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Rho parameters from odd and even chirality, thermal QCD sum rules
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Like the even chirality correlation functions of, say, the two vector currents, one can also consider odd
chirality correlation functions to write thermal QCD sum rules. They contain fewer non-perturbative correc-
tions, at least to the leading order. Here we write such a sum rule for the correlation function of vector and
tensor “currents.” The odd and even chirality sum rules are taken together to evaluate the effective parameters
of the p meson to second order in temperature.

PACS numbe(s): 11.10.Wx, 11.55.Hx, 12.38.Lg

[. INTRODUCTION aspects of the thermal sum rules and compare our evaluation
with earlier ones.
The vacuum QCD sum rulg4d], when extended to finite
temperaturg 2], provide a simple means to study the prop- Il. SUM RULES
erties of the QCD medium. Below the critical temperature,
they relate the temperature dependence of hadron parametersVWe restrict here to the better known non-strange channels

to the thermal average of local operatfs-5). of unit isospin. The quark bilinears in this channel are
Generally the sum rules are written for correlation func-

tions of two currents, which have the same chirality, e.g., of SH(X),V3(X), Ty, (%), AG(X), P3(X)

two vector or two axial vector currents. But one may also B 7

consider correlation functions of two quark bilinears of op- =q(x)(1,y, ,gw,yﬂs,ys)?q(x),

posite chiralitied6]. Then their operator product expansions
will be dominated, in each dimension, by the operators of , ,

odd chirality, the contributions of even chirality ones beingq(x)_bemg_ the field of the; anddguark doual?let and* the
highly suppressed by a factor @§mal) quark mass in their Pauli matrices. Note the8*(x), P*(x) andT,,(x) are odd

a a H
coefficient functions. As a result the leading nonperturbativédV,.(X) andA,(x) are even undeys transformation on

corrections will be given by a single operator, namely, theth® quark field. o _
As an important example of odd chirality correlation

quark condensate; new odd chirality operators appear only gs "> . ;
non-leading terms. %unctlons, consider the thermal average of the time ordered

Here we write down the sum rule for the correlation func—(T) product of the vector current and the tensor “current,”

tion of the vector current and the tensor “current.” Then

both the present vector-tensor sum rule and the two vector- ’]’Z%ﬁ(q):if d4xe‘q'X(T(Vz(x)Tgﬁ(o)». 2.0
vector sum rules derived earlier get contributions from the

same set of intermediate states wifff=1"". We consider
the subtracted sum rules, obtained by subtracting out th
vacuum sum rules from the corresponding thermal ones. Th
only intermediate states with significant contributions are
then the non-resonant72 state and thep-resonance. The
three sum rules form a convenient set for evaluafiohn ) o ] ]

Although generally valid, the sum rules appear simpler invhereH is the QCD Hamiltonian is the inverse of the
the chiral limit. We evaluate these limiting sum rules at low {€mperaturé and Tr denotes the trace over any complete set
temperaturdl to the leading order, which i§2 in this limit. ~ Of states. _ _ _

The thermal sum rules are, in general, complicated by the AS usual, itis convenient for kinematics to restore Lor-
presence of Lorentz non-scalar operators, in addition to th&NtZ invariance by introducing the four-velocity, of mat-
Lorentz scalars contributing to the vacuum sum rJigs  ter. Then we can build the Lorentz scalais=u-q andq

But to orderT? non-scalar operators cannot contribute to=\w?— g7, representing the time and the space components
these sum rules. Thus to this order, the contributing operatorsf g, in the matter rest framey,=(1,0,0,0)[9]. We now

are the same as at zero temperature, their vacuum expectzoose the three independent kinematic covariants as

tion values being replaced by the thermal averages.

In Sec.ll we describe the kinematics and present the result
of operator product expansion. In Sec.lll we saturate the sum
rules with 27 and p states. In Sec. IV the sum rules are _ _ _q2
evaluated for the parameters of themeson to ordeff? in Quarp= ulAatlp~ Aptle) =G (70l
the chiral limit. Finally in Sec. V we discuss the different — NupUa),

Eere the thermal average of an operaf@ris denoted by
0),

(0)=Tre A"O/Tre A1,

P,uaB: nuaqﬁ_ ﬂMﬁsz '
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Ruap= U, (U Up—0gU,) — (7,,Up potential) At f dimension four, we hgve

trG,,G**, u*@®,u” andu“®9 u". Here the gauge field

= Mupla)- (2.2 strength G,,,=g(\%/2)G{,, \* (a=1,...,8) are the

The kinematic decomposition now reads SU(3) Gell-Mann matrices angd is the QCD coupling con-

. stant. The operatorSIL’g are the energy momentum tensors
To0 5 =16"%(PLapT1+ QuapT2t RuapTs), (2.3 for the quarks and gluonéNote that in the matter rest frame,
, . ) , the latter two are just the energy densities. Also the operator
where the invariant amplitudés, , ; are functions ofw and

g®. In all computations, however, we shall revert back to thequ'Dq where D, is the Cova”f"it derivative, is of odd
matter rest frame. chirality, but it can be reduced tmquq by using the equa-
Only the amplitudeT, survives at zero temperature. As tion of motion for the quark field.All these operators of
we shall see below, at finite temperature the leading contridimension four are of even chirality. Thus up to dimension
butions(to orderT?) are also contained ifi;. So, working to  four, only the operatogq can contribute significantly to the
the leading order, we have only to write the sum rule for thispower correction for an odd chirality correlation function. At
amplitude. dimension five, there is only one Lorentz scalar operator,

The advantage with odd chirality correlation functions be'ga“”G d. In addition there are several Lorentz non-scalar
comes evident from an enumeration of local operators. Th # o -
. . Operators contributing at finite temperatiie].
unit operator corresponds to the perturbative result. The non- There is a simple configuration space apprddd to the
perturbative power corrections begin with operators of di- ! 'mp 'guration sp app .

ion th dqf At di ion th aend operator product expansion giving the Wilson coefficients of
mension three and four. At dimension three, we hag@nd | operators, both scalars and non-scalags13. Using this
qiiq belonging to odd and even chirality respectiveljhe  method and restricting to scalar operators, we get, for the

operatorquiq actually cannot contribute for zero chemical product under consideration,

3m 1 1 1 1 1
a b b _ 1 e
TVM(X)Taﬁ(O)_)aa (77a,U,X,B nﬁp,xa){ 27T4 (X2_i6)3 1+ 2772 (Xz_if)zdu+ 24772 (XZ_iE) O5+ ] ' (24)

whereQs is the dimension five operatcmg,:UaWG“”u, and the dots represent operators of still higher dimensions. We have

assumeds U(2) flavor symmetrym is the degenerate masswéndd quarks andiu=dd= 1qq. The Fourier transform gives
for space-like momentaQd?= —q?=0),

7% i 570 - [—ﬁ| 2 42) — o(TU) + =y p (O + ] (2.5
p,aﬁ(q)_> (ﬂﬂaqﬁ nuﬁqa) 8’772 Og(Q /*L) Q2<UU> 3(Q2)2< 5> I I .

Hereu (=1 GeV) is the renormalization scale. ) log(Q%/A?)) (d1-d2)/20
We wish to include the renormalization effects on the a(Q9)= Jog( 2/A2)
operatorsT;, , anduu. The coefficienC(Q?/ u?,g(x)) of uu

satisfieq 14
14 The strong interaction scale /=200 MeV.

9 9 The other element needed for the sum rule is the spectral
,u&—+,8(g)07—+ y1— ¥2 | C(Q% 1?,g())=0, representation for the correlation function. Theroduct at

K 9 2.6 finite temperature has the so-called Landau representation in
' the variableq, at fixed|q| [15], which is the finite tempera-
where 8(g)=—b[g%(4m)%], b=9. The anomalous di- ture extension of the Low representation for the vacuum am-
mensionsy; and y, of the operatorsT3, and uu can be pI|tu2de 2[16]' At points on the imaginary axis ab= _
easily calculated to givey,=d;[g?/(4m)?] and 7, —Q5.Q5>0), the repre;entatpn for the invariant ampli-
=d,[g%/(4m)?] with d,=8/3 andd,= —8. The solution to tudes are, up to subtractions, given by
Eq. (2.6) may be written as

2N12405,]al)

A (2.7
do +Qp

C(Q¥ u2g(u))=a(Q)CLYQ), Tioddaa)= fo dd

whereC(l,g_(Qz)) is the lowest order result obtained above
and where
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N1,4(do.|a)) =7 ImT,, 4a3.|d|)tanh Bag/2). VE(X) = J5(X) = €°°¢(x) 9, $°(X).

However the pionic conterﬁiﬁ(x) of the quark tensor “cur-
rent” TZB(X) is not immediately known, as it is not a sym-
In the channel under consideration, theneson domi- metry current. From its index structure it may be written as

nates the absorptive part. To find this contribution we write a  abee b .
the matrix elements of the currents, Top(X)— S5 5(X) = C€°%9, p°(X) 3 (),

Ill. SATURATION

(0]V2| pb(k)) = 62°F me,, vv_here we determine the constamtoy comparing the two

" divergences,
a b —i sab — ~
(OfTagl () =157C (kg =gkl BD jeqa () ofva(x)+ -, 9§ y(x) = CMRIE0 + - -,

HereF, andG, are two coupling constants amd, and €,,

are the mass and the polarization vector of gheeson.F, tr;e dots standing for _h|ghgr dgrlvatwe te;gns' LWHX.) and
is measured by the electronic decay rate @f, F, Ju(x), vge canzalso_|dent|fyTaﬁ(x) and S,4(x), giving ¢
=153 MeV [17]. Though the value o6, is not available ~=2m/mz=—F7/(0|uu|0), on using the Gell-Mann, Oakes
directly from experiment, it can be obtained from one of theand Renner relatiof21].

U(6) symmetry relations for the wave functions of a quark-  With the pionic version oV/(x) andT} (x), it is simple
antiquark paif18]. Defining the pion decay constaft, by  to evaluate Eq(2.1) to lowest order as

0|A?|7P(k)) =i 6%k ,F .., 3.2 d*k
(OlAu] () # 332 Tf;k;ﬁ(q)z—c&abf(277)4(2k—q)ﬂ(qak5
this relation is
—0gka)Aq1(K)A 1 (k—0), (3.5
szg(Fﬁ Fr) (3.3 whereA, is the 11-component of the thermal pion propaga-

tor. Its absorptive part can be calculated in the same way as
As F,=93 MeV, we getG,=123 MeV. This value oG, for_ the vector-vector correlatiorj functidb]. As we need to
is also obtained from the QCD sum rules for the correlatiorwrite the sum rule for the amplitude,, we quote the results
function of two tensor “currents’[6]. Comparing Eqs(3.1)  for this amplitude only. In the time-like regiofsuperscript
with the matrix element of the-meson field operatqri(x), +),
(0]p3|p°y=6"¢,,, we get the operator relations

2
cq v -
N*=—f dx(w2(g?) —x®){1+2n((|q|x+q)/2)},
Vo) =m,Fp5(X),  Tog(x)=G(dupi—dgpt). t ~1g2)  PCHD TN lac+ 902}

The absorptive parts are now given essentially by that of for q2>4mfr, (3.6
the p-meson propagator at finite temperature. Working in the
real time formulation of the thermal field thedr@], itisthe  while in the space-like regiofsuperscript-),
11-component of the @2 matrix propagator. We get

__cq [~ -
N1(q%)=m,F,G,8(q%—m?2), N2(q2)=N3(q2):O(.3 ) Ny =—12&Tzfv dx(w*(a?) —x*)}{n((|alx—qo)/2)
4
—n((lglx+qo)/2)}, for g°=<0. (3.7

This calculation must be interpreted as one in the effective

field theory at finite temperature, where loop corrections . e we have defined the functio _
néz)=/1-4m2/z and
make the parameters, ,F, andG, temperature dependent. n(z)=(ef—1)~! €) N

[At finite temperature, each of the particle-current coupling > . . .
constants in Eqs(3.1),(3.2 has, in general, different tem- For1q_|—>0, they reduce to simple expressions. In the time-
perature dependence for the time and space components &€ "egion,
the currentg 20]. Bgt this bifurcation takes place only in cqRv¥(a?)
orders higher thaff®. So it does not concern us hefe. Nf:%{“‘ 2n(qo/2)}. (3.9

At lower energies there is the contribution of non- g
resonant two-pion state. Although small compared to the _ ., s ]
p-meson contribution, it describes the interaction of the cur/n the space-like regiorgy=\|q|*, with O=<A<1. Thus in
rents with the pions in the heat bath and may assume impothe limit |g|—0, N; and its contribution to the spectral rep-
tance in the difference sum rules we shall consider belowresentation2.7) are zero.
We find this absorptive part by writing the field theoretic  We can now write a spectral sum rule by equating at a
expression for the pion loop at finite temperature. The pionicpace-like point the operator product expangi@h) to the
contentJj‘L(x) of the quark vector currer\!i(x) is given, to  spectral representatio(?2.7) with p and 2z-contributions.
lowest order, by Taking Borel transform as usual to get rid of any subtraction
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constant and to improve convergence of the spectral integral, _ _ T2
we arrive at the thermal QCD sum rule (uu)=(0luu|0)| 1— ae2)"

m,(T)F,(T)G,(T)e™ m(D/M? T2
<05>:<O|05|0>( 1- F) )

F2 Jw )
——— T | _dsse¥Mu3(s)(1+2n(\/s/2))
967%(0|uul0) Jam? T2
. (O6)=(0|06|0)| 1— == (4.9
> M2 a(M?) (1) + = (O5) (3.9 o
=——M*—a uuy+ =— . .
872 CIVERNS where the vacuum expectation values are all kngtya3—
25],
IV. EVALUATION <0|Uu|0>= (225 Me\/)s,
As already stated, we shall evaluate sum rules to oFder
in the chiral limit. To avoid new symbols in this section, we <0|O5|0>=m(2,<0|Uu|0>,
let the old ones denote their respective chiral limits. It is easy
to check that the integral in E¢3.9) is 0(T*) and the odd (0|0g0)=6.5x10"* Ge\p, (4.6)
chirality sum rule, after subtraction of the corresponding
vacuum sum rule, simplifies to with m2=.8 Ge\2. If we write
—m2(T)IM2_ -mZ/M? T?
m,(TF,(T)G,(T)e ™ m,F,G,e " m,(T)=m, 1+a3 ’
pp— ]_ _ 7T
_ 2
- a(M )<UU>+ 3M2<05> (41) T2
F(T)=F, 1+bF—2),
Here the bar over the thermal average indicates subtraction m
of the corresponding vacuum expectation value. T2
For the sake of consistent eval_uatlon in a closed frar_ne- G,(T)=G, 1+c—2), 4.7
work, we augment this sum rule with the two even chirality Fa

sum rules for the vector-vector correlation function derived ) .
earlier [5]. In the chiral limit and omitting terms of order @nd use the relatiof8.3), the sum rules4.1)—(4.3) predict

higher thanT?, they become the values of the constanés b andc as
(Og) f(Mz)( 1K (1+ ZMZ)] (4.8
i 2 22 an 6 a= =T — , .
Fo(Te MM —Fle™mM/M + | (M%) = — = i 18 4M m
“2 b= —f(M?)] =1 M), K 1 m,
o =M g 1wz ama T ) |
2 2 vz T AUg 4.9
Fi(T)mi(T)e m,(T)/M _Fimﬁe my/M :E Ve ' 4.9
(4.3 o m2 . mg
C—f(M ) 18|\/|2+Kl a(M )_W
where
Ko [m, 2M% (4.10
1 . 1 T “avt e e T -
2\ —s/M _ 4
(4.4) where
2,012
and O is the four-quark  operator, Og f(M?)=(F,/F )%™,
= a0y, ¥s\27°q qy*ys\®7°q [22]. This operator was ig- -
nored in[5]. K= (0[uu|0)
At low temperature the heat bath consists primarily of 1_4mpF3,(1+Fw/Fp),

dilute pion gas. The thermal trace can then be approximated

by the vacuum and the one pion state. The pion matrix ele- -

ment of the operator can be evaluated by using PCAC and K,=-—7(0|0g|0).
soft pion techniqug3]. One gets 6F>
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. . 2 . . ) . - 3 .
_TABLE I Coefficients of T?/F7 inmy(T), F,(T) andG,(T) at  representation iny, at fixed || provides a simple way to
different values oM*. deal with these singularities. Its absorbtive part is due to the
usual threshold singularities along with those due to the in-

2
( Gl\gvz) a b ¢ teraction of current with the real particles of the heat bath. As

can be inferred from the results in Sec. lll, the latter singu-

0.8 -.023 -.034 -.086 larities give rise to a short cut in tteg, variable around the
origin, even from the increasingly massive states. Thus these

1.0 -.009 -.028 -.098 contributions are not suppressed by the spectral denominator
(or by the exponential in the Borel versjoBut the thermal

1.2 -.001 -.025 -.106 distribution function does provide the exponential suppres-
sion of the massive states at low temperature. On the opera-

2.0 .010 -.022 -.125 tor expansion side, it is clearly the short distance expansion
which is relevant for large, at fixed|q|, rather than the one

4.0 016 -021 -.142 on the light cone.

In this work we derive an odd chirality thermal QCD sum
rule. More such sum rules can be written by considering
. other correlation functions of odd chirality, for example, of

We recall that the parametefs,, m, and F, in the  the axjal vector and pseudo-scalar currents. Generally they
abov_e equations refer to their chiral limits. Their estimates INbring in a different set of operator expectation values, but are
this limit are[26] fewer in number compared to those in the even chirality sum

rules, at least to the leading order. It would be useful to
consider both the even and the odd sets of sum rules for
numerical evaluation.

The subtraction of the vacuum sum rule eliminates the
continuum contribution beyond about 1 GeV, as it is practi-
cally independent of for T<150 MeV, say. It should thus

%e possible to extend the range of Borel paramitem the
upper side. On the other hand, the subtraction also removes
4.1 the T-independent coefficient of the unit operator. So the

' higher dimension operators, which contributed earlier only
(powep corrections to the unit operator, are now assuming
zero. the leading role. This se_nsitivity to higher dimension opera-

There are independent methods to demonstrate thdPrS May be reduced M is not extended to too low values.
masses do not shift t®(T2) in the chiral limit [27—29. Our evaluation shows thfat the resultsza're. indeed approxi-

Thus the fact that the coefficieat does not vanish identi- Mately constant over a wide interval b7, if its lower end
cally raises the question if we have included all the relevantS chosen not too small. .~ .
contributions in the sum rules. To answer this question, let us The present work s a continuation of our earlier wiisk
note that on the phenomenological side, @?) terms can T_here our main concern was to mclud_e a!l the operatqrs up to
arise only from 2r andp intermediate stateglnteraction of dimension four with their renormalization effects in the

current with more pions in the heat bath leads to higher ordef€ctor-vector sum rules. But_t_he omission .Of the sc_alar, f_our
terms inT.) As regards the operatorall Lorentz scalar op- quark operator was not justified. For, while the dimension

erators, irrespective of their dimensions, contribute tc)four operators are significant at higher temperatures near the

O(T2). Of course, the higher the dimension, the more will itscritical point, at low temperatures it is only this dimension

contribution be suppressed. Thus even the operators of stﬁl'r)](_ opl)tla_ra_ttor which dominates, contributing to ord@érin the
higher dimension, for example, eight can contribute to the®!ra! fimit. _ . .
The most extensive earlier work is that of Hatsudaal.

coefficienta, however small. As a result, we do not expect X e
our expression fom to vanish identically in the sum rule LS They include contributions up to ord@f from the op-
method. erators and plot thé-dependence ah,(T) andF,(T) (and
also parameters of other resonandest do not obtain the
coefficients ofT?, T4 etc. (Incidentally their evaluation is in-
V. DISCUSSION complete, because they include contributions of ofifeand

We begin by recalling the earlier criticisms to finite tem- T® only when they are leading in some operators, but neglect
perature extension of the QCD sum ru[@§] and how they ngn—leading contributions even to ord&f in others, e.g.,
are overcome in later worki3]. The analytic structure at (uu).)
finite temperature appears complicated if the trace in the cor- Finally let us compare the sum rule approach to the two
relation function(2.1) is expanded over the physical states, point function with its direct evaluation with the one pion
as each term will have discontinuities not onlyghbut also  state to get the temperature dependence of the resonance pa-
in its Mandelstam variables. By contrast, the Landau spectraameterq28,29. The sum rules relate these observable pa-

F,=86 MeV, m,=630 MeV, F,=142 MeV.

Table | shows the evaluation of the constaat® andc for
some values of the Borel parametdr over the range 0.8
<M?<4 in Ge\~. Itis seen that ab1? increases, the values
change rather slowly. Averaging the results over this rang
we get

a=.006, b=-.023, c=-.12.

Note that to within errors the value @f is consistent with
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rameters to elements of the theoretical structure of the QCuantum numbers, the same set of operators keep appearing
theory, namely the thermal average of a number of localith different resonances. Also the sum rules are formulated
operators, built out of quark and gluon fields. It would thusin terms of physical values of particle parameters, which
appear that this procedure is rather involved compared witihay, for simplicity, be reduced to the chiral limit. But the

the other method. However the situation is actually not so. Irbther method is inherently tied up to this unphysical limit.
the entire scheme of sum rules in channels with different
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