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Rho parameters from odd and even chirality, thermal QCD sum rules
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~Received 21 September 1999; published 9 May 2000!

Like the even chirality correlation functions of, say, the two vector currents, one can also consider odd
chirality correlation functions to write thermal QCD sum rules. They contain fewer non-perturbative correc-
tions, at least to the leading order. Here we write such a sum rule for the correlation function of vector and
tensor ‘‘currents.’’ The odd and even chirality sum rules are taken together to evaluate the effective parameters
of the r meson to second order in temperature.

PACS number~s!: 11.10.Wx, 11.55.Hx, 12.38.Lg
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I. INTRODUCTION

The vacuum QCD sum rules@1#, when extended to finite
temperature@2#, provide a simple means to study the pro
erties of the QCD medium. Below the critical temperatu
they relate the temperature dependence of hadron param
to the thermal average of local operators@3–5#.

Generally the sum rules are written for correlation fun
tions of two currents, which have the same chirality, e.g.
two vector or two axial vector currents. But one may a
consider correlation functions of two quark bilinears of o
posite chiralities@6#. Then their operator product expansio
will be dominated, in each dimension, by the operators
odd chirality, the contributions of even chirality ones bei
highly suppressed by a factor of~small! quark mass in their
coefficient functions. As a result the leading nonperturbat
corrections will be given by a single operator, namely,
quark condensate; new odd chirality operators appear on
non-leading terms.

Here we write down the sum rule for the correlation fun
tion of the vector current and the tensor ‘‘current.’’ The
both the present vector-tensor sum rule and the two vec
vector sum rules derived earlier get contributions from
same set of intermediate states withJPG5121. We consider
the subtracted sum rules, obtained by subtracting out
vacuum sum rules from the corresponding thermal ones.
only intermediate states with significant contributions a
then the non-resonant 2p state and ther-resonance. The
three sum rules form a convenient set for evaluation@7#.

Although generally valid, the sum rules appear simpler
the chiral limit. We evaluate these limiting sum rules at lo
temperatureT to the leading order, which isT2 in this limit.
The thermal sum rules are, in general, complicated by
presence of Lorentz non-scalar operators, in addition to
Lorentz scalars contributing to the vacuum sum rules@8#.
But to order T2 non-scalar operators cannot contribute
these sum rules. Thus to this order, the contributing opera
are the same as at zero temperature, their vacuum exp
tion values being replaced by the thermal averages.

In Sec.II we describe the kinematics and present the re
of operator product expansion. In Sec.III we saturate the s
rules with 2p and r states. In Sec. IV the sum rules a
evaluated for the parameters of ther meson to orderT2 in
the chiral limit. Finally in Sec. V we discuss the differe
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aspects of the thermal sum rules and compare our evalua
with earlier ones.

II. SUM RULES

We restrict here to the better known non-strange chan
of unit isospin. The quark bilinears in this channel are

Sa~x!,Vm
a ~x!,Tmn

a ~x!,Am
a ~x!,Pa~x!

5q̄~x!~1,gm ,smn ,gmg5 ,g5!
ta

2
q~x!,

q(x) being the field of theu andd quark doublet andta the
Pauli matrices. Note thatSa(x), Pa(x) andTmn

a (x) are odd
andVm

a (x) andAm
a (x) are even underg5 transformation on

the quark field.
As an important example of odd chirality correlatio

functions, consider the thermal average of the time orde
(T) product of the vector current and the tensor ‘‘current

T mab
ab ~q!5 i E d4xeiq•x^T„Vm

a ~x!Tab
b ~o!…&. ~2.1!

Here the thermal average of an operatorO is denoted by
^O&,

^O&5Tr e2bHO/Tr e2bH,

where H is the QCD Hamiltonian,b is the inverse of the
temperatureT and Tr denotes the trace over any complete
of states.

As usual, it is convenient for kinematics to restore Lo
entz invariance by introducing the four-velocityum of mat-
ter. Then we can build the Lorentz scalars,v5u•q and q̄
5Av22q2, representing the time and the space compone
of qm in the matter rest frame,um5(1,0,0,0) @9#. We now
choose the three independent kinematic covariants as

Pmab5hmaqb2hmbqa ,

Qmab5qm~qaub2qbua!2q2~hmaub

2hmbua!,
©2000 The American Physical Society07-1
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Rmab5um~qaub2qbua!2v~hmaub

2hmbua!. ~2.2!

The kinematic decomposition now reads

T mab
ab ~q!5 idab~PmabT11QmabT21RmabT3!, ~2.3!

where the invariant amplitudesT1,2,3 are functions ofv and
q2. In all computations, however, we shall revert back to
matter rest frame.

Only the amplitudeT1 survives at zero temperature. A
we shall see below, at finite temperature the leading con
butions~to orderT2) are also contained inT1. So, working to
the leading order, we have only to write the sum rule for t
amplitude.

The advantage with odd chirality correlation functions b
comes evident from an enumeration of local operators.
unit operator corresponds to the perturbative result. The n
perturbative power corrections begin with operators of
mension three and four. At dimension three, we haveq̄q and
q̄u”q belonging to odd and even chirality respectively.~The
operatorq̄u”q actually cannot contribute for zero chemic
he

ve
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potential.! At dimension four, we have
trGmnGmn, umQmn

f un and umQmn
g un. Here the gauge field

strength Gmn5g(la/2)Gmn
a , la (a51, . . . ,8) are the

SU(3) Gell-Mann matrices andg is the QCD coupling con-
stant. The operatorsQmn

f ,g are the energy momentum tenso
for the quarks and gluons.~Note that in the matter rest frame
the latter two are just the energy densities. Also the oper

q̄u•Dq where Dm is the covariant derivative, is of odd

chirality, but it can be reduced tom̂q̄u”q by using the equa-
tion of motion for the quark field.! All these operators of
dimension four are of even chirality. Thus up to dimensi

four, only the operatorq̄q can contribute significantly to the
power correction for an odd chirality correlation function. A
dimension five, there is only one Lorentz scalar opera

q̄smnGmnq. In addition there are several Lorentz non-sca
operators contributing at finite temperature@10#.

There is a simple configuration space approach@11# to the
operator product expansion giving the Wilson coefficients
all operators, both scalars and non-scalars@12,13#. Using this
method and restricting to scalar operators, we get, for
product under consideration,
have
TVm
a ~x!Tab

b ~0!→dab~hamxb2hbmxa!H 3m̂

2p4

1

~x22 i e!3 11
1

2p2

1

~x22 i e!2ūu1
1

24p2

1

~x22 i e!
O51•••J , ~2.4!

whereO5 is the dimension five operator,O55ūsmnGmnu, and the dots represent operators of still higher dimensions. We

assumedSU(2) flavor symmetry;m̂ is the degenerate mass ofu andd quarks andūu5d̄d5 1
2 q̄q. The Fourier transform gives

for space-like momenta (Q252q2>0),

T mab
ab ~q!→ idab~hmaqb2hmbqa!H 2

3m̂

8p2 log~Q2/m2!2
1

Q2^ūu&1
1

3~Q2!2 ^O5&1•••J . ~2.5!
tral

n in

m-

li-
Herem (.1 GeV) is the renormalization scale.
We wish to include the renormalization effects on t

operatorsTmn
a andūu. The coefficientC„Q2/m2,g(m)… of ūu

satisfies@14#

S m
]

]m
1b~g!

]

]g
1g12g2DC~Q2/m2,g~m!!50,

~2.6!

where b(g)52b@g3/(4p)2#, b59. The anomalous di-
mensionsg1 and g2 of the operatorsTmn

a and ūu can be
easily calculated to giveg15d1@g2/(4p)2# and g2
5d2@g2/(4p)2# with d158/3 andd2528. The solution to
Eq. ~2.6! may be written as

C„Q2/m2,g~m!…5a~Q2!C„1,ḡ~Q2!…,

whereC„1,ḡ(Q2)… is the lowest order result obtained abo
and
a~Q2!5S log~Q2/L2!

log~m2/L2! D
(d12d2)/2b

.

The strong interaction scale isL.200 MeV.
The other element needed for the sum rule is the spec

representation for the correlation function. TheT product at
finite temperature has the so-called Landau representatio
the variableq0 at fixed uqW u @15#, which is the finite tempera-
ture extension of the Low representation for the vacuum a
plitude @16#. At points on the imaginary axis (q0

25

2Q0
2 ,Q0

2.0), the representation for the invariant amp
tudes are, up to subtractions, given by

T1,2,3~q0
2 ,uqW u!5E

0

`

dq08
2 N1,2,3~q08 ,uqW u!

q08
2
1Q0

2
, ~2.7!

where
7-2
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N1,2,3~q0 ,uqW u!5p21ImT1,2,3~q0
2 ,uqW u!tanh~bq0/2!.

III. SATURATION

In the channel under consideration, ther-meson domi-
nates the absorptive part. To find this contribution we wr
the matrix elements of the currents,

^0uVm
a urb~k!&5dabFrmrem ,

^0uTab
a urb~k!&5 idabGr~eakb2ebka!. ~3.1!

HereFr andGr are two coupling constants andmr andea
are the mass and the polarization vector of ther-meson.Fr

is measured by the electronic decay rate ofr0, Fr

5153 MeV @17#. Though the value ofGr is not available
directly from experiment, it can be obtained from one of t
U~6! symmetry relations for the wave functions of a qua
antiquark pair@18#. Defining the pion decay constantFp by

^0uAm
a upb~k!&5 idabkmFp , ~3.2!

this relation is

Gr5
1

2
~Fr1Fp!. ~3.3!

As Fp593 MeV, we getGr5123 MeV. This value ofGr

is also obtained from the QCD sum rules for the correlat
function of two tensor ‘‘currents’’@6#. Comparing Eqs.~3.1!
with the matrix element of ther-meson field operatorrm

a (x),
^0urm

a urb&5dabem , we get the operator relations

Vm
a ~x!5mrFrrm

a ~x!, Tab
a ~x!5Gr~]arb

a2]bra
a !.

The absorptive parts are now given essentially by tha
ther-meson propagator at finite temperature. Working in
real time formulation of the thermal field theory@19#, it is the
11-component of the 2̂2 matrix propagator. We get

N1~q2!5mrFrGrd~q22mr
2!, N2~q2!5N3~q2!50.

~3.4!

This calculation must be interpreted as one in the effec
field theory at finite temperature, where loop correctio
make the parametersmr ,Fr andGr temperature dependen
@At finite temperature, each of the particle-current coupl
constants in Eqs.~3.1!,~3.2! has, in general, different tem
perature dependence for the time and space componen
the currents@20#. But this bifurcation takes place only i
orders higher thanT2. So it does not concern us here.#

At lower energies there is the contribution of no
resonant two-pion state. Although small compared to
r-meson contribution, it describes the interaction of the c
rents with the pions in the heat bath and may assume im
tance in the difference sum rules we shall consider bel
We find this absorptive part by writing the field theore
expression for the pion loop at finite temperature. The pio
contentJm

a (x) of the quark vector currentVm
a (x) is given, to

lowest order, by
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Vm
a ~x!→Jm

a ~x!5eabcfb~x!]mfc~x!.

However the pionic contentSab
a (x) of the quark tensor ‘‘cur-

rent’’ Tab
a (x) is not immediately known, as it is not a sym

metry current. From its index structure it may be written

Tab
a ~x!→Sab

a ~x!5ceabc]afb~x!]bfc~x!,

where we determine the constantc by comparing the two
divergences,

]aTab
a ~x!52m̂Vb

a~x!1•••, ]aSab
a ~x!5cmp

2 Jb
a~x!1•••,

the dots standing for higher derivative terms. LikeVm
a (x) and

Jm
a (x), we can also identifyTab

a (x) and Sab
a (x), giving c

52m̂/mp
2 52Fp

2 /^0uūuu0&, on using the Gell-Mann, Oake
and Renner relation@21#.

With the pionic version ofVm
a (x) andTmn

a (x), it is simple
to evaluate Eq.~2.1! to lowest order as

T mab
ab ~q!52cdabE d4k

~2p!4 ~2k2q!m~qakb

2qbka!D11~k!D11~k2q!, ~3.5!

whereD11 is the 11-component of the thermal pion propag
tor. Its absorptive part can be calculated in the same wa
for the vector-vector correlation function@5#. As we need to
write the sum rule for the amplitudeT1, we quote the results
for this amplitude only. In the time-like region~superscript
1!,

N1
15

cq2

128p2E
2v

v
dx„v2~q2!2x2

…$112n„~ uqW ux1q0!/2…%,

for q2>4mp
2 , ~3.6!

while in the space-like region~superscript2),

N1
25

cq2

128p2E
v

`

dx„v2~q2!2x2
…$n„~ uqW ux2q0!/2…

2n„~ uqW ux1q0!/2…%, for q2<0. ~3.7!

Here we have defined the functionsv(z)5A124mp
2 /z and

n(z)5(ebz21)21.
ForuqW u→0, they reduce to simple expressions. In the tim

like region,

N1
15

cq0
2v3~q0

2!

96p2 $112n~q0/2!%. ~3.8!

In the space-like region,qo
25luqW u2, with 0<l<1. Thus in

the limit uqW u→0, N1
2 and its contribution to the spectral rep

resentation~2.7! are zero.
We can now write a spectral sum rule by equating a

space-like point the operator product expansion~2.5! to the
spectral representation~2.7! with r and 2p-contributions.
Taking Borel transform as usual to get rid of any subtract
7-3
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constant and to improve convergence of the spectral integ
we arrive at the thermal QCD sum rule

mr~T!Fr~T!Gr~T!e2mr
2(T)/M2

2
Fp

2

96p2^0uūuu0&
E

4mp
2

`

dsse2s/M2
v3~s!„112n~As/2!…

5
3m̂

8p2
M22a~M2!^ūu&1

1

3M2 ^O5&. ~3.9!

IV. EVALUATION

As already stated, we shall evaluate sum rules to ordeT2

in the chiral limit. To avoid new symbols in this section, w
let the old ones denote their respective chiral limits. It is e
to check that the integral in Eq.~3.9! is 0(T4) and the odd
chirality sum rule, after subtraction of the correspondi
vacuum sum rule, simplifies to

mr~T!Fr~T!Gr~T!e2mr
2(T)/M2

2mrFrGre2mr
2/M2

52a~M2!^ūu&1
1

3M2^O5&. ~4.1!

Here the bar over the thermal average indicates subtrac
of the corresponding vacuum expectation value.

For the sake of consistent evaluation in a closed fram
work, we augment this sum rule with the two even chiral
sum rules for the vector-vector correlation function deriv
earlier @5#. In the chiral limit and omitting terms of orde
higher thanT2, they become

Fr
2~T!e2mr

2(T)/M2
2Fr

2e2mr
2/M2

1I T~M2!52
p

4

^O6&

M4
,

~4.2!

Fr
2~T!mr

2~T!e2mr
2(T)/M2

2Fr
2mr

2e2mr
2/M2

5
p

2

^O6&

M2
,

~4.3!

where

I T~M2!5
1

24p2E
0

`

ds~11e2s/M2
!

1

eAs/2T21
5

T2

9
10~T4!

~4.4!

and O6 is the four-quark operator, O6

5asq̄gmg5lat3q q̄gmg5lat3q @22#. This operator was ig-
nored in@5#.

At low temperature the heat bath consists primarily
dilute pion gas. The thermal trace can then be approxima
by the vacuum and the one pion state. The pion matrix
ment of the operator can be evaluated by using PCAC
soft pion technique@3#. One gets
11600
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^ūu&5^0uūuu0&S 12
T2

8Fp
2 D ,

^O5&5^0uO5u0&S 12
T2

8Fp
2 D ,

^O6&5^0uO6u0&S 12
T2

3Fp
2 D . ~4.5!

where the vacuum expectation values are all known@1,23–
25#,

^0uūuu0&52~225 MeV!3,

^0uO5u0&5mo
2^0uūuu0&,

^0uO6u0&56.531024 GeV6, ~4.6!

with mo
25.8 GeV2. If we write

mr~T!5mrS 11a
T2

Fp
2 D ,

Fr~T!5FrS 11b
T2

Fp
2 D ,

Gr~T!5GrS 11c
T2

Fp
2 D , ~4.7!

and use the relation~3.3!, the sum rules~4.1!–~4.3! predict
the values of the constantsa, b andc as

a5 f ~M2!H 1

18
2

K2

4M4S 11
2M2

mr
2 D J , ~4.8!

b52 f ~M2!H 1

18S 12
mr

2

M2D 1
K2

4M4S 11
mr

2

M2D J ,

~4.9!

c5 f ~M2!H mr
2

18M2
1K1S a~M2!2

m0
2

3M2D
2

K2

4M4 S mr
2

M22
2M2

mr
2 12D J , ~4.10!

where

f ~M2!5~Fp /Fr!2emr
2/M2

,

K15
^0uūuu0&

4mrFp
2 ~11Fp /Fr!

,

K25
p

6Fp
2 ^0uO6u0&.
7-4
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We recall that the parametersFp , mr and Fr in the
above equations refer to their chiral limits. Their estimates
this limit are @26#

Fp586 MeV, mr5630 MeV, Fr5142 MeV.

Table I shows the evaluation of the constantsa, b andc for
some values of the Borel parameterM2 over the range 0.8
<M2<4 in GeV2. It is seen that asM2 increases, the value
change rather slowly. Averaging the results over this ran
we get

a..006, b.2.023, c.2.12. ~4.11!

Note that to within errors the value ofa is consistent with
zero.

There are independent methods to demonstrate
masses do not shift toO(T2) in the chiral limit @27–29#.
Thus the fact that the coefficienta does not vanish identi
cally raises the question if we have included all the relev
contributions in the sum rules. To answer this question, le
note that on the phenomenological side, theO(T2) terms can
arise only from 2p andr intermediate states.~Interaction of
current with more pions in the heat bath leads to higher or
terms inT.! As regards the operators,all Lorentz scalar op-
erators, irrespective of their dimensions, contribute
O(T2). Of course, the higher the dimension, the more will
contribution be suppressed. Thus even the operators of
higher dimension, for example, eight can contribute to
coefficienta, however small. As a result, we do not expe
our expression fora to vanish identically in the sum rule
method.

V. DISCUSSION

We begin by recalling the earlier criticisms to finite tem
perature extension of the QCD sum rules@29# and how they
are overcome in later works@3#. The analytic structure a
finite temperature appears complicated if the trace in the
relation function~2.1! is expanded over the physical state
as each term will have discontinuities not only inq2 but also
in its Mandelstam variables. By contrast, the Landau spec

TABLE I. Coefficients ofT2/Fp
2 in mr(T), Fr(T) andGr(T) at

different values ofM2.

M2 a b c
(GeV2)

0.8 -.023 -.034 -.086

1.0 -.009 -.028 -.098

1.2 -.001 -.025 -.106

2.0 .010 -.022 -.125

4.0 .016 -.021 -.142
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representation inq0 at fixed uqW u provides a simple way to
deal with these singularities. Its absorbtive part is due to
usual threshold singularities along with those due to the
teraction of current with the real particles of the heat bath.
can be inferred from the results in Sec. III, the latter sing
larities give rise to a short cut in theq0 variable around the
origin, even from the increasingly massive states. Thus th
contributions are not suppressed by the spectral denomin
~or by the exponential in the Borel version!. But the thermal
distribution function does provide the exponential suppr
sion of the massive states at low temperature. On the op
tor expansion side, it is clearly the short distance expans

which is relevant for largeqo at fixeduqW u, rather than the one
on the light cone.

In this work we derive an odd chirality thermal QCD su
rule. More such sum rules can be written by consider
other correlation functions of odd chirality, for example,
the axial vector and pseudo-scalar currents. Generally t
bring in a different set of operator expectation values, but
fewer in number compared to those in the even chirality s
rules, at least to the leading order. It would be useful
consider both the even and the odd sets of sum rules
numerical evaluation.

The subtraction of the vacuum sum rule eliminates
continuum contribution beyond about 1 GeV, as it is prac
cally independent ofT for T<150 MeV, say. It should thus
be possible to extend the range of Borel parameterM on the
upper side. On the other hand, the subtraction also remo
the T-independent coefficient of the unit operator. So t
higher dimension operators, which contributed earlier o
~power! corrections to the unit operator, are now assum
the leading role. This sensitivity to higher dimension ope
tors may be reduced ifM is not extended to too low values
Our evaluation shows that the results are indeed appr
mately constant over a wide interval ofM2, if its lower end
is chosen not too small.

The present work is a continuation of our earlier work@5#.
There our main concern was to include all the operators u
dimension four with their renormalization effects in th
vector-vector sum rules. But the omission of the scalar, f
quark operator was not justified. For, while the dimens
four operators are significant at higher temperatures near
critical point, at low temperatures it is only this dimensio
six operator which dominates, contributing to orderT2 in the
chiral limit.

The most extensive earlier work is that of Hatsudaet al.
@3#. They include contributions up to orderT6 from the op-
erators and plot theT-dependence ofmr(T) andFr(T) ~ and
also parameters of other resonances! but do not obtain the
coefficients ofT2,T4 etc. ~Incidentally their evaluation is in-
complete, because they include contributions of orderT4 and
T6 only when they are leading in some operators, but neg
non-leading contributions even to orderT4 in others, e.g.,

^ūu&.!
Finally let us compare the sum rule approach to the t

point function with its direct evaluation with the one pio
state to get the temperature dependence of the resonanc
rameters@28,29#. The sum rules relate these observable
7-5
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rameters to elements of the theoretical structure of the Q
theory, namely the thermal average of a number of lo
operators, built out of quark and gluon fields. It would th
appear that this procedure is rather involved compared w
the other method. However the situation is actually not so
the entire scheme of sum rules in channels with differ
l.
d

o
i

ys

,

11600
D
l
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n
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quantum numbers, the same set of operators keep appe
with different resonances. Also the sum rules are formula
in terms of physical values of particle parameters, wh
may, for simplicity, be reduced to the chiral limit. But th
other method is inherently tied up to this unphysical limit
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