in
formulation including the nonequilibrium dynamics durin
this process. However, until now such an approach has
existed. ~There are many papers discussing dynamics
bubbles, i.e., growth and percolation, but we do not cons
it in this paper.!

Our ordinary picture of tunneling is as follows. At first
true vacuum bubble appears in a false vacuum quantum
chanically. If this bubble is larger than the critical bubble,
which the loss of the surface energy is compensated by
gain of the volume energy, then this bubble expands. Fin
these bubbles percolate each other and the entire system
comes true vacuum. This picture is an analogy of a first or
phase transition in statistical mechanics@26# except that in
statistical mechanics bubbles are created thermally not q
tum mechanically.

In this scenario, the basic quantity is a nucleation pr
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ability per unit time per unit volumeG/V and quantum me-
chanics is only related to it. For the calculation of the dec
constant, we usually use bounce method@27,28#. In this
method, time is rotated to imaginary time and quantum pr
lem becomes solving a classical equation of motion in ima
nary time.

This method has been used in various areas but there
some difficulties. First, we calculate the decay constan
homogeneous false vacuum. Certainly in tunneling we u
ally compute a tunneling rate in homogeneous circu
stances. This is because environment effects are mode
pendent and, if we do not concern these specific effects,
assume the system is initially inhomogeneous. Howev
even before true vacuum bubbles larger than the crit
bubble are created, quantum mechanically true vacu
bubbles that are smaller than the critical bubble are produ
and disappearing continuously. This production and colla
of subcritical bubbles will produce some fluctuations inh
ently and it is unclear whether these quantum fluctuation
a metastable false vacuum remain small or not. It is proba
that these fluctuations have a strong influence on the tun
ing. The formulation including the dynamics during tunne
ing enables us to consider this effect.

This is similar to the subcritical bubble effect in a weak
first-order phase transition in electroweak baryogene
@29,30#. In this scenario, if the electroweak phase transit
is weakly first order, this phase transition proceeds by p
duction of subcritical bubbles not the formation of critic
bubbles. Recently this problem has been discussed in a
ferent way in Ref.@31#.

Second, in imaginary time the evolution of wave functio
is not unitary. Moreover, when a Lagarangian has direct
pendence on time, for example, expansion of the universe
there are another fields not tunneling, it is difficult to inte
pret the meaning of time expansion or time evolution. F
example, simple harmonic oscillator becomes inverted h
monic oscillator.

Moreover the amplification of fluctuations is thought
particle creation during tunneling. This problem is treated
various methods@32–34# but all of these methods use imag
nary time. Owing to this, nonunitary Bogoliubov transform
tion is used in Ref.@32#. Therefore we think that describin
the dynamics of tunneling in real time is essential for mo
understanding and application of tunneling.

Motivated by these reasons we treat the dynamics du
tunneling process in flat space time with real time. To inv
©2000 The American Physical Society02-1
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tigate the dynamics of tunneling we use the functional Sch¨-
dinger equation. This formulation makes it possible to d
scribe the evolution of the system including the dynam
during tunneling. As in statistical phase transitions, we
fine the order parameter to represent the state of the sys
We also consider the evolution of fluctuations around
order parameter.

In tunneling not all of these fluctuations are important.
a decay process with a survival probabilityP5exp(2Gt)
whereG is a decay constant, the typical time scale of t
process isG21. In tunneling,G is extremely small and the
typical time scale is greatly large. Therefore we are usu
concerned only an event rate par timeG. However, to under-
stand the dynamics we need to know the time evolution
the system over the long period of time and then rapid fl
tuations compared to this large time scale are neglecte
thought of as noise. The effect of noise surely influences
transition rate@35# but this does not drastically change th
tunneling process and the order ofG. Therefore in this pape
we do not consider these rapid fluctuations.

This article is organized as follows. In the next section
formulate the equations to describe the dynamics of tun
ing, one for order parameter and other for fluctuatio
around an order parameter. In Secs. III and IV the evolut
of an order parameter and fluctuations around it are con
ered. In Sec. V the back reaction of fluctuations to an or
parameter is discussed. Finally in Sec. VI we conclude
paper with some comments.

II. EVOLUTION EQUATIONS OF ORDER PARAMETER
AND FLUCTUATIONS

In this section we derive the equations to describe
evolution of the system during tunneling. The Lagrangian
consider is

L5E dx3H 1

2
~]mf!22V~f!J , ~2.1!

V~f!5
m2

2
f21

g

3!
f31

l

4!
f4, ~2.2!

wherem2 andl are positive andg is negative. This potentia
V(f) has two minima, one is a symmetric false vacuum
f50, and other is a symmetry breaking true vacuum af
5s. We assume the system is in a finite volume and int
duce the discrete Fourier transform of the field as

f~x!5(
k

fke
2 ik•x. ~2.3!

Then the above Lagrangian becomes

L5VH 1

2 (
k

ḟ2kḟk2
1

2 (
k

~k21m2!f2kfk

2
g

3! (
k,p

fkfpf2k2p2
l

4! (
k,p,q

fkfpfqf2k2p2qJ ,

~2.4!
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where the overdot means time derivative andV is the vol-
ume of the system we are considering. The canonical m

mentum conjugate tofk is pk5Vḟ2k and the Hamiltonian
is

H5
1

2V (
k

p2kpk1VH 1

2 (
k

~m21k2!f2kfk

1
g

3! (
k,p

fkfpf2k2p1
l

4! (
k,p,q

fkfpfqf2k2p2qJ .

~2.5!

With this Hamiltonian the Schro¨dinger equation becomes

i
]

]t
C5HC. ~2.6!

whereC is a wave functional and fields in the Hamiltonia
are in the Schro¨dinger representation.

To specify the state of the system we define the or
parameterfc as

fc5
1

VE dx3^f~ t,x!&5
1

VE dx3E @df#C* f~x!C,

~2.7!

where@df#5)ydf(y). The vacuum in which the state re
sides is represented by the value of this parameter. If
system is in the symmetric false vacuum, the value of
order parameter is zero. If the system is in symmetry bre
ing true vacuum, the value of the order parameter iss.

Ordinarily we derive the equation of motion forfc using
above definition offc and the Schro¨dinger equation and then
determine the evolution of the order parameter. This i
classical equation with quantum corrections. For phase t
sitions in statistical physics and new and chaotic inflatio
this equation will be suitable for describing the evolution
the system. However, tunneling is basically quantum p
nomenon and cannot be described by the classical equa
of motion for the order parameterfc . For this reason we
will take the following way. Since the order parameter
independent to spatial coordinates, only the zero momen
mode off contributes tofc . Therefore instead of the clas
sical equation of motion for the order parameter, we der
the Schro¨dinger equation for the zero mode and define
evolution of the order parameterfc .

We assume the wave functional of the system can be
torized to the wave functions of zero mode and nonz
modesC5CzeroCnonzero. This is possible for the homoge
neous configuration, which is an initial condition we take
2-2
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ProductCnonzero* to the Schro¨dinger equation~2.6! and integrate out non zero modes. Then the Schro¨dinger equation for the
zero mode is

i
]

]t
Czero5HzeroCzero, ~2.8!

with the Hamiltonian

Hzero52
1

2V

]2

]f0
2

1VH V~f0!1
1

2
V9~f0!(

kÞ0
^f2kfk&1

1

3!
V-~f0! (

k,pÞ0
k1pÞ0

^fkfpf2k2p&

1
1

4!
V-8~f0! (

k,p,qÞ0
k1p1qÞ0

^fkfpfqf2k2p2q&1 K S Hnon zero2 i
]

]t D L J ~2.9!
nc

l

u

e

te
face
where primes stand for derivatives with respect tof0 and
^•••& are expectation values with nonzero mode wave fu
tion CnonzeroandHnonzeroincludes only nonzero mode off.
The terms independent tof0 only contribute to an over al
phase factor of the wave functionCzero and we will neglect
them in the following.

This is the evolution equation of the order parameter d
ing tunneling. The terms include expectation value offk is
back reaction of fluctuations to the evolution of the ord
parameter. The value of the order parameterfc is evaluated
by the definition~2.7! with the wave function of this Schro¨-
dinger equation.

Next we consider fluctuations around the order parame
At first we write the field as

f5fc1h5fc1(
k

hke
2 ik•x, ~2.10!

wherehk are equivalent tofk for kÞ0. Substitute this into
the Lagrangian~2.2! and obtain
d

co

12350
-

r-

r

r.

L5VH 1

2
ḟc

22V~fc!2@f̈c1V8~fc!#h01
1

2 (
k

ḣ2kḣk

2
1

2 (
k

@k21V9~fc!#h2khk

2
1

3
V-~fc!(

k,p
hkhph2kÀp

2
1

4!
V-8~fc! (

k,p,q
hkhphqh2k2p2qJ , ~2.11!

where we have partially integrated and discarded the sur
term. The momentum conjugate tohk is

phk
5Vḣ2k ~2.12!

and the Hamiltonian for fluctuations is
Hh5
1

2V (
k

p2kpk1VH V~fc!1@f̈c1V8~fc!#h01
1

2 (
k

S @k21V9~fc!#h2khk1
1

3!
V-~fc!(

k,p
hkhph2k2p

1
1

4!
V-8~fc! (

k,p,q
hkhphqhÀkÀpÀqJ . ~2.13!
er
-

The quantum fluctuations around the order parameter is
termined by the Schro¨dinger equation

i
]

]t
Ch5HhCh . ~2.14!

Equations~2.8!, ~2.9!, ~2.13!, and ~2.14! are equations to
describe the dynamics during tunneling process and we
sider each equations in the following sections.
e-

n-

III. ORDER PARAMETER

In this section we consider time evolution of the ord
parameterfc in the Schro¨dinger equation without back re
action

i
]

]t
C5HC, ~3.1!
2-3
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KENJI HIROTA PHYSICAL REVIEW D 61 123502
H52
1

2V

]2

]f2
1VV~f!, ~3.2!

whereH andC areHzero andCzero in the previous section
respectively. In this equation the potential has two minim
one is symmetric vacuum, whose positions we calls0 and
adjust to the origin, and another is symmetry break
vacuum, we calls2.

For sufficiently deep wells we can approximately defi
eigenstates near the bottoms of each minimum and exp
the state with these eigenstates. As we are concerned t
transition from one minimum to another minimum, we e
pand a stateC with these eigenfunctions in two minima:

C5(
n

cncn1(
ñ

c̃ñc̃ ñ , ~3.3!

wherecn and c̃ ñ are eigenfunctions in the minimas0 and
s2, respectively. This is an extention of Ref.@12#. After sub-
stitution of this expansion into Eq.~3.1! and production of
cn and c̃ ñ , we obtain an evolution equation for coefficien
~see the Appendix in detail!:

i
d

dt S cn

c̃ñ
D 5S Hnm Hnm̃

Hñm Hñm̃
D S cm

c̃m̃
D , ~3.4!

whereHnm̃5^cnHc̃m̃& andcm andcm̃ are column vectors. In
this expression we omitted the terms whose order
O(^cnc̃m̃&).

We calculate the matrix elements. As the statescn and
c̃ ñ , we use approximate solutions of equations:

Hc5Ec at f,s1 , ~3.5!

Hc̃5Ẽc̃ at f.s1 , ~3.6!

wheres1 is a value where the potential is local maximu
andc is small inf.s1 andc̃ is small inf,s1. Therefore
Hnm5Endnm and Hñm̃5Ẽñd ñm̃ . As the matrix elements

^cc̃& is extremely small, we use WKB approximation for th
off diagonal elementŝcHc̃& @36#. In the classically forbid-
den region WKB solutions are

c5
C

AW
expS 2E

a

f

dfWD , ~3.7!

c̃5
C̃

AW̃
expS 2E

f

b

dfW̃D , ~3.8!

where W5A2V(VV2E), W̃5A2V(VV2Ẽ), and W(a)
50 and W̃(b)50. C, C̃ are constants and we setC

5(Vv0/2p)1/2 and C̃5(Vṽ0/2p)1/2 with v05V9(s0) and
ṽ05V9(s2). This normalizesc and c̃ in f,s1 and f
.s1, respectively.

Then consider
12350
,

g

nd
the

is

^cHc̃&5E
2`

`

dfcS 2
1

2V

]2

]f2
1VVD c̃. ~3.9!

For f.s1 , c̃ is an eigenfunction@see Eq.~3.6!# and the
integrand becomesẼcc̃. However, in this region this inte
gration is negligible asc is extremely small and the integra
is restricted in the regionf,s1. By partial integrations, this
integration becomes

^cHc̃&52
1

2
Fc

]c̃

]f
2

]c

]f
c̃G

2`

s1

1E
2`

s1
dfc̃S 2

1

2V

]2

]f2
1VVD c. ~3.10!

The last term is negligible by the same argument applied
the integration in the regionf.s1. Sincec5c̃50 at f
52`,

^cHc̃&52
1

2
C* C̃SAW̃

W
1AW

W̃
D U

s1

3expS 2E
a

s1
dfW2E

s1

b

dfW̃D . ~3.11!

In the caseẼ5E,

^cHc̃&52C* C̃expS 2E
a

b

dfWD . ~3.12!

To gain a qualitative picture we restrict to two states, o
localized inf;s0 and other inf;s2. In this case Eq.~3.4!
can be easily solved and the solution is

S c

c̃
D 5

1

l22l1
S e2 il1t~l12E!2e2 il2t~l22E!

2D~e2 il1t2e2 il2t! D ,

~3.13!

where l65 1
2 @E1Ẽ6A(E2Ẽ)214D2# and D5^cHc̃&.

The order parameter isfc5uc̃u2s. This shows oscillatory
behavior between two states with a periodT52p/(l1

2l2). This period is

T5
2p

uE2Ẽu
, ~3.14!

for two states with large energy difference and

T5
p

uC* C̃u
expS E

a

b

dfWD , ~3.15!

for two states withE5Ẽ. The oscillation is rapid when the
energy gap is large and slow when the energy gap of
states is small. In general, the solution is superposition
these oscillations. Since in these oscillations the rapid fl
2-4
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tuations can be considered as noise, the state of the syst
mainly ruled by the slowest motion, i.e., the oscillation b
tween the false vacuum and the nearest energy state in
minimum. Therefore the order parameterfc is regarded as a
slowly oscillating variable between 0 ands. It looks effec-
tively as if the classical fieldfc moves in an extremely fla
potential with effective mass (l12l2).

From the V dependence ofT for E5Ẽ, the periodT
grows with V except smallV. Therefore for largeV the
order parameterf varies slowly.

In the thin-wall approximation,a50 andb5s and for a
false vacuumE50. In this case the inverse of the half perio
is

~T/2!21}VexpS 2VE
0

s

dfA2VD . ~3.16!

For the critical bubble in the thin wall approximation th
bubble radius is@27#

R53

E
0

s2
dfA2V~f!

V~0!2V~s2!
, ~3.17!

and the exponent of Eq.~3.16! agrees with that of a deca
constant of the false vacuum that is calculated with
bounce method, except numerical factor.
e
n

tu
et
f

g
i
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.

o

12350
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e

The oscillational property of this solution will be term
nated by the dissipative effect ignored in this paper. But u
the dissipation becomes effective, the above time evolu
is preserved and the conclusion in this paper is consisten
the early stage. The decay rate of this oscillation is appro
mately proportional tou^c̃ ñH intc&u2 whereH int is an interac-
tion term with another degree of freedom.c is a false
vacuum state andc̃n are lower energy states. By definitionc

is the lowest energy state localized inf50 and thenc̃n are
all localized in f5s. Therefore the matrix element

^c̃ ñH intc& are exponentially suppressed and the oscillat
behavior remains sufficiently long period.

IV. FLUCTUATIONS AROUND THE ORDER PARAMETER

In this section we consider the evolution of fluctuatio
around the order parameterfc(t). Once the motion of the
order parameter is specified the treatment of fluctuati
around the order parameter follows the previous works@5#.
We deal with the equation

i
]

]t
Ch5HhCh ~4.1!

with the Hamiltonian
Hh52
1

2V (
k

]2

]h2k]hk
1VH @f̈c1V8~fc!#h01

1

2 (
k

@k21V9~fc!#h2khk1
1

3!
V-~fc!(

k,p
hkhph2k2p

1
1

4!
V-8~fc! (

k,p,q
hkhphqh2k2p2qJ , ~4.2!
me

s
ini-
ho-
uum

an

d.
ys-
ccurs

ill
ion
dal

ro-
of
where we have discarded the terms independent to the fi
hk because it becomes over all phase factor of wave fu
tion.

At first we concentrate on the terms quadratic inhk be-
cause as an initial condition we assume there are no fluc
tions. As derived in the previous section, the order param
fc moves slowly from 0 tos. During this, the square o
frequency

vk
25k21V9~fc! ~4.3!

can be negative for small wavenumberk in some period
because the potential is nonconvex, i.e.,V9(fc),0 whenfc
is in spinodal region. When the square of frequency is ne
tive this mode increases exponentially. This amplification
the long wave modes of fluctuations is common to the ph
transitions in statistical physics and quantum field theory

The maximum value ofuku2 with negative vk
2 is the

square root of the absolute value of the minimum value
V9, we call Vmin9 , then uku,uVmin9 u1/2. On the other hand, in
lds
c-

a-
er

a-
n
e

f

the region with the volumeV, the minimum value ofuku is
2pV21/3, thenuku.2pV21/3.

Therefore if the system we consider has the volu
smaller thanuVmin9 u23/2, the square of the frequencyvk

2 re-
mains positive for allfc and the long wave fluctuations doe
not increase. This indicates that the fluctuations remain
tial small quantum fluctuations and the system stays in
mogeneous and the entire volume transits to the true vac
simultaneously.

On the contrary, if the region has the volume larger th
uVmin9 u23/2, the square of the frequencyvk

2 can be negative for
some value offc and the long wave modes are amplifie
This indicates that the fluctuations are amplified and the s
tem becomes inhomogeneous and phase separation o
and domains are formed. Therefore the entire volume w
not transit to the true vacuum simultaneously but each reg
transits to the true vacuum separately. This is the spino
decomposition in statistical mechanics.

In usual picture of tunneling, the phase transition p
ceeds by the production of the critical bubbles. The radius
2-5
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KENJI HIROTA PHYSICAL REVIEW D 61 123502
this critical bubble is larger thanuVmin9 u23/2 in a nearly de-
generated potential. This suggests that for the models
usually use thin wall approximation, that is the nearly deg
erate potential, the homogeneous bubble formation is
probable. Before formation of critical bubbles, subcritic
bubbles are produced and these make the system inhom
neous. This will be quantum mechanical counterpart of s
critical bubbles in a weakly first-order phase transition
electroweak baryogenesis@29#.

In tunneling phase transition, quantum mechanically t
vacuum subcritical bubbles are formed and destroyed c
tinuously. These attempts produce fluctuations. Owing to
instability of the system, some of these fluctuations do
remain small but amplified. On the other hand, in the tunn
ing process we assume that the entire space is in the
vacuum and there is no inhomogeneity. Therefore, we
concerned with the bubble nucleation rate in the homo
neous background in the ordinary method. However,
above amplified fluctuations are originated to the quant
fluctuations and the instability of this system. These effe
are, for that reason, intrinsic and we cannot ignore th
effects in the tunneling process. When we treat the tunnel
we must include these effects in some cases.

In each region, except near the boundary, the order
rameter defined in this region takes the definite value, tha
zero for false vacuum ands for true vacuum. The origina
order parameter is average of these order parameters in
region, fc5(0V false1sV true)/(V false1V true), where V false
and V true mean the total volume in false and true vacuu
respectively. Therefore the approximate fraction of the v
ume in true vacuum isV true/V total5fc /s.

A. Linear approximation

We consider the equation quadratic inh,

i
]

]t
C5(

k
H 2

1

2V

]2

]hk]h2k
1

1

2
Vvk

2hkh2k

1V@f̈c1V8~fc!#h0dk,0J C. ~4.4!

In this case wave function decompose to each mode. In e
mode this equation can be solved by the Gaussian ansa

C5)
k

Ck , ~4.5!

where

Ck5AkexpS 2
1

2
VBkhkh2k1VCh0dk,0D . ~4.6!

The Schro¨dinger equation becomes equation ofAk and Bk
andC.

Ȧk52
i

2
~Bk2VC2dk,0!Ak , ~4.7!
12350
e
-
-

l
ge-
-

e
n-
e
t

l-
lse
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-

e

ts
e
g,

a-
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ach

,
l-

ch

Ḃk52 iBk
21 ivk

2 , ~4.8!

Ċ52 iB0C1f̈c1V8~fc!. ~4.9!

By the first equation,Ak can be expressed withBk and C.
The second equation becomes a linearized equation by
replacement

Bk52 i
ẇk

wk
, ~4.10!

then

ẅk1vk
2wk50. ~4.11!

The solution of this equation increases exponentially wh
the square of frequency is negative.

Initial conditions areBk(t0)5vk(t0) and for convenience
we take forwk

wk~ t0!5
1

Avk~ t0!
, ~4.12!

ẇk~ t0!5 iAvk~ t0!. ~4.13!

From Eq.~4.9! and an initial conditionC(t0)50,

C5
1

w0~ t !Et0

t

dt8~2 i !$f̈c~ t8!1V8@fc~ t8!#%w0~ t8!.

~4.14!

With theses quantities two point functions are expres
simply

^hkh2k&5
uwku2

2V
for kÞ0, ~4.15!

^h0
2&5

uw0u2

V S 1

2
1Vuw0u2~ReC!2D , ~4.16!

where ReC is a real part ofC. These increase exponential
for long wave modes duringvk

2 is negative.
In this wave function the expectation value of a line

term

^h0&5uw0u2ReC, ~4.17!

is nonzero by the existence ofC unlessC is pure imaginary.
This contradicts with the fact̂h&50 that follows from the
definition of h in Eq. ~2.10!. This is due to the linear ap
proximation in this subsection and then we redefine the
point function of zero mode as

^h0
2&unew5^h0

2&2^h0&
25

uw0u2

2V
. ~4.18!

In the following ^h0
2& means this redefined expectatio

value.
2-6
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The solution of Eq.~4.11! is solved by WKB approxima-
tion. In the regiont,tk wheretk is a timevk(tk)50,

wk~ t !5eid
1

Apk~ t !
expS 2 i E

t

tk
dtpk~ t ! D ~4.19!

then

uwk~ t !u25
1

pk~ t !
, ~4.20!

wherepk(t)5Avk
2 and d is a constant. In the regiont.tk

the solution is

wk~ t !5eid1 ip/4
1

Apk~ t !
expS E

tk

t

dtpk~ t ! D ~4.21!

then

uwk~ t !u25
1

pk~ t !
expS 2E

tk

t

dtpk~ t ! D ~4.22!

wherepk(t)5A2vk
2.

With these quantities we consider two point correlati
function. For largeV, which is a case in thin wall approxi
mation,

^h~x,t !h~0,t !&5(
k

e2 ik"x
uwku2

2V
5

1

2E dk3e2 ik"xuwku2.

~4.23!

For late time t@t0 , uwku2 is given by Eq.~4.22!. In this
integration smallk region contribute to this integration. Th
result is

^h~x,t !h~0,t !&5
1

16p3/2

1

A2V9

ece2r 2/4d

d3/2 H 11
1

4

1

2V9

1

d

3S 32
r 2

2dD J , ~4.24!

whereV95]2V/]t2 and

r 5uxu ~4.25!

c52E
t0

t

dtA2V9, ~4.26!

d5E
t0

t

dt
1

A2V9
. ~4.27!

From this expression a typical length of the correlated
main is

l ~ t !;2Ad52S E
t0

t

dt
1

A2V9
D 1/2

. ~4.28!
12350
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This length grows in time asl (t);(t2t0)1/4 in the beginning
and l (t);(t2t0)1/2 in the late times.

B. Hartree approximation

Until now we have neglected the termsh3 and h4 but
since the fluctuations increase exponentially we cannot
glect these terms. Furthermore we cannot use the pertu
tion for the terms withh3 andh4 as these are large even
small couplings. We need nonperturbative method.

Nonperturbative method we can use in this paper is H
tree approximation. This is achieved by the replacement

(
k,p

hkhph2k2p→(
k,p

3^hkhp&h2k2p , ~4.29!

(
k,p,q

hkhphqh2k2p2q→ (
k,p,q

~6^hkhp&hqh2k2p2q

23^hkhp&^hqh2k2p2q&!

~4.30!

in the Hamiltonian~4.2!.
By Hartree approximation, the square of the frequen

becomes

vk
(H)25k21V9~fc!1

1

2 (
k

^h2khk&, ~4.31!

where superscriptH means this quantity is Hartree approx
mation. Last term prevents the square of frequency beco
negative for large(k^h2khk&.

By the last term in Eq.~4.31!, vk
(H)2 does not take nega

tive value for large^h2&. In a finite volume, there exists
minimum value ofuku, we callkmin . Therefore the maximum
value of(k^h2khk& is

(
k

^h2khk&umax52V9~fc!umin2kmin
2 . ~4.32!

V. BACK REACTION OF FLUCTUATIONS
TO TUNNELING

In this section we will consider a back reaction of no
zero mode fluctuations to zero mode. Before including t
effect in the zero mode Schro¨dinger equation we will need to
subtract the ultraviolet divergences in the expectation va
^h2&. This is implemented by ordinary renormalizatio
Since this subtracts only ultraviolet divergences, the infra
part, i.e., long wave mode amplification, remains almost
changed.

Formally we must renormalize in dynamical situations b
in this paper we simply subtract expectation value at ini
time ^h2(0)& from ^h2(t)&. This is because ultraviolet part i
not strongly influenced by the evolution during tunnelin
process and hence, initially regularized, ultraviolet div
gence will not appear. In the followinĝh2& means this sub-
tracted value.

After the subtraction of ultraviolet divergence the Schr¨-
2-7
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dinger equation for zero mode becomes

i
]

]t
C5S 2

1

2V

]2

]f0
2

1VVcorrD C, ~5.1!

whereVcorr is a corrected potential

Vcorr5V~f0!1
1

2
V9~f0!(

kÞ0
^h2khk&

1
1

3!
V-~f0! (

k,pÞ0
p1kÞ0

^hkhph2k2p&

1
1

4!
V-8~f0! (

k,p,qÞ0
k1p1qÞ0

^hkhphqh2k2p2q&.

~5.2!

In this potential the last term isf0 independent and in ou
approximation,^hkhph2k2p&50. Therefore this potentia
depends only on̂ hkh2k&. As ^h2& becomes larger, this
back reaction lower the potential barrier and tunneling tr
sition enhanced. Extreme large^h2& potential has only one
minimum.

This disagrees with Caldeira-Legget result, i.e., the en
ronment prevents tunneling@35#. This is due to the fact tha
we have neglected the dissipative effect. To include the n
perturbative effect we have employed the Hartree appr
mation. As is well known, this approximation cannot inclu
collision effect. Since these effects transfer energy to ano
mode, they become important especially in late times w
the system approaches asymptotic state. This effect ca
nonzero^hkhph2k2p& and the third term in Eq.~5.2! pre-
vents tunneling process. However, if these dissipative eff
are not so strong, then before these effect becomes sig
cant the above conclusion that tunneling is enhanced by
fluctuations is correct. To include collision effect nonpertu
batively, we can use the classical approximation@37#.

The above alteration of the potential is also subject to
volume V of the system we are considering as the amp
cation of fluctuations depend on it. For smallV, fluctuations
remain small and the potential is almost unchanged.
large V, fluctuations are enhanced and the potential
strongly changed.

In the statistical phase transition the supercooled stat
unstable and even a small fluctuation from the external
vironment enhances the transition to the true vacuum.
the increase of fluctuations and the enhance of the trans
in quantum tunneling is by itself.

VI. CONCLUSION

We have investigated in this paper the dynamics dur
tunneling phase transition. We set up the problem in a m
ner similar to the phase transition in statistical physics,
cept the Langevin equation replaced with a Schro¨dinger
equation.

We defined the order parameter to specify the state of
system and derived the evolution equation of it. We a
12350
-
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derived the evolution equation of fluctuations around the
der parameter. In this formalism we obtain the quantum ti
evolution of the order parameter and fluctuations around

In some cases the long wave fluctuations are amplified
instability during tunneling process. This enhances the t
neling of this region. This will be interpreted that creatio
and destruction of small bubbles, subcritical bubbles,
hance the transition of this region. This effect is purely
trinsic property and cannot be ignored when we consider
tunneling phase transition even initially inhomogeneous.

This amplification of fluctuations cannot be included
the bounce method and other static treatments in prev
works. Only the dynamical treatment by nonequilibriu
quantum field theory can achieve this result.

Finally, a few comments. We have not included the
scattering effect in this paper. This becomes important
rate time when the system approaches equilibrium st
Transition of volume energy to surface energy of the tr
vacuum bubbles will be carried by this effect.

Our motivation to consider the dynamics of tunneling
to investigate tunneling in the early Universe. In this case
expansion of regions suppresses the transition rate. On
other hand, this expansion causes the redshift of phys
wave vectors and leads to the amplification of these
shifted modes. This results in the enhancement of tunne
of this region.
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APPENDIX: DERIVATION OF THE EQUATION
OF THE COEFFICIENTS

In this appendix we derive Eq.~3.4! in more detail. We
treat the time evolution of the system described by
Schrödinger equation

i
]

]t
C5HC. ~A1!

In this equation a potential has two minimum, one for fa
vacuum and other for true vacuum. In each minimum
define the eigenfunctions,cn for false vacuum andc̃ ñ for
true vacuum. Since we are interested in the evolution of
initial false vacuum state we expand the wave function s
as

C5(
n

N

cncn1(
ñ

Ñ

c̃ñc̃ ñ , ~A2!

whereN and Ñ are finite integers as we are concerned w
the slow movement of the system. Insert to the Schro¨dinger
equation, we obtain

i ċncn1cni
]

]t
cn1 i ċ̃ ñc̃ ñ1 c̃ñi

]

]t
c̃ ñ5cnHcn1 c̃ñHc̃ ñ ,

~A3!
2-8
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where an overdot means time derivative. Productcn8 and
c̃m8 , we obtain the differential equation for the coefficien

i S 1 ^cnc̃m8&

^c̃mcn8& 1
D S ċn8

ċ̃m8

D 5S Mnn8 Mnm8

Mmn8 Mmm8
D S cn8

c̃m8
D ,

~A4!

where

Mnn85^cnHcn8&2 K cni
]

]t
cn8L , ~A5!

Mnm85^cnHc̃m8&2 K cni
]

]t
c̃m8L , ~A6!

Mmn85^c̃mHcn8&2 K c̃mi
]

]t
cn8L , ~A7!

Mmm85^c̃mHc̃m8&2 K c̃mi
]

]t
c̃m8L . ~A8!

In this equation̂ cnOcm& ~whereO is some operator! means
the matrix with elements

^cnOc̃m&5E dxcn* Oc̃m . ~A9!

The condition that this equation does not degenerate is

detS 1 ^cnc̃m8&

^c̃mcn8& 1
D Þ0. ~A10!

For small^cnc̃m& this determinant becomes approximate

detS 1 ^cnc̃m8&

^c̃mcn8& 1
D 511O~^cnc̃m̃&2!. ~A11!

In this case the inverse of this matrix is

S 1 ^cnc̃m&

^c̃mcn& 1
D 21

5S 1 2^cnc̃m&

2^c̃mcn& 1
D

1O~^cnc̃m&2!. ~A12!

Therefore the differential equation of the coefficients b
comes
y

12350
-

i
d

dt S cn

c̃m
D 5S 1nn8 2^cnc̃m8&

2^c̃mcn8& 1mm8
D

3S Mn8n9 Mn8m9

Mm8n9 Mm8m9
D S cn9

c̃m9
D . ~A13!

This equation becomes with the neglect of the ter
O(^cnc̃m̃&2),

i
d

dt S cn

c̃m
D 5S Hnn9 Hnm9

Hmn9 Hmm9
D S cn9

c̃m9
D , ~A14!

where

Hnn95^cnHcn9&2 K cni
]

]t
cn9L , ~A15!

Hnm95^cnHc̃m9&2 K cni
]

]t
c̃m9L 2^cnc̃m8&^c̃m8Hc̃m9&

1^cnc̃m8&K c̃m8i
]

]t
c̃m9L , ~A16!

Hmn95^c̃mHcn9&2 K c̃mi
]

]t
cn9L 2^c̃mcn8&^cn8Hcn9&

1^c̃mcn8&K cn8i
]

]t
cn9L , ~A17!

Hmm95^c̃mHc̃m9&2 K c̃mi
]

]t
c̃m9L . ~A18!

For time-independentcn and the neglect ofO(^cc̃&) this
equation becomes

Hnn95^cnHcn9&, ~A19!

Hnm95^cnHc̃m9&2^cnc̃m8&^c̃m8Hc̃m9&, ~A20!

Hmn95^c̃mHcn9&2^c̃mcn8&^cn8Hcn9&, ~A21!

Hmm95^c̃mHc̃m9&. ~A22!

For N51 andÑ51 this is Eq.~3.4!.
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