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For anSU(N) Yang-Mills theory, we present variational calculations using Gaussian wave functionals
combined with an approximate projection on gauge invariant states. The projection amounts to correcting the
energy of the Gaussian states by subtracting the spurious energy associated with gauge rotations. Based on this
improved energy functional, we perform variational calculations of the interaction energy in the presence of
external electric and magnetic fields. We verify that the ultraviolet behavior of our approximation scheme is
consistent, as it should be, with that expected from perturbation theory. In particular, we recover in this
variational framework the standard one-loop beta function, with a transparent interpretation of the screening
and anti-screening contributions.

PACS numbes): 11.15.Tk, 12.38.Lg, 14.70.Dj

[. INTRODUCTION energy. In Yang-Mills theory, the corrective energy term is
itself determined by the variational principle, and the ensuing
The functional Schidinger picture has proven to be a variational calculation is priori non-perturbative.
privileged tool in exploring a rich variety of aspects of gauge OUur main purpose here is to provide the framework for
theories which are beyond the scope of perturbation theor?“ch a calculation and verify that, in the perturbative regime
[1]. It is a useful starting point for developing nonperturba- l.e., when supplemented with an expansion in poweis)of

tive calculations based on the variational approach. In th%:th leads to results consistent with ordinary perturbation

case of scalar field theories, static as well as dynamical varigs . - As a first check, we shall show that our variational
. . ’ Y ) Zalculation reproduces the standard one-loop beta function of
tional calculations have been performed by using trial wav

. ) eYang-MiIIs theory, with a transparent interpretation of the
functionals of the Gaussian tyjp2—8]. In the case of gauge arioys contributions in terms of screening and anti-

theories, some early investigations along these lines can kg eening phenomena. As a further test, we shall compute the
found in [9-12. However, the application of variational yacyum energy in the presence of an external magnetic field
methods to gauge theories is generally plagued by the diffig and find that it exhibits a minimum at a nonvanishing
culty to implement in a calculable way the requirement ofyajye ofB, in agreement with the perturbative calculation in
gauge invariance of physical stafd2-14. [20].

Gaussian wave functionals allow for analytic calculations,  The paper is organized as follows. In Sec. Il we briefly
but are not gauge invariant except in the Abelian case. Ifeview the functional Scficinger picture and the variational
principle, one can construct gauge invariant states by avegyinciple in field theory. In Sec. Ill, we present the Thouless-
aging Gaussian wave functionals over all gauge rotationsya|atin formalism and consider, as a simple illustration, its
This results in an effective non-linear sigma model where th%pplication to quantum electrodynamit®ED). In Sec. IV
fields are the group elements of the gauge transformationge present a variational calculation of the one-loop beta
[14]. However, to make progress with this theory, furtherfynction which is based on the construction of the interaction
approximations are necessary both in the choice of the kern@hergy between external electrostatic charges. In Sec. V we
of the Gaussian and in the evaluation of the functional integgnsider the energy of the QCD vacuum in the presence of a
grals over the gauge groJd4-18. Such approximations, constant magnetic field. This provides an alternative compu-
which go beyond the variational principle, are not alwaystation of the beta function, and also of the gluon condensate
under control. In particular, in the perturbative regime, theyhich is found to satisfy the trace anomaly relation. A sum-
fail to completely reproduce the one-loop beta funciidd]  mary of our results and a discussion of further possible ex-

(see alsd16,18). . ~tensions and applications are presented in Sec. VI.
In this paper we shall propose a different strategy which is

inspired by techniques developed in 1962 by Thouless and. VARIATIONAL CALCULATIONS FOR GAUGE FIELDS

Valatin [19] to deal with the restoration of rotational invari- ) _ - .
ance when deformed solutions are obtained in nuclear We consider the functional Schifinger description of

Hartree-Fock calculations. Rather than using gauge invariart U(N) Yang-Mills theory. In the temporal gauge =0, the
variational states, we shall limit ourselves to Gaussian wavéanonical coordinates are the vector potenigjéx) and the
functionals, but we shall correct the associated energy funcslectric fieldsE,(x), which we shall often write as color
tional by a non-local term, which approximately correspondsmatrices in the adjoint representation: e 4'=A,T® (the

to the energy gain when projecting on gauge invariant stategolor indicesa,b, . .. run from 1 toN?—1). The generators

In the Abelian case, this amounts to removing the contribuT? of the color group are taken to be Hermitian and traceless;
tion of the longitudinal part of the Gaussian kernel to thethey satisfy
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[T, TP]=if3PCTC, Tr(TATP)=N&P, (T?),.=—if2PC functionals, the only ones which allow an analytical compu-
tation of (H). These have the form
The Hamiltonian density readg (denotes the coupling con-

stan} 1 _ .
V[A]=N"texp — —ZJ dBx dPy[AL(X) — AL(X)]
1 . 1. 49
HO0= 3| CEE0+ BB (2D
| . X(GTHFPOGYIALY — AW, 2.8
with the color magnetic field
1 Al =1 ryi
B,=V XA+ = fapApX Ac. (2.2 Wher.e the backgrogrlldaglelela(x) and the kgrngG [with
2 matrix elements & *);;°(x,y)] are the variational param-

Note that our conventions are such that the QCD couplin ters. We expect that=0 in f[he vacuum state, and this IS
constant is absorbed in the normalization of the vector potl® case that we shall consider mostly in this paper. Still,
tentials. With these conventions, the covariant derivativelon-vanishing values ok will be also considered, in Sec. V
readsD;=4,—iA;, and the electric field&!, are canonically ~Pelow, in a study of the vacuum stability in the presence of a
conjugate to the vector potentiaIAia: [Eia(x),A{,(y)] background color magnetic fieldh the same spirit as, e.g.,
=i 816,,6®(x—Yy). in Ref.[20]). _ o o

In the Schidinger representation, the states are repre- The_ expectatlo_n value of the Hamiltonian density in the
sented by functionals o&l(x), W[A], and the electric field Caussian stat¥q is [12]
is acting on such states by functional differentiation:

1 _—— 1
(Wol H()[Wo)=-—B-BO) + gTH(X|G ™ |x)
29

EL(0)W[A]=i—
a X 2

P
)\If[A]. (2.3
+ %Tr(x| KG|x)+ g§(Tr{ST""<XIG|X>})2

The HamiltonianH commutes with the generatgrof time-
independent gauge transformations, 2

g9 iTa iTa
G0=V - E(x)+i[A.E], (2.4 +ZTr{ST (X|G]x)STHx|G|x)}. (2.9

so it is possible to diagonalizd andG simultaneously.

X ' In this equationB is the magnetic field associated with the
The physical states are constrained by Gauss’ law: d g

centerA andS' is the spin 1 matrix whose elemenisk) are

G(x)P[A]=0, (2.5 given byiejj . The notation Tr in Eq(2.9) implies a sum-

mation over the discreté&olor and spatialindices. For in-

which is the requirement of gauge invarian¢dlore pre-  stance, T(x|G Y|x)==,; ,(G 1)a%(x,x). Finally, the opera-
cisely, Eq.(2.5 shows that physical states must be invarianttor K is the second derivative of the classical energy with

under “small” (i.e., topologically trivial[1]) gauge transfor- respect to the cente!??. It reads, in matrix notation,
mations. We shall not be concerned with the topological as-

pects of the gauge symmetry in what folloyvslore gener-

— (3 2__ B
ally, in the presence of matter fields represented by an K=(-iS$D)°-SB, (2.10
external color source with densip?, Gauss’ law gets modi-
fied as follows: where
Ga(X)W[A]=pa(x)W[A]. (2.6) =g —iA (2.11

The ground state of QCD is the eigenstdte,. of H of
minimal energy which satisfies Gauss’ constrahg). It can
be constructed, at least in principle, by using the Ritz varia
tional principle, which states that

denotes the covariant derivative defined by the background
field A'=ALT2. In particular,

Kij(p)=p?8;—pip; for A=0. (2.12
_(HIY) .
(H)= (W|w) ~ vac ' In the case of non-Abelian gauge theories, however, Gauss-
ian functionals such as EqR.8) suffer from a major draw-

with the minimum achieved foW =¥ ... Here,W[A] is  back: they do not satisfy the requirement of gauge invariance
any wave functional from the physical Hilbert spdée., (2.5). It is in principle possible to construct gauge invariant
which satisfies Eq(2.5)], and E, .. is the energy of the states byprojection i.e. by averaging a Gaussian functional
ground stateV .., assumed to be non-degenerate. In pracover all its gauge transformations. This is achieved by means
tice, however, one has to restrict oneselfGaussianwave  of the formula
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1 describing nuclear deformations. If this is the case, then the
Y[A]= /Tff DIU(X) ]V ylA], (213  spectrum develops a ground state rotational band,
. . L . +
where the functional integration is performed over the uni- E;=Eo+ s 1), (3.
tary NX N matrix fieldU(x), with the adequate group invari- 2l

ﬁ]mEmeésig?’isr:ﬁgs Zun%rrgglr'é?gfmn fgﬁﬁg ghailsr;tii\?\rirt]gtevvhere‘](‘H1) is the eigenvalue of the angular momentum
W [g] ' gaug operatorJ? and | is the moment of inertia. One may then
0 .

conclude that the operator

Yy[A]=P[UAU*+iUVU™]. (2.19 ~ 72
H=H- o7 (3.2
The expectation valuEp of the energy in the projected state

is given by the following formula: is the Hamiltonian of thantrinsic (that is, non-rotational

motion: to the ground state rotational band-btorresponds

f DIUX) KW olH|Py) now a single eigenvalug, of H. Then, Eq(3.2) provides an
Ep= , (2.15 approximate separation of the dynamics into intrinsic and
f DLUX) (W o| W) rotational motion, which is reminiscent of the familiar sepa-
ration of the center-of-mass motion by the formula
which should replace Ed2.9) in practical calculations. Un- ~ P2
fortunately, Eq.(2.15 cannot be evaluated in closed form H=H- M’ 33

because the functional integral over the group is not Gauss-
ian. Various approximations to E(R.15 have been consid- where
ered in Refs[14-18. In what follows, we shall propose a

different approximation method which is inspired from tech- P=pi+p2t ... +pa (3.9
nigues used in nuclear physics to calculate the zero point .
rotational energy of deformed nucli9,21-23. is the total momentum operator, ail=Am is the nuclear

mass. Thus, a mean field description of the intrinsic motion
can be given by performing variationgér Hartree-Fock

calculations for the substracted Hamiltonikh The only
The fact that our variational ground state, namely thequestion is, what is the value of the moment-of-inertia pa-

GaussianV in Eq. (2.8), is not gauge invariant introduces a rameterl ?

spurious degeneracy in the probleWy is degenerate with One can answer this question by studying rotations of the

all its gauge transforms defined in EQ.14). This leads to deformed mass distribution. Assume that the nucleus has

the existence of spurious excitations of zero energy whictaxial symmetry with respect to the axis, and consider a

correspond to rotations oF, in the gauge space; these are, uniform rotation with angular velocity about thex axis. If

of course, the Goldstone bosons associated with the spontdt (t) is the exact(time-dependentstate describing such a

neous breaking of the gauge symmetry\by. Accordingly,  rotation, then

the expectation valué¢2.9) of the Hamiltonian in thede- ) )

formedstate¥, includes unphysical contributions express- (1) =€ EP (0), (3.9

ing the kinetic energy of the gauge rotations. The Thouless- | . - . -y :
Vglatin formalism [glyg] provi%lesg us with a method to which satisfies the time-dependent Salinger equation

IIl. APPROXIMATE PROJECTION

estimate, and thus subtract away, such unphysical contribu- o
tions. i—2=HV,, (3.6
ot
A. Case of rotations provided ¥ _(0) is a solution to the following time-
This formalism is best explained by the example of theindependent problem:
collective rotations of a deformed nucleus. There, the (H=wd )W (0)=E, W (0). 3.7

equivalent of our present variational calculation with Gauss-
ian wave functionals is the so-calléthrtree-Fock approxi-
mationwhere the nuclear wave function is represented by
Slater determinant formed with single-particle wave func-
tions ¢, (x) (for A nucleon$ [23]. The latter are determined
by solving the Hartree-Fock equations, i.e., the variational H,=H—wJ,. (3.9
equations obtained by minimizing the expectation value of

the Hamiltonian in the subspace of Slater determinants. AlThis is equivalent to @onstrainedvariational problem with
though the HamiltonianH is rotationally invariant, the the subsidiary condition thdtl,) has a given valuep plays
Hartree-Fock equations may lead to non-invariant solutionshen the role of the Lagrange multiplier. The constrained

This is, of course, just the familiar transformation to the ro-
z?L‘ating frame of reference, which leads us to consider the
variational problem for the following Hamiltonian:
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Hartree-Fock calculation determines the optimal independernection would predict in this case. The operator playing the
nucleon wave function? , =¥ ,(0) in the rotating frame. role of the angular momentum is the charge density operator
(As w—0, ¥ ,—V¥, which is the deformed Hartree-Fock

ground statg.Once the optimal wave function is found it is G(x)=V-E(x), (3.19
possible to obtain an estimate of the moment of indriid
the nucleus by considering the limit and the generalization of the Thouless-Valatin formula
(3.10 for the energy correction reads
- (W,[3YL)
= lim — (3.9 1

o0 AETv:f dst3Y<q'o|g(X)g(Y)|‘1’o><X 2_Iy>’

This finally allows us to estimate the zero-point rotational (3.15

energyAEry in the deformed stat@ :
where the “moment of inertia’Z is now a matrix in coordi-
nate space, with matrix elements|Z]y)=Z(x,y). This is
obtained via a constrained variational calculation with
HamiltonianH ,=H —H,;, where

Equation(3.10 is the expected gain in energy when project-

ing the deformed Hartree-Fock ground stdtg onto a rota- 1

tionally invariant state. That is, the corrected average energy H= Ef d*x{E*(x) + (VX A)?%} (3.19
after projection, which is the energy of the intrinsic motion
[cf. Eq.(3.2)], reads

(Wol?|Wo)

AETV: 2|

(3.10

and the external constraint

E:EO_AETv, (31])
— 3
whereEy= (W o|H|Wo). Hext f X w(X)V-E(X). 3.19
The Thouless-Valatin method is an approximation which

is expected to be valid for large deformations or, more preln the present context, the Lagrange multipliefx) plays
cisely, when the deformation produces a large expectatiothe role of the temporal componehf(x) of the gauge vec-
value of the square of the angular momentum in the Hartregtor potential. The solution to this constrained variational
Fock ground statg21]. Indeed in this case it can be shown problem is of the forrh
that the projection onto invariant states can be accurately
performed because the overlap between two states differing ¥ [A]l=exp{ —i(F|A)}W[A], (3.18
in their orientation by an anglé is sharply peaked near
=0, thus allowing for an expansion in the vicinity of this where the vector fieldF(x) is a new variational parameter,

point [22]. which expresses the expectation value of the electric field in
the state(3.19, F'=(¥ |E'|V,), and is determined by
B. Application to QED minimizing

When going to gauge theories in the variational method,
the Hartree-Fock ground statg, is replaced by the Gauss-
ian trial wave functionalcf. Eqg.(2.8)], and the angular mo- 1 1
mentum operator is replaced by the generator of the gauge =Eq+ EJ d3X(F+Vw)2—§f *x(Vw)?.
transformationsg 2(x) [cf. Eq. (2.4)].

As a first illustration let us consider a variational calcula- (3.19
tion in QED, with the Gaussian variational ansatz

EwE<\I,w| H— Hext|q,w>

1 We have denoted heré&/(is the total volume of the space
=N-1 —{ Al —|A
Vo[A]=N""ex < ‘ 4G >] (3.12

Eo=(Vo|H|V)
where \/'= (detG)¥* and the expression in the exponent is a V(i dp (1
' ' =5 | ——17Gi (P)+(p?8;—pipj) Gij(p)
condensed notation for the convolution 2) (2m2l4 i - (P)T(P"0i; — PiP;)Gij(P) | -

| | 3.2
<A‘ %‘A> E%J d*xdly A ()G H(x,y)A(y). o

(3.13
) ) ) ) ) ) ) 1Equation(3.18 can be simply understood by recalling that, in the
This wave functional is gauge invariant provided its kernelpresence of a constraint of the forkh, = ap, the ground state

G~ !is transverses;G;; '=0. Let us assume, however, that wave function of an harmonic oscillator is modified by a factor
this is not the case, and see what the Thouless-Valatin coexp(pyx), but its width remains unchanged.
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Note that the magnetic piece of the ene(§y20 (the second

term between parenthegasvolves only the transverse com-
while the electric piece involves also its

ponents ofG;;,
longitudinal component.

The functionalE [ F] in Eq. (3.19 attains its minimum
for F= -V w, in which case

(V,|V-E|[W,)=V F=—Aw. (3.20)

According to Eq.(3.9), the moment of inertia is obtained as

(with (V-E),=(¥ |V -E|¥ )):

S(V-E(X)),,
iy =5

=(x|—-Aly),

whose inverse is simply the Coulomb propagator

(x

(3.22

(3.23

1 B 1
1Y~ aalx=y|"

We thus obtain the following expression for the Thouless-

Valatin correction(3.15 in QED:

1 1
AETV:EJ dBxdPy(Wo| V- E(X)V-E(y)|¥o) Zalx—y[’

(3.29

which is recognized as the electrostatic energy in the state

V. For the Gaussian staf8.12), this gives

V([ dp pp, o
AETvzgf (2 )3 ( )

(3.29

be
which simply subtracts the longitudinal piece of the electric

energy in Eq(3.20.
The corrected energEEEO—
Egs.(3.20 and(3.25]

- d®p
E—vf P

and involves only the transverse piecGTzé((S”—
—pip;)Gi; of the kernelG;; (we have written herg=|p|

AE+y reads thereforgcf.

1 2
[ZGT (p)+p“Gr(p) |, (3.26

and p;=p; /p). Then, the variational equatiofE/5G;=0
gives G+ in the expected form
1
Gr(p)=5, p’ (3.27

Together, Egs(3.26 and(3.27) yield an energy density

~ d*p
E=v | 2l

(3.28

PHYSICAL REVIEW D 61 116008

tribution of the unphysical, gauge, degrees of freedom from
the average energy. Actually, since QED without fermions is
a free theory, the variational solution above coincides with
the exact solutiori1]: the exact ground state is a Gaussian
wave functional such as E¢3.12 with a transverse kernel
determined by Eq(3.27):

q,vac[A]:eXp{ _J (s

B(x)-B(y)
- — | #Bxdy————~
exp{ fd xd y4772|x y|2]'

Moreover, wave functionals of the type shown in Eq.
(3.18—i.e., Gaussian states with a transverse kernel and a
non-trivial phase factor—correspond to physiadiarged
states, i.e., states of the quantum Maxwell theory in the pres-
ence of static, classical, external sources. Indeed, any such a
state(which we denote here ak,) satisfies

PP IR
W)3§A(p)(5ij_pipj)A(_p)]

(3.29

V-EX)W[A]=p(x)W[A], (3.30

with the charge density(x)=V-F(x). The corresponding
energy includes the Coulomb energy, as expected:

1
(W H|W ) =Ey+ Ef d®x F2(x)

=Eo+ = Jd3 d® % (3.31)

Non-Abelian charged states will be considered in Sec. IVB

low.

For other applications and a more complete study of the
Thouless-Valatin method in the context of quantum field
theory, sed?24].

C. Approximate projection in QCD

Let us now consider the case of non-Abelian gauge theo-
ries. The corresponding “moment of inertia” is now a color
matrix defined as the polarization tengof. Eq. (2.4)]

KGA(X)),
Tohy) = 2K (3.32
s0°(y) |, _,
in the presence of an external constraint
H,=H—=Hegyx
Hex= f Bx 0} (X)G3(X).
(3.33

which is indeed the correct result for the QED ground statéThe analogue of Eq(3.10, i.e. the gain in energy when
[1]. Thus, in the case of QED, the approximate projectionprojecting a wave functional’ o[ A] onto the subspace of
method of Thouless and Valatin correctly subtracts the congauge invariant states, reads
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o s ) 1 i.e.pi—p;—{p;). The functional providing the adequate state
AETV:J ExdPy(Wo| GAX)GP(Y)[Po)| a,x PTALOAE at the minimum is
(3:39 = (P=(P)?)
_ _ - . E=(H)—v.-P— , (3.42
The energy functional to be used in variational calculations 2M

is therefore
~ in agreement with Eq(3.37). This procedure to implement
E=Eo—AEqy. (3.39  Gauss’s law will be important in Sec. IV when applied to the

) ) o _calculation of the interaction energy of color charges.
It is also possible to perform a projection on a subspace with Still, in the case of charged states, the chromostatic en-

a given color charge distributiofG?(x)).# 0 (the subscript ergy Ecnromo iS given, in our approximation scheme, by the

c refers to expectation values over charged sfatessuch @ jassical chromostatic energy corrected by the Thouless-
case, however, the gauge generator appearing in the previoys,atin terms

correction formula has to be replaced by its deviaticaway

from the desired value: s a b 1
R Echromo:f d*xd y<ga(x)>c<g (y)>c a,Xx Z- b,y
G0 = G3(X) —(G3(X))c. (3.39
+ .
This modification guarantees that there is no correction for a ABr (343
state which is an exact eigenstate of the charge operator. Tlg% that
functional to be minimized in the subspace of Gaussian func-
tionals is thus 1
~ ~ Echrom0: J d3X dBY<ga(X)gb(Y)>c< a'X Z_I b7y> "
E=E;—Eex— AEty, (3.37 (3.44)

whereE.=(H)¢, Eqx=(Heyc is the energy of the external

constraint generating the charged statad (This is the analogue of using,;=(J%)/2l as an approxi-
mation for the rotational energy of a deformed nuclglis.

1 the case of QED this identification is obvious in equations
27 b.y). such as Eqs(3.24 or (3.31).

(3.39 To conclude, the central result of this section is the non-

local energy functional(3.39 [or Eq. (3.37 in the case of

This procedure is again reminiscent of the elimination of thecharged statdswvhich approximately corrects for the lack of
center-of-mass motion in the mean field description of agauge symmetry when working with Gaussian states. This
composite system oA particles[19]. For a system charac- energy functional is the starting point of the variational
terized by a set of single-particle wave functions method we propose for gauge theories. Note that the correc-

AETVIJ d3xd3y(@a(x)@b(y)>c< a,X

©1,¢2, ... ,@a the optimal state in theenter-of-masframe  tive energy termAEqy, in Eq. (3.34 is a priori of a non-
is obtained by minimizing the functional perturbative nature. Our aim in what follows is to check the
5 ultraviolet behavior of this approximation scheme. We shall
E=(H)— @ (3.39 thus consider the variational calculations in the perturbative
2M ' regimeg<<1l.

The Thouless-Valatin prescription for the total madsin
Eqg. (3.39 is to use the relatioiP)=Mv, where(P) is the
expectation value of the total momentu®4) in the pres-
ence of the external constraiblt,,,=Vv- P. This prescription In this section, we shall use E@3.43 to estimate the
gives the desired resudl =mA wherem is the mass of the electrostatic energf.n.omo Of @ Non-Abelian charged state,
individual constituents. In anovingframe with velocityv  up to orderg? in perturbation theory. This will allow us to

IV. ONE-LOOP BETA FUNCTION FROM VARIATIONAL
CALCULATIONS

the single particle wave functions become recover the standard expression for the QCD beta function in
. the one-loop approximation.
@i(X)—eX¥gi(x), (3.40
with x(x)=mv-x. Individual momentum operators in the A. Moment of inertia for color rotations
moving frame are obtained by the gauge transformation The first step is the calculation of the moment of inertia
) for color rotations;Z,(X,y), which enters Eq(3.43. Unlike
VoV4i(Vy), (3.4 ao(X.Y) 4343

QED, where this quantity has been computed exdcflyEq.
(3.23)], in QCD we shall give only a perturbative estimate of
I, valid to the order of interegi.e., up to ordeg?). To this

%That is, an exact charged state. is defined as an eigenstate of aim, it is sufficient to perform variational calculations in the
H—H gy vicinity of the perturbative vacuum.
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To zeroth order, the vacuum of Yang-Mills theory is the After inserting these expressions into Ed.4), and taking

same as for Maxwell theory, namellgf. Eq. (3.29]: variations with respect t& and2, we derive the following
. expressions for the variational parametéirs momentum
- space:
VA= N texp — (Al |a)l,  @p SPACe
492 -
| iq
where Fa(@)=— gwa(Q). 4.7
~1)ab KK gt d, for th g B
(GH3(K)= S| 68— @ ch (4.2)  and, for the transverSeomponents ok,
-1 . (2m)°
andG, “=2k. In the calculation of below, we shall never (k'b|2|ke)= v 8(k'—k—q)
need to go beyond this leading order approximationGQt
Note that, even with such a transverse kernel, the func- 1 Gi— G,
tional (4.1 is still not invariant undemon-Abeliangauge X— o) fapc u) , (4.8
tranformations; that is, this is a deformed state, according to 2 Gy + Gy
the terminology in Sec. IIl. In order to compute its moment
of inertia under color rotations, one has to study the responsehereV is the total volume ané, is defined in Eq(4.2).
of this state to an external constraint of the fof@i33. The By using Eqs(4.6), (4.7) and(4.8), we can finally express

G*l
——iX

v, [A] =J\/_1e‘i<F|A>exp{ - < Al —
49

trial wave functional in the presence of this constraint readshe average color chardg¢),, in terms ofw?. This is conve-
niently decomposed into an “Abelian” and a ‘“non-
Abelian” piece, as corresponding to the two pieces on the
Al right hand sidgRHS) of Eq. (4.6): (G?),=pa+pia, With
4.3
1
which involves two additional variational parameters: the pa(@)=ig-F(a)= —d’w(q), (4.9
vector fieldF,(x) (which fixes the expectation value of the 9
electric field:(E,)=F,) and the matrixxJ,(x,y), which is .
taken to be transverse in its spatial indices. The emergence 8Pd’ respectively,
2, is a hallmark of non-Abelian behaviprecall that>, =0 in
the corresponding Abelian problem; cf. H§.18)]. a d’k kikj kik;
We shall shortly see that, as—0, F andX. are linear in PNAA) =0 fabcf (2m)3 e 8ij~ 2
w, while the first correction t& ! is only quadratic, and
therefore does not matter for the calculationZfcf. Eq. X (Gx—Gyr)(k'c|X|kby), (4.10
(3.32)]. Thus, for the present purposes, we can t@ke as
in Eg. (4.2). The variational parameters in E@t.3) are ob- wherek’=k+q. From Eqgs.(4.8—(4.10 we note that the

tained by minimizing the following functional: “non-Abelian” charge density in Eq(4.10 is a correction
of orderg? relative to the “Abelian” one in Eq(4.9). Thus,
Eu=(V,lH—Hex{V,) as anticipated after E@4.2), it is consistent to evaluate this
correction with the free kernéb, = 1/2k.
:<H>w_J dtx w¥(G?d),, (4.4 The integral in Eq.(4.10 is logarithmically ultraviolet

divergent, so it must be evaluated with an upper cutoff. It
turns out that this divergence is a part of the charge renor-
malization in QCD(see Sec. IV B beloy To reconstruct the
associated beta function, we need, as usual, only the coeffi-
g2 cient of the divergent logarithm. The latter is insensitive to
(H)wsz A®x{Fy-Fa(X) +49°Tr(x|S G3|x)}, the details of the UV regularization, so we shall consider, for
4.5 simplicity, a sharp momentum cutoff.

' Also, in order to isolate the leading logarithm, we can
where we have kept only the terms involving the variationalP€rform kinematical approximations relying on the inequal-
parameters. Similarly, ity k>q [since the external momentuis fixed, while the

leading contribution to the integral in EG.10 comes from
(G3(x)),=V-F3(x)—ig?Tr(X|TY[2,G]|x). (4.6) relatively large momenia Physically, we are indeed inter-
ested in smooth charge distributions. This allows us to re-

with respect to variations iff; and3 Y, . A straightforward
calculation yields

3Such quadratic corrections occur since, in contrast to QED, the
non-Abelian constrain{3.33 generates a coupling betweénand 4By which we mean transversality with respect to bltandk’,
F in the variational equations. as requested by expressia@ds5) and (4.6).
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placek+q by k and thus §;—k/ k]‘,/k/z)(aij —kik; 1k?) by B. Interaction energy in thg presence of a background
2. By also using Eq(4.8) for X, we then obtain electric field
Interesting properties of the vacuum include its response

a Cn to an external chromo-electric field, which can be generated
PNA(Q)=7wa(0|)X(Q), (4.1)  py an external constraint of the form
whereCy=Tr(T3T3) =N for SU(N), and Hex=07 f dPXEZ(X) - EA(X). (4.17)

, (412 For this constraint, we shall compute the induced electric
(2m)* e(k)e(k)[e(k)+&(k")] mean field and charge density, and the associated electro-

static energy. By comparing the latter with the bare Coulomb

with e(k)=|k|. Here again we can replade€ =k every- interaction, we shall then identify the chromo-electric sus-

where except in the numerator which must be expanded toeptibility, or charge renormalization. As we shall see, the

dk k')—e(k)]?
X(q)—f [e(kK")—e(k)]

second order imy: variational formalism provides a transparent picture of the
underlying phenomena of screening and anti-screening.
[e(k+q) — (k) ]?=q2co6 (4.13 The optimal statel. in the presence of the constraint

(4.17 is of the form

whered is the angle between the space vectoendq. The

angular average yieldsog6)=[Jd#sin §cos6=2/3, so, fi- _ G-t
nally, ‘I’C[A]ZNle'<FA>exp[ —<A — A> , (4.18
X(q)= q2 dk 4.1
(@)= 1272) k'’ (4.19 where the parametdt? (the electric mean fie)dwill be re-

lated to the external fiel,, by the variational equations
which is logarithmically divergent in the ultraviolet, as ex- [see Eq.(4.23‘) bellow]. Note that, |n.co.ntfast to Ed4.3),
pected, but also in the infrared: the infrared divergence is af'€re IS na> term in Eq.(4.18 above; this is so because the
artifact of the previous manipulatioris a more careful cal- €Xtérnal perturbation here is differeftompare Eqs(4.17)

> . . o

culation, this would be screened kyy, and to the order of and (3.331: It contains a term linear ire?, but no non-

interest we can just regulate it with anl hocinfrared cutoff ~ APelian term like[A',E']. This situation is analogous to the

w. This yieldsp2 .= ap? , with case of an anharmonic oscillator with an external constraint
. NA™T A

Hex= ap. The only changes are a factfo* and, in higher
orders ing, a modification of the real part of the width.

9°Cy. A? According to the discussion in Sec. I[kee especially
In—. (4.19 Egs. (3.37 and (3.38], the energy functional to be mini-

mized in this case i&=E,—(Hec— AEry. The terms in-
volving F} in this functional read

The resulting value of the moment of inerfig,= 5p%/ w®
reads, finally,

N 1
5ab EC_ Eext_ AETV: ng dsx( E Fé. Fa— Eth' FaJ
Tan(Q) = ?q2(1+ @). (4.19

=G acafver | PxFYEIOF(y)
This should be compared to the corresponding Abelian
resulb 1(g)=q°. We see that the quantum fluctuations in ce
QCD produce an increase of the moment of inertia, which X(XGiiy){ a.x
corresponds to thecreeningof color charges by quantum
fluctuations. The size of the screening effect that we have
obtained agrees indeed with the results of other approach@he last term on the RHS corresponds to the Thouless-
[25]. Valatin correction, Eq(3.39. Note that, because of the sub-
straction of the average chargeGh=G2—(G?),, it is only
the non-Abelian part of the Gauss operafoe., the term
5The overall factor g2 in Eq. (4.16 is simply a consequence of i[A',E'] in Eq. (2.4)) which contributes to Eq(4.19. To
our different normalizations for the field strengths in QCD andevaluate this contribution, we first rewrite it in momentum
QED; compare, in this respect, Eq8.12 and (4.1). Space:

1
57|by). (419
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. ¢k dq rection (4.21), and a factor (* «) due to the moment of
AEr= ngacdfbeff — 3 F(a)F|(—a)Gf(k) inertia[cf. Eq. (4.16]. The interaction energy4.26) is still
(2m)° (2m) Coulomb like,
{d ) 029 3 1
T q
21(k+q) Echrome™ gg{f ngt(q)P:xt(_q)E’ (4.27)

. — 2m)3
To the order of interest, we can replace the moment of inertia (2m)

in the equation above by its leading order expressigi)
=k?/g?. Then, by performing similar manipulations as in the
calculation of theX term in Eqgs.(4.10—(4.14), we finally

but with a modified coupling constant given by

obtain ,1+36
O&(m)=9" 7 (4.28
. g4CNf d®k  d%q 1
AEqy=
™3 ) 23 (2m)3 PR (a5 Zk K2 or, to first order ing?,
g J' 3., —a 2
=— | I*xFAX)F(x 4.2 1 1 11Cy A
5 (XFX(x), (4.2 . N (4.29
Or(p) 9 487 u
where
g%Cy [ dk g2C A2 This is the correct one-loop value for the renormalized cou-
= NJ b N _) (4.22  pling constan{25]. Note that, in the present calculation, this
6m2 ) kK 1272 |\ u? involves three types of contributions: indeed, the factor of 11

) ) i . in the last equation has arisen as=18+4—1, where the 8
After inserting Eq.(4.2]) into Eqg. (4.19 and minimizing corresponds to anti-screening by the induced cheefyeEq.
with respect ta=7(x), we obtain (4.25], the 4 is another anti-screening contribution due to
the Thouless-Valatin correctio.21), and the 1) is a
(1~ 5)Fa(x) Eexra(x)' (4.23 screening contribution arising via the correction of orgér
At this point it is convenient to introduce the charge dis-© the moment of inertia.
tribution associated with the external fiefi,;,

V. VACUUM ENERGY IN A MAGNETIC

Ped )=V - Eu(X), (4.24 BACKGROUND FIELD
to be referred to as thexternal chargen what follows: this In the previous section, we have studied the electric sector
would be the charge in the system in the absence of polakf the vacuum of Yang-Mills theory, by using a combination
ization effects. The actual charge is rather of variational and perturbative techniques. In what follows,
we shall perform a similar analysis of the magnetic sector.
Pex To this aim, we consider Yang-Mills theory in the presence
PUO=(WlGA0|We)=V - Fo= 725 =pl(1+9), ' g yinmep

of a (constant magnetic background fielg'a, and compute
(429 the background field energy by using the variational prin-
where the second line follows from Et.24. Note that this ciple. The final result is not ne\it coincides with the one-

relation implies anantiscreeningof the external charge, ©OP resultby ISavvigi(ZjO]), br:“'t it rather serves as a;egt fo;
since p? is bigger thanpgxt. The differencep— pey= ped our variational method Iin the magnetic sector and In the

may be interpreted as anduced chargdsee also Sec. IV C perturbative regime. . . .

in Ref. [26] and Appendix A for an alternative computation The re!evant trial wgve variational |§ the_Gau35|an func-

of this quantity. tional ¥y in Eq. (2.8) with the “center” field A'a(x) chosen
We are finally in position to compute the chromostaticso as to reproduce the desired magnetic flﬁgld(a conve-

interactionE.nomo iN the optimal statéV' .. This is given by  nient choice will be given later This state is not gauge

Eg. (3.43 which, together with the above expressigA25  invariant, so its energi,=(WVo|H| V), Eq. (2.9), must be

for (G3(x))., and(4.22) for AETV: implies corrected with the Thouless-Valatin enerdyey,, to be
computed in the next subsection. Then, by applying the

£ ,1+36 d*q variational principle to the corrected energg=E,

chromc=9° 1tal (2n )3Pext(Q)pext( q>2q2’ — AEqy, we shall determine the kernel of the Gaussian

(4.26 Sec. VB. Finally, in Sec. V C, we shall compute the energy
of the magnetic field and the associated gluon condensate,
up to corrections of higher order op There is here a factor and verify that these quantities are related by the trace
(1+ 6)2=1+26 arising from the induced chardef. Eq.  anomaly relation, as they should. In this calculation, the stan-
(4.29], another one arising from the Thouless-Valatin cor-dard one-loop beta function will emerge once again.
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A. The Thouless-Valatin energy in the background field

1
We start by computing the moment of inerfig,(x,y) in AEqy~ §f d3X< a,x
the presence of the background fid{(x). As already ex-
plained, this requires constructing the variational groundyp to corrections of ordeg?.
stateV, for the constrained HamiltoniaH , in Eqg. (3.33.
This state is of the fornicompare to Eq(4.3)]

1 -1
HiFH]— Gij“lax), (5.7

B. Variational equation for G

. — G1? ) ; A
P = N Llei(FIA-A) _ A—K‘ s ‘A—A , The improved energy functionaE=E,—AE+, reads
o=N"Te ex 49° 12 therefore[cf. Egs.(2.9) and(5.7)]

(5.9

where the parameteis; and Ei"’}b are related taw? by the Ezf d3x[ %B?(X)B?(x)
variational principle(recall the discussion in Sec. IV)Alt 29
turns out that the matri® will not play any role in what 1 1
follows: indeed, below we shall need the moment of inertia +={axll s —11.—11. | Y ax
. . . . . I | 1
only to leading order imy, while 3 counts starting with order 8< ( . mz ') >
g? (cf. Sec. IVA. We then write, as in Eq4.4),
+ ETr[KG(x,x)]Jr O(g?) ;. (5.8
B~ (H)o- | Prof0(@*0),, (62 2
: : Note that the last two terms in E(R.9) do not contribute to
with (H)., given by Eq.(4.5), and this order. As obvious from this equation, the Thouless-
(G3(X)),=(DiFH3(x)+0O(g?), (5.3  Valatin correction makes the kinetical part of the enecgy

o variantly transverse. Since the operatdy; is transverse as
whereD'=4'—iA' is the covariant derivative defined by the well [cf. Eq. (2.10],
background fieldcf. Eq.(2.11)], and the neglected terms, of
O(g?), would involve, [cf. Eqg. (4.6)]. The variation with Kij =128 — IL;IL; + 2[ 11, , I1;], (5.9
respect toF}, yields then _ _ _
it follows that the projected energip.8) involves only the
i 1 a transversecomponents of the kern@. Thus, without loss of
Fa(x)=- a(Di“’) (x), (5.4 generality, we can restrict ourselves tgcavariantly trans-
verse kernel in what follows:
which differs from the corresponding expression in Eq7) _ _
only by the replacement of the ordinary derivati%eby the H'Gif:O:Gi]lHJ. (5.10
covariant oneD; . Together with Eq(5.3), this provides the

moment of inertia to the order of interest: To formalize this, it is convenient to introduce transverse and
longitudinal projectors as follows:
8(G3(X)) 1
T(x,y)= ;T()L — S (DY x—y)+O(1) )
@y 9 Py=I, =511, Q=1-P. (5.11)
1
=—(a,x|II%|b,y)+ O(1). 5. _
Sz (ax/Tb.y)+ o) 55 ey satisty

We haie introduced here thidnetic momentunil;=iD; . 1 ’ o
=i8,+A; andII?=I1;11;. Pij =Tl g T 5 T =Py
Within the same accuracy, one has also

1 ) ‘= =0 .
(WolGAX)GP(y)| W o)~ r{f@ﬁipéﬁ(G‘l)ﬁd(x,y) : (5.12

1 Then, a transverse kernel is one satisfyi@gs QGQ (and
= F(a,x|HiGi}1Hj|b,y). similarly for G™1). For such a kernel, the variational prin-
9 ciple [i.e., the minimization of, Eq. (5.8), with respect to
(5.6)  G] produces the following gap equation:

We are now in position to compute the Thouless-Valatin 1
energyAE+y [cf. Eq. (3.34)] by combining Eqs(5.5 and — K (5.13
(5.6), one obtains 4G?
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which determiness to the order of interest. In particular, as 11C, A2

A—0, G reduces to the free, or Abelian, expression in Egs. Tr(X|G™Hx)=(---)A*~ 182 Bz|n§+(9(gz)

(4.2) and(3.27). Thus, the only non-trivial effects which are ™ (5.18
taken here into account are those associated with the back- :
ground field.

(the coefficient in front of A% is an uninteresting field-
independent number that will be omitted in what follgws
Remarkably, there is no divergent term A7 (which, for
dimensional reasons, would be necessarily of the form
A?B): this is so because of rotational and gauge symmetries
‘which require the magnetic field to enter only in the scalar
productS- B, T2=BS,T3, whose trace is however zefsee
C. Energy of the background field Appendix A for more details
The previous equations provide the 0ptima| Gaussian ker-l Note also. the numerical .fac_:tor in front of the _Iogarithmic

nel for a given background field and thus the effective divergence in Eq(5.18: this is the factor leading to the

. — s . correct one-loop beta function after renormalizatisee be-
pote_ntlaIV(A) which is the expectation v_alue of the €Ner9Y 1ow). The projection on(covariantly transverse Gaussian
n this state. The next step in our var|at|-onal approach is Qates has been crucial in getting this factor right: without
find the minimum of the effective potential. Constructivg this, we would have obtained a factor &finstead of the
for an arbitrary background is however a difficult task. Forcorr’ect factor ofs [compare in this respect Eqd19) and
this_ reason we now_consider a restr@cted variational SpaCFBZO) in Appendfx Al.
defined by the following background field: Finally note that the field strengappears as an infrared
cutoff in Eq. (5.18. This is expected from EqgB6) and
(B7) where the proper time variable always appears in the
combinationtB. However, a complete derivation of Eq.
(5.18 requires a detailed treatment of unstable modes.

Note that Eq(5.13 can only be valid at sufficiently high
energy or small coupling constant: indeed, the operétor
admits negative modgg0,27,28. We thus assume that an
infrared cutoff has been set—this does not affect the ultra
violet behavior of the theory, which is our main interest here

A,=0, A,=xBT, A,=0. (5.14

This corresponds to a constant magnetic field inzlérec-
tion and in the third color.

With this choice of the background field, we are now able To conclude,
to compute the energ§p.8) in the optimal variational state, s a2
which is the Gaussian stat@.8) with a transversgin the E/VziBz—C 11 B_mA_ (5.19
sense of Eq(5.10] kernel G~ satisfying Eq.(5.13. The 292 Nagn2 2 B’ ’
latter equation shows that, at the minimum, the following
identity holds: showing that the background field energy has no field depen-

dent UV divergences other than the logarithmic one which

1 _ can be absorbed into the renormalization of the couplin
Tr{K<X|G|X>}:ZTr<X|G %) (5.19 constant. We then write, as usugk (is the substractiopn ’
scaleg,
That is, magnetic and electric fluctuations have equal ener-
gies in our variational ground states, which is merely the 1 1 11 A? -
virial theorem in the present context. Thus, R Mg nMZ (5.20
Emm:f d3x{ i§?(x)§?(x)+ E(a,x|G*1|a,x> _ which provides the correct one-loop beta fgnction, as antici-
2 4 pated. The renormalized field energy density reads then
(5.16
o , _ B2 B2 11 B
This involves the matrix eleme|(1K|G’1|x), which we shall H(B)=— + = chln_z’ (5.21)
compute in Appendix A by using the Schwinger proper-time 20%(n) 2 487 7

representatioficf. Eq. (5.13]:
P ! a ] which coincides with the result obtained by Savvidy in per-

1 r=dt turbation theony20]. An advantage of the present approach,
<x|G’1|x>=—f 72(x|(1—e*“‘)|x). (5.17  however, is that it can be improved by using a larger varia-
Jmlot tional space, which is expected to cure the difficulties asso-
ciated with negative modd27,29.
This integral develops ultraviolet divergenced-as0, which As discussed ifi20], the energy density5.21) exhibits a

we shall regularize by shifting the lower bounds of the inte-minimum for a non-zero valu= Bmin of the background
gral from 0 to 1A?. As in the electric case, we are mainly field, with
interested in the ultraviolet renormalization of the energy

(5.16); to this aim, it is sufficient to extract the terms which u? 1602 3
diverge whem\ —« in Eq.(5.17). This is described in detail Bmin="—"7= p( - E) . (5.22
in Appendix A, from which we quote here the final result: Je Or(p) +4-N
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The value of the energy density at this minimum is have shown that divergences can be eliminated by a renor-
1 11 malization of the coupling constant. This has allowed us to
(Mymin=——— 3 NBin (5.23  recover the familiar one loop beta function in a way which

64m makes transparent the various screening and antiscreening

S . - . contributions. In particular the screening term arises natu-
which is indeed negative. Our variational vacuum state is

therefore characterized by a magnetic field condensate rally i.n our formalism, which was not the case in earilier

however, Refs[27,28 for potential problems with such a variational approachdd5]. We have also tested our varia-

state ' ’ tional method in the magnetic sector, checking that it repro-
From the previous results, it is now straightforward to duces the one-loop result by Savvid@0] for the background

evaluate the gluon condensate in our variational vacuum: field energy. This calculation provides us with another deri-
vation of the one-loop beta function.

1 .
v —on42| ~ /r2RA\ _ /q2FaEa Thus, our formalism appears to correctly reproduce the
(FFun)=29 92<B' B~ (g BED expected behavior of non-Abelian theories in the ultraviolet
) sector. This strongly encourages us to study its predictions in
=2Bhin; (524 the nonperturbative regime. Indeed, as a variational ap-
proach, it is not at all restricted to the vicinity of the pertur-
bative ground state or to small values of the coupling con-
stant. We would like to also emphasize that the Thouless-
Valatin correction is the first step in an approximation
scheme which can be constructed systematically. Indeed, it is
the first order ternj23] in boson expansion methods which
have been constructed by Schwing@t], Dyson[32], Hol-
which is consistent, as it should, with the trace anomaly restein and Primakoff33], and Blaizot and Marshal€ld4].

where the second line follows from the aforementioned
“virial theorem” (5.15. Equationg5.23 and(5.24) can be
combined into

1Cy
12872

(M) min=— <FMVF,u,v>min (5.29

lation In QCD, boson expansions could be formulated in a
B(g) gauge invariant way by exploiting the methods developed in
(0)=——=(F*"FL.). (5.269  Ref.[10]. There, it has been shown how to construct a gauge

29 invariant wave functional by solving Ward identities within

the so-called “gauge technique.” The resulting functional is

nonlinear to all orders in the gauge potentials and could be
used as the starting point of a boson expansion formalism.
Specifically one could imagine constructing new boson op-

Indeed, with()=7(6%) and the one-loop beta function
[which here is a consequence of E§.20]

— 3
B(9)= 48772 Cng™ (5.27) erators in such a way that the wave functional becomes a
Gaussian in the new representatiénpriori these new op-
Eq. (5.26 becomes identical to E@5.25). erators would themselves be expressed as an infinite series in

An attractive feature of the formulés.25 is that it in-  the original field operators. One could expect that the first
volves two quantities which are independently accessible exfew terms in such an expansion would generate, in the en-
perimentally (at least indirectly. Indeed, the left-hand side ergy functional, the Thouless-Valatin correction discussed in
of this equation is the energy density of the vacuum, whichthe present paper. Exploring this approach would then not
can be identified with the fourth power of the bag constantonly provide a derivation of our present formula, but also a
B*=—(240 MeV)* [29], whereas the right-hand side de- systematic construction of the higher order terms.
pends on the gluon condensate which is known from Ref. Let us finally mention some physical situations where the
[30] to be 0.5 GeV. These values are compatible with Eq. variational approach could be useful. The instabilities occur-

(5.29 within a 20% accuracy. ring in calculations using a constant magnetic background
field [27,28 (cf. Sec. VJ could be dealt with by properly
VI. CONCLUSION expanding the variational space so as to include the subspace

, ) spanned by the unstable modes. More generally, this varia-
_ In this paper we have proposed an improved energy funcjona| approach could give us some insight into the nonper-
tional for variational calculations in gauge field theories. pative infrared physics related to confinement or the gen-
This functional contains a nonlocal term which approxi- gration of mass scales in QQm8]. Sum rules and the gluon

mately corresponds to the energy gain when projecting oRgndensate at finite temperature appear to be another prom-
gauge invariant states. This allows one to use Gaussian stat@sng field of investigation.

as trial functionals and thus perform analytic calculations for
physical observables such as the chromoelectric and chromo-
magnetic susceptibilities, energy expectation values and the
gluon condensate. We are most grateful to A. K. Kerman for valuable re-
The main purpose of this work was to check the ultravio-marks, regarding in particular the physical significance of the
let behavior of our approximation scheme. By performingmoment of inertia. Stimulating discussions with J. Polonyi
variational calculations near the perturbative vacuum wend L. McLerran are also gratefully acknowledged.
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APPENDIX A: PHYSICAL INTERPRETATION OF SEC.

dBx ., ox ki
IVB IN TERMS OF THE INDUCED CHARGE f — kX —j —, (A7)
. . : am o X K?
Let us show another interpretatigand computationof
the relation betweep?® and the external charge. What fol- we finally deduce
lows is directly inspired from Gottfried and Weisskopf in
Sec. IV.C of[26]. Let us assume that the system is in the q),
presence of a given distribution of external charg@s(x) Pind(@) =fapc fodd (Eexd] (q)f (2m)3 |k q/2 Gij (k).
=V-E3,(x) and compute the corresponding induced charge (A8)
created by the quantum fluctuations of the gauge field; it is
given by the mean Va|U<e—fabcAib(X)(E'L)°(X)> whereE, is  SinceG is transverse, this expression reduces to
the longitudinal part of the chromoelectric field operakor 3 ]
%((Z]d gclé;upsesr,al';ovws a non-dynamical variable which is pﬁw(q):_fabcfcdel(Eext)T(q)J' oo |k+|q|szibjd(k)_
E200 = perdX) ~ FascAPOO(EDSX) (A1) (A9
Furthermore, for a smooth charge distribution we can ap-
which can be solved perturbatively, settin@?(x)  proximatek+q by k in the above integral. Noting that the

=EXO(x) + EXV(x) + EX?(x) + - - -. In fact, only the first

result vanishes unless=j we have

two terms will be needed for a development of the total

charge in first order of?. They verify the following set of
equations:

V- EQ3(x)=pa (%),
V- EM3(0x) = = fap AL (ED) O%(x).

The first equation shows thEf”(x) = E.,(X). Then the sec-
ond equation is solved by

(A2)

(EDW(x)= - 42 oy AT EL).
(A3)
The total charge reads therefore
Piot(X) =(G#(X))
= pext) +(~ FanAP(X) (Eqyx) (X))
+( = FanAPCO(ED ()
= pex(X)+ pina(X).- (A4)

The first term inpf,4 vanishes since linear iA;, while
the second term vyields

P2 a(X)=(— FapcAP() (ED (X)),

dPy x—
:fabcfcdef A |X—

g Gb"<x Y)(Eexd (Y

(A5)

or, after a Fourier transform,

_Iq XWGIde( )

d3
Pind(d) = fapcf cael Eext)je(q) f 4_
(AB)

By also using

Pind(A) = 7Pexd(Q), (A10)
with
) 1 (= dk
i (ALY
The total charge is then given by
Piot(D = Pexd(A) + Pina(A)
=pex{@(1+9), (A12)

which is precisely the expression obtained in Sec. IMB
Eqg. (4.29].

APPENDIX B: PROPER-TIME CALCULATION
OF THE ENERGY DENSITY

Let us present here in some detail the calculation of the
quantity TrG~! which enters the energy of the magnetic
field in Sec. V C. According to the Schwinger proper-time
representation (5.17), one needs the matrix element
(x|e~*™¥|x). Since, moreover, we are mainly interested in the
ultraviolet behavior of the energy, this expression is needed
only at small values of, which allows us to perform expan-
sions in powers of whenever necessary.

As explained in Sec. VC, we shall use the background
field in Eq. (5.14) for which

[D;,D;]2°=—2"3e3IB=T3S,B, (B1)
and thereforgIl; ,IT;]3°= —[D; , D;]12°= — (T°) ap(S,);; B. It
is convenient to define the operafaef. Eq. (5.9)]

RijEKij+HiHj:H25ij+2[Hi1Hj]v (BZ)
in terms of whichK;; can be rewritten as follows:
K=KQ. (B3)

By also using K,Q]=0, andQ+P=1, we deduce
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e tKeg K+ P, (B4)

We thus have to compute the matrix elem(exite*tkélx%
with

K=II?-2T%S,B

(x|e*tk|x>=(x|e*‘H2e2thszB|x>, (B5)

where the second line follows sing#l?, T3S,]=0.

The computation o(x|e*tH2|x) is well known in the lit-
erature[35], with the result

(x|e” ) ( - )3/2 e (86)
X|e X)=|—| ——.
4mt]  sinh(tT°B)
We thus obtain:
- 1\% 7B
(x|le”|x)= (—) ——__e2TsB. gy
4mt)  sinh(tT3B)

By also usingQ=1— P andII;IT?=KII;, one then rewrites
(x|e"KQ|x) as

=~ 1
eitKHiHj:
K

<x|e‘k|x>—<x x>. (B8)

The last term of this equation can be obtained from

(x|e~KTI,1T, i|x) by integration ovet.
To caIcuIate(xle“KHH |x), we follow Schwinger's

PHYSICAL REVIEW D61 116008

<x|e‘m21'[i1'[j|x>= (x|e‘i5n21'[il'[j|x>

=(x(s)|I1;(0)I1;(0)|x(0)) (B9
where
xi(s) =€ (0)e~ =",
Ti(s)=€"’T1(0)e 11", (B10)

The operatonU(s)ze*iSHZ can be interpreted as the evolu-

tion operator of a particle governed by the Hamiltonldf
We have

dx o,
g5 =X 1(s)

=2I1(s) (B11)

and
I1 P
as =i[I14,I1](s). (B12)

Using[T12,1T](s) = 2[ 1, IT; ] ITk= — 2i F;, I1%, where

FﬁbEI[DI :DJ]ableSSZB, (813)
one obtaindI(s) = (e?%%),, IT1¥(0), andthus
2sF_
Xi(s)—xi(0)= I1(0)
ij
=R;;'11)(0). (B14)

method[36]: We work in He|senberg s representation with The matrix elemen¢x|e‘tH ILIT, |x) can be now computed

t=is and deduce

as|[cf. Eq.(B9)]

(X(s)|IL;(0)IT;(0)[x(0)) = (X(S) | RimRjn[ Xm(S) = Xi(0) ][ Xa(S) = Xn(0) ][X(0))
= Riijn<X(S)|Xm(s)Xn(s) —Xm(S)Xn(O) —Xn(S)Xm(O) + Xm(O)Xn(O) + [Xn(S),Xm(O)]|X(O)>
= RinRjnRok [11K(0), Xn(0) (X(8)[x(0))

—iR(x(s)[x(0)).

Returning to the variabls= —it, we obtain
<X|etH2HiHj|X>:<
and thus, finally,

- T3S,B
(x|e” ™ ILIT;|x) = >

1 1 3/2
- 2_t(4_7'rt)

1 3/2
2 sin(tT3S,B) (H) sin(tT3B)

1+T3BSt+

(B15)
—1F 2
m) (xle” %), (B16)
ij
3
tT’B tT3s,B
T3)ZBZSZ T3 282
( 3 2| 23 2+ (B17)
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where in writing the second line we have developed up to the

second order ir.
The last equation can be now integrated oy obtain
the second term in EqB8):

5 3/2
(x|e“KP|x>=(4—Trt) §+T3BSZt

((T3)ZBZ (T3)ZBZS§) . ]
+ - G

6 3
(B18)
Developing<x|e‘tk|x) up to the second order i
_ 312
—tKy\ — | _— 3
(x|e”™|x) (4771) |1+2T BS¢t
T3 ZBZ
+ 2(T3)282$§—% 24 ...,
(B19
we deduce the following expression forU(t)

=(xle"*Q|x):

PHYSICAL REVIEW D 61 116008

U=

1 3/2 2
. _ 3
4m) {3 +T3BS;t

7 1
+ §('|'3)ZBZS§_§(-|-3)2BZ

S

(B20)

Thus, finally,

Tr(x|G—1|x>:iF ﬂ[Tr<x|(g|x>—TrU(t)]
\/; 1/A2t3/2

Cy (11 A?
=(-)A*- Q(ng) |n§+0(g2),

(B21)

where (x|Q|x) has been obtained by settiig=0 in Eq.
(B20). This is the result announced in E&.18).
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