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Robust test for detecting nonstationarity in data from gravitational wave detectors
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Center for Gravitational Physics and Geometry, Pennsylvania State University, University Park, Pennsylvania 16801

~Received 24 January 2000; published 24 May 2000!

It is difficult to choose detection thresholds for tests of nonstationarity that assumea priori a noise model if
the data are statistically uncharacterized to begin with. This is a potentially serious problem when an automated
analysis is required, as would be the case for the huge data sets that large interferometric gravitational wave
detectors will produce. A solution is proposed in the form of arobust time-frequency test for detecting
nonstationarity whose threshold for a specified false alarm rate is almost independent of the statistical nature of
the ambient stationary noise. The efficiency of this test in detecting bursts is compared with that of an ideal test
that requires prior information about both the statistical distribution of the noise and also the frequency band
of the burst. When supplemented with an approximate knowledge of the burst duration, this test can detect, at
the same false alarm rate and detection probability, bursts that are about 3 times larger in amplitude than those
that the ideal test can detect. Apart from being robust, this test has properties which make it suitable as an
online monitor of stationarity.

PACS number~s!: 04.80.Nn, 07.05.Kf, 95.85.Sz
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I. INTRODUCTION

Each of the large interferometric gravitational wave d
tectors that are now under construction@Laser Interferomet-
ric Gravitational Wave Observatory~LIGO! @1#, VIRGO @2#,
GEO @3#, TAMA @4## will produce a flood of data when the
come online in a few years. Apart from the ‘‘main’’ dat
channel carrying measurement of strain in the arm leng
there will be a few hundred auxiliary channels@5# at each
site associated with system and environmental monit
such as seismometers and magnetometers. Their role w
be to monitor the state of the detector and its environmen
that any unusual event in the main channel or an unexpe
behavior of the detector can be diagnosed properly.~The
sum total of raw data from the LIGO detectors will be pr
duced at the rate of;10 megabytes@6# every second.!

Under ideal conditions, each data channel would ca
stationary noise. For the main channel, this would reflec
steady state of the interferometer and, for the auxiliary ch
nels, a steady state of the environment. However, experie
with prototypes as well as with the several resonant m
detectors that have been operating for quite some time sh
that this situation does not hold in reality. There will alwa
be episodes of non-stationarity though their rates and d
tions will depend on the choice of the detector site and ot
factors.

Detecting non-stationarity is important both in the ma
channel, because some non-stationarity could be of as
physical origin, and also in the auxiliary channels where
can be an important diagnostic of the instrument or its en
ronment. It is also important when estimating a statisti
model of the detector noise where it is essential that the
segment used be stationary.@The deleterious effects of non
stationarity on the power spectral density~PSD! estimation
were noted in@7#.#

Several methods for detecting non-stationarity that

*Email address: mohanty@gravity.phys.psu.edu
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relevant in this context have already been considered in
gravitational wave data analysis literature@8,9#. However,
these methods share an unsatisfactory feature which is
the computation of the detection threshold corresponding
a specifiedfalse alarm raterequires ana priori knowledge
of a statistical model of the stationary ambient noise.
error in the model leads to an error in our knowledge of
false alarm rate. In the real world such prior models a
usually not available and it is necessary to estimate no
models from the data itself. Even if a model exists, it w
almost always have some free parameters~the variance being
a trivial example! whose values would have to be estimat
from the data fairly regularly, especially in the case of
complicated instrument such as a laser interferometer o
environment monitors.

Thus, when confronted with an uncharacterized data
an experimenter who is only limited to methods such as
above can face considerable uncertainty in fixing a thresh
for the test before analyzing the data. For a sufficiently sm
dataset, the analyst can start withad hocthresholds and work
in some iterative sense towards a statistically satisfac
conclusion. The problem becomes more serious when
data set to be analyzed is so large that it becomes nece
to substantially automate the analysis, as would most
tainly be needed in the case of the large interferometers.
additional set of problems will arise when analyzing aux
iary channels since ambient terrestrial noise may be intri
cally more difficult to characterize and have a variable n
ture.

We introduce here, in the context of gravitational wa
data analysis, a test for detecting non-stationarity for wh
the issue of fixing the correct threshold is trivial by desig
The false alarm rate for such arobusttest depends weakly on
the statistics of the ambient noise and is specified alm
completely by the detection threshold alone. In the pres
paper we concentrate on short duration non-stationarity
burstssince they are likely to be the most common types
non-stationarity in gravitational wave detectors. We find th
the robustness of the test improves for smaller false al
©2000 The American Physical Society02-1
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rates, which is precisely the regime of interest. If requir
the test can be optimized in terms of the duration of
bursts that need to be detected.

We compare the efficiency of this test in detecting n
rowband bursts with that of an ideal test which requires b
a noise model and prior knowledge of the frequency ba
~center frequency and bandwidth! in which the bursts occur
We find that supplementing our test with an approxim
prior knowledge of the burst duration allows it to detect,
the same false alarm rate and detection probability, bu
with a peak amplitude that is a factor of;3 larger than that
of the bursts which the ideal test can detect.

Apart from being robust, it also has the following prope
ties that make it useful as an online monitor of stationar
The computational cost associated with this test is q
small. Areas of non-stationarity are clearly distinguished
the time-frequency plane, from areas of stationarity. Ap
from making the output simple to understand visually, t
will allow an automated routine to catalogue burst inform
tion such as the time of occurrence and frequency band

The detection of non-stationarity has been actively st
ied in Statistics for quite some time@13# and numerous test
suitable for a wide variety of non-stationary effects exist
the literature. The central idea behind our test is the detec
of statistically significantchangesin the PSD. As a means o
detecting non-stationarity, this idea is quite natural and
been proposed in several earlier works.~See, for instance
@14,15#.! though what constitutes a change and how it
measured can be defined in many different ways leadin
tests that differ statistically as well as computationally. T
specific implementation presented in this paper leads t
statistically robust test. The issue of robust tests for n
stationarity, though important as we have argued, has
been considered in gravitational wave detection so far.
same concerns as well as a more rigorous treatment exi
the Statistical literature@16#. Our present work was, how
ever, done independently and this test is a new contribut

The paper is organized as follows. In Sec. II we forma
state the problem addressed in this paper. Section III
scribes the Studentt-test which lies at the core of our tes
This is followed by a discussion of the basic ideas that le
to the test and why the test can be expected to be robus
Sec. IV, the test is characterized statistically in term of
false alarm rate and detection power. The main results of
paper are also presented in this section. The computati
cost associated with this test is discussed in Sec. IV D. T
is followed by our conclusions and pointers to future work
Sec. V.

II. FORMAL STATEMENT OF THE PROBLEM

A random processx(t) is said to bestrictly stationary
@10# if the joint probability densityP„x(t i),x(t i1d1),x(t i
1d2), . . . ,x(t i1dn)… of any finite number,n, of samples is
independent oft i . Often, one uses a less restrictive definiti
called wide sense stationaritywhich demands only that th
mean E@x(t i)# and the autocovariance E†(x(t i)
2E@x(t i)#)„x(t i1t)2E@x(t i1t)#…‡ be independent oft i .
12200
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A random process not satisfying any of the above definitio
is callednon-stationary.

We assume that the ambient noise in the data channe
interest is wide sense stationary over sufficiently long ti
scales and a burst is an episode of non-stationarity wit
much smaller duration. That is, the occurrence of a bu
lasting from t5t0 to t5t1 in a segmentx(t) of data (0<t
<T) means that

x~ t !5H wide sense stationary 0<t<t0 ,

non2stationary t0<t<t1 ,

wide sense stationaryt1<t<T,

~1!

wheret12t0!T. In practice, only atime seriesx consisting
of regularly spaced samples ofx(t) is available instead of
x(t) itself. Thus, given the time seriesx, we want to decide
between the following two hypotheses aboutx:

~1! Null hypothesis H0 : x is obtained from a wide sens
stationary random process.

~2! Alternative hypothesis H1 : x is obtained from a non-
stationary random process.

The frequentist approach@11# to this decision problem,
which is followed here, begins by constructing a functi
T(x), called atest statistic, of the datax. If the datax is such
that T(x)>h, for some thresholdh, the null hypothesis is
rejected in favor of the alternative hypothesis for thatx.

Sincex is obtained from a random process, there exist
finite probability, thatT(x) crosses the threshold even whe
the data is stationary. Such an event is called afalse alarm
and the rate of such events over a sequence of datax is called
the false alarm rate. The thresholdh is determined by speci
fying the false alarm rate that the analyst is willing to tole
ate.

To compute the threshold, we need to know the distrib
tion function ofT(x) whenH0 is true. This distribution can
in principle, be obtained if the joint distribution ofx ~i.e., a
noise model! is known. However, as mentioned in the Intr
duction, such prior knowledge is usually incomplete, if
exists at all, in the real world. The only solution then is
estimate the joint distribution from the data itself. Therefo
one must first find a stationary segment of the data, by
tecting and then rejecting non-stationary parts, but t
brings us back to our primary objective itself.

To get around this paradox, we mustconstructT(x) such
that its distribution is as independent as possible of the
tribution of the data under the null hypothesis. If the dist
bution of the test statistic is strictly independent of the d
tribution of x, the test is called@12# non-parametric. If the
test statistic distribution depends on the distribution ofx but
only weakly, the test is said to be arobust test. Tests which
do not have either of these properties are calledparametric.
Formally, therefore, the aim of this work is to find a no
parametric, or at least a robust test, for non-stationarity.

III. DESCRIPTION OF THE TEST

A. Student’s t-test

Before we describe our test for non-stationarity, it is b
to discuss Student’st-test@12# in some detail since this stan
dard statistical test plays an important role in what follow
2-2
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ROBUST TEST FOR DETECTING NONSTATIONARITY. . . PHYSICAL REVIEW D61 122002
Student’st-test is designed to address the following pro
lem. Given a set ofN samples,$x1 , . . . ,xN%, drawn from a
Gaussian distribution of unknown mean and variance, h
do we check that the meanm of the distribution is non-zero?
In Student’st-test, a test statistict is constructed,

t5
m̂AN

Aŝ2
, ~2!

where

m̂:5
1

N (
j 51

N

xj , ~3!

ŝ2:5
1

N21 (
j 51

N

~xj2m̂ !2. ~4!

The distribution oft is known @17#, both whenm50 and
mÞ0. To check whethermÞ0, a two-sided threshold is se
on t corresponding to a specified false alarm probability.t
crosses the threshold on either side, the null hypothesim
50 is rejected in favor of the alternative hypothesismÞ0.

Of interest to us here are two main properties of thet-test.
First, if two sets of independent samplesX5$x1 , . . . ,xN%
andY5$y1 , . . . ,yN% are drawn from Gaussian distribution
with the same but unknown variances, thet-test can be em-
ployed to check whether the means of the two distributio
are equal or not. This can be done simply by constructin
third set of samplesZ5$y12x1 , . . . ,yN2xN%, which would
again be Gaussian distributed, and then testing, as sh
above, whether the mean of the distribution from whichZ is
drawn is non-zero or not.

The second important property@18# of the t-test is its
robustness: As long as the underlying distributions from
which the two samples are drawn are identical, but not n
essarily Gaussian, the distribution of thet statistic does not
deviate much from the Gaussian case. The lowest order
rections to the mean and variance of the distribution be
O(N25/2) andO(N22) respectively.

B. An outline of the test

We present here an outline of our test. The details of
actual algorithm are presented in the Appendix.

From Sec. II, it is clear that a direct signature of no
stationarity is a change in the autocovariance function. T
implies that the PSD of the random process should a
change since the it is the Fourier transform of the autoco
riance function@10#. Therefore, the basic idea behind our te
is the detection of a change in the PSD of a time series.

The test involves the following steps~see Fig. 1 also!.
~1! The time series to be analyzed is divided into adjac

but disjoint segments of equal durationl l .
~2! Take two such disjoint data segmentsSk and Sk1e

separated by a time interval (e21)l l , e51, 2, . . . . We
would like to compare the PSDs of these two segments
test if there is a significant difference.
12200
-

w

s
a

wn

c-

r-
g

e

-
is
o

a-
t

t

d

~3! Subdivide each of the two segments intoN subseg-
ments of equal duration. Thus, segmentSi , i P$k,k1e%,
gives usN subsegments, each of durationl s5 l l /N, which we
denote bysj

( i ) , j 51,2, . . . ,N. This is an intermediate step i
the estimation of the PSD of each segmentSi .

~4! Compute theperiodogram of each sj
( i ) . A peri-

odogram is the squared modulus of the discrete Fou
transform~DFT! of a time series@Eq. ~A2#.

~5! For every frequency bin, therefore, we obtain a seX
of N numbers fromSk and similarly another setY from
Sk1e . In a conventional estimation of the PSD of a segme
say Sk , we would simply average the corresponding setX.
However, since we want tocomparetwo PSDs, we do the
following instead.

~6! Perform Student’st-test for equality of mean on thes
two independent setsX and Y. If the t statistic crosses a
preset thresholdh, then a significant change in the mean
indicated, otherwise not.

~7! Repeat step~6! for all frequency bins in exactly the
same manner.

Steps~2! to ~7! should then be repeated with another p
of disjoint segmentsSk11 andSk1e11 and so on.

Thus, the output of the test at this stage is a two dim
sional image with time along one axis and frequency alo
the other. In this image, every frequency bin for which t
thresholdh is crossed can be thought of as being color
black while the remaining are colored white. Hence, wh
areas in this image would indicate stationarity while the co
trary would be indicated by the black areas. A sample ima
is shown in Fig. 2~a!. It is the result of applying the test to
simulated time series constructed by adding a broad b
burst to stationary white Gaussian noise~see Sec. IV A for
definitions!.

Not all black areas would, however, correspond to no
stationarity. Most of them would be random threshold cro
ings caused by the stationary noise itself. We search, th
fore, for clustersof black pixels in the image which pass
veto that can be motivated as follows. Suppose the burs
fully contained in one segment, say,Sk . Then one would
expect thet-test threshold to be crossed once when comp
ing Sk with Sk2e and again whenSk is compared withSk1e .
This leads to a characteristic ‘‘double bang’’ structure for t
cluster of black pixels. We throw away all other groups
black pixels that do not show such a feature.~This scheme is
defined rigorously in the Appendix.! Figure 2~b! shows the

FIG. 1. Schematic of the data stream subdivisions. In this
ample, we have chosenN54. ~Thus, j 51,2,3,4.!
2-3
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SOUMYA D. MOHANTY PHYSICAL REVIEW D 61 122002
result obtained by applying this veto to the image in F
2~a!. One of the clusters is at the location of the added bu
while the other is a false event.

C. Why is this test robust?

This test can be expected to be robust for two reaso
First, the periodogram at any frequency is asymptotica
exponentially@19,20# distributed. This can be heuristicall
explained as follows. The DFT of a time series is a line
transform. If the number of time samples in a random ti
series is sufficiently large, it then follows from thecentral
limit theoremthat the DFT of that time series will have, a
each frequency, imaginary and real parts which are dist
uted as Gaussians. Since the basis functions used in a
are orthogonal, the real and imaginary parts also tend
wards being statistically independent. This implies that, fo
sufficiently large number of time samples, the periodogra
which is simply the squared modulus of the DFT, is exp
nentially distributed at each frequency.

The second reason which should make the test robu
the fact, mentioned earlier, that thet-test is robust agains
non-Gaussianity when the two samples being compared h
identical distributions. Under the null hypothesis of statio
arity, we do indeed have identically distributed sets in o
case.

Since the asymptotic distribution of a periodogram is
dependent of the statistical distribution of the time samp
much of the information about the time domain statisti
distribution is lost in the frequency domain. Thus, thet-test
‘‘sees’’ nearly exponentially distributed samples whereas
time domain samples may have a Gaussian or non-Gaus
distribution. Added to this, the robustness of thet-test also
removes information about the time domain statistical dis

FIG. 2. Test output for simulated input data constructed by a
ing a broad band burst of effective duration 1.0 sec, center
quency 200 Hz and bandwidth 200 Hz to stationary white Gaus
noise. The sampling frequency was chosen to be 1000 Hz.~a! Top:
raw image obtained after applying thet-test threshold.~b! Bottom:
result of applying the veto to the image in~a!. The cluster that
occurs earlier in~b! is a false event while the next cluster corr
sponds to the burst.
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bution. Further, thet-test checks for achangein the mean
value and is insensitive to the absolute value of the me
This is strictly true in the Gaussian case but, because of
robustness of thet-test, it should also hold to a large exte
for the exponential case.

These basic considerations suggest strongly that the
as a whole should be robust. However, the test also invo
some other steps beyond just a simplet-test. First, the same
segment is involved twice in at-test~cf. Sec. III B!. Thus, for
any k, samplesk and k1e in the sequence oft values at a
given frequency will be correlated to a large extent. Seco
we impose a non-trivial veto.

The above features of the test, though well motivated a
conceptually simple, make a straightforward analytical stu
of the test difficult. Therefore, to establish the robust nat
of the test and quantify its performance, we must follow
more empirical approach based on Monte Carlo simulatio
This is the subject of the next section. An analytical tre
ment of the test is currently under development.

IV. STATISTICAL CHARACTERIZATION OF THE TEST

Our main aim in this section is to demonstrate the rob
nature of the test and to study the efficacy of this test
detecting non-stationarity. Since we need to use Monte C
simulations for understanding these statistical aspects of
test, we discuss only a few selected cases in this paper.

For a test to qualify as robust the threshold should
almost completely specified by the false alarm rate with
requiring any assumptions about the statistics of the d
The false alarm rate, in the context of this test, is the rate
which clusters of black pixels occur when the input to t
test is astationary data stream. To obtain the false alar
rate, several realizations ofstationary noise are generate
and the test is performed on each. For a given threshold,
number of clusters detected over all the realizations provi
an estimate of the false alarm rate at that threshold.

The efficacy of a test in detecting a deviation from t
null hypothesis is measured by thedetection probabilityof
the deviation. In this paper, we measure the detection p
ability of different types ofbursts that appear additively in
stationary ambient noise. Realizations of signals from a fix
class~such as narrowband or broadband bursts of noise! are
generated, to each of which we add a realization of station
noise. The test is applied to the total data and we ch
whether a cluster of black pixel appears in a specified are
the time-frequency plane. This fixed area, which we call
detection region, is specified in advance of the simulatio
The ratio of the number of realizations having a cluster in
specified area to the total number of realizations gives
estimate of the detection probability for bursts of that cla

The function that maps the test threshold into false ala
rate depends on the test parameters,l l , l s and e ~cf. Sec.
III B !. Therefore, for each choice of these test paramet
the test must be calibrated separately using a Monte C
simulation. However, thanks to the robust nature of the t
the simulation needs to be performed only once and fo
simple noise process such as Gaussian white noise w
need not have any relation to the actual random proces

-
-
n
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ROBUST TEST FOR DETECTING NONSTATIONARITY. . . PHYSICAL REVIEW D61 122002
hand. The role of the test parameters is discussed in m
detail in Sec. IV C.

A. False alarm probability

We perform a Monte Carlo simulation for each of th
representative cases below and show that the false alarm
as a function of threshold, is the same for all of them.

Each realization of the input data is a 10 sec long ti
series and each simulation uses 5000 such realizations
can look upon all the separate realizations of the input
forming parts of a single data stream (5000310 sec long!
and, if we assume that false alarms occur as a Poisson
cess, the false alarm rate~in number of events per hour! is
given by the total number of false alarms over all realizatio
divided by 53104/3600.

The various cases considered here are as follows.
(i) White Gaussian noise(s51). The time series consist

of independent and identically distributed Gaussian rand
variables. The standard deviations of the Gaussian random
variables is unity and their mean is zero.

(ii) White Gaussian noise(s510). Same as above bu
with s510.

(iii) White non-Gaussian noise. All details in this simula-
tion are the same as above except that the distribution
each sample is now chosen to be an exponential withs51.

(iv) Colored noise. We generated Gaussian, zero me
noise with a PSD as shown in Fig. 3. The overall normali
tion is arbitrary but the noise is scaled in the time domain
make its variance unity. This PSD was derived from t
expected initial LIGO PSD, as provided in@21#, by truncat-
ing the latter below 5 Hz and above 800 Hz followed by t
application of a band pass filter with unity gain between
Hz and 500 Hz.

The range covered by the above types of statistical m
els is much more extensive than would be required in pr
tice. By applying the test to such extreme situations, we
boundthe variations in the false alarm rate versus thresh
curve that would occur in a more realistic situation. In co
sidering this range of models for the stationary backgrou

FIG. 3. PSD for the colored Gaussian noise used in this pap
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noise, we have gone from a two-sided distribution to a co
pletely one side distribution. The output from most chann
would be two sided and, hence, closer to a Gaussian than
Exponential distribution considered here.

The results are shown in Figs. 4, 5 and 6. For the sm
false alarm rates (,5/hour) that will be required in practice
the test is clearly shown to be very insensitive to the sta
tical nature of the data. The largest variation is between

. FIG. 4. False alarm rate as function of threshold for differe
types of stationary input noise. The sampling frequency of the in
is 1000 Hz. Bottom panel: zoomed in view of the top panel. So
line: white Gaussian noise (s51). Dashed line: white Gaussia
noise (s510). Dotted line: white exponential noise (s51). Dash-
dotted line: colored Gaussian noise. The error bars correspon
1s deviations. The test parameters values arel l50.5 sec, l s

50.064 sec ande53.

FIG. 5. False alarm rate as function of threshold for differe
types of stationary input noise. The sampling frequency of the in
is 1000 Hz. Bottom panel: zoomed in view of the top panel. So
line: white Gaussian noise (s510). Dashed line: white exponentia
noise (s51.0). Dash-dotted line: colored Gaussian noise. The
parameters values arel l51.25 sec,l s50.064 sec ande53.
2-5
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SOUMYA D. MOHANTY PHYSICAL REVIEW D 61 122002
Gaussian and exponential case while there is hardly
variation, even at large false alarm rates, among the Gaus
cases. The variation between the Gaussian and expone
case is less than;50% in the worst case. As explaine
above, this should be treated as an upper bound on the
one might expect in practice.

Figures 4, 5 and 6 correspond to different sets of t
parameter values. The threshold for a given false alarm
does depend, as one may expect, on the parameters o
test l s , l l and e. Because of the robust nature, howev
given a particular set of parameter values only a sin
Monte Carlo simulation has to be performed with, say, wh
Gaussian noise, in order to obtain the corresponding f
alarm rate versus threshold curve.

The parameter values for Fig. 4 were chosen to be
same as those that will be used in the following section.
also consider in that section the case of a band pass filt
and down sampled time series. Figure 6 uses parameter
ues appropriate to the latter while the choice for Fig. 5
explained in more detail in Sec. IV C.

B. Detection probability

A burst has an effectively finite duration and is itself
instance of a stochastic process. We consider the follow
combinations of background noise, bursts and test par
eters l l , l s and e. The sampling frequency of the data
assumed to be 1000 Hz.

The background noise is a zero mean stationary Gaus
process with a PSD that matches the expected initial LI
PSD ~cf. Fig. 3!. The burst is anarrow band burst con-
structed by band pass filtering a white Gaussian noise
quence followed by multiplication of the filtered output wi
a time domain window. Let the width of the pass ba
be W and its central frequency bef c . The time domain

FIG. 6. False alarm rate as function of threshold for differe
types of stationary input noise. The sampling frequency of the in
is 40 Hz. Bottom panel: zoomed in view of the top panel. Solid lin
white Gaussian white noise with (s510). Dashed line: white ex-
ponential noise (s51.0). The test parameters values arel l

51.0 sec,l s50.1 sec ande53.
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window function is chosen to be a Gaussian in sha
@exp(2t2/2S2)# where S is chosen such that whent
50.5 sec, the window amplitude drops to 10% of its ma
mum value~which is unity att50). The burst has, therefore
an effective duration of;1 sec. After windowing, the peak
amplitude of the burst is normalized to a specified value. T
test parameters arel l50.5 sec, l s50.064 sec, ande53.
( l s50.064 sec corresponds to 64 points, a power of 2
order to optimize the fast Fourier transforms needed for co
puting the periodogram for each subsegment.!

We consider two types of narrow band bursts. Type~1!
has f c5200 Hz, while type ~2! has f c5100 Hz. W
520 Hz for both types of bursts. The detection regio
which is the area in the time frequency plane that must c
tain a cluster of black pixel for a valid detection, is chosen
both cases to be 1.0 sec and 80 Hz wide in time and
quency respectively. It is centered at the location of the w
dow maximum in time and atf c in frequency.

For each type of burst, we empirically determine the pe
amplitude required in order for the burst to have a detect
probability of .0.8. This is done at several different valu
of the detection threshold corresponding to false alarm ra
of 1 false event in 1/2, 1, 2, or 3 hours. The results
tabulated in Table I.

As shown later in Sec. IV C, the above choice for the t
parameters, especially the value ofl l , optimizes the test for
detecting bursts which effectively last for;1 sec. We have,
therefore, presented the best performance the test can de
for detecting bursts with this duration. Note that the same
of parameters optimize the test for detecting bursts that oc
in very different frequency bands. Thus, the duration o
burst is effectively the only characteristic that needs to
considered when optimizing the test. This point is discus
further in Sec. IV C.

In Figs. 7 and 8, we show samples of both data and b
~with the peak amplitudes given in Table I! for each of the
two cases described above. Figure 7 corresponds to type~1!
bursts and illustrates the fact that the bursts being dete
are not prominent enough to be picked up by ‘‘eye.’’ Th
burst in Fig. 8, which is of type~2!, is more prominent. This
is because these bursts lie closer in frequency to the ‘‘seis
wall’’ part of the noise curve~see Fig. 3! where the variance
of the PSD is higher.

To better understand the detection efficiency of our tes
is natural to ask for a comparison with a test that, intuitive
represents the best we can do. Let us suppose that we k

t
t

:

TABLE I. Burst peak amplitude, in multiples of the backgroun
noise rms, required for a detection probability of 0.8. The thresh
h corresponding to a particular false alarm rate is given in par
theses below it.

Burst False alarm rate
type ~number of events/x hours!

2 /h 1 /h 1 /2 h 1 /3 h
(h51.8) ~1.84! ~1.875! ~1.9!

~1! 1.3 1.6 1.8 2.3
~2! 4.0 4.7 5.8 6.4
2-6



N
a

th
tio

-
d

g
e

.
is-
ss-

cen-

own

a
ak

tec-

the
test.
ers

e
of

do-

f
n-
of

ve

al
hav-
. In

A
s of
or-

the
ral

n
but
ed

est.

ng
a

ad
: t

ROBUST TEST FOR DETECTING NONSTATIONARITY. . . PHYSICAL REVIEW D61 122002
a priori that all bursts are of type~2! above and that the
ambient noise is a Gaussian, stationary random process.
that such prior information is substantially more than th
used to optimize our test which was a knowledge of only
burst duration. Nonetheless, assuming that such informa
was available to us~and no more!, then the following would
be the ideal scheme we should compare our test with.

In the ideal scheme~similar to @22#!, we first band pass
filter the datax. Since we know the bursts are of type~2!, let
the filter pass band beW520 Hz wide, centered at the fre
quencyf c5100 Hz. The output of the filter is demodulate
and the resulting quadrature components, sayX5$Xk% and
Y5$Yk%, k51,2, . . . , areresampled down to a samplin
frequency of 2W. The downsampled quadratures are th

FIG. 7. Sample realizations a narrow band burst of type~1! and
the corresponding input data. Top panel: data obtained by addi
burst to stationary colored Gaussian noise. Bottom: the burst w
form. Here, the peak amplitude of the burst is 1.3s.

FIG. 8. Sample realizations of a narrow band burst of type~2!
and the corresponding input data. Top panel: data obtained by
ing a burst to stationary colored Gaussian noise. Bottom panel
burst wave form. Here, the peak amplitude of the burst is 4.0s.
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squared and summed to give a time seriesZ5$Zk5Xk
2

1Yk
2%. If any sample ofZ crosses a thresholdh, we declare

that a burst was present near the location of that sample
The samples ofZ should be nearly independent and d

tributed identically. Since the original time series is a Gau
ian random process, this distribution is an exponential.~Note
that the assumption of Gaussianity is essential since the
tral limit theorem does not apply here.! The number of
samples per hour would be 2W336005144000. For a false
alarm rate of one per hour, therefore, the thresholdh should
be 2.14. Here, we have used the fact that for the PSD sh
in Fig. 3, the standard deviation ofZk turns out to be 0.18.

Monte Carlo simulations then show that, for obtaining
detection probability of 0.8 with the ideal scheme, the pe
amplitude of bursts of type~2! must be.1.5s, wheres is
the standard deviation of the original time seriesx. From
Table I we see that, for the same false alarm rate and de
tion probability, our test requires a peak amplitude of 4.7s, a
factor of ;3 higher than that for the ideal test.

C. The role of the test parameters

The test has three adjustable parameters~cf. Sec. III B! l l ,
e and l s . The false alarm rate of the test depends on
choice of these parameters as does the power of the
Here, we empirically explore the effect of these paramet
on the performance of the test.

1. Resolution in time and frequency

The parameterl l , determines the time resolution of th
test. A burst can only be located in time with an accuracy
. l l . The duration of a subsegmentl s determines the fre-
quency resolution of the test. The bin size in frequency
main is simply given by 1/l s .

2. False alarm rate

~a! The effect of ll . A decrease inl l reduces the number o
samples used in thet-test and, hence, should lead to an i
crease in the false alarm rate. Figure 9 shows the effectl l
on the false alarm rate of the test (l s ande held fixed!. It is
seen that, for largel l , the trend is indeed as expected abo
but it reverses below a certain value ofl l . This is probably
an effect of the correlation in the sequence oft values~cf.
Sec. III C!, though a full understanding requires an analytic
treatment. Nonetheless, simulations establish that this be
ior does not significantly affect the robustness of the test
fact, the parameters chosen for the simulations in Sec. IV
for the demonstration of robustness, correspond to value
l l on both sides of the change point in Fig. 9. Figure 4 c
responds to a value ofl l that lies on the left and Fig. 5 to a
value on the right of the change point and both show that
test is robust. We have verified this behavior for seve
other cases also.

~b! The effect of ls . Similarly, the effect of an increase i
l s for a fixedl l is expected to increase the false alarm rate
as in the case ofl l , though this trend is present, it is revers
above a certain value ofl s ~see Fig. 10!. However, simula-
tions verify that this does not affect the robustness of the t

a
ve

d-
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SOUMYA D. MOHANTY PHYSICAL REVIEW D 61 122002
~c! The effect ofe. The false alarm rate should be ind
pendent ofe since for stationary noise it does not matte
which two segments are compared in thet-test. This agrees
with actual simulation results as shown in Fig. 11~a!.

3. Detection probability

~a! The effect of ll . Whenl l is significantly larger than the
burst duration, only a few of the subsegments in the segm
containing the burst will have a distribution which is diffe
ent from the stationary case. The periodograms of such
segments will appear as outliers in an otherwise nor
sample and thet-test, which is unsuitable for such cases, w
not be able to detect them. Therefore, as the burst dura
falls belowl l , the detection probability should decrease. T
effect of l l on detection probability should be independent
the frequency band in which the burst is localized sincel l
only governs the number of subsegments over which
burst is spread. Both of the above effects are observed

FIG. 9. Effect ofl l ( l s ande held fixed! on false alarm rate. The
stationary noise used was white Gaussian noise (s510.0).

FIG. 10. Effect ofl s ( l l ande held fixed! on the false alarm rate
The stationary noise used was white Gaussian noise (s510.0).
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shown in Fig. 12. Thus, to optimize the test,the only prior
knowledge requiredis the duration of the bursts which are
be detected.

~b! The effect of ls . Decreasingl s will increaseN, the
number of samples used in thet-test, which would increase
the detection probability. However,l s should not be reduced
indiscriminately~see Sec. IV C 4!.

~c! The lage. As long as the burst durations are smal
thane, a change ine should not affect the power of the tes
This is indeed observed in our simulations, an example

FIG. 11. Effect ofe on ~a! false alarm rate~top! and~b! detec-
tion probability ~bottom!. l l50.5 sec andl s50.064 sec for both
~a! and~b!. The stationary background noise used was white Gau
ian (s510) for ~a! and colored Gaussian for~b!. In ~b!, the sudden
drop in detection probability occurs, as expected, when the b
duration~chosen to be 2l l) becomes comparable to (e21)l l ~which
is the actual gap!. The total duration of simulated data for~a! was
6.94 hours while the number of trials used for~b! was 800.

FIG. 12. The effect of burst duration on detection probabili
The test parameters were fixed atl l50.5 sec,l s50.064 sec and
e55. The burst peak amplitude for the type~1! bursts (f c

5200 Hz) was 1.6s while it was 4.7s for the type~2! bursts (f c

5100 Hz). The false alarm rate was fixed at 1 false event/hou
2-8
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which is shown in Fig. 11~b!. In Fig. 12, we kepte large
enough that the effect ofe on burst detectability did not ge
entangled with that ofl l .

4. Miscellaneous

Reducingl s to the point that each subsegment has o
one sample is simply equivalent to monitoring changes in
variance of the input time series. This is because a one p
DFT is simply the sample itself and the periodogram
therefore, just the square of the sample.Thus, a test for
change in variance is a special case of the present test.

However, under some circumstances, an indiscrimin
reduction inl s can have adverse effects. For instance, s
pose the ambient noise PSD is such that the power in s
frequency region is much greater than the power elsewh
~see Fig. 3 for an example! and all the bursts occur in the low
power region. Since reduction inl s decreases frequency res
lution, the low power region will be completely masked b
the high power one for sufficiently smalll s . This will then
make the detection of the bursts more difficult. A relat
issue is that of narrowband noise contamination which
discussed in more detail in Sec. V.

A very long lag would allow the detection of long tim
scale non-stationarity such as an abrupt change in the
ance from one fixed value to another. However, for su
abrupt long lasting changes, there exist better method
detection@23#.

D. Computational cost

In estimating the computational cost of this test, it is he
ful to divide the total number of floating point operation
~additions, subtractions, multiplications! required into two
parts:~a! deterministic and~b! stochastic.

~a! Deterministic. This is the part involving the generatio
of the raw image~cf. Sec. III B!. The number of operation
required is completely determined by the parametersl l , l s
and the sampling frequency of the dataf s . A breakup of the
steps involved in this part and the respective number of
erations involved is as follows.

For each column of the image:~1! Two sets of fast Fou-
rier transforms~FFTs! have to be computed, each set havi
N5 l l / l s FFTs with each FFT involvingn5 l sf s time
samples. Therefore, the number of operations involved
3N33n log2n. ~2! The modulus squared of only the positiv
frequency FFT amplitudes are computed for each sub
ment leading to 2N333(n/2) operations~the factor 3
comes from squaring and adding the real and imagin
parts!. ~3! For each frequency, the sample mean (2N11
operations! and variances (3N11 operations! are computed
followed by 4 operations to construct thet-statistic. Thus,
total number of operations involved is (5N18)n/2. ~4! Fi-
nally, for each frequency, thet-statistic is compared to a
threshold, involvingn/2 operations in all. Adding up all the
steps and dividing the total number of operations byl l gives
the computing speed required in order to generate the im
online: (6 log2n19/2N111/2)f s . As an example, forf s
55000 Hz, l l50.5 sec andl s50.064 sec, the require
computing speed is 0.28 MFlops. Thus, generating the
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image is computationally trivial by the standards of mode
day computing.

~b! Stochastic. This is the part involving the application o
the veto to the raw image~cf. Sec. III B!. Since the number
of black pixels in the image after thresholding as well as
size of the black-pixel patches are random variables,
number of operations involved in this part is also a rand
variable. One expects, however, that for low false ala
rates, the computational cost of this part will be mu
smaller than that of the deterministic part since clust
would only occur sparsely in the image.

The simplest way to estimate the computational load
cause of the stochastic part is via Monte Carlo simulation
which the number of operations involved in the stochas
part are explicitly counted within the code itself. In Table
we present the number of floating point operations incur
in the stochastic part, as a fraction of the total number
operations incurred in the deterministic part, over a w
range of false alarm rates for stationary input noise.~To gen-
erate Table II, the test parameters used werel l50.5 sec,l s
50.064 sec ande53. The sampling frequency of the inpu
data was 1000 Hz, each realization being 20 sec long.
operations were counted over 200 trials.!

From Table II, we see that even when the false alarm r
is as high as 50 events/hour, the time spent in the stocha
part is negligible compared to that involved in generating
raw image itself. The computational cost of generating
image itself~the deterministic part! is quite low as shown
above. Hence, overall, the test can be implemented with
significant computational costs.

V. DISCUSSION

A test for the detection of non-stationarity is present
which has the important property of being robust. This
lows the test to be used on data without the need to
characterize the data statistically.

The main results of this work are~i! the demonstration,
using Monte Carlo simulations, of the insensitivity of th
false alarm rate at a given threshold to the statistical na
of the data being analyzed, and~ii ! application of the test to
the detection of different types of bursts which showed t
the test can detect fairly weak bursts. For instance, as sh
in Table I, the test could detect 80% of narrowband bur
each located within a band of 20 Hz centered at 200 Hz,
were added to Gaussian noise with a PSD such as tha
LIGO-I when the peak amplitude of the bursts was on
1.63rms of background noise and the false alarm rate for
test was 1 event/hour.

TABLE II. Number of operations involved in the stochastic pa
as a fraction of the number of operations required in the determ
istic part. Numbers in parentheses are the false alarm rates c
sponding to the respective thresholdsh.

h51.57 1.65 1.7 1.8
~50 events/hour! ~20/h! ~10/h! ~2/h!

0.4631023 0.2331023 0.1431023 0.0431023
2-9
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SOUMYA D. MOHANTY PHYSICAL REVIEW D 61 122002
We did not catalog the false alarm rate or detection pr
ability for a large number of cases since real applications
almost always fall outside any such catalog. Instead, for fa
alarm rate, we chose a rather extreme range for the type
stationary noise so that a bound on the robustness coul
obtained. While, for detection probability, our main aim w
to demonstrate that, given its robustness, the test perfo
quite well in realistic situations. When applying the test to
particular data set, the appropriate false alarm versus thr
old curve can be obtained easily using a single Monte C
simulation. Almost always, the experimenter has some p
idea of therange of burst durations he/she is interested
and therefore can choose the set of test parameters app
ately. This would be necessary for any test of no
stationarity, and not particularly the present one, since n
stationarity can take many forms. A more general appro
would require understanding the test analytically. This wo
is in progress.

Though we mentioned the problem of narrow band no
~cf. Sec. IV C! it was not addressed in detail. This is becau
this is an issue that is fundamental to all tests for trans
non-stationarity and not specific to the present test alo
Narrow band noise, such as power supply interference a
Hz and its harmonics or the thermal noise associated with
violin modes of suspension wires, appear non-stationary
timescales much shorter than their correlation length. Th
if a narrow band noise component has significant power,
frequency band~max@frequency resolution, linewidth#! con-
taining it will appear non-stationary to any test that searc
for short duration transients. On the other hand,steadynar-
rowband signals in the data can suppress the detectio
non-stationarity that happens to lie close to them in f
quency. This is because detection of short bursts implies
increase in time resolution and, correspondingly, a decre
in frequency resolution. Thus if the narrowband signals
strong, they can make the frequency bins containing th
appear stationary.

This problem can be addressed in several ways. A p
liminary look at the PSD can tell us about the frequen
bands where narrowband interference is severe and the
put of the test in those bands can be discarded from fur
analysis. Another way could be to decrease the time res
tion sufficiently though at the cost of losing short bursts.
more direct and effective approach would be to pass the
through time domain filters that notch the offending freque
cies. Such filters could also be made adaptive so that
frequencies can be tracked in time@24#. Further work is in
progress on this issue.
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APPENDIX: ALGORITHM OF THE TEST

1. Notation

We present, first, some of the notation that will be used
the following. The time series to be analyzed will be deno
by x, wherex is a sequence of real numbers. We will need
divide x into disjoint segments, without gaps, with all se
ments having the same durationl l . A segment of lengthl l
will be denoted byy( j ), wherej stands for segment numberj.

Each segmenty( j ) will need to be further subdivided into
disjoint segments, again without gaps, with all subsegme
having the same durationl s . Thekth such sub-segment in th
segmenty( j ) will be denoted byz( j ,k).

The periodogramof a time series is defined to be th
squared modulus of its DFT. That is, ifû is the DFT of some
time seriesu ~consisting ofm samples!, then theqth fre-
quency componentûq of û is given by

ûqª(
p51

m

upexp„2p i ~q21!~p21!/m…, ~A1!

where q5$1, . . . ,m%. The periodogram $Sq% (q
5$1, . . . ,m%) is defined by

Sqªuûqu2. ~A2!

To reduce the aliasing of high frequency power on to low
frequencies, it is common to compute the periodogram a
modifying u by multiplying it with a window function w:
up→upwp . The definition of the periodogram is modified i
this case to

Sqª
1

iwi uũqu2, ~A3!

where iwi stands for the Euclidean norm of the windo
function andũq is theqth frequency component of the DFT
of the windowed sequence. Before windowing, we also s
tract the sample mean of the sequence from each samp
the sequence. In the following, all periodograms are obtai
as defined in Eq.~A3! after subtraction of the sample mea
followed by windowing. the window function is chosen to b
the symmetric Hanning window of the same length as
input time seriesu. We denote the periodogram ofz( j ,k) by
S( j ,k), with its qth frequency component denoted bySq

( j ,k) .

2. Algorithm: The first stage

We will now state the algorithm of the test. First, th
values of the free parameters of the testl l , l s ande are set.
Then the following loop is executed.

~1! Starting with j 51, take segmentsy( j ) andy( j 1e) from
the detector outputx. The loop index isj.

~2! Subdivide each of the above segments into eq
number of subsegments z( j ,k) and z( j 1e,k), k
2-10
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ROBUST TEST FOR DETECTING NONSTATIONARITY. . . PHYSICAL REVIEW D61 122002
51, . . . ,floor(l l / l s), where the floor function returns the in
teger part of its argument. LetN5floor(l l / l s).

~3! Compute the sets$S( j ,k)% and $S( j 1e,k)% with k as the
running index. Thus, each of the two sets containsN peri-
odograms.

~4! For each frequency component, compute thesample
means and variances of the two sets. Let the sample mea
the qth frequency component be denoted bymq

( j ) andmq
( j 1e)

for $S( j ,k)% and$S( j 1e,k)% respectively. Then,

mq
( j )5N21(

k51

N

Sq
( j ,k) ,

mq
( j 1e)5N21(

k51

N

Sq
( j 1e,k).

Similarly, let the standard deviations be denoted bysq
( j ) and

sq
( j 1e) ,

~sq
( j )!25~N21!21(

k51

N

~Sq
( j ,k)2mq

( j )!2,

~sq
( j 1e)!25~N21!21(

k51

N

~Sq
( j 1e,k)2mq

( j 1e)!2,

where we have used the unbiased estimator of variance~the
biased estimator hasN in the denominator instead ofN
21).

~5! Computetq
( j ) , the value of thet-statistic for theqth

frequency component,

tq
( j )
ªAN

mq
( j 1e)2mq

( j )

@~sq
( j )!21~sq

( j 1e)!2#1/2
. ~A4!

Let T be a matrix withTq j5utq
( j )u, q andj being the row and

column indices respectively. For every pass through the l
described above, a column ofT is produced.

Let the threshold for thet-test beh. Set all elements ofT
that are belowh to zero and set all elements aboveh to a
fixed valuet0. We denote the resulting matrix by the sam
symbolT. This should not cause any confusion since we w
mostly require the thresholded form ofT in the following.

The matrixT can also be visualized~see Fig. 2! as a two
dimensional image composed of a rectangular array ofpixels
~picture elements! with the same dimension asT. We can
imagine that the pixels for which the corresponding mat
elements crossedh are colored black and those that did n
cross are colored white. We call the black pixelsb-pixels and
the white onesw-pixels.

3. Algorithm: The second stage

A burst will appear in the imageT as aclusterof b-pixels.
In order to define a cluster we first delineate the set of pix
which form thenearest neighborsto any given pixel. The
nearest neighbor of a pixel withq as the row andj as the
column index is a pixel with row indexq8 and column index
12200
s at

p

l

ls

j 8 such that~i! q8P$q,q61% and j 8P$ j , j 61% or ~ii ! q8
5q and j 8P$ j 1e, j 2e%. We call the set of nearest neigh
bors of type~i! ascontactingand those of type~ii ! asnon-
contacting. Figure 13 shows the set of nearest neighbors o
pixel. We can now define a cluster ofb-pixels as a set of
b-pixels such that~i! each member of this set has at least o
other member as its nearest neighbor, and~ii ! at least one
member of the cluster has another member as a n
contacting nearest neighbor.

The next step in the algorithm is the identification of
cluster ofb-pixels in the imageT. In our code, we proceed a
follows. Make a list of allb-pixels in the imageT ~the or-
dering of the list is immaterial!. Let this list be calledL . We
define two more symbols :

~i! L sub is a proper subset ofL such that any two element
aPL sub and bPL sub, there exist elements$c,d, . . . ,h%
PL sub such thatc is a contacting nearest neighbor ofa, d is
a contacting nearest neighbor ofc and so on tillh which is
also a contacting nearest neighbor ofb. That is, starting from
any one element we can reach any other by ‘‘steppin
through a chain of members. Essentially,L sub is, roughly
speaking, an unbroken patch ofb-pixels.

~ii ! L sub8 is the complement ofL sub in L .
In the algorithm below, it is understood that when

element is added or removed fromL sub, the new set is al-
ways renamed asL sub. Similarly, the complement of the new
L sub is always denoted byL sub8 .

The steps in the algorithm are as follows.~Parenthesized
statements are comments.!

~1! For each member ofL sub, search forcontactingnear-
est neighbors inL sub8 .

~2! If found add them toL sub. If not, go to step~4!.
@To obtain L sub starting from the null set: take the firs

element, which we call theseedelement, ofL asL sub and go
to step~1!.#

~3! UpdateL sub8 . Go to step~1!.
~4! Check if any element ofL sub has anon-contacting

nearest neighbor inL sub8 .

FIG. 13. Nearest neighbors~gray! of a pixel~brick-wall pattern!.
The gray pixels which touch the central pixel are itscontacting
nearest neighbors while the two that do not are itsnon-contacting
nearest neighbors. (e53 here.!
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~This and the following steps check whetherL subqualifies
as a cluster according to our definition.!

~5! If none are found, go to step~7!. Otherwise, take the
first non-contacting nearest neighbor as a new seed ele
and construct a subsetL̃ sub following step ~1! to step ~3!

~temporarily renameL by L sub8 , L subby L̃ subandL sub8 by L̃ sub8

in those steps!. Add L̃ sub8 to L sub and set a flagB that L sub is
a cluster.

~6! Repeat step~4!.
s

-

-

D

-

-

12200
ent

~7! RenameL sub8 asL . If flag B was set, saveL sub. Go to
step~1! again~until not more than oneb-pixel is left in L ).

The above algorithm is easy to implement in softwa
such asMATLAB @25# or MATHEMATICA @26# which have in-
built routines for set operations. We useMATLAB for our
implementation. The actual code can, of course, be o
mized significantly. For instance, in step~1! the search can
be confined to only the most recent set of elements adde
L sub.
-

,
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