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Robust test for detecting nonstationarity in data from gravitational wave detectors
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It is difficult to choose detection thresholds for tests of nonstationarity that assymeri a noise model if
the data are statistically uncharacterized to begin with. This is a potentially serious problem when an automated
analysis is required, as would be the case for the huge data sets that large interferometric gravitational wave
detectors will produce. A solution is proposed in the form ofodust time-frequency test for detecting
nonstationarity whose threshold for a specified false alarm rate is almost independent of the statistical nature of
the ambient stationary noise. The efficiency of this test in detecting bursts is compared with that of an ideal test
that requires prior information about both the statistical distribution of the noise and also the frequency band
of the burst. When supplemented with an approximate knowledge of the burst duration, this test can detect, at
the same false alarm rate and detection probability, bursts that are about 3 times larger in amplitude than those
that the ideal test can detect. Apart from being robust, this test has properties which make it suitable as an
online monitor of stationarity.

PACS numbse(s): 04.80.Nn, 07.05.Kf, 95.85.Sz

I. INTRODUCTION relevant in this context have already been considered in the
gravitational wave data analysis literaty&9]. However,
Each of the large interferometric gravitational wave de-these methods share an unsatisfactory feature which is that
tectors that are now under constructidraser Interferomet- the computation of the detection threshold corresponding to
ric Gravitational Wave ObservatofyIGO) [1], VIRGO[2],  a specifiedfalse alarm raterequires ara priori knowledge
GEO[3], TAMA [4]] will produce a flood of data when they of a statistical model of the stationary ambient noise. An
come online in a few years. Apart from the “main” data error in the model leads to an error in our knowledge of the
channel carrying measurement of strain in the arm lengthgalse alarm rate. In the real world such prior models are
there will be a few hundred auxiliary channgls] at each  usually not available and it is necessary to estimate noise
site associated with system and environmental monitorsnodels from the data itself. Even if a model exists, it will
such as seismometers and magnetometers. Their role woudtimost always have some free paramettrs variance being
be to monitor the state of the detector and its environment sa trivial exampl¢ whose values would have to be estimated
that any unusual event in the main channel or an unexpectefifom the data fairly regularly, especially in the case of a
behavior of the detector can be diagnosed propdiyie  complicated instrument such as a laser interferometer or its
sum total of raw data from the LIGO detectors will be pro- environment monitors.
duced at the rate of 10 megabyte$6] every secondl. Thus, when confronted with an uncharacterized dataset,
Under ideal conditions, each data channel would carryan experimenter who is only limited to methods such as the
stationary noise. For the main channel, this would reflect above can face considerable uncertainty in fixing a threshold
steady state of the interferometer and, for the auxiliary chanfor the test before analyzing the data. For a sufficiently small
nels, a steady state of the environment. However, experienatataset, the analyst can start wéth hocthresholds and work
with prototypes as well as with the several resonant masf some iterative sense towards a statistically satisfactory
detectors that have been operating for quite some time showsnclusion. The problem becomes more serious when the
that this situation does not hold in reality. There will always data set to be analyzed is so large that it becomes necessary
be episodes of non-stationarity though their rates and durae substantially automate the analysis, as would most cer-
tions will depend on the choice of the detector site and othefainly be needed in the case of the large interferometers. An
factors. additional set of problems will arise when analyzing auxil-
Detecting non-stationarity is important both in the mainiary channels since ambient terrestrial noise may be intrinsi-
channel, because some non-stationarity could be of astr@ally more difficult to characterize and have a variable na-
physical origin, and also in the auxiliary channels where itture.
can be an important diagnostic of the instrument or its envi- We introduce here, in the context of gravitational wave
ronment. It is also important when estimating a statisticadata analysis, a test for detecting non-stationarity for which
model of the detector noise where it is essential that the datéde issue of fixing the correct threshold is trivial by design.
segment used be stationafffhe deleterious effects of non- The false alarm rate for suchrabusttest depends weakly on
stationarity on the power spectral dens{SD estimation the statistics of the ambient noise and is specified almost
were noted inf7].] completely by the detection threshold alone. In the present
Several methods for detecting non-stationarity that argraper we concentrate on short duration non-stationarity or
burstssince they are likely to be the most common types of
non-stationarity in gravitational wave detectors. We find that
*Email address: mohanty@gravity.phys.psu.edu the robustness of the test improves for smaller false alarm
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rates, which is precisely the regime of interest. If required A random process not satisfying any of the above definitions

the test can be optimized in terms of the duration of thes callednon-stationary

bursts that need to be detected. We assume that the ambient noise in the data channel of
We compare the efficiency of this test in detecting nar-Interest is wide sense stationary over sufficiently long time

rowband bursts with that of an ideal test which requires botts¢@/€s and a burst is an episode of non-stationarity with a

a noise model and prior knowledge of the frequency ban uc_:h smaller duration. That is, the occurrence of a burst

. . asting fromt=t, to t=t, in a segmenk(t) of data (O<t

(center frequency and bandwiditim which the bursts occur. <T) means that

We find that supplementing our test with an approximate

prior knowledge of the burst duration allows it to detect, at wide sense stationary 0t<t,,

the same false alarm rate and detection probability, bursts x(t)={ non-stationary to<t<t,, (1)

with a peak amplitude that is a factor f3 larger than that

of the bursts which the ideal test can detect.

Apart from being robust, it also has the following proper- wheret, —t,<T. In practice, only dime seriesx consisting
ties that make it useful as an online monitor of stationarity.of regularly spaced samples gft) is available instead of
The computational cost associated with this test is quitg(t) itself. Thus, given the time series we want to decide
small. Areas of non-stationarity are clearly distinguished, inhetween the following two hypotheses abaut
the time-frequency plane, from areas of stationarity. Apart (1) Null hypothesis H: x is obtained from a wide sense
from making the output simple to understand visually, thisstationary random process.
will allow an automated routine to catalogue burst informa-  (2) Alternative hypothesis H x is obtained from a non-
tion such as the time of occurrence and frequency band. stationary random process.

The detection of non-stationarity has been actively stud- The frequentist approactil1] to this decision problem,
ied in Statistics for quite some tinj&3] and numerous tests which is followed here, begins by constructing a function
suitable for a wide variety of non-stationary effects exist in7(x), called atest statisti¢ of the datax. If the datax is such
the literature. The central idea behind our test is the detectiothat 7(x) = 7, for some thresholdy, the null hypothesis is
of statistically significanthangesn the PSD. As a means of rejected in favor of the alternative hypothesis for that
detecting non-stationarity, this idea is quite natural and has Sincex is obtained from a random process, there exists a
been proposed in several earlier workSee, for instance, finite probability, thatZ{x) crosses the threshold even when
[14,15.) though what constitutes a change and how it isthe data is stationary. Such an event is callddlse alarm
measured can be defined in many different ways leading tand the rate of such events over a sequence ofxdataalled
tests that differ statistically as well as computationally. Thethefalse alarm rate The thresholdy is determined by speci-
specific implementation presented in this paper leads to #ing the false alarm rate that the analyst is willing to toler-
statistically robust test. The issue of robust tests for nonate.
stationarity, though important as we have argued, has not To compute the threshold, we need to know the distribu-
been considered in gravitational wave detection so far. Théon function of 7(x) whenHy is true. This distribution can,
same concerns as well as a more rigorous treatment exist |p principle, be obtained if the joint distribution of (i.e., a
the Statistical literatur¢16]. Our present work was, how- noise modelis known. However, as mentioned in the Intro-
ever, done independently and this test is a new contributiorduction, such prior knowledge is usually incomplete, if it

The paper is organized as follows. In Sec. Il we formallyexists at all, in the real world. The only solution then is to
state the problem addressed in this paper. Section Il desstimate the joint distribution from the data itself. Therefore,
scribes the Studertttest which lies at the core of our test. one must first find a stationary segment of the data, by de-
This is followed by a discussion of the basic ideas that leadecting and then rejecting non-stationary parts, but that
to the test and why the test can be expected to be robust. kings us back to our primary objective itself.

Sec. IV, the test is characterized statistically in term of its  To get around this paradox, we musinstructZ(x) such
false alarm rate and detection power. The main results of thighat its distribution is as independent as possible of the dis-
paper are also presented in this section. The computationgibution of the data under the null hypothesis. If the distri-
cost associated with this test is discussed in Sec. IV D. Thigution of the test statistic is strictly independent of the dis-
is followed by our conclusions and pointers to future work intribution of x, the test is called12] non-parametric If the
Sec. V. test statistic distribution depends on the distributionx dfut
only weakly the test is said to be @busttest. Tests which
do not have either of these properties are caflachmetric
Il. FORMAL STATEMENT OF THE PROBLEM Formally, therefore, the aim of this work is to find a non-
parametric, or at least a robust test, for non-stationarity.

wide sense stationaryt; <t<T,

A random procesx(t) is said to bestrictly stationary
[10] if the joint probability densityP(x(t;),x(t;+ &1),X(t; Ill. DESCRIPTION OF THE TEST
+8,), ... X(ti+ 8,)) of any finite numbern, of samples is
independent of; . Often, one uses a less restrictive definition A. Student's t-test
calledwide sense stationaritwhich demands only that the Before we describe our test for non-stationarity, it is best
mean Ex(t))] and the autocovariance [&(t;) to discuss Studentstest[12] in some detail since this stan-
—E[x(t;) ) (x(t;+ 7) —E[x(t;+ 7)])] be independent of;.  dard statistical test plays an important role in what follows.
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Student’st-test is designed to address the following prob- t

lem. Given a set oN samples{x,, ... Xy}, drawn from a >
Gaussian distribution of unknown mean and variance, how | S | Swi | | She |
do we check that the mean of the distribution is non-zero? | | I |
In Student’st-test, a test statistitis constructed, |

A 0]

T

t= i 2 N=4
32 , |_|_H\_\|—/ (kD)

ol 53
lS

where

FIG. 1. Schematic of the data stream subdivisions. In this ex-

ample, we have chosév=4. (Thus,j=1,2,3,4)
> X, (3)

Z| -

=

=1 (3) Subdivide each of the two segments iftosubseg-

N ments of equal duration. Thus, segmeht ie{k,k+ e},
1 S ~ o gives usN subsegments, each of duratiQs=1, /N, which we
STNE1 A (X = )" @ denote bys{", j=1,2,... N. This is an intermediate step in

the estimation of the PSD of each segmént

The distribution oft is known [17], both whenu=0 and (4) Compute theperiodogram of each s(. A peri-

w#0. To check whether#0, a two-sided threshold is set 0dogram is the squared modulus of the discrete Fourier

on't corresponding to a specified false alarm probability. If transform(DFT) of a time seriesEq. (A2].

crosses the threshold on either side, the null hypothesis (5 For every frequency bin, therefore, we obtain aXet

=0 is rejected in favor of the alternative hypothegig 0.  0f N numbers fromS, and similarly another se¥ from

Of interest to us here are two main properties oftthest. ~ Sk+.- In @ conventional estimation of the PSD of a segment,
First, if two sets of independent sampl¥s={x,, ... xy}  S&8 S, we would simply average the corresponding Xet
andY={y;, ... yn} are drawn from Gaussian distributions However, since we want toomparetwo PSDs, we do the

with the same but unknown variances, tHest can be em- following instead. _
ployed to check whether the means of the two distributions (6) Perform Student's-test for equality of mean on these
are equal or not. This can be done simply by constructing &v0 independent setX and Y. If the t statistic crosses a

third set of sampleE={y;— Xy, . .. yn—Xx}, Which would  Preset thresholdy, then a significant change in the mean is

again be Gaussian distributed, and then testing, as showfdicated, otherwise not. o

above, whether the mean of the distribution from whicis (7) Repeat stegt6) for all frequency bins in exactly the

drawn is non-zero or not. same manner. . _
The second important properfil8] of the t-test is its Steps(2) to (7) should then be repeated with another pair

robustness As long as the underlying distributions from of disjoint segments, . ; andS,. .., and so on.

which the two samples are drawn are identical, but not nec- Thus, the output of the test at this stage is a two dimen-
essarily Gaussian, the distribution of thetatistic does not Sional image with time along one axis and frequency along
deviate much from the Gaussian case. The lowest order cofhe other. In this image, every frequency bin for which the

rections to the mean and variance of the distribution beinghresholdz is crossed can be thought of as being colored
O(N~52) and O(N~2) respectively. lack while the remaining are colored white. Hence, white

areas in this image would indicate stationarity while the con-
trary would be indicated by the black areas. A sample image
is shown in Fig. 2a). It is the result of applying the test to a
We present here an outline of our test. The details of thesimulated time series constructed by adding a broad band
actual algorithm are presented in the Appendix. burst to stationary white Gaussian noisee Sec. IV A for
From Sec. Il, it is clear that a direct signature of non-definitions.
stationarity is a change in the autocovariance function. This Not all black areas would, however, correspond to non-
implies that the PSD of the random process should alsgtationarity. Most of them would be random threshold cross-
change since the it is the Fourier transform of the autocovaings caused by the stationary noise itself. We search, there-
riance functior{ 10]. Therefore, the basic idea behind our testfore, for clustersof black pixels in the image which pass a
is the detection of a change in the PSD of a time series. veto that can be motivated as follows. Suppose the burst is

B. An outline of the test

The test involves the following stefisee Fig. 1 alsp fully contained in one segment, sa$,. Then one would

(1) The time series to be analyzed is divided into adjacenexpect the-test threshold to be crossed once when compar-
but disjoint segments of equal duratign ing S, with S, . and again whei, is compared wittg,, ..

(2) Take two such disjoint data segmers and S,  This leads to a characteristic “double bang” structure for the
separated by a time intervak{ 1)l,, e=1, 2,.... We cluster of black pixels. We throw away all other groups of
would like to compare the PSDs of these two segments anldlack pixels that do not show such a featufEhis scheme is
test if there is a significant difference. defined rigorously in the AppendixFigure Zb) shows the
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500

. bution. Further, the-test checks for a&hangein the mean

400 N . value and is insensitive to the absolute value of the mean.
gm_ ', . ' This is strictly true in the Gaussian case but, because of the
5 L a , robustness of thetest, it should also hold to a large extent
g ' for the exponential case.

: These basic considerations suggest strongly that the test
S m w  wm  m  m s e as a whole should be robust. However, the test also involves
time (sec) some other steps beyond just a simptest. First, the same
00— e ST segment is involved twice intatest(cf. Sec. Il B). Thus, for

5 any k, samplesk andk+ € in the sequence df values at a
given frequency will be correlated to a large extent. Second,
we impose a non-trivial veto.

Frequency (Hz)

2008 J The above features of the test, though well motivated and
100} conceptually simple, make a straightforward analytical study
. ¥ of the test difficult. Therefore, to establish the robust nature
o ey 0w of the test and quantify its performance, we must follow a

more empirical approach based on Monte Carlo simulations.
FIG. 2. Test output for simulated input data constructed by addThjs is the subject of the next section. An analytical treat-
ing a broad band burst of effective duration 1.0 sec, center frement of the test is currently under development.
quency 200 Hz and bandwidth 200 Hz to stationary white Gaussian

noise. The sampling frequency was chosen to be 100@adiZ.op:
raw image obtained after applying tiest threshold(b) Bottom:
result of applying the veto to the image {(a). The cluster that Our main aim in this section is to demonstrate the robust
occurs earlier in(b) is a false event while the next cluster corre- nature of the test and to study the efficacy of this test in
sponds to the burst. detecting non-stationarity. Since we need to use Monte Carlo
result obtained by applying this veto to the image in I:ig.simulation.s for understanding these statistiqal aspects of the
2(a). One of the clusters is at the location of the added burstSt We discuss only_a few selected cases in this paper.
while the other is a false event. For a test to quahfy_a_ls robust the threshold shou_ld be
almost completely specified by the false alarm rate without
requiring any assumptions about the statistics of the data.
The false alarm rate, in the context of this test, is the rate at
This test can be expected to be robust for two reasonsvhich clusters of black pixels occur when the input to the
First, the periodogram at any frequency is asymptoticallytest is astationary data stream. To obtain the false alarm
exponentially[19,2( distributed. This can be heuristically rate, several realizations aftationary noise are generated
explained as follows. The DFT of a time series is a linearand the test is performed on each. For a given threshold, the
transform. If the number of time samples in a random timenumber of clusters detected over all the realizations provides
series is sufficiently large, it then follows from thentral — an estimate of the false alarm rate at that threshold.
limit theoremthat the DFT of that time series will have, at  The efficacy of a test in detecting a deviation from the
each frequency, imaginary and real parts which are distribaull hypothesis is measured by tlletection probabilityof
uted as Gaussians. Since the basis functions used in a DREfle deviation. In this paper, we measure the detection prob-
are orthogonal, the real and imaginary parts also tend toability of different types ofburststhat appear additively in
wards being statistically independent. This implies that, for sstationary ambient noise. Realizations of signals from a fixed
sufficiently large number of time samples, the periodogramglass(such as narrowband or broadband bursts of naise
which is simply the squared modulus of the DFT, is expo-generated, to each of which we add a realization of stationary
nentially distributed at each frequency. noise. The test is applied to the total data and we check
The second reason which should make the test robust iwhether a cluster of black pixel appears in a specified area of
the fact, mentioned earlier, that theest is robust against the time-frequency plane. This fixed area, which we call the
non-Gaussianity when the two samples being compared havietection regionis specified in advance of the simulation.
identical distributions. Under the null hypothesis of station-The ratio of the number of realizations having a cluster in the
arity, we do indeed have identically distributed sets in ourspecified area to the total number of realizations gives an
case. estimate of the detection probability for bursts of that class.
Since the asymptotic distribution of a periodogram is in- The function that maps the test threshold into false alarm
dependent of the statistical distribution of the time samplestate depends on the test parametérs,|s and e (cf. Sec.
much of the information about the time domain statisticallll B). Therefore, for each choice of these test parameters,
distribution is lost in the frequency domain. Thus, thest  the test must be calibrated separately using a Monte Carlo
“sees” nearly exponentially distributed samples whereas thesimulation. However, thanks to the robust nature of the test,
time domain samples may have a Gaussian or non-Gaussidime simulation needs to be performed only once and for a
distribution. Added to this, the robustness of thest also  simple noise process such as Gaussian white noise which
removes information about the time domain statistical distri-need not have any relation to the actual random process at

IV. STATISTICAL CHARACTERIZATION OF THE TEST

C. Why is this test robust?
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false alarm rate (events/hour)
o
<
T

0
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PSD (arbitrary normalization)

4

false alarm rate (events/hour)

1 0-7 1 1 1 1 1 1 1 1 1 1 L
] 50 100 150 200 250 300 350 400 450 500 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 195 2
frequency (Hz) threshold

o

FIG. 3. PSD for the colored Gaussian noise used in this paper. FIG. 4. False alarm rate as function of threshold for different
types of stationary input noise. The sampling frequency of the input

hand. The role of the test parameters is discussed in morg 1000 Hz. Bottom panel: zoomed in view of the top panel. Solid
detail in Sec. IV C. line: white Gaussian noises(=1). Dashed line: white Gaussian
noise (=10). Dotted line: white exponential noise€ 1). Dash-
dotted line: colored Gaussian noise. The error bars correspond to
1o deviations. The test parameters values hjre0.5 sec, |

We perform a Monte Carlo simulation for each of the =0.064 sec and=3.
representative cases below and show that the false alarm rate,

as a function of threshold, is the same for all of them.  ise, we have gone from a two-sided distribution to a com-
Each realization of the input data is a 10 sec long timéyjetely one side distribution. The output from most channels

series and each simulation uses 5000 such realizations. Wgoid be two sided and, hence, closer to a Gaussian than the

can look upon all the separate realizations of the input agxponential distribution considered here.

forming parts of a single data stream (56000 sec long The results are shown in Figs. 4, 5 and 6. For the small

and, if we assume that false alarms occur as a Poisson prgyise alarm rates< 5/hour) that will be required in practice,

cess, the false alarm rat;n number of events per houis  he test is clearly shown to be very insensitive to the statis-

given by the total number of false alarms over all realizationsjca| nature of the data. The largest variation is between the
divided by 5x 10*/3600.

The various cases considered here are as follows.

(i) White Gaussian noiseo=1). The time series consists
of independent and identically distributed Gaussian randonrs \.
variables. The standard deviationof the Gaussian random
variables is unity and their mean is zero.

(i) White Gaussian nois¢o=10). Same as above but
with o= 10.

(iit) White non-Gaussian noiséll details in this simula- ; L - L = —- = ” e
tion are the same as above except that the distribution o threshokd
each sample is now chosen to be an exponential wvitil.

(iv) Colored noise We generated Gaussian, zero mean
noise with a PSD as shown in Fig. 3. The overall normaliza-
tion is arbitrary but the noise is scaled in the time domain to
make its variance unity. This PSD was derived from the
expected initial LIGO PSD, as provided [@1], by truncat-
ing the latter below 5 Hz and above 800 Hz followed by the §
application of a band pass filter with unity gain between 508 25—t % 21 o5 22 25 s 25
Hz and 500 Hz. threshold

The range covered by the above types of statistical mod- piG. 5. False alarm rate as function of threshold for different
els is much more extensive than would be required in pracypes of stationary input noise. The sampling frequency of the input

tice. By applying the test to such extreme situations, we cags 1000 Hz. Bottom panel: zoomed in view of the top panel. Solid
boundthe variations in the false alarm rate versus thresholdgine: white Gaussian noiser= 10). Dashed line: white exponential

curve that would occur in a more realistic situation. In con-noise (r=1.0). Dash-dotted line: colored Gaussian noise. The test
sidering this range of models for the stationary backgroungbarameters values atg=1.25 sec),=0.064 sec ané=3.

A. False alarm probability

hour)
o
o

N W
S =3

o

False alarm probability {

-]

=)

se alarm probability (events/hour)
=] N -~ »n 0
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@
S

TABLE I. Burst peak amplitude, in multiples of the background

. noise rms, required for a detection probability of 0.8. The threshold
- 7 corresponding to a particular false alarm rate is given in paren-
theses below it.

%

N
S

False alarm rate {events/hour)
s &

. | Burst False alarm rate

, . . . . type (number of events/hourg

1. N 22 23 24 25 2 /h 1/h 1/2h 1/3h
(p=1.8) (1.89 (1.879 (1.9

st ' ) 1.3 1.6 1.8 23

ar 1 (2 4.0 4.7 5.8 6.4

n
T

window function is chosen to be a Gaussian in shape
] [exp(—t%2%?)] where 3 is chosen such that when

5 s Y 2 =0.5 sec, the window amplitude drops to 10% of its maxi-
threshold mum value(which is unity att=0). The burst has, therefore,
FIG. 6. False alarm rate as function of threshold for different@" €ffective duration of-1 sec. After windowing, the peak

types of stationary input noise. The sampling frequency of the inputamphtude of the burst is normalized to a specified value. The
is 40 Hz. Bottom panel: zoomed in view of the top panel. Solid line: te€st parameters arg=0.5 sec,|;=0.064 sec, and=3.
white Gaussian white noise withr& 10). Dashed line: white ex- (Is=0.064 sec corresponds to 64 points, a power of 2, in
ponential noise ¢=1.0). The test parameters values die order to optimize the fast Fourier transforms needed for com-
=1.0 sec,l,=0.1 sec and=3. puting the periodogram for each subsegment.

We consider two types of narrow band bursts. Type

Gaussian and exponential case while there is hardly ant)aS fc=200 Hz, while type (2) has f.=100 .HZ' W.
=20 Hz for both types of bursts. The detection region,

variation, even at large false alarm rates, among the Gaussian<"-, '. ) )
ich is the area in the time frequency plane that must con-

cases. The variation between the Gaussian and exponent}%i | ¢ black pixel f idd ion. is ch .
case is less than-50% in the worst case. As explained [@n & cluster of black pixel for a valid detection, Is chosen In

above, this should be treated as an upper bound on the errBPth cases to t,’e 1.0 Sec and 80 Hz wide in. time and fre-

one might expect in practice. quency rgspectl_vel_y. Itis cente_red at the location of the win-
Figures 4, 5 and 6 correspond to different sets of tesHOW maxu‘plum in t]!nt])e and aft; in f_n_aquliengy. e th .

parameter values. The threshold for a given false alarm rate FOf €ach type of burst, we empirically determine the pea

does depend, as one may expect, on the parameters of tﬁ@plitude required in order for the burst to have a detection
testly, I, and e Because of the robust nature. however Probability of =0.8. This is done at several different values
Sy . 1 1

given a particular set of parameter values only a singlepf the detection threshold corresponding to false alarm rates

Monte Carlo simulation has to be performed with, say, white?f 1 false event in 1/2, 1, 2, or 3 hours. The results are

Gaussian noise, in order to obtain the corresponding falsiPulated in Table I. ,
alarm rate versus threshold curve. As shown later in Sec. IV C, the above choice for the test

The parameter values for Fig. 4 were chosen to be th@arameters, especially the valuelpf optimizes the test for

same as those that will be used in the following section. wéletecting bursts which effectively last ferl sec. We have,

also consider in that section the case of a band pass filterdfl€T€fore, presented the best performance the test can deliver
and down sampled time series. Figure 6 uses parameter vapr detecting burst.s ywth this duration. No_te that the same set
ues appropriate to the latter while the choice for Fig. 5 i _of parameters optimize the test for detecting bursts that occur
explained in more detail in Sec. IV C. in very dn‘fere.nt frequency bands. Th_ug, the duration of a
burst is effectively the only characteristic that needs to be
considered when optimizing the test. This point is discussed
further in Sec. IV C.

A burst has an effectively finite duration and is itself an  In Figs. 7 and 8, we show samples of both data and burst
instance of a stochastic process. We consider the followingwith the peak amplitudes given in Tablgfbr each of the
combinations of background noise, bursts and test paramwo cases described above. Figure 7 corresponds to(lype
etersl,, |5 and e. The sampling frequency of the data is bursts and illustrates the fact that the bursts being detected
assumed to be 1000 Hz. are not prominent enough to be picked up by “eye.” The

The background noise is a zero mean stationary Gaussidsurst in Fig. 8, which is of typ€2), is more prominent. This
process with a PSD that matches the expected initial LIGQs because these bursts lie closer in frequency to the “seismic
PSD (cf. Fig. 3. The burst is anarrow bandburst con-  wall” part of the noise curveésee Fig. 3 where the variance
structed by band pass filtering a white Gaussian noise s&f the PSD is higher.
quence followed by multiplication of the filtered output with  To better understand the detection efficiency of our test, it
a time domain window. Let the width of the pass bandis natural to ask for a comparison with a test that, intuitively,
be W and its central frequency bé,. The time domain represents the best we can do. Let us suppose that we know

False alarm rate (events/hour)
o
T

o
-
u
®

B. Detection probability
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squared and summed to give a time serKsrs{Zkzxﬁ

+Y§}. If any sample oZ crosses a thresholg, we declare

that a burst was present near the location of that sample.
The samples oZ should be nearly independent and dis-

tributed identically. Since the original time series is a Gauss-

ian random process, this distribution is an exponen(idte

that the assumption of Gaussianity is essential since the cen-

tral limit theorem does not apply hereThe number of

samples per hour would bé/A2x 3600=144000. For a false

alarm rate of one per hour, therefore, the threshpkhould

be 2.14. Here, we have used the fact that for the PSD shown

in Fig. 3, the standard deviation &, turns out to be 0.18.
Monte Carlo simulations then show that, for obtaining a

detection probability of 0.8 with the ideal scheme, the peak

. . . . . . . . amplitude of bursts of typ€2) must be=1.50, whereo is

B ey B the standard deviation of the original time seriesFrom
Table | we see that, for the same false alarm rate and detec-

FIG. 7. Sample realizations a narrow band burst of tfheand  tion probability, our test requires a peak amplitude oi#4.&

the corresponding input data. Top panel: data obtained by adding factor of ~3 higher than that for the ideal test.

burst to stationary colored Gaussian noise. Bottom: the burst wave

form. Here, the peak amplitude of the burst isd..3

amplitude

amplitude

C. The role of the test parameters

a priori that all bursts are of typé€2) above and that the The test has three adjustable parameliefisec. Ill B,

; S . . ¢ andl;. The false alarm rate of the test depends on the
ambient noise is a Gaussian, stationary random process. NO Roi
choice of these parameters as does the power of the test.

that such prior information 1 substantially more than thatHere, we empirically explore the effect of these parameters
used to optimize our test which was a knowledge of only the

burst duration. Nonetheless, assuming that such information"" the performance of the test.

was available to ug&and no morg then the following would

be the ideal scheme we should compare our test with.
In the ideal schemésimilar to [22]), we first band pass The parametet;, determines the time resolution of the

filter the datax. Since we know the bursts are of ty(®, let ~ test. A burst can only be located in time with an accuracy of

the filter pass band b&/=20 Hz wide, centered at the fre- =Ii. The duration of a subsegmeht determines the fre-

quencyf.=100 Hz. The output of the filter is demodulated quency resolution of the test. The bin size in frequency do-

and the resulting quadrature components, Xay{X,} and  main is simply given by 1{.

Y={Y\}, k=1,2,..., areresampled down to a sampling

frequency of 2V. The downsampled quadratures are then 2 False alarm rate

1. Resolution in time and frequency

(a) The effect of|l. A decrease ith; reduces the number of
samples used in thetest and, hence, should lead to an in-
crease in the false alarm rate. Figure 9 shows the effelgt of
on the false alarm rate of the ted$t @nd e held fixed. It is
) seen that, for largg , the trend is indeed as expected above
] but it reverses below a certain valuelpf This is probably
i an effect of the correlation in the sequencet afalues(cf.

0 , 5 3 " s . = A S 10 Sec. lll O, though a full understanding requires an analytical
time (sec) treatment. Nonetheless, simulations establish that this behav-
. , , , , , , ior does not significantly affect the robustness of the test. In
fact, the parameters chosen for the simulations in Sec. IV A
for the demonstration of robustness, correspond to values of
I, on both sides of the change point in Fig. 9. Figure 4 cor-
responds to a value of that lies on the left and Fig. 5 to a
value on the right of the change point and both show that the
test is robust. We have verified this behavior for several
other cases also.

(b) The effect ofd. Similarly, the effect of an increase in

FIG. 8. Sample realizations of a narrow band burst of e |s for afixedl, is expected to increase the false alarm rate but
and the corresponding input data. Top panel: data obtained by ad@s in the case df , though this trend is present, it is reversed
ing a burst to stationary colored Gaussian noise. Bottom panel: thebove a certain value of (see Fig. 10 However, simula-
burst wave form. Here, the peak amplitude of the burst i#4.0  tions verify that this does not affect the robustness of the test.

amplitude

amplitude

time (sec)
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FIG. 9. Effect ofl, (I ande held fixed on false alarm rate. The

FIG. 11. Effect ofe on (a) false alarm ratdtop) and(b) detec-
stationary noise used was white Gaussian noise 10.0).

tion probability (bottom). 1,=0.5 sec and;=0.064 sec for both

) (a) and(b). The stationary background noise used was white Gauss-
(c) The effect ofe. The false alarm rate should be inde- jan (5= 10) for (a) and colored Gaussian féb). In (b), the sudden

pendent ofe since for stationary noise it does not matter drop in detection probability occurs, as expected, when the burst
which two segments are compared in thest. This agrees duration(chosen to be B) becomes comparable te 1)I, (which
with actual simulation results as shown in Fig(d1 is the actual gap The total duration of simulated data fta) was

6.94 hours while the number of trials used fby was 800.
3. Detection probability

shown in Fig. 12. Thus, to optimize the tete only prior
knowledge requireds the duration of the bursts which are to
"W detected.

(b) The effect of . Decreasinds will increaseN, the
mber of samples used in theest, which would increase

(a) The effect of|l. Whenl, is significantly larger than the
burst duration, only a few of the subsegments in the segme
containing the burst will have a distribution which is differ-
ent from the stationary case. The periodograms of such SUt?fu
segments will appear as .outllersf in an otherwise ”O’Wa!he detection probability. Howevelr, should not be reduced
sample and thetest, which is unsuitable for such cases, will indiscriminately(see Sec. IV C #
not be able to detect them. Therefore, as the burst duration () The lage. As Iong'as the burst durations are smaller
falls belowl,, the de_tectlon pro_pabmty ShOU|d. decrease. Thethan €, a change ire should not affect the power of the test.
effect ofl; on detection probability should be independent OfThis is indeed observed in our simulations, an example of
the frequency band in which the burst is localized sihce '
only governs the number of subsegments over which the
burst is spread. Both of the above effects are observed, a

o T=200Rz ]
o

60

o
©
T

¢ Threshokd=1.65
o 1.73
A

1.81

e
by
T

50 1

S
o
T
X

Detection probability
)
o »

T 2

o
ES
T

False alarm rate (events/hour)
3
T
L

n
o
T

0 o r. ! 1 1 1 1 1 1 1 1
T 0 02 04 06 08 1 1.2 1.4 16 1.8 2
Burst effective duration Z (sec)

0 . . . . .
0 o 004 006 008 o1, 012 01 016 0ds 02 The test parameters were fixedlat 0.5 sec,|;=0.064 sec and
s

€=5. The burst peak amplitude for the typ@) bursts .
FIG. 10. Effect ofl¢ (I, ande held fixed on the false alarm rate. =200 Hz) was 1.6 while it was 4.% for the type(2) bursts §,
The stationary noise used was white Gaussian naise1(0.0). =100 Hz). The false alarm rate was fixed at 1 false event/hour.

. . s ; FIG. 12. The effect of burst duration on detection probability.
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which is shown in Fig. 1(b). In Fig. 12, we kepte large TABLE Il. Number of operations involved in the stochastic part
enough that the effect af on burst detectability did not get as a fraction of the number of operations required in the determin-
entangled with that of; . istic part. Numbers in parentheses are the false alarm rates corre-

sponding to the respective thresholgs

4. Miscellaneous

, , n=1.57 1.65 1.7 1.8
Reducingl to the point that each subsegment has only(50 events/hour 20/ (10/h) 2/h)
one sample is simply equivalent to monitoring changes in the
variance of the input time series. This is because a one poirt46x 103 0.23x10°%  0.14x10°3  0.04x10°3

DFT is simply the sample itself and the periodogram is,
therefore, just the square of the sampldwus, a test for
change in variance is a special case of the present test  image is computationally trivial by the standards of modern

However, under some circumstances, an indiscriminatglay computing.
reduction inls can have adverse effects. For instance, sup- (b) StochasticThis is the part involving the application of
pose the ambient noise PSD is such that the power in somge veto to the raw imagéf. Sec. Ill B). Since the number
frequency region is much greater than the power elsewhergf black pixels in the image after thresholding as well as the
(see Fig. 3 for an exampland all the bursts occur in the low size of the black-pixel patches are random variables, the
power region. Since reduction igdecreases frequency reso- number of operations involved in this part is also a random
lution, the low power region will be completely masked by variable. One expects, however, that for low false alarm
the high power one for sufficiently smdll. This will then  rates, the computational cost of this part will be much
make the detection of the bursts more difficult. A relatedsmaller than that of the deterministic part since clusters
issue is that of narrowband noise contamination which isyould only occur sparsely in the image.
discussed in more detail in Sec. V. The simplest way to estimate the computational load be-

A very long lag would allow the detection of long time cause of the stochastic part is via Monte Carlo simulations in
scale non-stationarity such as an abrupt change in the varivhich the number of operations involved in the stochastic
ance from one fixed value to another. However, for suchpart are explicitly counted within the code itself. In Table I,
abrupt long lasting changes, there exist better methods afe present the number of floating point operations incurred
detection[23]. in the stochastic part, as a fraction of the total number of

operations incurred in the deterministic part, over a wide
D. Computational cost range of false alarm rates for stationary input nof$e. gen-
erate Table Il, the test parameters used Werdd.5 sec,lq
=0.064 sec and=3. The sampling frequency of the input
data was 1000 Hz, each realization being 20 sec long. The
operations were counted over 200 trials.

From Table Il, we see that even when the false alarm rate
is as high as 50 events/hour, the time spent in the stochastic
part is negligible compared to that involved in generating the
raw image itself. The computational cost of generating the
image itself(the deterministic partis quite low as shown
above. Hence, overall, the test can be implemented without
significant computational costs.

In estimating the computational cost of this test, it is help-
ful to divide the total number of floating point operations
(additions, subtractions, multiplicationsequired into two
parts:(a) deterministic andb) stochastic.

(a) Deterministic This is the part involving the generation
of the raw imag€cf. Sec. Ill B. The number of operations
required is completely determined by the parametgerd,
and the sampling frequency of the ddita A breakup of the
steps involved in this part and the respective number of op
erations involved is as follows.

For each column of the imagél) Two sets of fast Fou-
rier transformqFFT9 have to be computed, each set having
N=I,/lg FFTs with each FFT involvingn=I.g time
samples. Therefore, the number of operations involved is 2 A test for the detection of non-stationarity is presented
X NX3nlogyn. (2) The modulus squared of only the positive which has the important property of being robust. This al-
frequency FFT amplitudes are computed for each subsegows the test to be used on data without the need to first
ment leading to RIX3X(n/2) operations(the factor 3  characterize the data statistically.
comes from squaring and adding the real and imaginary The main results of this work ar@) the demonstration,
partg. (3) For each frequency, the sample mearN¢21  using Monte Carlo simulations, of the insensitivity of the
operationy and variances (8+1 operationsare computed false alarm rate at a given threshold to the statistical nature
followed by 4 operations to construct thestatistic. Thus, of the data being analyzed, afit) application of the test to
total number of operations involved is X5+ 8)n/2. (4) Fi-  the detection of different types of bursts which showed that
nally, for each frequency, thestatistic is compared to a the test can detect fairly weak bursts. For instance, as shown
threshold, involvingn/2 operations in all. Adding up all the in Table I, the test could detect 80% of narrowband bursts,
steps and dividing the total number of operationd bgives  each located within a band of 20 Hz centered at 200 Hz, that
the computing speed required in order to generate the imageere added to Gaussian noise with a PSD such as that of
online: (6 logh+9/2N+11/2)f;. As an example, forfg LIGO-I when the peak amplitude of the bursts was only
=5000 Hz, |,=0.5 sec andl;=0.064 sec, the required 1.6Xrms of background noise and the false alarm rate for the
computing speed is 0.28 MFlops. Thus, generating the rawest was 1 event/hour.

V. DISCUSSION
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We did not catalog the false alarm rate or detection probThis work was supported by National Science Foundation
ability for a large number of cases since real applications willGrant Nos. PHY 98-00111 and PHY 99-96213 to The Penn-
almost always fall outside any such catalog. Instead, for falssylvania State University.
alarm rate, we chose a rather extreme range for the types of
stationary noise so that a bound on the robustness could be APPENDIX: ALGORITHM OF THE TEST
obtained. While, for detection probability, our main aim was
to demonstrate that, given its robustness, the test performs
quite well in realistic situations. When applying the test to a We present, first, some of the notation that will be used in
particular data set, the appropriate false alarm versus thresthe following. The time series to be analyzed will be denoted
old curve can be obtained easily using a single Monte Carly x, wherex is a sequence of real numbers. We will need to
simulation. Almost always, the experimenter has some priotlivide x into disjoint segments, without gaps, with all seg-
idea of therange of burst durations he/she is interested in ments having the same duratign A segment of length,
and therefore can choose the set of test parameters appropyjill be denoted by, wherej stands for segment numbjer
ately. This would be necessary for any test of non- Each segmeny”) will need to be further subdivided into
stationarity, and not particularly the present one, since nondisjoint segments, again without gaps, with all subsegments
stationarity can take many forms. A more general approachaving the same duratidg. Thek!" such sub-segment in the
would require understanding the test analytically. This worksegmenty!) will be denoted byz(i¥).

iS in progress. The periodogramof a time series is defined to be the

Though We'mentioned the F’“’b"?m of narrow pand nOisesquared modulus of its DFT. That is lifis the DFT of some
(cf. Sec. IV Q it was not addressed in detail. This is because[ime seriesu (consisting ofm sampley then theq!" fre-
this is an issue that is fundamental to all tests for transient N

non-stationarity and not specific to the present test alondlU€NCy componeni, of uis given by

Narrow band noise, such as power supply interference at 60 m

Hz and its harmonics or the thermal noise associated with the Ugi= > Upexp2ai(q—1)(p—1)/m), (A1)
violin modes of suspension wires, appear non-stationary on Tt

timescales much shorter than their correlation length. Thus,

1. Notation

if a narrow band noise component has significant power, th&here  q={1,... mj.  The periodogram {Sy; (q
frequency bandmaxfrequency resolution, linewidijncon- ~ =11.---.m}) is defined by

taining it will appear non-stationary to any test that searches A

for short duration transients. On the other hastgadynar- Sqi=[Uq|*. (A2)

rowbatn? 5|gr?flstr|]nttfr11e data c?n lguppl)ressttheihdete_ctu;n QFO reduce the aliasing of high frequency power on to lower
non-stationarity that happens 1o fie close 1o them in re'frequencies, it is common to compute the periodogram after
guency. This is because detection of short bursts implies aﬁl]odifying u by multiplying it with a window function w:

@ncrease in time res_olution anq, correspondingly, a decreaﬁ? —UyW, . The definition of the periodogram is modified in
in frequency resolution. Thus if the narrowband signals arthiS cz;septo

strong, they can make the frequency bins containing them
appear stationary. 1

This problem can be addressed in several ways. A pre- quzm|uq|2, (A3)
liminary look at the PSD can tell us about the frequency
bands where narrowband interference is severe and the O%hereHwH stands for the Euclidean norm of the window
put of the test in those bands can be discarded from furth . ~ th
analysis. Another way could be to decrease the time resol unction andu is theq™ frequency component of the DFT

tion sufficiently though at the cost of losing short bursts. AOIc the windowed sequence. Before windowing, we also sub-

more direct and effective approach would be to pass the daﬁ act the sample mean of t_he sequence from each sample In
e sequence. In the following, all periodograms are obtained

through time domain filters that notch the offending frequen- s defined in Eq(A3) after subtraction of the sample mean

cies. Such filters could also be made adaptive so that th 2 llowed by windowing. the window function is chosen to be
frequencies can be tracked in tihi24]. Further work is in y W 'g. the
o the symmetric Hanning window of the same length as the
progress on this issue. . ) . ) 7K
input time series1. We denote the periodogram D(F_’ by
sU:9, with its g™ frequency component denoted B .
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=1, ... floor(l, /), where the floor function returns the in-
teger part of its argument. L&t=floor(l,/Is).

(3) Compute the setsSU-K} and{SU* <N} with k as the
running index. Thus, each of the two sets contadihperi-
odograms.

(4) For each frequency component, compute shenple

means and variances of the two sets. Let the sample means at

the g™ frequency component be denoted b’ and w9
for {SUK} and{SU* <M} respectively. Then,

N
(N=N—1 (j.k)

N
ng+e): N—1k21 ng+e,k)_

Similarly, let the standard deviations be denotedr@} and
o+,
N

() =(N=D)71 2, (S§"-u)?,

N
(o_ngrE))Z: (N_ 1)711(21 (ngJre,k) _ ,uq(;]] +E))2,

where we have used the unbiased estimator of variéghee
biased estimator habl in the denominator instead dfl
-1).
(5) Computet’, the value of thet-statistic for theq™
frequency component,
pd*9— pd
[(O’E‘l))2+(0'((qj+e))2]1/2

(Ad)

0= JN

Let T be a matrix withTq;=[t|, g andj being the row and
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Frequency
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FIG. 13. Nearest neighbofgray) of a pixel(brick-wall pattern.
The gray pixels which touch the central pixel are é@ntacting
nearest neighbors while the two that do not arenite-contacting
nearest neighborse& 3 here)

j" such that(i) 9" e{g,q=1} and |’ e{j,j=1} or (i) q

=q andj’'e{j+e,j—€}. We call the set of nearest neigh-
bors of type(i) ascontactingand those of typdii) asnon-

contacting Figure 13 shows the set of nearest neighbors of a
pixel. We can now define a cluster bfpixels as a set of
b-pixels such thati) each member of this set has at least one
other member as its nearest neighbor, éndat least one

member of the cluster has another member as a non-

contacting nearest neighbor.

The next step in the algorithm is the identification of a
cluster ofb-pixels in the imagd . In our code, we proceed as
follows. Make a list of allb-pixels in the imageT (the or-
dering of the list is immaterial Let this list be called.. We
define two more symbols :

() Lgypis a proper subset &f such that any two elements
aelgy, and belg,, there exist elementgc,d, ... h}

e Lg,,such thatc is a contacting nearest neighborafd is

column indices respectively. For every pass through the loog contacting nearest neighbor ofand so on tillh which is

described above, a column ®fis produced.
Let the threshold for thetest bey. Set all elements of
that are belowy to zero and set all elements aboyeto a

also a contacting nearest neighbotof hat is, starting from
any one element we can reach any other by “stepping
through a chain of members. Essentially,,, is, roughly

fixed valuet,. We denote the resulting matrix by the samegpeaking, an unbroken patch lppixels.

symbolT. This should not cause any confusion since we will

mostly require the thresholded form ®fin the following.
The matrixT can also be visualize@ee Fig. 2 as a two

dimensional image composed of a rectangular arrgybafls

(picture elemenjswith the same dimension ab. We can

imagine that the pixels for which the corresponding matrix
elements crosseg are colored black and those that did not

cross are colored white. We call the black pixelgixels and
the white onegv-pixels.

3. Algorithm: The second stage
A burst will appear in the imagé€ as aclusterof b-pixels.

(i) L{ypis the complement of g, in L.

In the algorithm below, it is understood that when an
element is added or removed frolm,,, the new set is al-
ways renamed dsg,. Similarly, the complement of the new
Lsupis always denoted bi ..

The steps in the algorithm are as followRarenthesized
statements are comments.

(1) For each member df;,, search forcontactingnear-
est neighbors it ..

(2) If found add them td_g,. If not, go to step(4).

[To obtainLg,, starting from the null set: take the first
element, which we call theeedelement, ol asL ¢ ,,and go

In order to define a cluster we first delineate the set of pixel$0o step(1).]

which form thenearest neighbor¢o any given pixel. The
nearest neighbor of a pixel with as the row ang as the
column index is a pixel with row indeg’ and column index

(3) UpdateL (. Go to step(1).
(4) Check if any element ot , has anon-contacting

!

nearest neighbor ih ..
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(This and the following steps check whethey,, qualifies (7) Rename__ ,asL. If flag B was set, save,,. Go to
as a cluster according to our definitipn. step(1) again(until not more than oné-pixel is left inL).

(5) If none are found, go to stefY). Otherwise, take the  The above algorithm is easy to implement in softwares
first non-contacting nearest neighbor as a new seed elemegich aguaTLAB [25] or MATHEMATICA [26] which have in-
and construct a subsét,, following step (1) to step(3)  built routines for set operations. We useTLAB for our
(temporarily renamé by L, LsubbyfsubandLgubbyE;ub implementation. The actual code can, of course, be opti-

in those steps Add L., to Ly, and set a flads that L . is mized significantly. For instance, in stép) the search can
a cluster. be confined to only the most recent set of elements added to

(6) Repeat step4). L sub-
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