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Magnetic field decay in neutron stars: Analysis of general relativistic effects
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An analysis of the role of general relativistic effects on the decay of a neutron star’s magnetic field is
presented. At first, a generalized induction equation on an arbitrary static background geometry has been
derived and, secondly, by a combination of analytical and numerical techniques, a comparison of the time
scales for the decay of an initial dipole magnetic field in flat and curved spacetime is discussed. For the case
of very simple neutron star models, rotation is not accounted for and, in the absence of cooling effects, we find
that the inclusion of general relativistic effects result, on the average, in an enlargement of the decay time of
the field in comparison to the flat spacetime case. Via numerical techniques, we show that the enlargement
factor depends upon the dimensionless compactness ratioe52GM/c2R, and for e in the range 0.3–0.5,
corresponding to the compactness ratio of realistic neutron star models, this factor is between 1.2 and 1.3. The
present analysis shows that general relativistic effects on magnetic field decay ought to be examined more
carefully than hitherto. A brief discussion of our findings on the impact of neutron star physics is also
presented.

PACS number~s!: 97.60.Jd, 95.30.Sf, 97.10.Ld
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I. INTRODUCTION

It is well known @1# that a magnetic field in a plasma o
finite conductivity is subject to diffusion and dissipatio
Diffusion leads to a spreading of inhomogeneities while d
sipation is due to the Ohmic decay of the currents produc
the field. More concretely, a magnetic fieldB(t,x) in a
plasma of uniform conductivitys evolves, in flat spacetime
according to the following diffusion equation@1#:

]B~ t,x!

]t
5

c2

4ps
¹2B~ t,x!. ~1.1!

Accordingly, if L is a typical length scale of the field struc
ture, then it will decay or diffuse in a characteristic tim
scaletOhm given bytOhm54psL2/c2. Depending upon the
prevailing conditions, the Ohmic decay timetOhm can range
from seconds, in the case of a copper sphere of radius
few centimeters@1#, up to tOhm51010 yr or even much
longer for astrophysical settings, as in the case of the sun@1#
or a neutron star@2#.

The interactions of large scale cosmic magnetic fie
with plasmas is a problem of great importance in astroph
ics and cosmology. A particularly thorny issue nowada
concerns the origin and maintenance of cosmic magn
fields. Although large scale fields have been observed@3#, a
satisfactory explanation of their origin is still lacking
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Peebles@4# considers the issue of the origin of the primord
magnetic field as one of the most important unsolved pr
lems in cosmology. At the same time the gigantic field of t
pulsars begs for an explanation@5#. The general consensus o
the astrophysical community@6# is that such large scale
fields have been generated via an episode of dynamo ac
@7#, and then gradually suffer Ohmic decay due to the fin
conductivity of the medium. It appears, therefore, that
understanding of the factors influencing the decay of la
scale fields, combined with relevant observations, may o
important clues towards a better understanding of the in
scale involved as well as clues regarding its origin.

In neutron stars the decay of the magnetic field is an is
of most importance by itself@8# and accordingly there ha
been an intense effort by astrophysicists to understand
factors governing this decay. As far as we are aware
theoretical modeling of magnetic field decay in neutron st
utilized the familiar flat spacetime form of Maxwell’s equa
tions ~an exception to this rule constitutes the recent work
Ref. @9#!. Although the employment of such framework is
fruitful one and provides us with valuable informations,
altogether neglects the background curvature of the sp
time which for the case of neutron stars is not any lon
weak. It would be worthwhile to stress, in that regard, th
curvature can modify considerably flat spacetime solutio
of Maxwell’s equations. For instance, the reader may co
pare the solution describing a dipole magnetic field on
Schwarzschildbackground@10# to that of a flat space time
The presence of the logarithmic term in the former@see Eqs.
~3.17! further below# is a sole consequence of the nonva
ishing curvature. This example suggests that the role of
spacetime curvature on the decay process of magnetic fi
©2000 The American Physical Society04-1
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ought to be examined more thoroughly than hitherto. In t
respect, we are aware only of the recent work of Sengu
@9#, where an investigation of general relativistic effects
the magnetic field decay of neutron stars have been
tempted. However, this work is restricted to the study
magnetic fields confined only to the outermost layers o
neutron star and furthermore it is assumed that those ou
most layers~and thus also the magnetic fieldB), are embed-
ded on aSchwarzschildbackground geometry. Thus, strictly
the framework of Ref.@9# deals exclusively with magneti
decay on aSchwarzschildbackground. In addition to thos
approximations and according to the sentence following
~15! of Sengupta’s second work, the author fails to inclu
general relativistic effects on the outer boundary condit
for matching the inner field with the outer vacuum dipo
field across the surface of the star. In contrast, in the pre
work, a broad framework dealing with general relativis
effects on the magnetic field decay on an arbitrary st
geometry, and with proper allowance of the correct gene
relativistic inner and outer boundary conditions, is presen
Moreover, and in contrast to the approach of Ref.@9#, we
formulate the entire problem avoiding the introduction o
vector potential and the associated ambiguities. Our ana
shows that general relativistic effects@11# can influence the
field decay, but the precise manner that this influence m
fests itself depends upon the class of observers called i
describe the field decay. For the magnetic field of a non
tating neutron star it is natural to describe the field de
relative to the class observers that find themselves at
relative to the star, i.e., the class of Killing observers. Re
tive to such observers, we find that relativistic effects
influencing the field decay via two major modes: the gra
tational redshift as well as the intrinsic curved geometry
the spatial sections constituting the rest space of the Kil
observers. Subsequent numerical analysis shows that the
shift factor is the dominant one in slowing down the fie
decay. Overall we find that the inclusion of relativistic e
fects make the decay time of the field larger than, but of
same order of magnitude, as in flat spacetime. Neverthe
the preliminary study of the present paper utilizing a sim
nonrotating neutron star model suggests that general rel
istic effects should be given further considerations. We
plicitly illustrate the impact of relativistic effects upon th
magnetic field decay, by examining the evolution of a ma
netic field permeating a constant density neutron star, firs
their presence and second without them. Although for b
treatments we have obtained exponential decays, the d
time in the presence of relativistic effects, on the average
enlarged by a factor that depends crucially upon the valu
the compactness ratioe52GM/c2R. Specifically for values
of e in the domain (0.3,0.5), characterizing realistic neutr
star models, we find that the decay time is 1.2–1.3 lar
than the corresponding flat decay time, while for higher v
ues ofe, it can be larger. We may add parenthetically th
the term ‘‘average’’ increase in the decay time, is explain
in detail in Sec. IV of the paper.

The present paper is organized as follows: In the follo
ing section, starting from Maxwell’s equations on a sta
spacetime, we first derive the relevant induction equat
12300
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taking into account the curved nature of the backgrou
spacetime geometry. It should be stressed, however, tha
employment of a static geometry does not leave room
incorporating gravitomagnetic~Lense-Thirring! effects in the
induction equation, as the latter would manifest themsel
relative to nonstatic backgrounds, but we do hope to pres
such analysis in a future work. In Sec. III, we specialize t
induction equation to a simple neutron star model and a
tailed analysis of the content of the induction equation
presented. In the same section the sensitive issue of
boundary conditions accompanying the induction equatio
also addressed. In Sec. IV, we discuss numerical solution
the curved spacetime induction equation and an assess
of the relativistic factors influencing the field decay is d
cussed. Furthermore, in the same section, a compariso
the field decay in curved and flat spacetime is also presen
In the concluding section, a brief discussion of the physi
implications of our results to neutron stars physics is p
sented and a possible extension of the present work is
lined. Finally, we have included an Appendix where a fe
intermediate calculations leading to the main equations
Sec. II are presented.

II. INDUCTION EQUATION ON A STATIC BACKGROUND
GEOMETRY

Maxwell’s equations, in covariant form, are as follow
@12,13#:

¹aFab52
4p

c
Jb , ~2.1a!

¹ [aFbg]50, ~2.1b!

whereFab52Fba , Ja , and ¹ are the coordinate compo
nents of the Maxwell tensor, the conserved four current a
the derivative operator, respectively. Given a solutionFab of
the above equations, an observer with four veloc
Ua, UaUa521, measures electric and magnetic fiel
(E,B) with corresponding coordinate components given,
spectively by

Ea5FabUb, Ba52
1

2
eab

gd FgdUb, ~2.2!

whereeabgd stands for the four-dimensional Levi-Civita ten
sor density@14#. We shall be concerned in this paper wi
particular solutions of Eq.~2.1! where the currentJ is de-
scribed by the following relativistic extension of Ohm’s law
as it was first formulated by Weyl@15#:

Ja5sgabFbgVg, ~2.3!

where in the above equation, (Va,s) stands for the four ve-
locity of a conducting neutral plasma and its scalar electr
conductivity @16#, respectively. Although Eqs.~2.1!–~2.3!
are valid for any kind of background geometries and plasm
characterized by arbitrary four velocity and conductivit
hereafter we shall restrict our consideration to backgrou
geometries that are globally static. Staticity in turn allows
4-2
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to select coordinates so that the spacetime geometry ca
written in the form ~see, for instance, discussion in Re
@12,13#!:

ds252e2F~dxo!21g i j dxidxj , ~2.4!

wherexo5ct,g i j are functions of the the spatial coordinat
xi ( i 51,2,3), andj denotes the hypersurface orthogon
timelike Killing vector field obeying:jaja52e2F. For the
above form of the line element, Maxwell’s equations~2.1!
and the current conservation law¹aJa50 can be rewritten
in an equivalent form involving only the components (Ei ,Bi)
of the electric and magnetic fields, respectively, as well
the charge densitycr52UmJm and spatial current densit
Ji as measured by the Killing observers@17,18#. More pre-
cisely if by Um we denote their four velocity then Eqs.~2.1!
yield the following equivalent set~see Appendix for details
or Refs.@17,18#!:

DiE
i54pr, DiB

i50, ~2.5a!

e i jkD j~ZBk!5
4p

c
ZJi1

]Ei

]xo , ~2.5b!

e i jkD j~ZEk!52
]Bi

]xo , ~2.5c!

Um
]~cr!

]xm 1DiJ
i1JiDi logZ50, ~2.5d!

where in the aboveD stands for the covariant derivativ
operator associated withg,e i jk represents the~coordinate!
components of the three-dimensional totally antisymme
Levi-Civita tensor density defined on thexo5const slices
and Z5(2jaja)1/25eF is the redshift factor which in the
language of the 311 approach to spacetime or~and! elec-
trodynamics, is also referred to as the lapse function@18#.

With Maxwell’s equations in the above form, we can d
rive an induction equation by repeating the same steps l
ing to the derivation of its flat counterpart~see, for example
discussion in@1#!. For a plasma at rest relative to the Killin
observers, combined with Ohm’s law and the MHD appro
mation @i.e., neglecting the displacement current@19# from
the right-hand side of Eq.~2.5b!#, one obtains from Eqs
~2.5a!–~2.5c! the following form of the generalized inductio
equation:

]Bi

]xo 1e i jkD jF c

4ps
ek

lmDl~ZBm!G50. ~2.6!

This last equation describes the time evolution of
magnetic-field configuration that finds itself in a conducti
medium. In principle, one could write down the explicit for
of the dynamical evolution equation once a choice of ba
ground geometry has been made. However, before we do
we would like to make a further specialization of Eqs.~2.5!
and ~2.6!, so that their interrelationship to the familiar fla
space three-plus-one formalism of Maxwell’s equations
more transparent. Here, following the spirit of@18# and par-
12300
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ticularly @20#, we shall sacrifice the manifest three cova
ance of Eqs.~2.5! and~2.6! with respect to arbitrary coordi
nate transformations of thet5const sections, for the benefit
of practical usefulness. As was pointed out in Refs.@18,20#,
if one defines suitably the components of (E,B) and under
some weak constraints upon the spacetime geometry,
Maxwell’s equations can be recast in a more ‘‘user-friendl
form. This new form employs concepts familiar from th
language of the three-dimensional vector analysis expre
in orthogonal curvilinear coordinates and such an appro
to curved spacetime electrodynamics is particularly use
for astrophysical purposes. Having in mind further ast
physical applications of our results we shall recast E
~2.5a!–~2.5c! in such a form. Such a form requires that th
geometry of the spacetime permits the introduction of co
dinates so that the spatial three elementds(3)

2 of Eq. ~2.4!
could be recast in the following form:

ds(3)
2 5h1

2~dx1!21h2
2~dx2!21h3

2~dx3!2, ~2.7!

where the scale factorshi5hi(x
1,x2,x3) are for the moment

arbitrary functions of (x1,x2,x3). In the Appendix~see also
@18,20#!, we show that for such geometries Eqs.~2.5! can be
written in the following form:

¹•E54pr, ¹•B50, ~2.8a!

“3~ZB!5
4p

c
ZJ1

1

c

]E

]t
, ~2.8b!

“3~ZE!52
1

c

]B

]t
, ~2.8c!

¹•J1J•¹~ logZ!50, ~2.8d!

where we have written the current conservation law for
electrically neutral plasma and in above equations the s
bols (¹•,“3,¹) stand for the divergence, curl, and gradie
operators, respectively, expressed entirely in terms of
scale factorshi ~see the Appendix for their explicit represe
tation!. We also remind the reader that all vector compone
in Eqs. ~2.8! are physical frame components taken with r
spect to the field of orthonormal frames

ei5~1/hi !~]/]xi !, ~ i 51,2,3!,

naturally singled out by the line element Eq.~2.7!. Using
now Eqs.~2.8!, or directly from Eq.~2.6!, upon eliminating
the coordinate components ofB in favor of its frame com-
ponents, the induction equation~2.6! takes the following
form:

1

c

]B

]t
1“3F c

4ps
“3~ZB!G50. ~2.9!

Equations~2.8! and ~2.9! are the main equations of thi
section. In the special case of aSchwarzschildbackground,
naturally they are reduced to those of Ref.@20#, and in the
4-3
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case of a plasma of uniform conductivity the generaliz
induction Eq.~2.9! reduces to Eq.~1.1! in the limit of flat
space.

III. MAGNETIC FIELD DECAY INTERIOR
TO NEUTRON STARS

In the neutron star’s interiors the MHD approximation
well justified @19# and we shall explore the content of th
relativistic induction equation~2.9!, by applying it to study
the evolution of magnetic fields associated with neut
stars. Since the main purpose of the present work is to in
tigate the impact of the spacetime curvature upon the m
netic field decay, as a first preliminary step we shall adop
rather simplified neutron star model. The chosen model
marily avoids technicalities that may obscure the issue
hand but at the same time it shows clearly the potential
pact of the curvature on the magnetic field decay. Acco
ingly, and to avoid laborious numerical computations,
shall ignore the rotation of the neutron star and thus s
adopt as the background geometry a nonsingular, static
spherically symmetric one. Hence, the scale factors of
~2.7! will be taken as

hr
25S 12

2Gm~r !

rc2 D 21

5S 12
2M ~r !

r D 21

,

hu
25r 2, hf

2 5r 2sin2u, ~3.1!

while for the moment the lapse or redshift factorZ5Z(r )
5eF(r ) and the ‘‘mass function’’m5m(r ) are arbitrary
functions of the radial coordinate.

We shall begin our analysis of the magnetic field decay
assuming that at some initial timeto an axially symmetric
distribution of a magnetic fieldB(to ,r ,u) permeates the en
tire star. We are not concerned here with the mechanism
brought such a field into existence but rather we are in
ested in its evolution. Its evolution is considerably affect
by the electrical conductivitys, but as a part of the adopte
simplified picture and in order to emphasize the effects
spacetime curvature we shall takes to be spherically sym-
metric and shall ignore any cooling effects that may infl
ence its temporal evolution. For an axially symmetric fieldB,
it is convenient to decompose it into the so-called poloi
B(p) and toroidal partB(t) . In terms of the orthonormal basi
vectors (er ,eu ,ef) those parts are defined, respectively,
B(p)5Brer1Bueu andB(t)5Bfef with (Br ,Bu,Bf) arbitrary
functions of (t,r ,u), respectively. One can then easily co
clude from the induction Eq.~2.9! that, as long as the scala
conductivity is spherically symmetric, the toroidal and polo
dal parts ofB, evolve independently of each other@21#. Such
decoupling is rather convenient since it implies that if t
initial distribution of the magnetic field is purely poloida
then it will not develop a toroidal component in the course
its evolution and vice versa. For simplicity, in the prese
paper we shall examine the effects of the spacetime cu
ture only on the evolution of a purely poloidal fieldB(p)
5Brer1Bueu . For such fieldB, it follows from Eq. ~2.8b!
that the currentJ is along theef direction, and thus the
12300
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current conservation Eq.~2.8d! is identically satisfied. Fur-
thermore via Ohm’s law, and use of Eq.~2.8b! ~with the
displacement current ignored!, it follows that the electric
field E is a purely toroidal and axisymmetric field and Gau
law ¹•E50 is satisfied as well. Consequently, from the sy
tem of Eq. ~2.8!, we are left to satisfy the constraint¹•B
50, solutions of which will be evolved by the induction E
~2.9!.

Taking into account the poloidal and axisymmetric natu
of B as well as the formula of the div operator¹•, listed in
the Appendix, in view of the scale factors of Eq.~3.1!, one
easily finds that¹•B50 implies

S 12
2M

r D 1/2 1

r

]~r 2Br !

]r
1

1

sinu

]~Businu!

]u
50. ~3.2!

We shall look for separable solutions of the above equati
in the form

Br5F~ t,r !Q1~u!, Bu5G~ t,r !Q2~u! ~3.3!

with the functionsF,G,Q1 ,Q2 to be determined. Substitut
ing the above representations of (Br ,Bu) in Eq. ~3.2! and
separating variables one gets the following equivalent s
tem:

S 12
2M

r D 1/21

r

]~r 2F !

]r
2lG50, ~3.4a!

1

sinu

]~sinuQ2!

]u
1lQ150, ~3.4b!

wherel stands for a separation constant. The second eq
tion can be solved in terms of the Legendre polynomials
taking l5 l ( l 11),l 50,1,2. . . , and

Q25sinu
dPl~y!

dy
, Q152Pl~y!, y5cosu.

~3.5a!

On the other hand, for suchl, Eq. ~3.4a! is satisfied pro-
vided, for lÞ0, one choosesG(r ,t) in the following form:

G~ t,r !5
1

l ~ l 11! S 12
2M

r D 1/21

r

]~r 2F !

]r
. ~3.5b!

We shall disregard thel 50 mode since, as it is clear from
above, it corresponds to a monopole fieldB. With the exclu-
sion of monopole fields, the components of an arbitrary a
symmetric poloidal field can be written as a superposition
‘‘l poles’’ in the form

Br~ t,r ,u!52(
l 51

`

Fl~ t,r !Pl~y!, ~3.6a!
4-4
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Bu~ t,r ,u!5(
l 51

`
1

l ~ l 11!

3S 12
2M

r D 1/21

r

]~r 2F !

]r
sinu

dPl~y!

dy
.

~3.6b!

To simplify algebra, and on physical grounds, we shall
strict our considerations to the detailed analysis of only
l 51 mode. Such a mode corresponds to a dipole field
such a configuration is expected to be present and domi
within neutron stars. Forl 51, Eqs.~3.6! yield

Br~ t,r ,u!52F~ t,r !cosu,

Bu~ t,r ,u!5
1

2r S 12
2M

r D 1/2]~r 2F !

]r
sinu, ~3.7!

where for notational simplicity we write here afterF instead
of F1. On the other hand, for any poloidal axisymmetric fie
with components (Br ,Bu), the induction Eq.~2.9! on the
background geometry of Eq.~2.7!, yields the following two
nontrivial evolution equations:

]Br

]xo 1
1

huhf

]

]u F cA

4psG50, ~3.8a!

]Bu

]xo 2
1

hrhf

]

]r F cA

4psG50, ~3.8b!

where

A5
hf

hrhu
F ]

]r
~huBuZ!2

]

]u
~hrB

rZ!G . ~3.8c!

When one now inserts in Eq.~3.8a! the explicit forms of the
components of (Br ,Bu) corresponding to a dipole field in th
form shown in Eq.~3.7!, as well as the scale factors of E
~3.1!, then gets

4ps

c

]F

]xo 5S 12
2M

r D 1/2 1

r 2

]

]r

3FZS 12
2M

r D 1/2]~r 2F !

]r G2
2ZF

r 2
. ~3.9!

In arriving at the above equation we have taken explic
into account the spherically symmetric nature of the sca
conductivity s. We may point out that for nonsphericals,
the right-hand side of Eq.~3.9! contains gradients ofs along
the meridian directions but for our simple neutron star mo
a spherical conductivity is rather adequate. On the ot
hand, identical manipulations of Eq.~3.8b! leads to
12300
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]r F r 2
]F

]xo 2
c

4ps S 12
2M

r D 1/2

3
]

]r FZS 12
2M

r D 1/2]~r 2F !

]r G12
c

4ps
ZFG50

~3.10a!

from which we infer that

r 2
]F

]xo 2
c

4ps S 12
2M

r D 1/2

3
]

]r FZS 12
2M

r D 1/2]~r 2F !

]r G12
c

4ps
ZF5g~u,f,t !,

~3.10b!

whereg(u,f,t) is an integration ‘‘constant.’’ A comparison
then between Eqs.~3.9! and ~3.10b! shows that it is neces
sary thatg50. If we further defineF̂5r 2F, then one finds
either from Eq.~3.9! or ~3.10b! that F̂ satisfies

4ps

c

]F̂

]xo 5S 12
2M

r D 1/2 ]

]r
FZS 12

2M

r D 1/2]F̂

]r
G22

Z

r 2
F̂.

~3.11!

The above equation essentially describes the evolutio
the dipole field components@22# as perceived by the Killing
observers. Linearity of Maxwell’s induction equation implie
that Eq.~3.11! specifies a unique solution up to an arbitra
rescaling. This rescaling freedom will be fixed later on by
suitable matching of the interior dipole field to a correspon
ing asymptotically vanishing exterior dipole one.

Taking Z51, M50 in Eq. ~3.11! one recovers the stan
dard equation describing the evolution of a dipole axisy
metric poloidal field in flat space@23#, namely,

4ps

c2

]S

]t
5

]2S

]r 2 2
2S

r 2
~3.12!

where in order to avoid confusion we have denoted the a
log of F̂(t,r ) for the flat spacetime case byS(t,r ). The latter
function often in the astrophysics literature is referred to
the Stoke’s function@24#. In order to get some insights int
the significance of the various terms appearing in Eq.~3.11!,
the general relativistic counterpart of Eq.~3.12!, we shall
rewrite the former in an equivalent form so that a clean co
parison between the two could be afforded. Eliminating
~areal! radial coordinater in favor of the physical proper
radius l (r ) of the r 5const spheres, viadl5dr(1
22M /r )21/2, Eq. ~3.11! takes then the following form:

4ps

c2

]F̂

]t
5

]

] l
S Z

]F̂

] l
D 2

2Z

r ~ l !2
F̂. ~3.13a!

A comparison then to Eq.~3.12! shows that relative to the
Killing observers, general relativistic effects can influence
4-5
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decay in three ways. Namely, via the presence of the red
factor Z, its gradient and as well as via the intrinsical
curved nature of the rest space of the Killing observers,
the t5const hyperfaces. The latter manifests itself in E
~3.13a! via the termr ( l ), a term which in general satisfie
r ( l )Þ l , implying that the rest spaces of the Killing observe
are intrinsically curved. From the above-mentioned th
factors the spatial gradient ofZ makes a negligible contribu
tion to the field decay and this has been verified numerica
Neglecting this gradient, then Eq.~3.13a! takes the following
form:

4ps

c2Z~ l !

]F̂

]t
5

]2F̂

] l 2 2
2F̂

r ~ l !2
. ~3.13b!

In this form a clean comparison to Eq.~3.12! can be af-
forded. The right-hand sides of the two equations invo
physical spatial gradients and the differ only by terms of
orderO(2Gm/c2R). On the other hand, their left-hand sid
as they stand cannot be compared. If, however, one rea
ably replacesZ( l ) by some averaged valuêZ&, then the
left-hand side of Eq.~3.13! involves also physical tempora
gradients. In that event one gets a first flavor of the mag
tude of the general relativistic effects. They modify the c
responding flat spacetime results by terms of order unity.
course, such a conclusion has to be also documented a
solution level as well, and as we shall see further ahead,
indeed is the case.

Having thus identified the manner by which relativis
gravity affects the magnetic field decay, our assignmen
now to access the relative importance of each of the ab
two factors. In the following section we shall do so by r
sorting to numerical computations. However, before we p
to that issue let us first record the suitable boundary co
tions to be imposed upon the correspondingS(t,r ), F̂(t,r )
in order to describe sensible physics. The required condit
for both, i.e., the flat and the general relativistic case,
drawn by demanding that the interiorB ought to be a non-
singular field at all times and at all spatial points, and
addition it ought to join smoothly across the surface of
star to an exterior asymptotically vanishing dipole field. F
the flat space case, takingM50 andF(t,r )522S/r 2 in Eq.
~3.7! one getsB5(2S/r 2)cosuer2(1/r )(]S/]r )sinueu from
which we infer that the magnitudeB2 of the interior
magnetic field is given by uBu25(4S2/r 4)cos2u
1(1/r 2)(]S/]r )2sin2u. Accordingly a regular field at
the star’s center requires lim@S(t,r )/r 2# to be finite as the
center of the star is approached. On the other hand, an
ymptotically vanishing dipole magnetic field in flat spa
due to a magnetic momentm, is described by@1#:

B5
2m cosu

r 3
er1

m sinu

r 3
eu .

It follows then from the above expressions that aC0 match-
ing of the interior magnetic field to a slowly varying exteri
dipole field @25#, requires that across the star’s surface, i
at radiusR, S(t,r ) should satisfy
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52S. ~3.14!

The relatively simple nature of Eq.~3.12! as well the simple
form of the boundary-regularity conditions outlined abov
permit us to construct exact closed-form solutions. In fact
is not difficult to verify that for the case of a star of a unifor
conductivity s, a sequence of the exact solutions of E
~3.12! obeying the above described conditions is given
@26#

Sn~ t,x!5Fsin~npx!

n2p2x
2

cos~npx!

np Ge2t/tn5cn~x!e2t/tn,

~3.15!

where

tn5
4sR2

pc2n2
5

1

n2

tOhm

p2
, x5

r

R

andn takes the values (1,2,3, . . . ).
The above sequence of exact solutions offers a clear

ture regarding the behavior of a magnetic field in a condu
ing medium that finds itself in a flat spacetime. Constructi
for instance, the fieldB1(t,r ,u) corresponding toS1(t,r ),
one immediately sees that an observer at fixed (r ,u) finds
that the magnitude ofB1(t,r ,u) decays exponentially with a
characteristice-folding time given byt154sR2/pc2. On
the other hand expanding an arbitrary initial field configu
tion B(t0 ,r ,u) in terms of the eigenfunctions (cn ,n
51,2, . . . ), one caneasily see the spatial diffusion of th
initial distribution. For a plasma characterized by an arbitra
s, although the decay and diffusive nature of the initialB
field remain intact, it is rather difficult to estimate analy
cally the characteristic decay time as well as to find o
whether the decay will be channeled into an exponen
phase. It is sufficient, however, to stress that as long as
are in flat spacetime the decay process is controlled by
conducting properties of the background medium and,
course, the length scale of the initial field distribution.

Let us now turn the discussion to the formulation of t
appropriate conditions to be imposed on solutions of E
~3.11!. Since as already indicated in the introduction secti
a dipole field on aSchwarzschildis modified considerably
from its flat form and, as Eq.~3.11! shows, relativistic effects
modify the local behavior of the relativistic Stoke’s functio
F̂(t,r ), one expects modification of the boundary conditio
as well. As far as the behavior ofF̂(t,r ) at the star’s center
is concerned, by arguing in the same manner as in the
space case, a nonsingular dipole field requiresF̂(t,r ) to sat-
isfy identical conditions at the star’s center as its flat cou
terpart, namely lim@ F̂(t,r )/r 2# should be finite as the cente
of the star is approached~after all, the principle of equiva-
lence holds!. Although this is the case at the star’s center t
corresponding boundary conditions at the star’s surface
markedly different. Recalling that the frame component
the vector potentialA5Amem5Afef describing a magnetic
dipole on aSchwarzschildbackground is described by@10#
4-6
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Af5
3m sinu

4M2 Fx lnS 12
1

xD1
1

2x
11G , ~3.16!

wherex5r /2M (R), R<r ,`, andm is the dipole moment.
From Eq. ~3.16!, one then obtains the corresponding fie
B5Brer1Bueu where the physical components (Br , Bu) as
measured by the Killing observers are given by

Br5
2m cosu

r 3 F3x3 ln~12x21!13x21
3

2
xG ,

~3.17a!

Bu52
m sinu

r 3 F6x3~12x21!1/2 ln~12x21!

16x2
121/2x

~12x21!1/2G . ~3.17b!

A comparison of Eqs.~3.17a! and ~3.17b! with the corre-
sponding Eq.~3.7! and aC0 matching between the two alon
the star’s surface, requires that the exterior dipole magn
momentm should be identified with the generally slow tim
varying part of the functionF̂(t,r ) @25#. Moreover, the gra-
dient F̂(t,r ) along the radial direction should obey

R
]F̂~ t,r !

]r
U

R

5G~y!F̂~ t,R! ~3.18a!

with

G~y!5y

2y ln~12y21!1
2y21

y21

y2 ln~12y21!1y1
1

2

~3.18b!

andy5R/2M (R).
Thus the behavior of the interior dipole field in the pre

ence of curvature is described byF̂(t,r ) satisfying the dif-
ferential Eq.~3.11!, subject to the boundedness ofF̂(t,r )/r 2

as the star’s center is approached, and additionally obe
Eq. ~3.18a! at its surface. Before we turn our discussion
the construction of solutions of Eq.~3.11! subject to the
above-discussed conditions, we would like to write an
plicit formula for the time evolution ofF̂(t,r ) under the
assumption that geometry of the spacetime corresponds
static spherically symmetric star solution of Einstein’s eq
tions. We may recall that in the derivation of Eqs.~3.11! and
~3.18a! and ~3.18b!, we assumed an arbitrary nonsingula
static, spherically symmetric background geometry with
only constraint that it joins smoothly to an exteri
Schwarzschildfield across the surface of the star. Nowhere
the derivation did we need the explicit form ofM (r )
5Gm(r )/c2 nor the form ofZ5Z(r ). Hereafter, we shal
become more explicit and shall take the background inte
geometry to be a nonsingular solution of the coup
Einstein-perfect fluid system. As is well known, and und
12300
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the assumption that the background Maxwell field make
negligible contribution to the structure of the star@27#, static
spherically symmetric, perfect fluid solutions of Einstein
equations imply satisfaction of the following differentia
equations between the metric functionsF(r ),M (r ), the hy-
drostatic pressureP(r ), and mass densityr(r ) ~see, for in-
stance,@12,13#!:

dF

dr
5

M ~r !14pr 3P~r !

r 2S 12
2M ~r !

r D , ~3.19a!

dM~r !

dr
54pr 2r, ~3.19b!

dP~r !

dr
52~r1P!

M ~r !14pr 3P

r 2S 12
2M ~r !

r D . ~3.19c!

Making use of those equations, and restoring the fundam
tal units, we obtain from Eq.~3.11! the following equation to
be satisfied by the relativistic Stokes function:

4ps

c2
e2F(r )

]F

]t
5S 12

2Gm~r !

c2r
D ]2F

]r 2

1
1

r 2 F2Gm~r !

c2
1

4pG

c2
r 3

3S P~r !

c2
2r~r !D G]F

]r
2

2

r 2
F,

~3.20!

where for typographical convenience we shall write herea
F(r ,t) instead ofF̂(r ,t). The above equation via Eq.~3.7!,
describes the evolution of any axisymmetric, dipole, poloi
field B that finds itself interior to a spherical perfect flu
star. In the above form it includes all three relativistic facto
influencing the field decay. Since the distributions
@m(r ),P(r ),r(r )# are related via Einstein’s equations d
rectly to the spacetime curvature, Eq.~3.20! shows implicitly
that the influence of spacetime curvature on the decay of
magnetic field is a real effect and cannot be removed
coordinate transformations. In principle, one could insert
Eq. ~3.20! the appropriate distributions ofm(r ), P(r ), and
r(r ) resulting from integrating the Oppenheimer-Tolma
Volkov equation, specifys5s(r ,t), and construct the his
tory of theB decay. We shall report elsewhere our findin
of this rather laborious numerical integration@28#. For the
purpose of the present paper we shall integrate Eq.~3.20! for
a rather simple system introduced and discussed in the
lowing section. The goal of this section is to show that t
general relativistic Eq.~3.20! @or its approximate forms cor
responding to Eq.~3.13b!# under the assumption of a un
form conductivity admits decay modes analogous to thos
the flat space case with one important difference: The co
4-7
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ULRICH GEPPERT, DANY PAGE, AND THOMAS ZANNIAS PHYSICAL REVIEW D61 123004
spondinge-fold decaying times are longer in the relativist
case. We interpret this amplification of thee-fold decay
times as resulting from the nonvanishing spacetime cu
ture. Unfortunately, however, it is not easy to construct a
lytically the exact decaying modes of the full relativistic sy
tem ~3.20! or its approximate versions~3.13a!, and thus we
shall resort to numerical computations. The emphasis
those computations is the probing of the dependence of
correspondinge-folding times upon the value of the redsh
factor or~and! upon the strength of the curvature of the sp
tial sections.

IV. MAGNETIC FIELD DECAY IN A CONSTANT
DENSITY STAR: EXPLICIT RESULTS

We shall consider in this section the decay of a magn
field in a neutron star of constant density. The assumptio
a constant density star, although not a very reliable appr
mation of a real neutron star, offers the advantage that
Einsteins equations can be solved analytically~see, for in-
stance,@12,13#!, and thus provides us with closed-form e
pressions for the coefficients of the induction equation,
~3.20!, and the boundary condition, Eq.~3.18!. In particular,
in Box ~23.2! of the Ref.@13# the distribution of the various
hydrodynamical and geometrical variables are plotted
functions of the areal coordinater. As we have already dis
cussed, the exact decaying modes of the flat spacetime
duction equation for a uniform conductivity are explicit
known@given by Eq.~3.15!#, while the corresponding decay
ing modes of the full curved spacetime equation~3.20! are
presently unknown. We shall, therefore, resort to numer
techniques in an attempt to get insights into the behavio
the space of solutions of Eq.~3.20!.

Viewed as an initial-boundary value problem, Eq.~3.20!
is a diffusive initial value problem for which the standa
numerical technique is the Crank-Nicholson implicit integ
tion scheme~see, for example, Ref.@29# for a description!.
We checked our numerical code by evolving the fundam
tal mode of the flat spacetime case@i.e., taken51 in Eq.
~3.15!# and compare the numerical solution with the analy
cal one: we obtained an accuracy better than 1% until tim
up to 10•t1, with t154sR2/pc25tOhm/p2 the correspond-
ing decay time of then51 flat fundamental mode.

Before we turn to our discussion of the numerical resu
it is helpful to view the time evolution of a chosen initia
distribution from a complementary point of view. On gene
groundsF(t50,r ) as well as its time evolution can be~for-
mally! expanded in a series of the following form:

F~ t,x!5Sane2c2lnt/4psR2
gn~x!, ~4.1!

where the summation is extended over all eigenmodesgn(x)
of the corresponding~singular! Sturm-Liouville eigenvalue
problem arising from Eq. ~3.20! and the associate
boundary-regularity conditions:

Lgn1lne2Fgn50, ~4.2a!
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L5S 12
2Gm~x!

c2x
D ]2

]x2

1
1

x2 F2Gm~x!

c2
1

4pG

c2
x3S P~x!

c2
2r D G ]

]x
2

2

x2
,

~4.2b!

where in the present case the coefficients inL are determined
by the geometrical and hydrodynamical variables of the c
stant density star solution,x5r /R andR is the areal radius of
the star. It follows now from Eq.~4.1! that if the eigenvalues
are positive and well spaced, then aftert@tOhm/l1 wherel1
is the lowest eigenvalue of the above system, then the e
lution of the distribution will channel into an exponential
decreasing phase with the dominant contribution in the s
~4.1! coming from the ‘‘first’’ term. Our subsequently de
scribed numerical computations exhibit such a feature
this property allows us to construct numerically the lowe
eigenvalue of the above system@30#.

In the following numerical calculations we have taken t
areal radius to beR510 km, a constant uniform conductiv
ity s51025 s21 typical of neutron star values~which im-
plies tOhm54.44 109 yr), and we consider various neutro
star masses characterized by different values of the dim
sionless compactness ratio:e52GM/Rc250, 0.3, 0.4, 0.5,
0.6, 0.740, 0.810, 0.865, and 0.889. The first one correspo
to a flat background space time, the last four are those va
used in the numerical plots of Ref.@13#, while current real-
istic neutron star models are characterized bye in the range
0.3 to 0.5@31#. For each value ofe, at first we have solved
numerically the full relativistic induction equation~3.20!, by
taking the initialF(t50,r ) to be equal to the Stoke’s func
tion S(t50,r ) of the corresponding first fundamental dec
modes of Eq.~3.15! @i.e., taken51 andt50 in Eq. ~3.15!#.
After performing a long-time integration of Eq.~3.20! sub-
ject to the conditions cited earlier on, we find that the ev
lution of F(t,x) channels into an exponentially decayin
mode, which means, according to Eq.~4.1!, that the evolu-
tion of the initial distribution eventually is described by th
first nonvanishing term in the series expansion~4.1!. This
behavior ofF(t,x) allows us to determine only the lowes
eigenvaluel1 of Eq. ~4.2! from our numerical outputs. Be
sides the explicit determination ofl1, our numerical treat-
ment allows us to construct the magnetic field as well. In F
1, we plot as a function of coordinate timet, the magnetic
field as perceived by a Killing observer located at the sta
pole for the various values of the compactness ratio. Figu
shows that once curvature effects are incorporated and u
ignoring the initial transit time during which the field is in
superposition of various curved eigenmodes, the field
lows an exponential decay law~as would have been done i
the absence of gravity! but now the correspondinge-folding
time is longer than the corresponding flat spacetime ca
Thus even though we have started with identically prepa
systems their evolution is distinct, a distinction traced in t
influence of relativistic effects. It should be stressed, ho
ever, that the content of Fig. 1 does not by itself provide
4-8
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MAGNETIC FIELD DECAY IN NEUTRON STARS: . . . PHYSICAL REVIEW D 61 123004
with a clear overall picture of the field decay. It rather pr
vides us with a characteristic physical decay time as p
ceived by a Killing observer situated at the surface of the
and this decay time should not be extrapolated as being
physical decay time over the entire star@32#. In fact, each
Killing observer located at somer, will compute a physical
e-fold decay time t(r ) given by t(r )5Z(r )(l1)21

5Z(r )tOhm/bp2 and obviously this value changes acro
the star.~In this formula, we have parametrizedl1 so that
b51 corresponds to flat spacetime!. Because of this spatia
dependence oft(r ), in order to get a better insight into th
dynamics of the decay, in Fig. 2, we have plottedl1
5bp2/tOhm, as a function of the compactness ratioe. In the
same figure, for comparison purposes, we have plotted
value of the redshift factor at the stars’ center (Zo5eF(o))
and surface (Zs5eF(s)), respectively. Thus it follows from
Fig. 2, that the relativistic corrections to the lowest eige
valuel1, are bounded from above byZs, while from below
~almost! by Z0. It is more instructive, however, and compl
ments the content of Fig. 2, a plot showing the physi
decay times as measured by Killing observers located at
center and at the surface of the star, respectively. Figu
stands for such a plot, and its content shows that the phys
decay time can vary considerably across the star. In
there are regions around the star’s center, where the phy
decay time is shorter than the corresponding flat space
and this effect is more pronounced as the compactness
increases. In contrast to what occurs in the vicinity of t
star’s center, in the crust region the physical decay is alw

FIG. 1. Dipolar field decay for a uniform density star in curv
and flat space time. The horizontal axis represents~coordinate! time
in units of the flat space time ohmic decay timetohm[4psR2/c2

and the vertical axis shows the value ofB/B05B(t,r 5R, u
50)/B(t50, r 5R, u50). All models have the same areal radi
(R510 km) and a constant uniform conductivity (s51025 s21)
typical of neutron star values~which impliestohm54.443109 yr).
The values of the compactness ratio 2GM/Rc2 is indicated on each
plot. The initial field profile is taken as then51 eigenmode for the
flat spacetime, Eq.~3.15!, in all cases. The graphs show qui
clearly the exponential decay in flat spacetime, witht5tohm/p2

within numerical accuracy, while, as expected, in curved space
the decay initially deviates from an exponential law but rapid
converges toward the corresponding fundamental mode.
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larger than the corresponding flat case. Because of this
havior, largely due to the gravitational time dilation effec
we assign an overall physical decay time, by averaging
physicale-fold decay at the center and the surface of the s
respectively. This amounts to assigning an overrall a reds
factor Z for the entire star equal roughly to its value at t
middle of the star. With this type of averaging, Figs. 2 and
shows that for small values of the compactness ratio
overall physical decay time is almost identical to the fl
space time case. However, as the compactness ratio
creases, the relativistic effects become more apparent.
the case of neutron stars with range in the realistic dom
i.e., e in the range 0.3–0.5, and via the averaging proced
outlined above, the overall physicale-fold decay time is 1.2–
1.3 larger than the corresponding flat case. Although the c
tent of Figs. 1, 2, and 3 show the impact of relativistic effe
upon the field decay, by themselves they do not offer a c
insight as which~if any! of the two factors, i.e., redshift o

e

FIG. 2. The horizontal axis stands for the dimensionless co
pactness ratio 2GM/Rc2, while the vertical axis corresponds to th
values ofb. The graphs marked byeFo, eFs stand for the value of
the redshift factor at the center and surface of the star, respecti

FIG. 3. The horizontal axis stands for the dimensionless co
pactenes ratio 2GM/Rc2, while the vertical axis corresponds to th
ratio of the physical decay timetph over the corresponding fla
valuetfl . The graphs marked as surface, center, respectively,
resentst(R)ph/t f l5Zs /b, t(0)ph/t f l5Zo /b, while the corre-
sponding horizontal line through (0,1) stands for the flat case.
4-9
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spatial curvature, are responsible for the dominant contr
tion in the field decay. In order to access their relative i
portance we solve numerically Eq.~3.13a! in two extreme
cases@33# and show the numerical outputs in Fig. 4. First E
~3.13a! is solved under the assumptionr ( l )5 l and in this
approximation the relativistic effects on the decay are so
due to the redshift factorZ( l ). In Fig. 4 the numerical out-
puts are indicated by the label: ‘‘curved time.’’ In the opp
site extreme, we adoptZ( l )51 in Eq. ~3.13a! and taker ( l )
as given by the metric corresponding to a constant den
star. Thus in this approximation, the only relativistic effe
influencing the decay is due to the spatial curvature. T
resulting numerical outputs in Fig. 4 are marked by the la
‘‘curved space.’’ It follows then clearly from the content o
Fig. 4 that for a constant density neutron star, the domin
effect in the field decay is due to the redshift factorZ, since
the corresponding eigenvalues indicated by the curved-t
graph are much closer to the corresponding exact eigenv
indicated by curved spacetime in Fig. 4. Moreover, the do
nance of the redshift factor holds through for all values of
compactness ratioe, and increases ase increases.

From the analysis presented so far it is clear that the m
compact the star is, the longer is the e-folding time. As
consequence one expects that models of pulsars with a
equation of state to maintain a strong magnetic field
longer period of time than the corresponding models wit
stiff equation of state. In turn such slowB field decay implies
an additional source of heating, i.e., Joule heating, and s
additional heating may explain the relatively high tempe
ture observed in old neutron stars. However, based on
present analysis, it is rather premature to draw definite c
clusions. For instance cooling effects leading to the temp
variation of the conductivity as well as the the detailed str
ture of the star and its rotation has to be taken into acco
Such a study is currently under way and we expect to re
in a future communication.

FIG. 4. The horizontal axis stands for the dimensionless co
pactnes ratio 2GM/Rc2, while the vertical axis corresponds to th
values ofb. The graphs marked as curved space, curved time
vide the eigenvalues corresponding to the case whereZ51 and
r ( l )5 l , respectively, as explained in the text, while the gra
marked as curved spacetime corresponds to the exact equatio
12300
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V. CONCLUSIONS

The behavior of the surface magnetic fields of neutr
stars is a complicated and controversial issue. Many p
cesses are believed to influence its magnitude and its su
quent evolution. Trapping for instance, of the field in t
superconducting core is one possibility. The expulsion of
field out of this region is a delicate matter involving man
different branches of physics@34#. Another possibility that,
in principle, influences enormously the magnetic propert
of neutron stars is related to the accretion processes im
diately after the core collapse@35#. Accretion and particu-
larly hypercritical accretion, can submerge the field of t
new born neutron star beneath a layer of accreting ma
thus, in principle, producing a delayed switched-on mec
nism for the pulsar activity@36#. Furthermore according to
recent work the neutron star may never turn on as a pu
@37# if the accretion is hyperctical. Besides the above mec
nisms influencing the evolution of a neutron star’s magne
fields, many more have been introduced and discusse
length in the current literature. In this work, we have pres
a limited framework taking into account the effects of t
space time curvature on the field decay. For the simple n
tron star models with a corresponding compactness rati
the range 0.3–0.5, considered in the present work, we h
seen an overall increase in the decay time, 1.2–1.3 tim
larger than the flat spacetime value. Although the pres
work is preliminary and to assess the new effect more w
is needed@28#, it points towards the direction that in
strongly gravitating system, effects due to spacetime cur
ture should not be neglected.
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APPENDIX A: „3¿1… FORM OF MAXWELL’S
EQUATIONS ON STATIC SPACETIMES

In this appendix we shall sketch a derivation of Eqs.~2.8!
starting from the covariant form of Maxwell’s Eqs.~2.1!.
The derivation makes use of the existence of the hyper
face orthogonal timelike Killing field and although all th
following computations can be done in a covariant fash
@18,20#, for brevity we work explicitly in the coordinate
gauge of Eq.~2.4!. We shall also present formulas require
for the derivation of equations in Sec. II.

Starting from the temporal component of the inhomog
neous Maxwell Eq.~2.1a!, combined with the line elemen
~2.4! and taking into account the fact thatEj52F joeF, one
immediately obtains

DiE
i52

4p

c
JoeF54pr, ~A1!

-

o-
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where we have defined the charge densityr measured by a
Killing observer ascr52JmUm , and we denote byD the
covariant derivative operator associated with the Riemann
metric of thet5const spaces. Due to the fact that the Ma
well tensorFab admits the following easy verifiable decom
position: Fab5UaEb2UbEa1eabgdUgBd, one gets the
following expression for its spatial partFi j : Fi j 5eoi j l B

lUo

5e i j l B
l . Passing now to the spatial components of Eq.~2.1a!

one gets

]Ei

]xo 2e i j l D j~ZBl !52
4p

c
ZJi , ~A2!

where we have introduced the redshift factorZ via Z5
(2jaja)1/25ef instead ofeF. On the other hand, the secon
pair of Maxwell’s equations~2.1b! can be written equiva-
lently as

]Fmn

]xl 1
]Fnl

]xm 1
]Flm

]xn 50. ~A3!

Taking now all the indices to be spatial, and eliminatingFi j
one getsDiB

i50. The other information encoded in the se
ond pair of Maxwell equations can be revealed by consid
ing the following arrangement of the spacetime indic
(m,n,l5m,n,xo). For such an arrangement one obtains

]~emnlB
l !

]xo 1
]~2UoEn!

]xm 1
]~UoEm!

]xn 50, ~A4!

from which one easily obtains

]Bl

]xo 1e lmnDm~ZEn!50. ~A5!

The current conservation equation¹mJm50 after a trivial
rearrangement yields

Um
]cr

]xm 1DiJ
i1Ji

] logZ

]xi 50. ~A6!

To pass into the equivalent set@Eqs. ~2.8a!–~2.8d!# and
Eq. ~2.9! involving physical orthonormal components, w
project all tensors involved onto the natural set of orthon
mal vectors (ei) and one forms (ei), (i 51,2,3), respec-
tively, associated with the line element~2.7!. Thus, for in-
stance, the electric fieldE can be written asE5Ei(]/]xi)
5Eîei , whereEî 5hiE

i expresses the relationship betwe
z

12300
n
-

-
r-
:

-

coordinate and frame components of the vector fieldE and it
is understood that no summation is involved over the
peated indices. With the help of the orthonormal compone
one, for instance, may rewrite Eq.~A1! in terms of orthonor-
mal components. Writingg1/25h1h2h3 and eliminating the
coordinate components in terms of the frame component
E, Eq. ~A1! takes the following form:

1

h1h2h3
F ]

]x1 ~h2h3E1̂!1
]

]x2 ~h1h3E2̂!

1
]

]x3 ~h1h2E3̂!G5¹•E54pr, ~A7!

where ¹• stands for the familiar divergence operator e
pressed in arbitrary orthogonal curvilinear coordinates
fined by the line element~2.7!. Similarly DiB

i50 can be
written as¹•B50. As far as the other set of Maxwell’
equations are concerned, one can proceed in a similar m
ner. For instance, starting from Eq.~A2!, one first multiplies
the corresponding equation by the scale factorhi thus lead-
ing to

]~Eî !

]xo 2
e î ĵ k̂hi

h1h2h3

]~hkBk̂Z!

]xj 52
4p

c
JîZ. ~A8!

Recalling that the orthonormal components of thecurl
operator of an arbitrary three-dimensional differentiable v
tor field A are given by@38#

~¹3A! î 5
e î ĵ k̂hi

h1h2h3

]~hkAk̂!

]xj , ~A9!

one is lead immediately into Eq.~2.8b! used in the text. Note
also that the action of the gradient operator¹ acting on
scalars is defined via

¹ f 5
1

h1

] f

]x1 1
1

h2

] f

]x2 1
1

h3

] f

]x3 . ~A10!

Also in deriving Eqs.~2.8a!–~2.8c! of the main text we have
used the following properties of the unit basis vecto
(ei): eî•eĵ5d î ĵ , eî 3eĵ5e î ĵ k̂ek̂ and the normalization
e r̂ ûf̂51. We may also indicate that for typographical conv
nience the caret symbol over frame components of the v
ous tensors has been dropped. In particular, all vector
tensor components appearing anywhere in the main text a
Eq. ~2.7!, are frame components.
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