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Variational calculations with improved energy functionals in gauge theories
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For an SU(N) Yang-Mills theory, we present variational calculations using Gaussian wave functionals
combined with an approximate projection on gauge invariant states. The projection amounts to correcting the
energy of the Gaussian states by subtracting the spurious energy associated with gauge rotations. Based on this
improved energy functional, we perform variational calculations of the interaction energy in the presence of
external electric and magnetic fields. We verify that the ultraviolet behavior of our approximation scheme is
consistent, as it should be, with that expected from perturbation theory. In particular, we recover in this
variational framework the standard one-loop beta function, with a transparent interpretation of the screening
and anti-screening contributions.

PACS number~s!: 11.15.Tk, 12.38.Lg, 14.70.Dj
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I. INTRODUCTION

The functional Schro¨dinger picture has proven to be
privileged tool in exploring a rich variety of aspects of gau
theories which are beyond the scope of perturbation the
@1#. It is a useful starting point for developing nonperturb
tive calculations based on the variational approach. In
case of scalar field theories, static as well as dynamical va
tional calculations have been performed by using trial wa
functionals of the Gaussian type@2–8#. In the case of gauge
theories, some early investigations along these lines ca
found in @9–12#. However, the application of variationa
methods to gauge theories is generally plagued by the d
culty to implement in a calculable way the requirement
gauge invariance of physical states@12–14#.

Gaussian wave functionals allow for analytic calculatio
but are not gauge invariant except in the Abelian case
principle, one can construct gauge invariant states by a
aging Gaussian wave functionals over all gauge rotatio
This results in an effective non-linear sigma model where
fields are the group elements of the gauge transformat
@14#. However, to make progress with this theory, furth
approximations are necessary both in the choice of the ke
of the Gaussian and in the evaluation of the functional in
grals over the gauge group@14–18#. Such approximations
which go beyond the variational principle, are not alwa
under control. In particular, in the perturbative regime, th
fail to completely reproduce the one-loop beta function@15#
~see also@16,18#!.

In this paper we shall propose a different strategy which
inspired by techniques developed in 1962 by Thouless
Valatin @19# to deal with the restoration of rotational invar
ance when deformed solutions are obtained in nuc
Hartree-Fock calculations. Rather than using gauge invar
variational states, we shall limit ourselves to Gaussian w
functionals, but we shall correct the associated energy fu
tional by a non-local term, which approximately correspon
to the energy gain when projecting on gauge invariant sta
In the Abelian case, this amounts to removing the contri
tion of the longitudinal part of the Gaussian kernel to t
0556-2821/2000/61~11!/116008~15!/$15.00 61 1160
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energy. In Yang-Mills theory, the corrective energy term
itself determined by the variational principle, and the ensu
variational calculation isa priori non-perturbative.

Our main purpose here is to provide the framework
such a calculation and verify that, in the perturbative regi
~i.e., when supplemented with an expansion in powers ofg),
it leads to results consistent with ordinary perturbati
theory. As a first check, we shall show that our variation
calculation reproduces the standard one-loop beta functio
Yang-Mills theory, with a transparent interpretation of th
various contributions in terms of screening and an
screening phenomena. As a further test, we shall compute
vacuum energy in the presence of an external magnetic
B, and find that it exhibits a minimum at a nonvanishin
value ofB, in agreement with the perturbative calculation
@20#.

The paper is organized as follows. In Sec. II we brie
review the functional Schro¨dinger picture and the variationa
principle in field theory. In Sec. III, we present the Thoules
Valatin formalism and consider, as a simple illustration,
application to quantum electrodynamics~QED!. In Sec. IV
we present a variational calculation of the one-loop b
function which is based on the construction of the interact
energy between external electrostatic charges. In Sec. V
consider the energy of the QCD vacuum in the presence
constant magnetic field. This provides an alternative com
tation of the beta function, and also of the gluon condens
which is found to satisfy the trace anomaly relation. A su
mary of our results and a discussion of further possible
tensions and applications are presented in Sec. VI.

II. VARIATIONAL CALCULATIONS FOR GAUGE FIELDS

We consider the functional Schro¨dinger description of
SU(N) Yang-Mills theory. In the temporal gaugeAa

050, the
canonical coordinates are the vector potentialsAa

i (x) and the
electric fieldsEa

i (x), which we shall often write as colo
matrices in the adjoint representation: e.g.,Ai[Ab

i Tb ~the
color indicesa,b, . . . run from 1 toN221). The generators
Ta of the color group are taken to be Hermitian and tracele
they satisfy
©2000 The American Physical Society08-1
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@Ta,Tb#5 i f abcTc, Tr~TaTb!5Ndab, ~Ta!bc52 i f abc.

The Hamiltonian density reads (g denotes the coupling con
stant!

H~x!5
1

2 H g2Ea
i Ea

i ~x!1
1

g2
Ba

i Ba
i ~x!J , ~2.1!

with the color magnetic field

Ba5“3Aa1
1

2
f abcAb3Ac . ~2.2!

Note that our conventions are such that the QCD coup
constant is absorbed in the normalization of the vector
tentials. With these conventions, the covariant derivat
readsDi5] i2 iAi , and the electric fieldsEa

i are canonically
conjugate to the vector potentialsAa

i : @Ea
i (x),Ab

j (y)#
5 id i j dabd

(3)(x2y).
In the Schro¨dinger representation, the states are rep

sented by functionals ofAa
i (x), C@A#, and the electric field

is acting on such states by functional differentiation:

Ea
i ~x!C@A#5 i

d

dAa
i ~x!

C@A#. ~2.3!

The HamiltonianH commutes with the generatorG of time-
independent gauge transformations,

G~x![“•E~x!1 i @Ai ,Ei #, ~2.4!

so it is possible to diagonalizeH andG simultaneously.
The physical states are constrained by Gauss’ law:

G~x!C@A#50, ~2.5!

which is the requirement of gauge invariance.@More pre-
cisely, Eq.~2.5! shows that physical states must be invaria
under ‘‘small’’ ~i.e., topologically trivial@1#! gauge transfor-
mations. We shall not be concerned with the topological
pects of the gauge symmetry in what follows.# More gener-
ally, in the presence of matter fields represented by
external color source with densityra, Gauss’ law gets modi-
fied as follows:

Ga~x!C@A#5ra~x!C@A#. ~2.6!

The ground state of QCD is the eigenstateCvac of H of
minimal energy which satisfies Gauss’ constraint~2.5!. It can
be constructed, at least in principle, by using the Ritz va
tional principle, which states that

^H&[
^CuHuC&

^CuC&
>Evac , ~2.7!

with the minimum achieved forC5Cvac . Here,C@A# is
any wave functional from the physical Hilbert space@i.e.,
which satisfies Eq.~2.5!#, and Evac is the energy of the
ground stateCvac , assumed to be non-degenerate. In pr
tice, however, one has to restrict oneself toGaussianwave
11600
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functionals, the only ones which allow an analytical comp
tation of ^H&. These have the form

C0@A#5N 21expH 2
1

4g2E d3x d3y@Aa
i ~x!2Āa

i ~x!#

3~G21! i j
ab~x,y!@Ab

j ~y!2Āb
j ~y!#J , ~2.8!

where the background fieldĀa
i (x) and the kernelG21 @with

matrix elements (G21) i j
ab(x,y)# are the variational param

eters. We expect thatĀ50 in the vacuum state, and this
the case that we shall consider mostly in this paper. S
non-vanishing values ofĀ will be also considered, in Sec. V
below, in a study of the vacuum stability in the presence o
background color magnetic field~in the same spirit as, e.g
in Ref. @20#!.

The expectation value of the Hamiltonian density in t
Gaussian stateC0 is @12#

^C0uH~x!uC0&5
1

2g2
B̄•B̄~x!1

1

8
Tr^xuG21ux&

1
1

2
Tr^xuKGux&1

g2

8
~Tr$SiT

a^xuGux&%!2

1
g2

4
Tr$SiTa^xuGux&SiTa^xuGux&%. ~2.9!

In this equationB̄ is the magnetic field associated with th
centerĀ andSi is the spin 1 matrix whose elements (j ,k) are
given by i« i jk . The notation Tr in Eq.~2.9! implies a sum-
mation over the discrete~color and spatial! indices. For in-
stance, Tr̂xuG21ux&5( i ,a(G21) i i

aa(x,x). Finally, the opera-
tor K is the second derivative of the classical energy w
respect to the centerĀi

a . It reads, in matrix notation,

K5~2 iS•D!22S•B̄, ~2.10!

where

D i[] i2 iĀ i ~2.11!

denotes the covariant derivative defined by the backgro
field Āi[Āa

i Ta. In particular,

Ki j ~p!5p2d i j 2pipj for Ā50. ~2.12!

In the case of non-Abelian gauge theories, however, Ga
ian functionals such as Eq.~2.8! suffer from a major draw-
back: they do not satisfy the requirement of gauge invaria
~2.5!. It is in principle possible to construct gauge invaria
states byprojection, i.e. by averaging a Gaussian function
over all its gauge transformations. This is achieved by me
of the formula
8-2
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C@A#5
1

NE D@U~x!#CU@A#, ~2.13!

where the functional integration is performed over the u
tary N3N matrix fieldU(x), with the adequate group invar
ant measure, andN is a normalization factor. The integran
in Eq. ~2.13! is the gauge transform of the Gaussian st
C0@A#:

CU@A#5C0@UAU11 iU“U1#. ~2.14!

The expectation valueEP of the energy in the projected sta
is given by the following formula:

EP5

E D@U~x!#^C0uHuCU&

E D@U~x!#^C0uCU&

, ~2.15!

which should replace Eq.~2.9! in practical calculations. Un-
fortunately, Eq.~2.15! cannot be evaluated in closed for
because the functional integral over the group is not Ga
ian. Various approximations to Eq.~2.15! have been consid
ered in Refs.@14–18#. In what follows, we shall propose
different approximation method which is inspired from tec
niques used in nuclear physics to calculate the zero p
rotational energy of deformed nuclei@19,21–23#.

III. APPROXIMATE PROJECTION

The fact that our variational ground state, namely
GaussianC0 in Eq. ~2.8!, is not gauge invariant introduces
spurious degeneracy in the problem:C0 is degenerate with
all its gauge transforms defined in Eq.~2.14!. This leads to
the existence of spurious excitations of zero energy wh
correspond to rotations ofC0 in the gauge space; these ar
of course, the Goldstone bosons associated with the spo
neous breaking of the gauge symmetry byC0. Accordingly,
the expectation value~2.9! of the Hamiltonian in thede-
formedstateC0 includes unphysical contributions expres
ing the kinetic energy of the gauge rotations. The Thoule
Valatin formalism @19# provides us with a method to
estimate, and thus subtract away, such unphysical contr
tions.

A. Case of rotations

This formalism is best explained by the example of t
collective rotations of a deformed nucleus. There,
equivalent of our present variational calculation with Gau
ian wave functionals is the so-calledHartree-Fock approxi-
mationwhere the nuclear wave function is represented b
Slater determinant formed withA single-particle wave func-
tions wk(x) ~for A nucleons! @23#. The latter are determine
by solving the Hartree-Fock equations, i.e., the variatio
equations obtained by minimizing the expectation value
the Hamiltonian in the subspace of Slater determinants.
though the HamiltonianH is rotationally invariant, the
Hartree-Fock equations may lead to non-invariant soluti
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describing nuclear deformations. If this is the case, then
spectrum develops a ground state rotational band,

EJ5E01
J~J11!

2I
, ~3.1!

whereJ(J11) is the eigenvalue of the angular momentu
operatorJ2 and I is the moment of inertia. One may the
conclude that the operator

H̃[H2
J2

2I
~3.2!

is the Hamiltonian of theintrinsic ~that is, non-rotational!
motion: to the ground state rotational band ofH corresponds
now a single eigenvalueE0 of H̃. Then, Eq.~3.2! provides an
approximate separation of the dynamics into intrinsic a
rotational motion, which is reminiscent of the familiar sep
ration of the center-of-mass motion by the formula

H̃[H2
P2

2M
, ~3.3!

where

P5p11p21 . . . 1pA ~3.4!

is the total momentum operator, andM5Am is the nuclear
mass. Thus, a mean field description of the intrinsic mot
can be given by performing variational~or Hartree-Fock!
calculations for the substracted HamiltonianH̃. The only
question is, what is the value of the moment-of-inertia p
rameterI?

One can answer this question by studying rotations of
deformed mass distribution. Assume that the nucleus
axial symmetry with respect to thez axis, and consider a
uniform rotation with angular velocityv about thex axis. If
Cv(t) is theexact~time-dependent! state describing such
rotation, then

Cv~ t !5e2 ivtJxe2 iEvtCv~0!, ~3.5!

which satisfies the time-dependent Schro¨dinger equation

i
]Cv

]t
5HCv , ~3.6!

provided Cv(0) is a solution to the following time-
independent problem:

~H2vJx!Cv~0!5EvCv~0!. ~3.7!

This is, of course, just the familiar transformation to the r
tating frame of reference, which leads us to consider
variational problem for the following Hamiltonian:

Hv5H2vJx . ~3.8!

This is equivalent to aconstrainedvariational problem with
the subsidiary condition that^Jx& has a given value;v plays
then the role of the Lagrange multiplier. The constrain
8-3
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Hartree-Fock calculation determines the optimal independ
nucleon wave functionCv[Cv(0) in the rotating frame.
~As v→0, Cv→C0 which is the deformed Hartree-Foc
ground state.! Once the optimal wave function is found it
possible to obtain an estimate of the moment of inertiaI of
the nucleus by considering the limit

I 5 lim
v→0

^CvuJxuCv&
v

. ~3.9!

This finally allows us to estimate the zero-point rotation
energyDETV in the deformed stateC0:

DETV5
^C0uJ2uC0&

2I
. ~3.10!

Equation~3.10! is the expected gain in energy when proje
ing the deformed Hartree-Fock ground stateC0 onto a rota-
tionally invariant state. That is, the corrected average ene
after projection, which is the energy of the intrinsic motio
@cf. Eq. ~3.2!#, reads

Ẽ5E02DETV , ~3.11!

whereE0[^C0uHuC0&.
The Thouless-Valatin method is an approximation wh

is expected to be valid for large deformations or, more p
cisely, when the deformation produces a large expecta
value of the square of the angular momentum in the Hart
Fock ground state@21#. Indeed in this case it can be show
that the projection onto invariant states can be accura
performed because the overlap between two states diffe
in their orientation by an angleu is sharply peaked nearu
50, thus allowing for an expansion in the vicinity of th
point @22#.

B. Application to QED

When going to gauge theories in the variational meth
the Hartree-Fock ground stateC0 is replaced by the Gauss
ian trial wave functional@cf. Eq. ~2.8!#, and the angular mo
mentum operator is replaced by the generator of the ga
transformations,G a(x) @cf. Eq. ~2.4!#.

As a first illustration let us consider a variational calcu
tion in QED, with the Gaussian variational ansatz

C0@A#5N 21expH 2 K AU 1

4G UAL J , ~3.12!

whereN5(detG)1/4 and the expression in the exponent is
condensed notation for the convolution

K AU 1

4G UAL [
1

4E d3xd3y Ai~x!Gi j
21~x,y!Aj~y!.

~3.13!

This wave functional is gauge invariant provided its kern
G21 is transverse:] iGi j

2150. Let us assume, however, th
this is not the case, and see what the Thouless-Valatin
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rection would predict in this case. The operator playing
role of the angular momentum is the charge density oper

G~x!5“•E~x!, ~3.14!

and the generalization of the Thouless-Valatin formu
~3.10! for the energy correction reads

DETV5E d3xd3y^C0uG~x!G~y!uC0&K xU 1

2IUyL ,

~3.15!

where the ‘‘moment of inertia’’I is now a matrix in coordi-
nate space, with matrix elements^xuIuy&[I(x,y). This is
obtained via a constrained variational calculation w
HamiltonianHv5H2Hext , where

H5
1

2E d3x$E2~x!1~“3A!2% ~3.16!

and the external constraint

Hext5E d3x v~x!“•E~x!. ~3.17!

In the present context, the Lagrange multiplierv(x) plays
the role of the temporal componentA0(x) of the gauge vec-
tor potential. The solution to this constrained variation
problem is of the form1

Cv@A#5exp$2 i ^FuA&%C0@A#, ~3.18!

where the vector fieldF(x) is a new variational paramete
which expresses the expectation value of the electric field
the state~3.18!, Fi5^CvuEi uCv&, and is determined by
minimizing

Ev[^CvuH2HextuCv&

5E01
1

2E d3x~F1“v!22
1

2E d3x~“v!2.

~3.19!

We have denoted here (V is the total volume of the space!

E0[^C0uHuC0&

5
V

2E d3p

~2p!3 H 1

4
Gii

21~p!1~p2d i j 2pipj !Gi j ~p!J .

~3.20!

1Equation~3.18! can be simply understood by recalling that, in th
presence of a constraint of the formHext5ap, the ground state
wave function of an harmonic oscillator is modified by a fact
exp(ip0x), but its width remains unchanged.
8-4
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Note that the magnetic piece of the energy~3.20! ~the second
term between parentheses! involves only the transverse com
ponents ofGi j , while the electric piece involves also it
longitudinal component.

The functionalEv@F# in Eq. ~3.19! attains its minimum
for F52“v, in which case

^Cvu“•EuCv&5“•F52Dv. ~3.21!

According to Eq.~3.9!, the moment of inertia is obtained a
~with ^“•E&v[^Cvu“•EuCv&):

^xuIuy&5
d^“•E~x!&v

dv~y!

5^xu2Duy&, ~3.22!

whose inverse is simply the Coulomb propagator

K xU 1

I UyL 5
1

4pux2yu
. ~3.23!

We thus obtain the following expression for the Thoule
Valatin correction~3.15! in QED:

DETV5
1

2E d3xd3y^C0u“•E~x!“•E~y!uC0&
1

4pux2yu
,

~3.24!

which is recognized as the electrostatic energy in the s
C0. For the Gaussian state~3.12!, this gives

DETV5
V

8E d3p

~2p!3

pipj

p2
Gi j

21~p!, ~3.25!

which simply subtracts the longitudinal piece of the elect
energy in Eq.~3.20!.

The corrected energyẼ[E02DETV reads therefore@cf.
Eqs.~3.20! and ~3.25!#

Ẽ5VE d3p

~2p!3 H 1

4
GT

21~p!1p2GT~p!J , ~3.26!

and involves only the transverse pieceGT[ 1
2 (d i j

2 p̂i p̂ j )Gi j of the kernelGi j ~we have written herep[upu
and p̂i[pi /p). Then, the variational equationdẼ/dGT50
givesGT in the expected form

GT~p!5
1

2p
. ~3.27!

Together, Eqs.~3.26! and ~3.27! yield an energy density

Ẽ5VE d3p

~2p!3
upu, ~3.28!

which is indeed the correct result for the QED ground st
@1#. Thus, in the case of QED, the approximate project
method of Thouless and Valatin correctly subtracts the c
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tribution of the unphysical, gauge, degrees of freedom fr
the average energy. Actually, since QED without fermions
a free theory, the variational solution above coincides w
the exact solution@1#: the exact ground state is a Gaussi
wave functional such as Eq.~3.12! with a transverse kerne
determined by Eq.~3.27!:

Cvac@A#5expH 2E d3p

~2p!3

p

2
Ai~p!~d i j 2 p̂i p̂ j !A

i~2p!J
5expH 2E d3x d3y

B~x!•B~y!

4p2uxÀyu2J . ~3.29!

Moreover, wave functionals of the type shown in E
~3.18!—i.e., Gaussian states with a transverse kernel an
non-trivial phase factor—correspond to physicalcharged
states, i.e., states of the quantum Maxwell theory in the p
ence of static, classical, external sources. Indeed, any su
state~which we denote here asCc) satisfies

“•E~x!Cc@A#5r~x!Cc@A#, ~3.30!

with the charge densityr(x)5“•F(x). The corresponding
energy includes the Coulomb energy, as expected:

^CcuHuCc&5E01
1

2E d3x F2~x!

5E01
1

2E d3x d3y
r~x!r~y!

4pux2yu
. ~3.31!

Non-Abelian charged states will be considered in Sec. IV
below.

For other applications and a more complete study of
Thouless-Valatin method in the context of quantum fie
theory, see@24#.

C. Approximate projection in QCD

Let us now consider the case of non-Abelian gauge th
ries. The corresponding ‘‘moment of inertia’’ is now a colo
matrix defined as the polarization tensor@cf. Eq. ~2.4!#

I ab~x,y!5
d^G a~x!&v

dvb~y!
U

v50

, ~3.32!

in the presence of an external constraint

Hv5H2Hext

Hext5E d3x va~x!G a~x!.

~3.33!

The analogue of Eq.~3.10!, i.e. the gain in energy when
projecting a wave functionalC0@A# onto the subspace o
gauge invariant states, reads
8-5
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DETV5E d3xd3y^C0uG a~x!G b~y!uC0&K a,xU 1

2IUb,yL .

~3.34!

The energy functional to be used in variational calculatio
is therefore

Ẽ5E02DETV . ~3.35!

It is also possible to perform a projection on a subspace w
a given color charge distribution̂G a(x)&cÞ0 ~the subscript
c refers to expectation values over charged states!. In such a
case, however, the gauge generator appearing in the pre
correction formula has to be replaced by its deviationĜ away
from the desired value:

Ĝa~x!5G a~x!2^G a~x!&c . ~3.36!

This modification guarantees that there is no correction fo
state which is an exact eigenstate of the charge operator.
functional to be minimized in the subspace of Gaussian fu
tionals is thus

Ẽ5Ec2Eext2DÊTV , ~3.37!

whereEc5^H&c , Eext5^Hext&c is the energy of the externa
constraint generating the charged state,2 and

DÊTV5E d3xd3y^Ĝa~x!Ĝb~y!&cK a,xU 1

2IUb,yL .

~3.38!

This procedure is again reminiscent of the elimination of
center-of-mass motion in the mean field description o
composite system ofA particles@19#. For a system charac
terized by a set of single-particle wave functio
w1 ,w2 , . . . ,wA the optimal state in thecenter-of-massframe
is obtained by minimizing the functional

Ẽ5^H&2
^P2&
2M

. ~3.39!

The Thouless-Valatin prescription for the total massM in
Eq. ~3.39! is to use the relation̂P&[Mv, where^P& is the
expectation value of the total momentum~3.4! in the pres-
ence of the external constraintHext5v•P. This prescription
gives the desired resultM5mA wherem is the mass of the
individual constituents. In amoving frame with velocityv
the single particle wave functions become

w i~x!→eix(x)w i~x!, ~3.40!

with x(x)5mv•x. Individual momentum operators in th
moving frame are obtained by the gauge transformation

¹→¹1 i ~¹x!, ~3.41!

2That is, an exact charged stateCc is defined as an eigenstate
H2Hext .
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i.e. pi→pi2^pi&. The functional providing the adequate sta
at the minimum is

Ẽ5^H&2v•P2
^~P2^P&!2&

2M
, ~3.42!

in agreement with Eq.~3.37!. This procedure to implemen
Gauss’s law will be important in Sec. IV when applied to t
calculation of the interaction energy of color charges.

Still, in the case of charged states, the chromostatic
ergy Echromo is given, in our approximation scheme, by th
classical chromostatic energy corrected by the Thoule
Valatin term:

Echromo5E d3xd3y^G a~x!&c^G b~y!&cK a,xU 1

2IUb,yL
1DÊTV ~3.43!

so that

Echromo5E d3x d3y^G a~x!G b~y!&cK a,xU 1

2IUb,yL .

~3.44!

~This is the analogue of usingErot5^J2&/2I as an approxi-
mation for the rotational energy of a deformed nucleus.! In
the case of QED this identification is obvious in equatio
such as Eqs.~3.24! or ~3.31!.

To conclude, the central result of this section is the no
local energy functional~3.35! @or Eq. ~3.37! in the case of
charged states# which approximately corrects for the lack o
gauge symmetry when working with Gaussian states. T
energy functional is the starting point of the variation
method we propose for gauge theories. Note that the cor
tive energy termDETV in Eq. ~3.34! is a priori of a non-
perturbative nature. Our aim in what follows is to check t
ultraviolet behavior of this approximation scheme. We sh
thus consider the variational calculations in the perturba
regimeg!1.

IV. ONE-LOOP BETA FUNCTION FROM VARIATIONAL
CALCULATIONS

In this section, we shall use Eq.~3.43! to estimate the
electrostatic energyEchromo of a non-Abelian charged state
up to orderg2 in perturbation theory. This will allow us to
recover the standard expression for the QCD beta functio
the one-loop approximation.

A. Moment of inertia for color rotations

The first step is the calculation of the moment of iner
for color rotations,Iab(x,y), which enters Eq.~3.43!. Unlike
QED, where this quantity has been computed exactly@cf. Eq.
~3.23!#, in QCD we shall give only a perturbative estimate
I, valid to the order of interest~i.e., up to orderg2). To this
aim, it is sufficient to perform variational calculations in th
vicinity of the perturbative vacuum.
8-6
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To zeroth order, the vacuum of Yang-Mills theory is th
same as for Maxwell theory, namely@cf. Eq. ~3.29!#:

C0@A#5N 21expH 2K AUG21

4g2 UAL J , ~4.1!

where

~G21! i j
ab~k!5dabS d i j 2

kikj

k2 D Gk
21 , ~4.2!

andGk
2152k. In the calculation ofI below, we shall never

need to go beyond this leading order approximation forGk .
Note that, even with such a transverse kernel, the fu

tional ~4.1! is still not invariant undernon-Abeliangauge
tranformations; that is, this is a deformed state, accordin
the terminology in Sec. III. In order to compute its mome
of inertia under color rotations, one has to study the respo
of this state to an external constraint of the form~3.33!. The
trial wave functional in the presence of this constraint re

Cv@A#5N 21e2 i ^FuA&expH 2K AU G21

4g2
2 iSUAL J ,

~4.3!

which involves two additional variational parameters: t
vector fieldFa

i (x) ~which fixes the expectation value of th
electric field:^Ea&5Fa) and the matrixSab

i j (x,y), which is
taken to be transverse in its spatial indices. The emergenc
S is a hallmark of non-Abelian behavior@recall thatS50 in
the corresponding Abelian problem; cf. Eq.~3.18!#.

We shall shortly see that, asv→0, F andS are linear in
v, while the first correction toG21 is only quadratic,3 and
therefore does not matter for the calculation ofI @cf. Eq.
~3.32!#. Thus, for the present purposes, we can takeG21 as
in Eq. ~4.2!. The variational parameters in Eq.~4.3! are ob-
tained by minimizing the following functional:

Ev[^CvuH2HextuCv&

5^H&v2E d3x va^G a&v , ~4.4!

with respect to variations inFa
i andSab

i j . A straightforward
calculation yields

^H&v5
g2

2 E d3x$Fa•Fa~x!14g2Tr^xuSGSux&%,

~4.5!

where we have kept only the terms involving the variatio
parameters. Similarly,

^G a~x!&v5“•Fa~x!2 ig2Tr^xuTa@S,G#ux&. ~4.6!

3Such quadratic corrections occur since, in contrast to QED,
non-Abelian constraint~3.33! generates a coupling betweenG and
F in the variational equations.
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After inserting these expressions into Eq.~4.4!, and taking
variations with respect toF andS, we derive the following
expressions for the variational parameters~in momentum
space!:

Fa
i ~q!52

iqi

g2
va~q!, ~4.7!

and, for the transverse4 components ofS,

^k8buSukc&5
~2p!3

V
d~k82k2q!

3
1

2g2
va~q! f abcS Gk2Gk8

Gk1Gk8
D , ~4.8!

whereV is the total volume andGk is defined in Eq.~4.2!.
By using Eqs.~4.6!, ~4.7! and~4.8!, we can finally express

the average color charge^G&v in terms ofva. This is conve-
niently decomposed into an ‘‘Abelian’’ and a ‘‘non
Abelian’’ piece, as corresponding to the two pieces on
right hand side~RHS! of Eq. ~4.6!: ^G a&v5rA

a1rNA
a , with

rA
a~q!5 iq•Fa~q!5

1

g2
q2va~q!, ~4.9!

and, respectively,

rNA
a ~q!5g2f abcE d3k

~2p!3 S d i j 2
ki8kj8

k82 D S d i j 2
kikj

k2 D
3~Gk2Gk8!^k8cuSukb&, ~4.10!

where k85k1q. From Eqs.~4.8!–~4.10! we note that the
‘‘non-Abelian’’ charge density in Eq.~4.10! is a correction
of orderg2 relative to the ‘‘Abelian’’ one in Eq.~4.9!. Thus,
as anticipated after Eq.~4.2!, it is consistent to evaluate thi
correction with the free kernelGk51/2k.

The integral in Eq.~4.10! is logarithmically ultraviolet
divergent, so it must be evaluated with an upper cutoff
turns out that this divergence is a part of the charge ren
malization in QCD~see Sec. IV B below!. To reconstruct the
associated beta function, we need, as usual, only the co
cient of the divergent logarithm. The latter is insensitive
the details of the UV regularization, so we shall consider,
simplicity, a sharp momentum cutoffL.

Also, in order to isolate the leading logarithm, we c
perform kinematical approximations relying on the inequ
ity k@q @since the external momentumq is fixed, while the
leading contribution to the integral in Eq.~4.10! comes from
relatively large momenta#. Physically, we are indeed inter
ested in smooth charge distributions. This allows us to

e
4By which we mean transversality with respect to bothk andk8,

as requested by expressions~4.5! and ~4.6!.
8-7
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placek1q by k and thus (d i j 2ki8kj8/k82)(d i j 2kikj /k2) by
2. By also using Eq.~4.8! for S, we then obtain

rNA
a ~q!5

CN

2
va~q!X~q!, ~4.11!

whereCN5Tr(T3T3)5N for SU(N), and

X~q![E d3k

~2p!3

@«~k8!2«~k!#2

«~k!«~k8!@«~k!1«~k8!#
, ~4.12!

with «(k)[uku. Here again we can replacek8.k every-
where except in the numerator which must be expande
second order inq:

@«~k1q!2«~k!#2.q2cos2u, ~4.13!

whereu is the angle between the space vectorsk andq. The
angular average yieldŝcos2u&5*0

pdu sinu cos2u52/3, so, fi-
nally,

X~q!5
q2

12p2E dk

k
, ~4.14!

which is logarithmically divergent in the ultraviolet, as e
pected, but also in the infrared: the infrared divergence is
artifact of the previous manipulations~in a more careful cal-
culation, this would be screened byq), and to the order of
interest we can just regulate it with anad hocinfrared cutoff
m. This yieldsrNA

a 5arA
a , with

a[
g2CN

48p2
ln

L2

m2
. ~4.15!

The resulting value of the moment of inertiaIab[dra/dvb

reads, finally,

Iab~q!5
dab

g2
q2~11a!. ~4.16!

This should be compared to the corresponding Abe
result5 I (q)5q2. We see that the quantum fluctuations
QCD produce an increase of the moment of inertia, wh
corresponds to thescreeningof color charges by quantum
fluctuations. The size of the screening effect that we h
obtained agrees indeed with the results of other approa
@25#.

5The overall factor 1/g2 in Eq. ~4.16! is simply a consequence o
our different normalizations for the field strengths in QCD a
QED; compare, in this respect, Eqs.~3.12! and ~4.1!.
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B. Interaction energy in the presence of a background
electric field

Interesting properties of the vacuum include its respo
to an external chromo-electric field, which can be genera
by an external constraint of the form

Hext5g2E d3xEext
a ~x!•Ea~x!. ~4.17!

For this constraint, we shall compute the induced elec
mean field and charge density, and the associated ele
static energy. By comparing the latter with the bare Coulo
interaction, we shall then identify the chromo-electric su
ceptibility, or charge renormalization. As we shall see, t
variational formalism provides a transparent picture of
underlying phenomena of screening and anti-screening.

The optimal stateCc in the presence of the constrain
~4.17! is of the form

Cc@A#5N 21e2 i ^FuA&expH 2K AU G21

4g2 UAL J , ~4.18!

where the parameterFi
a ~the electric mean field! will be re-

lated to the external fieldEext
i by the variational equations

@see Eq.~4.23! below#. Note that, in contrast to Eq.~4.3!,
there is noS term in Eq.~4.18! above; this is so because th
external perturbation here is different@compare Eqs.~4.17!
and ~3.33!#: it contains a term linear inEa, but no non-
Abelian term like@Ai ,Ei #. This situation is analogous to th
case of an anharmonic oscillator with an external constr
Hext5ap. The only changes are a factoreip0x and, in higher
orders ing, a modification of the real part of the width.

According to the discussion in Sec. III@see especially
Eqs. ~3.37! and ~3.38!#, the energy functional to be mini
mized in this case isẼ5Ec2^Hext&c2DÊTV . The terms in-
volving Fa

i in this functional read

Ec2Eext2DÊTV5g2E d3xH 1

2
Fa

•Fa2Eext
a
•FaJ

2g2f acdf be fE d3xd3yFi
d~x!F j

f~y!

3^xuGi j
ceuy&K a,xU 1

2IUb,yL . ~4.19!

The last term on the RHS corresponds to the Thoule
Valatin correction, Eq.~3.38!. Note that, because of the sub
straction of the average charge inĜa[G a2^G a&c , it is only
the non-Abelian part of the Gauss operator„i.e., the term
i @Ai ,Ei # in Eq. ~2.4!… which contributes to Eq.~4.19!. To
evaluate this contribution, we first rewrite it in momentu
space:
8-8
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DÊTV5g2f acdf be fE d3k

~2p!3

d3q

~2p!3
Fi

d~q!F j
f~2q!Gi j

ce~k!

3K aU 1

2I~k1q!
UbL . ~4.20!

To the order of interest, we can replace the moment of ine
in the equation above by its leading order expression:I(k)
.k2/g2. Then, by performing similar manipulations as in t
calculation of theX term in Eqs.~4.10!–~4.14!, we finally
obtain

DÊTV.
g4CN

3 E d3k

~2p!3

d3q

~2p!3
Fi

a~q!Fi
a~2q!

1

2k

1

k2

[
g2d

2 E d3xFi
a~x!Fi

a~x!, ~4.21!

where

d[
g2CN

6p2 E dk

k
5

g2CN

12p2
lnS L2

m2D . ~4.22!

After inserting Eq.~4.21! into Eq. ~4.19! and minimizing
with respect toFi

a(x), we obtain

~12d!Fa
i ~x!5Eext a

i ~x!. ~4.23!

At this point it is convenient to introduce the charge d
tribution associated with the external fieldEext

i ,

rext
a ~x![“•Eext

a ~x!, ~4.24!

to be referred to as theexternal chargein what follows: this
would be the charge in the system in the absence of po
ization effects. The actual charge is rather

ra~x![^CcuG a~x!uCc&5“•Fa5
rext

a

12d
.rext

a ~11d!,

~4.25!

where the second line follows from Eq.~4.24!. Note that this
relation implies anantiscreeningof the external charge
sincera is bigger thanrext

a . The differencer2rext5rextd
may be interpreted as aninduced charge~see also Sec. IV C
in Ref. @26# and Appendix A for an alternative computatio
of this quantity!.

We are finally in position to compute the chromosta
interactionEchromo in the optimal stateCc . This is given by
Eq. ~3.43! which, together with the above expressions~4.25!
for ^G a(x)&c , and~4.21! for DÊTV , implies

Echromo.g2
113d

11a E d3q

~2p!3
rext

a ~q!rext
a ~2q!

1

2q2
,

~4.26!

up to corrections of higher order ing. There is here a facto
(11d)2.112d arising from the induced charge@cf. Eq.
~4.25!#, another one arising from the Thouless-Valatin c
11600
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-

rection ~4.21!, and a factor (11a) due to the moment of
inertia @cf. Eq. ~4.16!#. The interaction energy~4.26! is still
Coulomb like,

Echromo5gR
2E d3q

~2p!3
rext

a ~q!rext
a ~2q!

1

2q2
, ~4.27!

but with a modified coupling constant given by

gR
2~m!5g2

113d

11a
~4.28!

or, to first order ing2,

1

gR
2~m!

5
1

g2
2

11CN

48p2
ln

L2

m2
. ~4.29!

This is the correct one-loop value for the renormalized c
pling constant@25#. Note that, in the present calculation, th
involves three types of contributions: indeed, the factor of
in the last equation has arisen as 11581421, where the 8
corresponds to anti-screening by the induced charge@cf. Eq.
~4.25!#, the 4 is another anti-screening contribution due
the Thouless-Valatin correction~4.21!, and the (21) is a
screening contribution arising via the correction of orderg2

to the moment of inertia.

V. VACUUM ENERGY IN A MAGNETIC
BACKGROUND FIELD

In the previous section, we have studied the electric se
of the vacuum of Yang-Mills theory, by using a combinatio
of variational and perturbative techniques. In what follow
we shall perform a similar analysis of the magnetic sec
To this aim, we consider Yang-Mills theory in the presen
of a ~constant! magnetic background fieldB̄a

i , and compute
the background field energy by using the variational pr
ciple. The final result is not new~it coincides with the one-
loop result by Savvidy@20#!, but it rather serves as a test fo
our variational method in the magnetic sector and in
perturbative regime.

The relevant trial wave variational is the Gaussian fun
tional C0 in Eq. ~2.8! with the ‘‘center’’ field Āa

i (x) chosen

so as to reproduce the desired magnetic fieldB̄a
i ~a conve-

nient choice will be given later!. This state is not gauge
invariant, so its energyE0[^C0uHuC0&, Eq. ~2.9!, must be
corrected with the Thouless-Valatin energyDETV , to be
computed in the next subsection. Then, by applying
variational principle to the corrected energyẼ5E0
2DETV , we shall determine the kernel of the Gaussian~in
Sec. V B!. Finally, in Sec. V C, we shall compute the ener
of the magnetic field and the associated gluon condens
and verify that these quantities are related by the tr
anomaly relation, as they should. In this calculation, the st
dard one-loop beta function will emerge once again.
8-9
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A. The Thouless-Valatin energy in the background field

We start by computing the moment of inertiaIab(x,y) in
the presence of the background fieldĀa

i (x). As already ex-
plained, this requires constructing the variational grou
stateCv for the constrained HamiltonianHv in Eq. ~3.33!.
This state is of the form@compare to Eq.~4.3!#

Cv5N 21e2 i ^FuA2Ā&expH 2 K A2ĀU G21

4g2 2 iSUA2ĀL J ,

~5.1!

where the parametersFa
i and S i j

ab are related tova by the
variational principle~recall the discussion in Sec. IV A!. It
turns out that the matrixS will not play any role in what
follows: indeed, below we shall need the moment of iner
only to leading order ing, while S counts starting with orde
g2 ~cf. Sec. IV A!. We then write, as in Eq.~4.4!,

Ev5^H&v2E d3xva~x!^G a~x!&v , ~5.2!

with ^H&v given by Eq.~4.5!, and

^G a~x!&v5~D iF
i !a~x!1O~g2!, ~5.3!

whereD i[] i2 iĀ i is the covariant derivative defined by th
background field@cf. Eq. ~2.11!#, and the neglected terms, o
O(g2), would involveS @cf. Eq. ~4.6!#. The variation with
respect toFa

i yields then

Fa
i ~x!52

1

g
~Div!a~x!, ~5.4!

which differs from the corresponding expression in Eq.~4.7!
only by the replacement of the ordinary derivative] i by the
covariant oneDi . Together with Eq.~5.3!, this provides the
moment of inertia to the order of interest:

I ab~x,y![
d^G a~x!&v

dvb~y!
52

1

g2
~D x

2!abd (3)~x2y!1O~1!

5
1

g2
^a,xuP2ub,y&1O~1!. ~5.5!

We have introduced here thekinetic momentumP j[ iDj

5 id j1Āj andP2[P jP j .
Within the same accuracy, one has also

^C0uG a~x!G b~y!uC0&'
1

4g2
Di ,x

acD db
j ,y~G21! i j

cd~x,y!

5
1

4g2
^a,xuP iGi j

21P j ub,y&.

~5.6!

We are now in position to compute the Thouless-Vala
energyDETV @cf. Eq. ~3.34!# by combining Eqs.~5.5! and
~5.6!, one obtains
11600
d

a

DETV'
1

8E d3xK a,xUS P i

1

P2
P j D Gi j

21Ua,xL , ~5.7!

up to corrections of orderg2.

B. Variational equation for G

The improved energy functionalẼ5E02DETV reads
therefore@cf. Eqs.~2.9! and ~5.7!#

Ẽ5E d3xH 1

2g2
B̄i

a~x!B̄i
a~x!

1
1

8 K a,xUS d i j 2P i

1

P2
P j D Gi j

21Ua,xL
1

1

2
Tr@KG~x,x!#1O~g2!J . ~5.8!

Note that the last two terms in Eq.~2.9! do not contribute to
this order. As obvious from this equation, the Thoule
Valatin correction makes the kinetical part of the energyco-
variantly transverse. Since the operatorKi j is transverse as
well @cf. Eq. ~2.10!#,

Ki j 5P2d i j 2P iP j12@P i ,P j #, ~5.9!

it follows that the projected energy~5.8! involves only the
transversecomponents of the kernelG. Thus, without loss of
generality, we can restrict ourselves to a~covariantly! trans-
verse kernel in what follows:

P iGi j
21505Gi j

21P j . ~5.10!

To formalize this, it is convenient to introduce transverse a
longitudinal projectors as follows:

P̂i j [P i

1

P2
P j , Q̂[12 P̂. ~5.11!

They satisfy

P̂i j
2 5P i

1

P2
PkP

k
1

P2
P j5 P̂i j ,

Q̂i j
2 5~12 P̂! i j

2 5~12 P̂! i j 5Q̂i j .
~5.12!

Then, a transverse kernel is one satisfyingG5Q̂GQ̂ ~and
similarly for G21). For such a kernel, the variational prin
ciple @i.e., the minimization ofẼ, Eq. ~5.8!, with respect to
G# produces the following gap equation:

1

4G2
.K, ~5.13!
8-10
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which determinesG to the order of interest. In particular, a
Ā→0, G reduces to the free, or Abelian, expression in E
~4.2! and~3.27!. Thus, the only non-trivial effects which ar
taken here into account are those associated with the b
ground field.

Note that Eq.~5.13! can only be valid at sufficiently high
energy or small coupling constant: indeed, the operatoK
admits negative modes@20,27,28#. We thus assume that a
infrared cutoff has been set—this does not affect the ul
violet behavior of the theory, which is our main interest he

C. Energy of the background field

The previous equations provide the optimal Gaussian
nel for a given background fieldĀ and thus the effective
potentialV(Ā) which is the expectation value of the ener
in this state. The next step in our variational approach is
find the minimum of the effective potential. ConstructingV
for an arbitrary background is however a difficult task. F
this reason we now consider a restricted variational sp
defined by the following background field:

Āx50, Āy5xBT3, Āz50. ~5.14!

This corresponds to a constant magnetic field in thez direc-
tion and in the third color.

With this choice of the background field, we are now ab
to compute the energy~5.8! in the optimal variational state
which is the Gaussian state~2.8! with a transverse@in the
sense of Eq.~5.10!# kernel G21 satisfying Eq.~5.13!. The
latter equation shows that, at the minimum, the followi
identity holds:

Tr$K^xuGux&%5
1

4
Tr^xuG21ux&. ~5.15!

That is, magnetic and electric fluctuations have equal e
gies in our variational ground states, which is merely
virial theorem in the present context. Thus,

Ẽmin.E d3xH 1

2g2
B̄i

a~x!B̄i
a~x!1

1

4
^a,xuG21ua,x&J .

~5.16!

This involves the matrix element^xuG21ux&, which we shall
compute in Appendix A by using the Schwinger proper-tim
representation@cf. Eq. ~5.13!#:

^xuG21ux&5
1

Ap
E

0

` dt

t3/2
^xu~12e2tK!ux&. ~5.17!

This integral develops ultraviolet divergences ast→0, which
we shall regularize by shifting the lower bounds of the in
gral from 0 to 1/L2. As in the electric case, we are main
interested in the ultraviolet renormalization of the ener
~5.16!; to this aim, it is sufficient to extract the terms whic
diverge whenL→` in Eq. ~5.17!. This is described in detai
in Appendix A, from which we quote here the final result
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Tr^xuG21ux&5~••• !L42
11CN

48p2
B2ln

L2

B
1O~g2!

~5.18!

~the coefficient in front ofL4 is an uninteresting field-
independent number that will be omitted in what follows!.
Remarkably, there is no divergent term inL2 ~which, for
dimensional reasons, would be necessarily of the fo
L2B): this is so because of rotational and gauge symmet
which require the magnetic field to enter only in the sca
productS•BaTa5BSzT

3, whose trace is however zero~see
Appendix A for more details!.

Note also the numerical factor in front of the logarithm
divergence in Eq.~5.18!: this is the factor leading to the
correct one-loop beta function after renormalization~see be-
low!. The projection on~covariantly! transverse Gaussia
states has been crucial in getting this factor right: witho
this, we would have obtained a factor of7

2 instead of the
correct factor of11

3 @compare in this respect Eqs.~B19! and
~B20! in Appendix A#.

Finally note that the field strengthB appears as an infrare
cutoff in Eq. ~5.18!. This is expected from Eqs.~B6! and
~B7! where the proper time variable always appears in
combination tB. However, a complete derivation of Eq
~5.18! requires a detailed treatment of unstable modes.

To conclude,

Ẽ/V.
1

2g2
B22CN

11

48p2

B2

2
ln

L2

B
, ~5.19!

showing that the background field energy has no field dep
dent UV divergences other than the logarithmic one wh
can be absorbed into the renormalization of the coupl
constant. We then write, as usual (m is the substraction
scale!,

1

gR
2~m!

5
1

g2
2CN

11

48p2
ln

L2

m2
~5.20!

which provides the correct one-loop beta function, as ant
pated. The renormalized field energy density reads then

H~B!5
B2

2gR
2~m!

1
B2

2

11

48p2
CNln

B

m2
, ~5.21!

which coincides with the result obtained by Savvidy in pe
turbation theory@20#. An advantage of the present approac
however, is that it can be improved by using a larger var
tional space, which is expected to cure the difficulties as
ciated with negative modes@27,28#.

As discussed in@20#, the energy density~5.21! exhibits a
minimum for a non-zero valueB5Bmin of the background
field, with

Bmin5
m2

Ae
expS 2

16p2

gR
2~m!

3

11CN
D . ~5.22!
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The value of the energy density at this minimum is

^H&min52
1

64p2

11

3
CNBmin

2 ~5.23!

which is indeed negative. Our variational vacuum state
therefore characterized by a magnetic field condensate~see,
however, Refs.@27,28# for potential problems with such
state!.

From the previous results, it is now straightforward
evaluate the gluon condensate in our variational vacuum

^FmnFmn&[2g2S 1

g2
^Bi

aBi
a&2^g2Ei

aEi
a& D

52Bmin
2 , ~5.24!

where the second line follows from the aforemention
‘‘virial theorem’’ ~5.15!. Equations~5.23! and ~5.24! can be
combined into

^H&min52
11CN

128p2
^FmnFmn&min ~5.25!

which is consistent, as it should, with the trace anomaly
lation

^um
m&5

b~g!

2g3
^FmnFmn&. ~5.26!

Indeed, with ^H&5 1
4 ^um

m& and the one-loop beta functio
@which here is a consequence of Eq.~5.20!#

b~g!52
11

48p2
CNg3, ~5.27!

Eq. ~5.26! becomes identical to Eq.~5.25!.
An attractive feature of the formula~5.25! is that it in-

volves two quantities which are independently accessible
perimentally~at least indirectly!. Indeed, the left-hand sid
of this equation is the energy density of the vacuum, wh
can be identified with the fourth power of the bag consta
B 452(240 MeV)4 @29#, whereas the right-hand side d
pends on the gluon condensate which is known from R
@30# to be 0.5 GeV4. These values are compatible with E
~5.25! within a 20% accuracy.

VI. CONCLUSION

In this paper we have proposed an improved energy fu
tional for variational calculations in gauge field theorie
This functional contains a nonlocal term which appro
mately corresponds to the energy gain when projecting
gauge invariant states. This allows one to use Gaussian s
as trial functionals and thus perform analytic calculations
physical observables such as the chromoelectric and chro
magnetic susceptibilities, energy expectation values and
gluon condensate.

The main purpose of this work was to check the ultrav
let behavior of our approximation scheme. By performi
variational calculations near the perturbative vacuum
11600
is

d

-

x-

h
t,

f.

c-
.

n
tes
r
o-

he

-

e

have shown that divergences can be eliminated by a re
malization of the coupling constant. This has allowed us
recover the familiar one loop beta function in a way whi
makes transparent the various screening and antiscree
contributions. In particular the screening term arises na
rally in our formalism, which was not the case in earli
variational approaches@15#. We have also tested our varia
tional method in the magnetic sector, checking that it rep
duces the one-loop result by Savvidy@20# for the background
field energy. This calculation provides us with another de
vation of the one-loop beta function.

Thus, our formalism appears to correctly reproduce
expected behavior of non-Abelian theories in the ultravio
sector. This strongly encourages us to study its prediction
the nonperturbative regime. Indeed, as a variational
proach, it is not at all restricted to the vicinity of the pertu
bative ground state or to small values of the coupling c
stant. We would like to also emphasize that the Thoule
Valatin correction is the first step in an approximatio
scheme which can be constructed systematically. Indeed,
the first order term@23# in boson expansion methods whic
have been constructed by Schwinger@31#, Dyson@32#, Hol-
stein and Primakoff@33#, and Blaizot and Marshalek@34#.

In QCD, boson expansions could be formulated in
gauge invariant way by exploiting the methods developed
Ref. @10#. There, it has been shown how to construct a ga
invariant wave functional by solving Ward identities with
the so-called ‘‘gauge technique.’’ The resulting functional
nonlinear to all orders in the gauge potentials and could
used as the starting point of a boson expansion formali
Specifically one could imagine constructing new boson
erators in such a way that the wave functional become
Gaussian in the new representation.A priori these new op-
erators would themselves be expressed as an infinite seri
the original field operators. One could expect that the fi
few terms in such an expansion would generate, in the
ergy functional, the Thouless-Valatin correction discussed
the present paper. Exploring this approach would then
only provide a derivation of our present formula, but also
systematic construction of the higher order terms.

Let us finally mention some physical situations where
variational approach could be useful. The instabilities occ
ring in calculations using a constant magnetic backgrou
field @27,28# ~cf. Sec. V! could be dealt with by properly
expanding the variational space so as to include the subs
spanned by the unstable modes. More generally, this va
tional approach could give us some insight into the nonp
tubative infrared physics related to confinement or the g
eration of mass scales in QCD@18#. Sum rules and the gluon
condensate at finite temperature appear to be another p
ising field of investigation.
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APPENDIX A: PHYSICAL INTERPRETATION OF SEC.
IV B IN TERMS OF THE INDUCED CHARGE

Let us show another interpretation~and computation! of
the relation betweenra and the external charge. What fo
lows is directly inspired from Gottfried and Weisskopf
Sec. IV. C of @26#. Let us assume that the system is in t
presence of a given distribution of external chargesrext

a (x)
5“•Eext

a (x) and compute the corresponding induced cha
created by the quantum fluctuations of the gauge field; i
given by the mean valuê2 f abcAi

b(x)(EL
i )c(x)& whereEL is

the longitudinal part of the chromoelectric field operatorE
@26#. This operator is a non-dynamical variable which
fixed by Gauss’ law:

“•EL
a~x!5rext~x!2 f abcAi

b~x!~EL
i !c~x! ~A1!

which can be solved perturbatively, settingEL
a(x)

5EL
a(0)(x)1EL

a(1)(x)1EL
a(2)(x)1•••. In fact, only the first

two terms will be needed for a development of the to
charge in first order ofg2. They verify the following set of
equations:

“•EL
(0)a~x!5rext

a ~x!,

“•EL
(1)a~x!52 f abcAi

b~x!~EL
i !(0)c~x!. ~A2!

The first equation shows thatEL
(0)(x)5Eext(x). Then the sec-

ond equation is solved by

~EL
i !(1)c~x!52E d3y

4p

xi2yi

ux2yu3
f cdeAj

d~y!~Eext
j !e~y!.

~A3!

The total charge reads therefore

r tot
a ~x!5^G a~x!&

5rext
a ~x!1^2 f abcAi

b~x!~Eext
i !c~x!&

1^2 f abcAi
b~x!~EL

i !(1)c~x!&

[rext
a ~x!1r ind

a ~x!. ~A4!

The first term inr ind
a vanishes since linear inAi , while

the second term yields

r ind
a ~x![^2 f abcAi

b~x!~EL
i !(1)c~x!&c

5 f abcf cdeE d3y

4p

xi2yi

ux2yu3
Gi j

bd~x2y!~Eext! j
e~y!

~A5!

or, after a Fourier transform,

r ind
a ~q!5 f abcf cde~Eext! j

e~q!E d3x

4p
e2 iq•x

xi

uxu3
Gi j

bd~x!.

~A6!

By also using
11600
e
is

l

E d3x

4p
eik.x

xi

uxu3
5 i

ki

k2
, ~A7!

we finally deduce

r ind
a ~q!5 f abcf cdei ~Eext! j

e~q!E d3k

~2p!3

~k2q! i

uk1qu2
Gi j

bd~k!.

~A8!

SinceG is transverse, this expression reduces to

r ind
a ~q!52 f abcf cdei ~Eext! j

e~q!E d3k

~2p!3

qi

uk1qu2
vGi j

bd~k!.

~A9!

Furthermore, for a smooth charge distribution we can
proximatek1q by k in the above integral. Noting that th
result vanishes unlessi 5 j we have

r ind
a ~q!5grext

a ~q!, ~A10!

with

g5g2CN

1

6p2E0

` dk

«~k!
5d. ~A11!

The total charge is then given by

r tot
a ~q!5rext

a ~q!1r ind
a ~q!

5rext
a ~q!~11d!, ~A12!

which is precisely the expression obtained in Sec. IV B@cf.
Eq. ~4.25!#.

APPENDIX B: PROPER-TIME CALCULATION
OF THE ENERGY DENSITY

Let us present here in some detail the calculation of
quantity TrG21 which enters the energy of the magne
field in Sec. V C. According to the Schwinger proper-tim
representation ~5.17!, one needs the matrix elemen
^xue2tKux&. Since, moreover, we are mainly interested in t
ultraviolet behavior of the energy, this expression is nee
only at small values oft, which allows us to perform expan
sions in powers oft whenever necessary.

As explained in Sec. V C, we shall use the backgrou
field in Eq. ~5.14! for which

@Di ,Dj #
ab52 f ab3e3i j B5T3SzB, ~B1!

and therefore@P i ,P j #
ab52@Di ,Dj #

ab52(T3)ab(Sz) i j B. It
is convenient to define the operator@cf. Eq. ~5.9!#

K̃ i j [Ki j 1P iP j5P2d i j 12@P i ,P j #, ~B2!

in terms of whichKi j can be rewritten as follows:

K5K̃Q̂. ~B3!

By also using@K̃,Q̂#50, andQ̂1 P̂51, we deduce
8-13
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e2tK5e2tK̃Q̂1 P̂. ~B4!

We thus have to compute the matrix element^xue2tK̃Q̂ux&,
with

K̃5P222T3SzB

^xue2tK̃ux&5^xue2tP2
e2tT3SzBux&, ~B5!

where the second line follows since@P2,T3Sz#50.
The computation of̂xue2tP2

ux& is well known in the lit-
erature@35#, with the result

^xue2tP2
ux&5S 1

4pt D
3/2 tT3B

sinh~ tT3B!
. ~B6!

We thus obtain:

^xue2tK̃ux&5S 1

4pt D
3/2 tT3B

sinh~ tT3B!
e2tT3SzB. ~B7!

By also usingQ̂512 P̂ andP iP
25K̃P i , one then rewrites

^xue2tK̃Q̂ux& as

^xue2tK̃ux&2K xUe2tK̃P iP j

1

K̃
UxL . ~B8!

The last term of this equation can be obtained fro

^xue2tK̃P iP j ux& by integration overt.
To calculate ^xue2tK̃P iP j ux&, we follow Schwinger’s

method@36#: We work in Heisenberg’s representation wi
t5 is and deduce
11600
^xue2tP2
P iP j ux&5^xue2 isP2

P iP j ux&

5^x~s!uP i~0!P j~0!ux~0!& ~B9!

where

xi~s!5eisP2
xi~0!e2 isP2

,

P~s!5eisP2
P~0!e2 isP2

. ~B10!

The operatorU(s)5e2 isP2
can be interpreted as the evolu

tion operator of a particle governed by the HamiltonianP2.
We have

dxi

ds
5 i @P2,xi #~s!

52P~s! ~B11!

and

dP

ds
5 i @P2,P#~s!. ~B12!

Using @P2,P#(s)52@Pk ,P i #P
k522iF ikPk, where

F i j
ab[ i @Di ,Dj #

ab5 iT3SzB, ~B13!

one obtainsP(s)5(e2sF) ikPk(0), andthus

xi~s!2xi~0!5S e2sF21

F D
i j

P j~0!

[Ri j
21P j~0!. ~B14!

The matrix element̂xue2tP2
P iP j ux& can be now computed

as @cf. Eq. ~B9!#
^x~s!uP i~0!P j~0!ux~0!&5^x~s!uRimRjn@xm~s!2xm~0!#@xn~s!2xn~0!#ux~0!&

5RimRjn^x~s!uxm~s!xn~s!2xm~s!xn~0!2xn~s!xm~0!1xm~0!xn~0!1@xn~s!,xm~0!#ux~0!&

5RimRjnRnk
21@Pk~0!,xm~0!#^x~s!ux~0!&

52 iRi j ^x~s!ux~0!&. ~B15!

Returning to the variables52 i t , we obtain

^xue2tP2
P iP j ux&5S 2 iF

e22i tF21
D

i j

^xue2tP2
ux&, ~B16!

and thus, finally,

^xue2tK̃P iP j ux&5
T3SzB

2 sinh~ tT3SzB!
S 1

4pt D
3/2 tT3B

sinh~ tT3B!
etT3SzB

5
1

2t S 1

4pt D
3/2H 11T3BSzt1S ~T3!2B2Sz

2

3
2

~T3!2B2

6 D t21•••J ~B17!
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where in writing the second line we have developed up to
second order int.

The last equation can be now integrated overt to obtain
the second term in Eq.~B8!:

^xue2tK̃P̂ux&5S 1

4pt D
3/2H 1

3
1T3BSzt

1S ~T3!2B2

6
2

~T3!2B2Sz
2

3 D t21•••J .

~B18!

Developing^xue2tK̃ux& up to the second order int,

^xue2tK̃ux&5S 1

4pt D
3/2H 112T3BSzt

1S 2~T3!2B2Sz
22

~T3!2B2

6 D t21•••J ,

~B19!

we deduce the following expression forU(t)
[^xue2tK̃Q̂ux&:
v

o

s

11600
e
U~ t !5S 1

4pt D
3/2H 2

3
1T3BSzt

1S 7

3
~T3!2B2Sz

22
1

3
~T3!2B2D t21•••J .

~B20!

Thus, finally,

Tr^xuG21ux&5
1

Ap
E

1/L2

` dt

t3/2
@Tr^xuQ̂ux&2Tr U~ t !#

5~••• !L42
CN

8p2 S 11

3
B2D ln

L2

B
1O~g2!,

~B21!

where ^xuQ̂ux& has been obtained by settingt50 in Eq.
~B20!. This is the result announced in Eq.~5.18!.
in
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