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Magnetic field decay in neutron stars: Analysis of general relativistic effects
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An analysis of the role of general relativistic effects on the decay of a neutron star's magnetic field is
presented. At first, a generalized induction equation on an arbitrary static background geometry has been
derived and, secondly, by a combination of analytical and numerical techniques, a comparison of the time
scales for the decay of an initial dipole magnetic field in flat and curved spacetime is discussed. For the case
of very simple neutron star models, rotation is not accounted for and, in the absence of cooling effects, we find
that the inclusion of general relativistic effects result, on the average, in an enlargement of the decay time of
the field in comparison to the flat spacetime case. Via numerical techniques, we show that the enlargement
factor depends upon the dimensionless compactness eat®GM/c?R, and for e in the range 0.3-0.5,
corresponding to the compactness ratio of realistic neutron star models, this factor is between 1.2 and 1.3. The
present analysis shows that general relativistic effects on magnetic field decay ought to be examined more
carefully than hitherto. A brief discussion of our findings on the impact of neutron star physics is also
presented.

PACS numbgs): 97.60.Jd, 95.30.Sf, 97.10.Ld

[. INTRODUCTION Peeble$4] considers the issue of the origin of the primordial
magnetic field as one of the most important unsolved prob-
It is well known[1] that a magnetic field in a plasma of lems in cosmology. At the same time the gigantic field of the
finite conductivity is subject to diffusion and dissipation. pulsars begs for an explanatif]. The general consensus of
Diffusion leads to a spreading of inhomogeneities while dis-the astrophysical communitj6] is that such large scale
sipation is due to the Ohmic decay of the currents producingields have been generated via an episode of dynamo action
the field. More concretely, a magnetic fieB(t,x) in @  [7] and then gradually suffer Ohmic decay due to the finite
plasma of uniform conductivity- evolves, in flat spacetime, conductivity of the medium. It appears, therefore, that an
according to the following diffusion equatida: understanding of the factors influencing the decay of large
) scale fields, combined with relevant observations, may offer
IB(t,%) =C_V23(t X) (1.1) important clues towards a better understanding of the initial
at 7o T ' scale involved as well as clues regarding its origin.
In neutron stars the decay of the magnetic field is an issue
Accordingly, if L is a typical length scale of the field struc- of most importance by itself8] and accordingly there has
ture, then it will decay or diffuse in a characteristic time been an intense effort by astrophysicists to understand the
scaleonm given by 7opm=4maL?/c?. Depending upon the factors governing this decay. As far as we are aware all
prevailing conditions, the Ohmic decay timg;,, can range theoretical modeling of magnetic field decay in neutron stars
from seconds, in the case of a copper sphere of radius of @tilized the familiar flat spacetime form of Maxwell's equa-
few centimeters[1], up to 7onm=10'" yr or even much tions(an exception to this rule constitutes the recent work of
longer for astrophysical settings, as in the case of thdsln Ref.[9]). Although the employment of such framework is a
or a neutron staf2]. fruitful one and provides us with valuable informations, it
The interactions of large scale cosmic magnetic fieldsaltogether neglects the background curvature of the space-
with plasmas is a problem of great importance in astrophystime which for the case of neutron stars is not any longer
ics and cosmology. A particularly thorny issue nowadaysweak. It would be worthwhile to stress, in that regard, that
concerns the origin and maintenance of cosmic magneticurvature can modify considerably flat spacetime solutions
fields. Although large scale fields have been obsef@gda  of Maxwell’s equations. For instance, the reader may com-
satisfactory explanation of their origin is still lacking. pare the solution describing a dipole magnetic field on a
Schwarzschildackground 10] to that of a flat space time.
The presence of the logarithmic term in the forrfeze Eqgs.

*Email address: urme@aip.de (3.17 further below} is a sole consequence of the nonvan-
"Email address: page@astroscu.unam.mx ishing curvature. This example suggests that the role of the
*Email address: zannias@ginette.ifm.umich.mx spacetime curvature on the decay process of magnetic fields
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ought to be examined more thoroughly than hitherto. In thataking into account the curved nature of the background
respect, we are aware only of the recent work of Senguptaspacetime geometry. It should be stressed, however, that the
[9], where an investigation of general relativistic effects inemployment of a static geometry does not leave room for
the magnetic field decay of neutron stars have been aincorporating gravitomagnetit.ense-Thirring effects in the
tempted. However, this work is restricted to the study ofinduction equation, as the latter would manifest themselves
magnetic fields confined only to the outermost layers of delative to nonstatic backgrounds, but we do hope to present
neutron star and furthermore it is assumed that those outeftCh analysis in a future work. In Sec. Ill, we specialize the
most layergand thus also the magnetic figlj, are embed- induction equation to a simple neutron star model and a de-
ded on aSchwarzschildackground geometry. Thus, strictly, tailed analysis of the content of the induction equation is
the framework of Ref[9] deals exclusively with magnetic Presented. In the same section the sensitive issue of the
decay on aSchwarzschildbackground. In addition to those Poundary conditions accompanying the induction equation is
approximations and according to the sentence following qu_ilso addressed. In. Sec.. v, we d|scus§ numerical solutions of
(15) of Sengupta’s second work, the author fails to includethe curved spacetime mdycuon equation _and an assessment
general relativistic effects on the outer boundary conditiorPf the relativistic factors influencing the field decay is dis-
for matching the inner field with the outer vacuum dipolarCUSS_Ed- Furthe_rmore, in the same section, a comparison of
field across the surface of the star. In contrast, in the presefft€ field decay in curved and flat spacetime is also presented.
work, a broad framework dealing with general relativistic I" the concluding section, a brief discussion of the physical
effects on the magnetic field decay on an arbitrary stati¢MPlications of our results to neutron stars physics is pre-
geometry, and with proper allowance of the correct genera?emed gnd a possible extension of the present work is out-
relativistic inner and outer boundary conditions, is presentedined. Finally, we have included an Appendix where a few
Moreover, and in contrast to the approach of H6l, we intermediate calculations leading to the main equations of
formulate the entire problem avoiding the introduction of aS€c- Il are presented.
vector potential and the associated ambiguities. Our analysis
shows that general relativistic effedtsl] can influence the II. INDUCTION EQUATION ON A STATIC BACKGROUND
field decay, but the precise manner that this influence mani- GEOMETRY
fests itself depends upon the class of observers called in to Maxwell's equations, in covariant form, are as follows
describe the field decay. For the magnetic field of a nonror., ,, 13 ' '
tating neutron star it is natural to describe the field deca)L T
relative to the class observers that find themselves at rest -
relative to the star, i.e., the class of Killing observers. Rela- Ve op=——Jp, (2.19
tive to such observers, we find that relativistic effects are ¢
influencing the field decay via two major modes: the gravi-
tational redshift as well as the intrinsic curved geometry of
the spatial sections constituting the rest space of the K“"”QNhereF _
. . aB
observers. Subsequent numerical analysis shows that the r%nts of the

Zhiﬂ facéor is ”the d?n:jinr;nt or?e 'in Islo_wing de\ivn' t'he. fielfd the derivative operator, respectively. Given a solutqp of
ecay. Overall we find that the inclusion of relativistic ef- o gh0ye equations, an observer with four velocity
fects make the decay time of the field larger than, but of thg U“U,=—1, measures electric and magnetic fields

same order of magnitude, as in flat spacetime. NeverthelesEE ’B) with corresponding coordinate components given, re-
the preliminary study of the present paper utilizing a Simplespéctively by '
nonrotating neutron star model suggests that general relativ-
istic effects should be given further considerations. We ex- 1

plicitly illustrate the impact of relativistic effects upon the E,=F.zU? B,= —EGZZH@UB, (2.2

magnetic field decay, by examining the evolution of a mag-

net!c field permeating a constant density neutron star, first i'UVhereea;;y{s stands for the four-dimensional Levi-Civita ten-
their presence and second without them. Although for both,, density[14]. We shall be concerned in this paper with

treatments we have obtained exponential decays, the dec,g&rticular solutions of Eq(2.1) where the currend is de-
time in the presence of relativistic effects, on the average, i3crined by the following relativistic extension of Ohm's law,
enlarged by a factor that depends crucially upon the value ofg it \vas first formulated by WeylL5]:

the compactness ratio=2GM/c?R. Specifically for values

of € in the domain (0.3,0.5), characterizing realistic neutron Jo= og“ﬁF[,yVV, (2.3

star models, we find that the decay time is 1.2—1.3 larger

than the corresponding flat decay time, while for higher val-where in the above equationy{,o) stands for the four ve-

ues ofe, it can be larger. We may add parenthetically thatlocity of a conducting neutral plasma and its scalar electrical

the term “average” increase in the decay time, is explainecconductivity [16], respectively. Although Eqs(2.1)—(2.3

in detall in Sec. IV of the paper. are valid for any kind of background geometries and plasmas
The present paper is organized as follows: In the follow-characterized by arbitrary four velocity and conductivity,

ing section, starting from Maxwell's equations on a statichereafter we shall restrict our consideration to background

spacetime, we first derive the relevant induction equatiorgeometries that are globally static. Staticity in turn allows us

V[QFBY]ZO, (21b)

—Fga» Jo, andV are the coordinate compo-
Maxwell tensor, the conserved four current and
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to select coordinates so that the spacetime geometry can hieularly [20], we shall sacrifice the manifest three covari-
written in the form(see, for instance, discussion in Refs. ance of Eqs(2.5 and(2.6) with respect to arbitrary coordi-
[12,13): nate transformations of the= const sections, for the benefits
o of practical usefulness. As was pointed out in Rgi8,20,
ds?=—e*?(dx°)+ y;dx'dx, (24 if one defines suitably the components &,B) and under

o . . . some weak constraints upon the spacetime geometry, then
wherex®=ct, y;; are functions of the the spatial coordinates Maxwell's equations can be recast in a more “user-friendly”

x' (i=1,2,3), and¢ denotes the hypersurfagg orthogonalfsrm  This new form employs concepts familiar from the
timelike Killing vector field obeyingz,£*=—e”". For the  |3nguage of the three-dimensional vector analysis expressed
above form of the line element, Maxwell's equatiof81)  j; orthogonal curvilinear coordinates and such an approach
and the current conservation laW,J*=0 can be rewritten 1, cyrved spacetime electrodynamics is particularly useful
in an equivalent form involving only the componenEs,B') o astrophysical purposes. Having in mind further astro-
of the electric and magnetic fields, respectively, as well a$hysical applications of our results we shall recast Egs.
the charge densitgp=—U ,J* and spatial current density (2 539_(2.5¢ in such a form. Such a form requires that the
J' as measured by the Killing observets7,18. More pre-  geometry of the spacetime permits the introduction of coor-

cisely if by U# we denote their four velocity then EqR.1)  yinates so that the spatial three elemdaig) of Eq. (2.4)
yield the following equivalent sesee Appendix for details, .q,id be recast in the following form:

or Refs.[17,18)):
DiE'=4mp, DB'=0 (2.53 dsfs)=hi(dx)?+h3(dx®)?+h3(dx*)?, (2.7)
P where the scale factolg = h;(x*,x?,x%) are for the moment
(2.50  arbitrary functions of x*,x?,x%). In the Appendix(see also
[18,20Q), we show that for such geometries E¢&5) can be
written in the following form:

KD (2B =T 73+
€ Di(ZB) =20 o

ijk ?

Ix°’ (259 V.E=4mp, V-B=0, (2.83
d(cp) S 4 10E
#———+D;J'+J'D; = . =— - —
Ut — i TDiJ +J'DilogZ=0, (2.50 VX(ZB)=-Z3+ < (2.8
where in the abové stands for the covariant derivative 1 B
operator associated witly, €'’ represents thécoordinate VX(ZE)=———, (2.80
components of the three-dimensional totally antisymmetric c at
Levi-Civita tensor density defined on thé=const slices
and Z=(—£*¢,)Y?=e? is the redshift factor which in the V-J+J-V(logZ)=0, (2.80
language of the 3 1 approach to spacetime ¢and elec- ) )

With Maxwell's equations in the above form, we can de-€lectrically neutral plasma and in above equations the sym-
rive an induction equation by repeating the same steps lead©!s (V -,V X,V) stand for the divergence, curl, and gradient
ing to the derivation of its flat counterpagee, for example, OPerators, respectively, expressed entirely in terms of the
discussion iff1]). For a plasma at rest relative to the Killing Scale factory; (see the Appendix for their explicit represen-
observers, combined with Ohm’s law and the MHD approxi_tation). We also remind the reader that all vector components
mation [i.e., neglecting the displacement curr¢n®] from  in Egs.(2.8) are physical frame components taken with re-
the right-hand side of Eq(2.5b], one obtains from Egs. SPect to the field of orthonormal frames
(2.59—(2.59 the following form of the generalized induction

equation: e=(1h)(alox), (i=123),
JB! - C m naturally singled out by the line element EQ.7). Using
WJFGI Dj| 775 € Di(ZBm) | =0. (260 now Egs.(2.8), or directly from Eq.(2.6), upon eliminating

the coordinate components Bfin favor of its frame com-

This last equation describes the time evolution of aponents, the induction equatioi2.6) takes the following
magnetic-field configuration that finds itself in a conductingform:
medium. In principle, one could write down the explicit form
of the dynamical evolution equation once a choice of back- E EJFVX
ground geometry has been made. However, before we do so, c ot
we would like to make a further specialization of E€¢3.5)
and (2.6), so that their interrelationship to the familiar flat  Equations(2.8) and (2.9) are the main equations of this
space three-plus-one formalism of Maxwell's equations issection. In the special case ofSxhwarzschilbackground,

more transparent. Here, following the spirit[df8] and par- naturally they are reduced to those of Rgf0], and in the

C

mVX(ZB) =0. (2.9
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case of a plasma of uniform conductivity the generalizedcurrent conservation Eq2.89 is identically satisfied. Fur-
induction Eq.(2.9) reduces to Eq(1.1) in the limit of flat  thermore via Ohm’s law, and use of E(R.8b (with the

space. displacement current ignorgdit follows that the electric
field E is a purely toroidal and axisymmetric field and Gauss
Il. MAGNETIC FIELD DECAY INTERIOR law V-E=0 is satisfied as well. Consequently, from the sys-
TO NEUTRON STARS tem of Eq.(2.8), we are left to satisfy the constraiftt- B

i i ... =0, solutions of which will be evolved by the induction Eg.
In the neutron star’s interiors the MHD approximation is 2.9.

well justified [19] and we shall explore the content of the  Taking into account the poloidal and axisymmetric nature
relativistic induction equatiori2.9), by applying it to study ot B a5 well as the formula of the div operafor, listed in

the evolution of magnetic fields associated with neutrony,q Appendix, in view of the scale factors of E.1), one
stars. Since the main purpose of the present work is to inve%'asily finds th’alV-B=0 implies ’

tigate the impact of the spacetime curvature upon the mag-

netic field decay, as a first preliminary step we shall adopt a

rather simplified neutron star model. The chosen model pri- (1
marily avoids technicalities that may obscure the issue at

hand but at the same time it shows clearly the potential im-

pact of the curvature on the magnetic field decay. Accord\we shall look for separable solutions of the above equations
ingly, and to avoid laborious numerical computations, wein the form

shall ignore the rotation of the neutron star and thus shall

adopt as the background geometry a nonsingular, static and r_ 0_

spherically symmetric one. Hence, the scale factors of Eq. BI=F(t.r)0.(6), B™=G(LNO:(9) 33

(2.7 will be taken as

2M
e

t2q a(rZBf)+ 1 a(Basina)_o -
rooar sing a6 32

with the functionsF,G,0,,0, to be determined. Substitut-

-1 -1 ing the above representations d@'(BY) in Eq. (3.2 and
2Gm(r) 2M(r) ) ) . :
hr2= — =|1— , separating variables one gets the following equivalent sys-
rc? r tem:
2_ .2 2 _ v 2q;
. . -— = —AG=0, (3.49
while for the moment the lapse or redshift facto= Z(r) r roor
=e®( and the “mass function’"m=m(r) are arbitrary
functions of the radial coordinate. 1 J(sin6o,)
We shall begin our analysis of the magnetic field decay by sne 90 +A0,=0, (3.4b

assuming that at some initial tintg an axially symmetric

distribution of a magnetic fiel®(t,,r,0) permeates the en- )

tire star. We are not concerned here with the mechanism thjthere\ stands for a separation constant. The second equa-
brought such a field into existence but rather we are intertion can be solved in terms of the Legendre polynomials by

ested in its evolution. Its evolution is considerably affectedtakingA=I(1+1),1=0,1,2..., and

by the electrical conductivityr, but as a part of the adopted

simplified picture and in order to emphasize the effects of . dPi(y)

spacetime curvature we shall taketo be spherically sym- 0,=sing dy 0,=—P(y), y=cosd.
metric and shall ignore any cooling effects that may influ- (3.59

ence its temporal evolution. For an axially symmetric figld

it is convenient to decompose it into the so-called poloidalo
B(p) and toroidal parBy, . In terms of the orthonormal basis
vectors €, ,e,,e,) those parts are defined, respectively, by
B =B'g+ B’y andB = B_¢e¢ with (B",B?,B%) arbitrary
functions of ¢,r,#), respectively. One can then easily con- G(t,r)
clude from the induction Eq2.9) that, as long as the scalar '
conductivity is spherically symmetric, the toroidal and poloi-

dal parts of8, evolve independently of each otH@l]. Such e shall disregard the=0 mode since, as it is clear from
decoupling is rather convenient since it implies that if thegpove, it corresponds to a monopole fildwith the exclu-
initial distribution of the magnetic field is purely poloidal sjon of monopole fields, the components of an arbitrary axi-

then it will not develop a toroidal component in the course ofsymmetric poloidal field can be written as a superposition of
its evolution and vice versa. For simplicity, in the present«| poles” in the form

paper we shall examine the effects of the spacetime curva-

ture only on the evolution of a purely poloidal fieB|, %

=B'e +B%,. For such fieldB, it follows from Eq. (2.8 B'(tro=—> E(t.r\P 36
that the current) is along thee, direction, and thus the (t.r.6) 21 (LOPIY), (369

n the other hand, for suck, Eq. (3.43 is satisfied pro-
vided, forl+#0, one choose&(r,t) in the following form:

“1(0+1)

(3.5b

2M\ Y21 a(r%F)
oo
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y - Jl ,F ¢ 2M | 2
BY(t,r,0) :|:1 ar ' ox° Amo\T 1
112 2 d 2M\ Y2 4(r?F c
« _2_'\" 1P ,4P) X— Z(l——) ( )} 2—ZF}=O
r ror dy - oar r or ¥
(3.6 (3.109

To simplify algebra, and on physical grounds, we shall re from which we infer that

strict our considerations to the detailed analysis of only the 9F c oM\ 12
=1 mode. Such a mode corresponds to a dipole field and r2—0——< )
such a configuration is expected to be present and dominant 2

within neutron stars. Fdr=1, Egs.(3.6) yield 9

X—
or

_T

z( 2I|rv|)1’2a(r2F)

S BT

c
}+2mZF=g(0,¢,t),
B'(t,r,8)=—F(t,r)cosé,

(3.10b
BA(t.r 0= 1 1 2M 1/2‘7(r2F)Sm0 (37 Whereg(6,¢.1) is an integration “constant.” A comparison
n r ar ' then between Eqg3.9) and (3.10H shows that it is neces-

sary thatg=0. If we further defineF =r2F, then one finds
where for notational simplicity we write here aftérinstead  eijther from Eq.(3.9) or (3.10b that E satisfies
of F4. On the other hand, for any poloidal axisymmetric field

with components B',B?), the induction Eq.(2.9 on the Ao OF M\ 12 4 oM w2ygl 7.
background geometry of Eq2.7), yields the following two — 5= 1= —) — —2—F.
o . e c dx r ar ] o r2
nontrivial evolution equations:
(3.11
‘9_Br+ 1 7 CA -0 (3.8 The above equation essentially describes the evolution of
dx°  hghy 96| 4o ' ' the dipole field componen{22] as perceived by the Killing
observers. Linearity of Maxwell’s induction equation implies
0 that Eq.(3.11 specifies a unique solution up to an arbitrary
B 1 cA . g i . )
— = =0, (3.8b rescaling. This rescaling freedom will be fixed later on by a
gx° h h¢ o |ama suitable matching of the interior dipole field to a correspond-

ing asymptotically vanishing exterior dipole one.
where TakingZ=1, M=0 in Eq.(3.1)) one recovers the stan-
dard equation describing the evolution of a dipole axisym-

metric poloidal field in flat spacg23], namely,
A= h [—(h(,B”Z)——(h B’ Z)} (3.80
4o 9S 9*S  2S
=—7- (3.12
- - - 2 ot ar? 2
When one now inserts in E¢3.89 the explicit forms of the c r

components of B",B?) corresponding to a dipole field in the _ ) )
form shown in Eq.(3.7), as well as the scale factors of Eq. where in order to avoid confusion we have denoted the ana-
(3.1, then gets log of F(t,r) for the flat spacetime case I8t,r). The latter
function often in the astrophysics literature is referred to as
12 the Stoke’s functiorj24]. In order to get some insights into
477_0 oF _( ZM) i i the significance of the various terms appearing inBdl1),

c Ix° r r2or the general relativistic counterpart of E(.12, we shall
P revv_rite the former in an equivalent form so that a glean com-
ol 71— 2_M) ar F)}_ZZ_F (3.9 parison between the two could be afforded. Eliminating the
r ar P2 ' (area) radial coordinater in favor of the physical proper

radius I(r) of the r=const spheres, viadl=dr(1

_ ~ 112 ; .
In arriving at the above equation we have taken explicitly M/r) " Eq. (3.11) takes then the following form:

into account the spherically symmetric nature of the scalar A A
conductivity . We may point out that for nonsphericatl Aﬂ i:£<zf) _E
the right-hand side of Eq3.9) contains gradients af along c2 dt dl\al] r(1)?

the meridian directions but for our simple neutron star model

a spherical conductivity is rather adequate. On the other A comparison then to Eq3.12 shows that relative to the
hand, identical manipulations of E¢3.8b leads to Killing observers, general relativistic effects can influence B

F. (3.133
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decay in three ways. Namely, via the presence of the redshift S
factor Z, its gradient and as well as via the intrinsically R-- =-S (3.19
curved nature of the rest space of the Killing observers, i.e., R

the tchnst hyperfaces. The Iatter mgnifests itself _m,Eq'The relatively simple nature of E¢3.12 as well the simple
(3.133 via the termr (1), a term which in general satisfies o of the boundary-regularity conditions outlined above,
r(1)#1, implying that the rest spaces of the Killing observersye mit ys o construct exact closed-form solutions. In fact, it
are intrinsically curved. From the above-mentioned thregg o gifficult to verify that for the case of a star of a uniform
fgctors the spatial gradient @ makes a negligible contribu- conductivity o, a sequence of the exact solutions of Eq.
tion to the field decay and this has been verified numerically(gllz) obeying the above described conditions is given by
Neglecting this gradient, then E(R.13a takes the following [26]
form:
R . R sin(nx) cognmX)|
4mo oF PF  2F 313 SitX)=| =7 2 eV
c2z(l) ot A7 ()2’ '

Th— wn(x)eftlfn,

(3.195

X nr

In this form a clean comparison to E3.12 can be af- Where

forded. The right-hand sides of the two equations involve 5

physical spatial gradients and the differ only by terms of the = 40R :i Tohm X=

orderO(2Gm/c?R). On the other hand, their left-hand sides " re?n2 n?2 g2

as they stand cannot be compared. If, however, one reason-

ably replacesZ(l) by some averaged valug), then the andn takes the values (1,2,3..).

left-hand side of Eq(3.13 involves also physical temporal The above sequence of exact solutions offers a clear pic-

gradients. In that event one gets a first flavor of the magniture regarding the behavior of a magnetic field in a conduct-

tude of the general relativistic effects. They modify the cor-ing medium that finds itself in a flat spacetime. Constructing,

responding flat spacetime results by terms of order unity. Ofor instance, the fieldB,(t,r,6) corresponding td5(t,r),

course, such a conclusion has to be also documented at the immediately sees that an observer at fixed)( finds

solution level as well, and as we shall see further ahead, thighat the magnitude dB,(t,r, ) decays exponentially with a

indeed is the case. characteristice-folding time given by r;=40R?/ 7c?. On
Having thus identified the manner by which relativistic the other hand expanding an arbitrary initial field configura-

gravity affects the magnetic field decay, our assignment ision B(ty,r,d) in terms of the eigenfunctions ¢4 ,n

now to access the relative importance of each of the above-1,2,...), one careasily see the spatial diffusion of the

two factors. In the following section we shall do so by re- initial distribution. For a plasma characterized by an arbitrary

sorting to numerical computations. However, before we pass, although the decay and diffusive nature of the inital

to that issue let us first record the suitable boundary condifield remain intact, it is rather difficult to estimate analyti-

tions to be imposed upon the corresponds{g,r), F(t,r) cally the characteristi(_: decay time as yvell as to find out

in order to describe sensible physics. The required condition¢hether the decay will be channeled into an exponential
for both, i.e., the flat and the general relativistic case, ar@hase. It is sufficient, however, to stress that as long as we
drawn by demanding that the interiBr ought to be a non- are in flat spacetime the decay process is controlled by the
singular field at all times and at all spatial points, and inconducting properties of the background medium and, of
addition it ought to join smoothly across the surface of thecourse, the length scale of the initial field distribution.

star to an exterior asymptotically vanishing dipole field. For L&t us now turn the discussion to the formulation of the

the flat space case, takilg=0 andF(t,r)=—2S/r2in Eq.  @ppropriate conditions to be imposed on solutions of Eq.

(3.7) one getsB=(2S/r?)cosbe — (1/r)(#S/ar)sinde, from  (3.11). Since as already indicated in the introduction section,
which we infer that the magnitud®? of the interior @ dipole field on aSchwarzschilds modified considerably

magnetic field is given by |B|2:(452/r4)co§6 from its flat form and, as Ed3.11) shows, relativistic effects
+(1/r2)(6Sar)2sir?d. Accordingly a regular field at modify the local behavior of the relativistic Stoke’s function

the star’'s center requires Ii8(t,r)/r?] to be finite as the F(t,r), one expects modification of the boundary conditions
center of the star is approached. On the other hand, an ass well. As far as the behavior &f(t,r) at the star's center
ymptotically vanishing dipole magnetic field in flat spaceis concerned, by arguing in the same manner as in the flat

due to a magnetic momept, is described by1]: space case, a nonsingular dipole field requi¥ésr) to sat-
_ isfy identical conditions at the star’s center as its flat coun-
B— 2p coseer+,u Smeee_ terpart, namely lifiF(t,r)/r2] should be finite as the center
rs r3 of the star is approache@fter all, the principle of equiva-
lence holds Although this is the case at the star’s center the
It follows then from the above expressions thatmatch-  corresponding boundary conditions at the star's surface are
ing of the interior magnetic field to a slowly varying exterior markedly different. Recalling that the frame component of
dipole field[25], requires that across the star’s surface, i.e.the vector potentiaAzAMeﬂzAd,e‘ﬁ describing a magnetic
at radiusR, S(t,r) should satisfy dipole on aSchwarzschildackground is described 0]

r
R
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the assumption that the background Maxwell field makes a
, (3.16 negligible contribution to the structure of the sfar], static
spherically symmetric, perfect fluid solutions of Einstein’s
equations imply satisfaction of the following differential
equations between the metric functiobgr),M(r), the hy-
drostatic pressur®(r), and mass density(r) (see, for in-
stance[12,13)):

_3using
¢ 4m?

( 1) 1
xlnfl——-|+—+1
X 2X

wherex=r/2M(R), R<r<, andu is the dipole moment.
From Eq.(3.16), one then obtains the corresponding field
B=B'e + B, where the physical component8'( B?) as
measured by the Killing observers are given by

do M(r)+47r3P(r)

2u cos6 3 =

= eI -x )+ 3¢+ x|, dr 2(1 2M(r)) ’ (3.193

r r —

(3.173 r
i dM(r)

siné _

Bo:_Mrg 6X3(1_X—1)1/2|n(1_x—1) dr —47Tr2p, (319@
1—1/2x dP(r) M(r)+4mr3P
2__ T ———=—(p+P)———. 3.19
r

A comparison of Eqs(3.178 and (3.17bH with the corre-

sponding Eq(3.7) and aC® matching between the two along Making use of those equations, and restoring the fundamen-
the star’s surface, requires that the exterior dipole magnetital units, we obtain from Eq3.11) the following equation to
momentu should be identified with the generally slow time be satisfied by the relativistic Stokes function:

varying part of the functior(t,r) [25]. Moreover, the gra-

dientF(t,r) along the radial direction should obey 4”Uef¢(r)i: 1— 26m(r) ‘92_':
~ c? at cr ar?
dF(t,r) .
o | ~GFtR) (3.183 112Gm(r) 4=G
R . r3
r?2|  ¢c? c?
with
_— L[ PO ()) IF 2
— —_— r —_—— — s
2yin(l—-y H+ yy—l 2 ’ ar  r2
G(y)=y 1 (3.180 (3.20

y2In(1-y H+y+ 3 . _ _
2 where for typographical convenience we shall write hereafter
andy=R/2M (R). F(r,t) instead ofF(r,t). The above equation via E3.7),

Thus the behavior of the interior dipole field in the preS_Qescribes the_ evoI_ution .Of any axisymmetri_c, dipole, poloidal
field B that finds itself interior to a spherical perfect fluid

ence of curvature is described ByYt,r) satisfying the dif- g0 |y the above form it includes all three relativistic factors

ferential Eq.(3.11), subject to the boundednessfoft,r)/r> influencing the field decay. Since the distributions of
as the star's center is approached, and additionally obeyingm(r),P(r),p(r)] are related via Einstein's equations di-
Eq. (3.183 at its surface. Before we turn our discussion torectly to the spacetime curvature, £8.20 shows implicitly

the construction of solutions of Ed3.11) subject to the that the influence of spacetime curvature on the decay of the
above-discussed Conditions, we would like to write an eXmagnetiC field is a real effect and cannot be removed via
plicit formula for the time evolution ofF(t,r) under the coordinate transformations. In principle, one could insert in
assumption that geometry of the spacetime corresponds toEx. (3.20 the appropriate distributions afi(r), P(r), and
static spherically symmetric star solution of Einstein’s equap(r) resulting from integrating the Oppenheimer-Tolman-
tions. We may recall that in the derivation of E§R.11) and  Volkov equation, specifyr=o(r,t), and construct the his-
(3.183 and (3.18h, we assumed an arbitrary nonsingular, tory of the B decay. We shall report elsewhere our findings
static, spherically symmetric background geometry with theof this rather laborious numerical integratip28]. For the
only constraint that it joins smoothly to an exterior purpose of the present paper we shall integrate(®80 for
Schwarzschildield across the surface of the star. Nowhere ina rather simple system introduced and discussed in the fol-
the derivation did we need the explicit form dfl(r) lowing section. The goal of this section is to show that the
=Gm(r)/c? nor the form ofZ=Z(r). Hereafter, we shall general relativistic Eq(3.20 [or its approximate forms cor-
become more explicit and shall take the background interioresponding to Eq(3.13B] under the assumption of a uni-
geometry to be a nonsingular solution of the coupledform conductivity admits decay modes analogous to those of
Einstein-perfect fluid system. As is well known, and underthe flat space case with one important difference: The corre-
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spondinge-fold decaying times are longer in the relativistic

case. We interpret this amplification of theefold decay L=
times as resulting from the nonvanishing spacetime curva-

ture. Unfortunately, however, it is not easy to construct ana-

sz 5X2

- ZGm(x)) PL

lytically the exact decaying modes of the full relativistic sys- +i 2Gm(x) N 4nG G P(X) || 2
tem (3.20) or its approximate version@.133, and thus we X2 c? c2 c2 ax  x2'
shall resort to numerical computations. The emphasis in 4.2

those computations is the probing of the dependence of the
correspondinge-folding times upon the value of the redshift
factor or(and upon the strength of the curvature of the spa-where in the present case the coefficientk are determined
tial sections. by the geometrical and hydrodynamical variables of the con-
stant density star solutior=r/R andR s the areal radius of
the star. It follows now from Eq4.1) that if the eigenvalues
IV. MAGNETIC F'ELD_ DECAY IN A CONSTANT are positive and well spaced, then aftertp,,, /N1 wherex
DENSITY STAR: EXPLICIT RESULTS is the lowest eigenvalue of the above system, then the evo-

We shall consider in this section the decay of a magnetiéution of the distribution will channel into an exponentially
field in a neutron star of constant density. The assumption offécreasing phase with the dominant contribution in the sum
a constant density star, although not a very reliable approxi4.1) coming from the “first” term. Our subsequently de-
mation of a real neutron star, offers the advantage that thgcribed numerical computations exhibit such a feature and
Einsteins equations can be solved analyticétige, for in- thls property allows us to construct numerically the lowest
stance[12,13), and thus provides us with closed-form ex- €igenvalue of the above syst¢B0].
pressions for the coefficients of the induction equation, Eq. N the following numerical calculations we have taken the
(3.20, and the boundary condition, E3.18. In particular, ~areal radius to b&=10 km, a constant uniform conductiv-
in Box (23.2 of the Ref.[13] the distribution of the various ity o=10? s™* typical of neutron star valuegvhich im-
hydrodynamical and geometrical variables are plotted aglies Tonm=4.44 16 yr), and we consider various neutron
functions of the areal coordinate As we have already dis- Star masses characterized by different values of the dimen-
cussed, the exact decaying modes of the flat spacetime igionless compactness ratie=2GM/Rc¢?=0, 0.3, 0.4, 0.5,
duction equation for a uniform conductivity are explicitly 0.6, 0.740, 0.810, 0.865, and 0.889. The first one corresponds
known[given by Eq.(3.15], while the corresponding decay- to a flat background space time, the last four are those values
ing modes of the full curved spacetime equati@20 are  used in the numerical plots of RefL3], while current real-
presently unknown. We shall, therefore, resort to numericalStic neutron star models are characterizedeliy the range
techniques in an attempt to get insights into the behavior 0.3 to 0.5[31]. For each value o, at first we have solved
the space of solutions of E3.20. numerically the full relativistic induction equatid3.20), by

Viewed as an initial-boundary value problem, £8.20  taking the initialF(t=0,) to be equal to the Stoke’s func-
is a diffusive initial value problem for which the standard tion S(t=0,r) of the corresponding first fundamental decay
numerical technique is the Crank-Nicholson implicit integra-modes of Eq(3.15 [i.e., taken=1 andt=0 in Eq.(3.15].
tion scheme(see, for example, Ref29] for a description ~ After performing a long-time integration of E¢3.20 sub-

We checked our numerical code by evolving the fundameniject to the conditions cited earlier on, we find that the evo-
tal mode of the flat spacetime cafee., taken=1 in Eq. lution of F(t,x) channels into an exponentially decaying
(3.15] and compare the numerical solution with the analyti-mode, which means, according to H¢.1), that the evolu-
cal one: we obtained an accuracy better than 1% until timegon of the initial distribution eventually is described by the
up to 10 74, with 7;=40R?/ wc?= 7opy/ 72 the correspond-  first nonvanishing term in the series expansidul). This
ing decay time of the=1 flat fundamental mode. behavior of F(t,x) allows us to determine only the lowest

Before we turn to our discussion of the numerical resultsgigenvalue\ ; of Eq. (4.2) from our numerical outputs. Be-
it is helpful to view the time evolution of a chosen initial sides the explicit determination of;, our numerical treat-
distribution from a complementary point of view. On generalment allows us to construct the magnetic field as well. In Fig.
groundsF(t=0,) as well as its time evolution can lffor- 1, we plot as a function of coordinate tintethe magnetic
mally) expanded in a series of the following form: field as perceived by a Killing observer located at the star’s

pole for the various values of the compactness ratio. Figure 1
) ) shows that once curvature effects are incorporated and upon
F(t,x)=Zape M 77Rg (x), (4.)  ignoring the initial transit time during which the field is in a
superposition of various curved eigenmodes, the field fol-
lows an exponential decay lag@s would have been done in
the absence of graviyput now the correspondingfolding
time is longer than the corresponding flat spacetime case.
Thus even though we have started with identically prepared
systems their evolution is distinct, a distinction traced in the
influence of relativistic effects. It should be stressed, how-
Lg,+Ape”%g,=0, (4.239 ever, that the content of Fig. 1 does not by itself provide us

where the summation is extended over all eigenmayléx)
of the correspondingsingulay) Sturm-Liouville eigenvalue
problem arising from Eg.(3.20 and the associated
boundary-regularity conditions:
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FIG. 2. The horizontal axis stands for the dimensionless com-
pactness ratio @ M/R¢Z, while the vertical axis corresponds to the
FIG. 1. Dipolar field decay for a uniform density star in curved yalues ofg. The graphs marked by, e®s stand for the value of

and flat space time. The horizontal axis represésrdinat¢time  the redshift factor at the center and surface of the star, respectively.
in units of the flat space time ohmic decay timg=4moR?/c?

and the vertical axis shows the value BfBy,=B(t,r=R, @
=0)/B(t=0, r=R, 6=0). All models have the same areal radius

Time [T opml

larger than the corresponding flat case. Because of this be-
(R=10 km) and a constant uniform conductivity& 1075 s 1) havior, largely due to the gravitational time dilation effect,

typical of neutron star valugsvhich implies7ny=4.44x10° yr). ~ We assign an overall physical decay time, by averaging the
The values of the compactness ratié B1/R¢ is indicated on each Physicale-fold decay at the center and the surface of the star,
plot. The initial field profile is taken as the=1 eigenmode for the ~respectively. This amounts to assigning an overrall a redshift
flat spacetime, Eq(3.15, in all cases. The graphs show quite factor Z for the entire star equal roughly to its value at the
clearly the exponential decay in flat spacetime, with 7,,,/7>  Middle of the star. With this type of averaging, Figs. 2 and 3
within numerical accuracy, while, as expected, in curved spacetimshows that for small values of the compactness ratio the
the decay initially deviates from an exponential law but rapidly overall physical decay time is almost identical to the flat
converges toward the corresponding fundamental mode. space time case. However, as the compactness ratio in-
creases, the relativistic effects become more apparent. For
with a clear overall picture of the field decay. It rather pro-the case of neutron stars with range in the realistic domain,
vides us with a characteristic physical decay time as peri.e., € in the range 0.3-0.5, and via the averaging procedure
ceived by a Killing observer situated at the surface of the staoutlined above, the overall physicafold decay time is 1.2—
and this decay time should not be extrapolated as being the3 larger than the corresponding flat case. Although the con-
physical decay time over the entire s{&2]. In fact, each tent of Figs. 1, 2, and 3 show the impact of relativistic effects
Killing observer located at some will compute a physical upon the field decay, by themselves they do not offer a clear
e-fold decay time 7(r) given by 7(r)=2Z(r)(»;)"' insight as which(if any) of the two factors, i.e., redshift or
=Z(r) 7onm/ B and obviously this value changes across
the star.(In this formula, we have parametrized so that 2
B=1 corresponds to flat spacetim@ecause of this spatial
dependence of(r), in order to get a better insight into the surface
dynamics of the decay, in Fig. 2, we have plottag L -
=B 7onm, as a function of the compactness ratidn the
same figure, for comparison purposes, we have plotted the
value of the redshift factor at the stars’ cent@r, € e®(®)
and surface Z,=e®®), respectively. Thus it follows from >
Fig. 2, that the relativistic corrections to the lowest eigen- center™ |
value\ 4, are bounded from above &, while from below L \4
(almos) by Z,. It is more instructive, however, and comple- \
ments the content of Fig. 2, a plot showing the physical
decay times as measured by Killing observers located at the b .
center and at the surface of the star, respectively. Figure 3 0 29 4/9 6/9 8/9
stands for such a plot, and its content shows that the physical 2M/R
decay time can vary considerably across the star. In fact gG. 3. The horizontal axis stands for the dimensionless com-
there are regions around the star's center, where the physicgdctenes ratio @ M/Rc, while the vertical axis corresponds to the
decay time is shorter than the corresponding flat space caggio of the physical decay time,, over the corresponding flat
and this effect is more pronounced as the compactness rati@lue ;. The graphs marked as surface, center, respectively, rep-
increases. In contrast to what occurs in the vicinity of theresents7(R)yn/71=2Zs/8, 7(0)pn/ 71=2Z,/B, while the corre-
star’s center, in the crust region the physical decay is alwaysponding horizontal line through (0,1) stands for the flat case.

-~

Tph / Ty
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1.0 T T T V. CONCLUSIONS
oL e : e
S The behavior of the surface magnetic fields of neutron
NS stars is a complicated and controversial issue. Many pro-
N ) cesses are believed to influence its magnitude and its subse-
Nimes quent evolution. Trapping for instance, of the field in the
0.5k AN - superconducting core is one possibility. The expulsion of the
\ field out of this region is a delicate matter involving many
curved \\ different branches of physid84]. Another possibility that,
space-time \\ in principle, influences enormously the magnetic properties
of neutron stars is related to the accretion processes imme-
diately after the core collapg&5]. Accretion and particu-
% 20 o 0 39 larly hypercritical accretion, can submerge the field of the

SM/R new born neutron star beneath a layer of accreting matter
thus, in principle, producing a delayed switched-on mecha-
FIG. 4. The horizontal axis stands for the dimensionless comfnism for the pulsar activity36]. Furthermore according to
pactnes ratio @M/Rc?, while the vertical axis corresponds to the recent work the neutron star may never turn on as a pulsar
values ofB. The graphs marked as curved space, curved time prof37] if the accretion is hyperctical. Besides the above mecha-
vide the eigenvalues corresponding to the case wierd and  nisms influencing the evolution of a neutron star’s magnetic
r(l)=1, respectively, as explained in the text, while the graphfields, many more have been introduced and discussed at
marked as curved spacetime corresponds to the exact equation. |ength in the current literature. In this work, we have present
a limited framework taking into account the effects of the
spatial curvature, are responsible for the dominant contribuSPace time curvature on the field decay. For the simple neu-
tion in the field decay. In order to access their relative im-{fon star models with a corresponding compactness ratio in
portance we solve numerically E¢3.133 in two extreme the range 0.3-0.5, considered in the present work, we have

caseg33] and show the numerical outputs in Fig. 4. First Eq.Seen an overall increase i.n the decay time, 1.2-1.3 times
(3.133 is solved under the assumptiagl)=| and in this larger than the flat spacetime value. Although the present

S L work is preliminary and to assess the new effect more work
approximation the relativistic effects on the decay are solel){s needed[28], it points towards the direction that in a
due to th.e rgdshlft factar(l). In“F|g. 4 th? nu’r,nencal out- strongly gravitating system, effects due to spacetime curva-
puts are indicated by the label: “curved time.” In the oppo-

. _ ture should not be neglected.
site extreme, we adogi(l)=1 in Eq.(3.133 and taker(l)
as given by the metric corresponding to a constant density
star. Thus in this approximation, the only relativistic effect
influencing the decay is due to the spatial curvature. The This work was supported by a binational grant DFG
resulting numerical outputs in Fig. 4 are marked by the labelGrant No. 444-MEX-1131418Conacyt (Grant No.
“curved space.” It follows then clearly from the content of E130.443, Conacyt (Grant No. 2127P-E9507 UNAM-
Fig. 4 that for a constant density neutron star, the dominanfPGAPA (Grant No. IN105495and Coordinacio Cientfica-
effect in the field decay is due to the redshift factorsince  UMSNH. D.P. and T.Z. are grateful to the Astrophysikalis-
the Corresponding eigenvah_]es indicated by the Curved-tim@hes Institut Potsdam fqr its kind hospltallty and U.G. thanks
graph are much closer to the corresponding exact eigenvalige Instituto de Astronoraiof UNAM.
indicated by curved spacetime in Fig. 4. Moreover, the domi-
nance of the redshift factor holds through for all values of the APPENDIX A: (3+1) FORM OF MAXWELL'S
compactness ratie, and increases asincreases. EQUATIONS ON STATIC SPACETIMES

From the analysis presented so far it is clear that the more In this appendix we shall sketch a derivation of E@s8)
compact the star is, the longer is the e-folding time. AS ayar(ing from the covariant form of Maxwell’s Eq2.1).
consequence one expects that models of pulsars with a seff\e gerivation makes use of the existence of the hypersur-
equation of state to maintain a strong magnetic field forace orthogonal timelike Killing field and although all the
longer period of time than the corresponding models with &ojlowing computations can be done in a covariant fashion
stiff equation of state. Inturn_such sldvfield deca}y|mpl|es [18,20], for brevity we work explicitly in the coordinate
an additional source of heating, i.e., Joule heating, and suc§auge of Eq(2.4). We shall also present formulas required
additional heating may explain the relatively high tempera<for the derivation of equations in Sec. II.

ture observed in old neutron stars. However, based on the Starting from the temporal component of the inhomoge-
present analysis, it is rather premature to draw definite comeous Maxwell Eq(2.19, combined with the line element
clusions. For instance cooling effects leading to the temporal2.4) and taking into account the fact that= — F/°e®, one
variation of the conductivity as well as the the detailed strucimmediately obtains

ture of the star and its rotation has to be taken into account.

Such a study is currently under way and we expect to report DE=_ 4_77
in a future communication. ! c
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where we have defined the charge dengpitjneasured by a coordinate and frame components of the vector fiekhd it
Killing observer ascp=—J*U,,, and we denote by the is understood that no summation is involved over the re-
covariant derivative operator associated with the Riemanniapeated indices. With the help of the orthonormal components
metric of thet=const spaces. Due to the fact that the Max-one, for instance, may rewrite EGA1) in terms of orthonor-
well tensorF ,; admits the following easy verifiable decom- mal components. Writing/Y?=h;h,h; and eliminating the
position: F,z=U,Ez—UzE,+€,5,;U"B°, one gets the coordinate components in terms of the frame components of
following expression for its spatial paR;; : Fj;= Eoi“B'U0 E, Eq. (A1) takes the following form:

=€) B'. Passing now to the spatial components of @dla

d -0 5
one gets _ Lyp 2
| hyhohs axl(hzhsE )+ axz(hlhaE )
JE 4
——€'D(ZB)=— —WZJ', (A2) 9 R
IX c + m(hlthfﬂ) =V.E=4mp, (A7)

where we have introduced the redshift factdrvia Z=
(— &£2&,)Y?=e? instead ofe®. On the other hand, the second where V- stands for the familiar divergence operator ex-

pair of Maxwell's equationg2.1b can be written equiva- Pressed in arbitrary orthogonal curvilinear coordinates de-
lently as fined by the line element2.7). Similarly D;B'=0 can be
written asV-B=0. As far as the other set of Maxwell's
equations are concerned, one can proceed in a similar man-
ner. For instance, starting from E@\2), one first multiplies
the corresponding equation by the scale fatiothus lead-
Taking now all the indices to be spatial, and eliminatlg  ing to

one getdD;B'=0. The other information encoded in the sec- . o

ond pair of Maxwell equations can be revealed by consider- A(E")  €%n; a(hBiZ) Am -

ing the following arrangement of the spacetime indices: ax°  hihyhg X :_?‘J Z. (A8)
(m,7,A=m,n,x%). For such an arrangement one obtains

JF JF JF
,LLV+ 2 + )\,u.:

axM o oaxt T axY

0. (A3)

| Recalling that the orthonormal components of thel
I(€mniB’) N d(—UoEn) N I(UoEm) _ 0 (A4)  operator of an arbitrary three-dimensional differentiable vec-
IX° ax™ ax" ' tor field A are given by[38]

from which one easily obtains : eﬁ&hi d(h A
| (VXA = Hhohs ~x (A9)

JB
—5+ €MD (ZE,)=0. A5
axote Pn(2E) (A9 one is lead immediately into E¢R.8b) used in the text. Note

_ . . also that the action of the gradient operaforacting on
The current conservation equatidén,J“=0 after a trivial 551515 is defined via

rearrangement yields

1 9f 1 of 1 of
.dlogz Vi

Jc ) = —t— —+——. Al10
U“—p+DiJ'+J' —=0. (AB) hy ax* h, ax? h3 ax3 ( )
IxXH X

_ ) Also in deriving Eqs(2.89—(2.80 of the main text we have
To pass into the equivalent sigs. (2.89—(2.8d] and  ysed the following properties of the unit basis vectors
Eq. (2.9 involving physical orthonormal components, we (e): e-e=6&;, exe=ejier and the normalization
project all tensors involved onto the natural set of orthonor-er;ﬁ: 1. We may also indicate that for typographical conve-
mal vectors ¢) and one forms &), (i=1,2,3), respec- nience the caret symbol over frame components of the vari-
tively, associated with the line eleme(&.7). Thus, for in- o5 tensors has been dropped. In particular, all vector and
stance, the electric fiel& can be written a&£=E'(d/dx')  tensor components appearing anywhere in the main text after

=E'e;, whereE'=h,E' expresses the relationship betweenEq. (2.7), are frame components.
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