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Kinoshita-Lee-Nauenberg theorem, magnetic mass, and thermal photon production
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We study the infrared singularities associated with ultrasoft transverse gluons in the calculation of photon
production by a quark-gluon plasma. Despite the fact that the Kinoshita-Lee-Nauenberg theorem works in this
context and provides cancellations of infrared singularities, it does not prevent the production rate of low
invariant mass dileptons to be sensitive to the magnetic mass of gluons and therefore the rate to be
nonperturbative.
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I. INTRODUCTION

It is widely accepted that infrared singularities are gen
ally stronger in thermal field theories with bosons, compa
to their counterparts at zero temperature. This is due to
singular behavior of the Bose-Einstein statistical weight
zero energy, which affects massless bosonic fields.1 As a
consequence of these stronger singularities, only partia
sults exist concerning their cancellation in the calculation
observable quantities in thermal massless theories~see @1#
for instance!. So far, there is no general translation in t
language of thermal field theory of the arguments given
this cancellation atT50 by Kinoshita @2#, and Lee and
Nauenberg@3#.

The resummation of hard thermal loops~HTL! @4# partly
cures this problem by giving a thermal mass to otherw
massless fields, such as gauge bosons. Nevertheless
static magnetic~transverse! modes remain massless in th
framework and may still generate infrared singularities,
exemplified by the calculation of the fermion damping ra
@5#. In QCD, it is believed that a thermal mass for the sta
transverse modes is generated nonperturbatively at the
g2T, but this mass may be too small to be an efficient re
lator.

A particular area where this infrared~IR! problem be-
comes relevant is the thermal production of particles. In t
paper, we focus mainly on the production of photons b
quark gluon plasma. The production rates are calculate
the imaginary part of a self-energy diagram evaluated a
nite temperature@6#, and are expected to be observable qu
tities that should come out finite in a consistent calculatio

In a recent study@7–9#, it has been shown that 2-loo

1For a field of massm, the statistical weight~to be evaluated
on-shell in the real-time formalism! is bounded byT/m.
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contributions involving the bremsstrahlung mechanism ov
whelms 1-loop contributions for the production of a soft re
photon. The insertion of an exchanged gluon in the h
quark loop ~see Fig. 1! generates collinear singularitie
which are powerlike as in 2-loop diagrams while they a
only logarithmic in the 1-loop contributions: as a cons
quence, when these singularities are regularized by the
summation of the thermal massM`;gT on the quark propa-
gators, the two-loop diagrams get an enhancement by pow
of g21, whereg is the strong coupling constant.

The contribution of the diagram of Fig. 1, although dom
nated by a soft gluon, is infrared finite. In fact, even t
contribution of the transverse gluon is finite in this particu
calculation, due to kinematical constraints. Indeed, it
trivial to see that the two delta functions corresponding to
cut quarks d(P22M`

2 )d„(R1L)22M`
2
… become d(P2

2M`
2 )d(R22M`

2 ) in the limit of vanishingL, and that the
latter pair of delta functions do not have a common suppo
M`Þ0: for the bremsstrahlung process we are conside
here the energiesp0 and r 0 have the same sign and hen
P22M`

2 and R22M`
2 cannot vanish simultaneously, wha

ever the value ofQ2. It is therefore kinematics, via thefer-
mion thermal mass, that prevents infrared singularities in t

FIG. 1. 2-loop dominant contribution to photon production. T
blob indicates that the gluon propagator includes the resumma
of hard thermal loops. The quark propagators include a ther
massM` , arising from the HTL resummation in the hard limit.
©2000 The American Physical Society01-1
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particular topology by providing a natural cutoff of ordergT
on the gluon momentumL. This statement was tested in@8#
by studying the limitM`→0. A stronger divergence wa
found in the transverse gluon contribution, indicating th
M` played a role in the regularization of this potentia
dangerous contribution.

But this kinematical cutoff does not apply to addition
soft gluons one may insert in the quark loop, as in the d
gram of Fig. 2, for instance. Indeed, in topologies involvi
more than one exchanged gluon, the kinematical argum
given above constrains only the sum of the momenta of
cut gluons. Therefore, we know thatL1L1 cannot vanish,
which tells us that~for instance! L has a lower bound at th
scalegT, but L1 can still become arbitrarily small2 and this
leads to an infrared divergence for the cut depicted in Fig
when the ultrasoft gluon is transverse. Indeed when co
pared to the 2-loop diagram, the additional gluon provides~i!
two coupling constants,~ii ! two quark propagators,~iii ! a set
of gluon spectral density and statistical weight, and~iv! the
phase space of the additional gluon. Collecting everyth
we can estimate by a crude power counting:

~3-loop!;~2-loop!3g2E d4L1n
B
~L1!r~L1!

3S~P1L1!S~R1L1!

;~2-loop!3g2E
m
l 1
3dl1

T

l 1

1

l 1
2

T

Tl1

T

Tl1

;~2-loop!3
g2T

m
, ~1!

where r is the spectral function of the additional gluo
wherem is introduced as a regulator on the integral overl 1.
We used the fact that the quarks are hard, and mo
on-shell3 because of the cut crossing the quark loop. It
important to stress here that each fermion propagator br
an extra factorl 1 in the denominator, thus contributing to th

2There is another, symmetric, contribution coming from the
gion of phase space whereL1 is of ordergT and L can become
arbitrarily small.

3The role played by the small off-shellness of the additio
quarks will be considered later on in this paper.

FIG. 2. Example of 3-loop contribution for photon productio
One of the gluons cannot become ultrasoft due to kinematics, a
displayed in boldface. The other, unconstrained, gluon is displa
as usual.
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infrared sensitivity of the above expression. The conclusi
of this naive power counting are the following:

~i! If the additional gluon is longitudinal, its cutoff is a
thermal mass of ordergT , and the corresponding contribu
tion is suppressed by one power ofg compared to the 2-loop
one.

~ii ! If the additional gluon is transverse it is natural
assume the regulator to be the magnetic massm;g2T, and
we have~3-loop!;(2-loop).

Therefore, it seems that if we keep adding transverse
ons in the quark loop, we generate contributions that are
of the same order of magnitude. This fact is very similar
the argument given by Linde for the breakdown of perturb
tion theory in thermal QCD, although in the different conte
of the calculation of the free energy@10#.

There is nevertheless one reason why this power coun
may be too naive. One should indeed keep in mind that
estimate is valid only for a given cut through the 3-loo
diagram. It does not take into account potential compen
tions that may occur when one is summing all the poss
cuts. In this paper, we are going to study in more detail t
possibility, and its interplay with a magnetic mass at t
scaleg2T.

II. INFRARED CANCELLATIONS

An important feature of the above example is the fact t
the quark propagatorsparticipate in the overall infrared di
vergence of the diagram. In fact, if some quark propaga
were not becoming singular in the IR limit, the diagra
would have been finite by power counting. This can be g
eralized to a topology with an arbitrary number of exchang
gluons ~but without 3- and 4-gluon vertices!.4 Indeed, for
these topologies, the number of loopsL is related to the
number of gluonsng by

L511ng . ~2!

One of theL loop integrals is an integrationd4P over the
quark momentum which is hard, and is not concerned by
IR problem. The remainingL21 integrals are over the mo
menta of theng soft gluons. The fact thatL215ng tells that
even if each gluon comes with the singular fact
n

B
( l 0)r(L), it is accompanied by a phase spaced4L which is

enough to make the integral finite. For these topologies,
the quark propagators which are ultimately responsible
the IR divergences. Indeed, it is trivial to see that if o
quark propagator is cut, then some other quark propaga
become infinite when the gluon momenta go to zero. Thi
the reason why we are going to focus on the quarks, and
not care about the gluon propagators.

-

l

4In this paper, we are considering only Abelian topologies, sin
this is enough for our purpose of studying the interplay between
magnetic mass and possible cancellations. Later on, we indi
why the arguments given here cannot be applied to non-Abe
topologies.
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KINOSHITA-LEE-NAUENBERG THEOREM, MAGNETIC . . . PHYSICAL REVIEW D 61 116001
It is rather easy to show that there are cancellations at
level of the quark propagators occurring in the calculation
the imaginary part ofPm

m . Let us illustrate it in the reason
ably general situation where we have a single quark loop
which are connected the two external photons, and an a
trary number of internal gluons~but without non-Abelian
couplings; see Fig. 3!. To simplify, we detail only the lower
fermion line, and hide the details of the upper line in a co
plicated function we do not need to specify.

Since we are going to demonstrate cancellations am
the various contributions to the dispersive part of the pho
polarization tensor, it is convenient to work in theR/A for-
malism @11#, in which cutting rules exist that are both ve
simple and very close to theT50 ones@12#.5 Therefore, all
the contributions to the imaginary part ofP

R
can be obtained

by cuts dividing the diagram into two connected pieces, e
of these parts containing at least one external leg.

By summing over the index of the cut quark on the low
fermion line, the contribution of the diagram of Fig. 3 can
written as6

A[E d4PF)
i 51

n

d4LinB
~ l i

0!r~Li !TrGF~p0,p,$Li%!

3(
i 50

n

d„~P1Ki !
22M`

2
…)

j Þ i

1

~P1K j !
22M`

2 , ~3!

where the functionF hides all the details about the denom
nators on the upper quark line7 ~as well as the fermionic
statistical factors, which do not play any role in the follow
ing!, and where we have defined

5If the R/A amplitudes are finite, then so are the time-orde
ones. Nevertheless, checking the compensations for an arbi
number of loops with the rules found in@13# would be awkward
since it is not possible to write all the contributions as cut diagra
If one insists on using the closed time path~CTP! formalism as an
exercise, then the rules given in@14# are a better starting point.

6In the R/A formalism, we pick the most singular piece for ea
gluon, i.e.,n

B
( l i

0)r(Li). Failing to do this, we would get a sup
pressed contribution compared to the 2-loop result.

7This function does not depend on the position of the cut on
lower quark line, but depends on the position of the cut on the up
line.

FIG. 3. Generic configuration for which cancellations in t
infrared sector occur. Again, the gluons all include the HTL corr
tion. The gluons do not need to be parallel for the argumen
work, since the gray area hides the details of how the gluons
attached to the upper quark line. The indexi, running from 0 ton,
indicates which quark propagator is cut on the lower fermion li
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La. ~4!

We can now use thed functions to perform explicitly the
integral overp0, which gives after splitting the propagato
into positive and negative energy terms

A5E d3pF)
i 51

n

d4LinB
~ l i

0!r~Li !TrG)
j 50

n
1

2v j

3 (
i 50

e561

n

F~a i
e ,p,$Li%!)

j Þ i
F 1

a i
e2a j

1 2
1

a i
e2a j

2G , ~5!

where we denotev i[A@(p1ki)
21M`

2 and a j
e[2kj

0

1ev j . According to this definition, all thea i
e become equal

to eA(p21M`
2 when the gluon momenta go to zero. We s

that denominators where botha i ’s carry the same sign van
ish in this limit. The IR singularities therefore show up in th
vanishing denominatorsa i

62a j
6 . Only the second line in

Eq. ~5! is relevant in the following discussion, and it can b
compactly rewritten as

(
i 50

$e i561%

n

F~a i
e i ,p,$Li%!)

j Þ i

e j

a i
e i2a j

e j
. ~6!

One can simply observe that for every denominatora i
6

2a j
6 with numeratorF(a i

6 ,p,$Li%) appears a denominato
a j

62a i
6 with a numeratorF(a j

6 ,p,$Li%) ~all the other de-
nominators being the same!. The simple poles therefore can
cel trivially. This can be extended to the more complicat
situation where more than twoa is tend to a common value
which amounts to proving that these denominators appea
a combination that remains finite for any configuration of t
a i ’s. For that purpose, let us consider an expression such8

Fn[(
i 50

n

F~a i !)
j Þ i

1

a i2a j
~7!

and show that such a quantity is always finite provided so
regularity property of the functionF. The shortest way to se
that is to notice thatFn is the leading coefficient of the
Lagrange polynomial of degreen that interpolates betwee
the points„a i ,F(a i)…:

Pn~x![(
i 50

n

F~a i !)
j Þ i

x2a j

a i2a j
5Fn xn1•••. ~8!

As such,Fn is finite for every value of thea i ’s if the func-
tion F is n times differentiable. Indeed, if several poin
„a i ,F(a i)… collapse into a single point of multiplicitym, the
Lagrange polynomial has a finite limit, and coincides withF
and its firstm21 derivatives at this point. One can note th

d
ry

s.

e
er 8At this stage, we can drop all the superscriptse i since the com-
pensations occur in fact for each given set ofe i ’s.
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P. AURENCHE, F. GELIS, AND H. ZARAKET PHYSICAL REVIEW D61 116001
this argument also applies to insertions of self-energies
the quark line. Indeed, the only peculiarity of self-ener
insertions is that they force severala i ’s to have the same
value even if theLi do not tend to zero; and the above pro
works for any configuration of thea i ’s, whatever the cause
that makes them equal.

Although the above argument has been presented in
case of a 2-point function, it still works for the dispersiv
part of any n-point function ~just attach more photons o
gluons to the shaded part of Fig. 3!.

III. COMPETITION WITH THE MAGNETIC MASS

The result of the previous section is that the product of
the quark propagators remains finite in the IR sector w
the sum over the cuts has been performed. When conside
the imaginary part it shows that, for a fixed cut on the up
line, there is no singularity in the propagators of the low
line. The argument should be repeated for the upper l
which is made finite by summing over all the ways of cutti
it. These cancellations between different cuts occur withi
given topology, and correspond to compensation betw
real and virtual corrections. They can therefore be seen
form of the Kinoshita-Lee-Nauenberg~KLN ! theorem.

We point out some differences with the usual version
the KLN theorem at zero temperature where the exchan
gluons are bare gluons. At finite temperature we deal w
resummed gluons and the most dangerous divergences
when cutting spacelike transverse gluons which are shie
by a ‘‘small’’ magnetic mass. The timelike gluons a
shielded with a ‘‘large’’ thermal mass of ordergT and do not
lead to any infrared problems in the context of this study

We are now going to apply the above considerations
study explicitly the 3-loop example already presented in F
2. As we have already seen in the Introduction, one of
gluon momenta has a lower bound thanks to kinemat
while the other gluon is not constrained in the ultrasoft lim
Let us choose the gluon on the right~momentumL1) to be
ultrasoft while momentumL remains soft. This kinematica
constraint prevents the propagators of the lower quark
become infinite whenL1→0: they always remain off-shel
by some amount controlled byM` . The constraint also sim
plifies the pattern of cancellation of infrared divergences
the upper line since the propagators of momentumP1L
1L1'P1L when L1→0 cannot diverge for the same re
son. In consequence we need only the two cuts depicte
Fig. 4 to get rid of all the zeros in the denominators.9 It turns
out to be convenient to perform the change of variableP
1L1→P in the second contribution, as indicated in Fig.
Moreover, we neglectL1 in front of L whenever these two
impulsions appear together~as in L11L'L). With these
notations and approximations, one can readily see that
additional ultrasoft gluon brings the following factors, to b
multiplied by the 2-loop integrand~i.e., the integrand for the

9We also have to take into account the other possibility withL1

soft andL ultrasoft which is easily done by multiplying the fina
result by a factor 2.
11600
n

he

ll
n

ing
r
r
e,

a
n
a

f
ed
h
rise
ed

o
.
e
s,
.

to

n

in

.

he

diagram of Fig. 1!, respectively for the cuts~a! and ~b!:

Fa,b5g2E d4L1

~2p!4~2Ps!~2Rr!P
T

sr~L1!

3
r

T
~ l 1

0 ,l 1!n
B
~ l 1

0!

@~P6L1!22M`
2 #@~R6L1!22M`

2 #
, ~9!

where P
T

sr is the transverse projector, andr
T

is the trans-
verse spectral function of the gluon~only the transverse
mode of the ultrasoft gluon is relevant; the other gluon c
be transverse or longitudinal, as in the 2-loop calculatio!.
The factors of formPs /@(P6L1)22M`

2 # come from the
fermion propagators in the hard momentum approximati
We can further simplify these factors by evaluating them
P25M`

2 since they are to be multiplied by the 2-loop int
grand which contains ad(P22M`

2 ). Noticing that@see Eq.
~46! in @8##

PsRrP
T

sr~L1!'2pr~12cos2u1!, ~10!

whereu1 is the angle between the vectorsp and l1, it is easy
to perform the angular integral explicitly, which give

E dV1

12cos2u1

@~P6L1!22M`
2 #@~R6L1!22M`

2 #

'
p

prl 1
2 S Fx6

D

4rl 1
G lnU2rl 1~x11!6D

2rl 1~x21!6DU21D
6

p~12x2!

pl1D F lnUx11

x21U2 lnU2rl 1~x11!6D

2rl 1~x21!6DUG ,
~11!

where we denotex[ l 1
0/ l 1 andD[2P•Q1Q2. The general

result established in the previous section says that the
over the cuts for this quantity should have a finite limit wh
l 1→0 at fixedx ~i.e., when the 4 components ofL1 tend to
zero!. One can see that this is not the case in the contri
tions of the individual cuts, since we have

E dV1

12cos2u1

@~P6L1!22M`
2 #@~R6L1!22M`

2 #

'
l 1→0

6
p~12x2!

pl1D
lnUx11

x21U6 4px

pl1D
, ~12!

~where we have neglected terms regular inl 1) but occurs
trivially for the sum of the two cuts since the singular (l 1

21)

FIG. 4. Notations used for the 3-loop contributions.
1-4
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KINOSHITA-LEE-NAUENBERG THEOREM, MAGNETIC . . . PHYSICAL REVIEW D 61 116001
part drops out. The interesting quantity is in fact the scale
which this cancellation occurs. The only dimensional qu
tity to which l 1 can be compared with in the above expre
sions is l 1* ;D/r . Carrying out the integration onx,l 1 we
find the following finite result:

Fa1b'
g2Tr

2D
. ~13!

When we add a magnetic massm into the game, we have
two regularization mechanisms in competition, and we m
compare the scales at which they operate, the most effic
being the one that has the largest scale. A convenient wa
introduce10 the magnetic mass is via the following sum ru

E
2`

1` dx

2p

r
T
~ l 1 ,x!

x
B~x!'

B~0!

l 1
21m2 , ~14!

which is a reasonable approximation ifB is not singular at
x50 and does not increase too much whenx becomes large
Adding the two cuts and approximatingn

B
( l 1

0)'T/ l 1x, we
find that the 2-loop integrand is to be multiplied by the fac

Fa1b'
g2Tr

p2D E
0

1` l 1 dl1
l 1
21m2H lnUD12rl 1

D22rl 1
U

2
D

rl 1
F D

4rl 1
lnUD12rl 1

D22rl 1
U21G J . ~15!

We can now give analytical limits for this factor in tw
cases. If the magnetic mass dominates over the scalel 1* de-
fined above, we have

Fa1b '
rm@D

g2T

pm
;1, ~16!

while in the opposite limit (l 1* !m) we recover Eq.~13!.

Fa1b '
rm!D

g2Tr

2D
!1. ~17!

Let us mention that if the additional gluon in Fig. 4 is lo
gitudinal a similar calculation as above goes through wh
m is to be replaced by the Debye mass of ordergT, so that
the factorFa1b is of orderg!1.

The conclusion is therefore the following.
~i! If the magnetic massm is the relevant regulator, the

the 3-loop diagram gives a ‘‘correction’’ of order one to th
prefactor of the 2-loop result, and this is likely to be the ca
for higher loop corrections also. In this regime, the pho
production rate is sensitive to the magnetic mass, and
must resum an infinite series of diagrams.

10This does not tell much about the way the magnetic mass en
in the gluon propagator: it just tells that the self-energy of the tra
verse gluon satisfiesP

T
(x50)5m2, which is a definition analo-

gous to that of the Debye screening mass.
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~ii ! If on the contrary, the scaleD/r dominates or if the
regulator on the gluon propagator is the Debye mass, t
the 3-loop diagrams lead to a negligable correction to
2-loop result, and it is expected that this hierarchy will
valid between 4-loop and 3-loop, . . . @8#.

It remains now to make a bit more explicit the comparis
betweenD/r and m. For that purpose, let us recall that th
expression ofD52P•Q1Q2 can be taken from the 2-loop
calculation@7#:

D'pq0F12cosu1
Meff

2

2p2 G , ~18!

whereu is the angle betweenp andq, and where11

Meff
2 5M`

2 1
Q2

q0
2 pr. ~19!

Due to the extremely singular nature of the integral oveu
@7,8#, the order of magnitude ofD is q0Meff

2 /p. Taking into
account the fact thatr'p1q0 and p;T, we divide the
(q,q0) plane in two regions where respectivelym or D/r
dominates~see Fig. 5!. In region I, i.e., roughly the region o
small virtuality, the magnetic mass is the most importa
regulator and, as seen above, the 3-loop contribution is
large as the 2-loop contribution: the production mechan
becomes nonperturbative and resummations should be
sidered. Increasing the virtualityQ2 of the photon increase
D @see Eq.~19!# which eventually becomes the domina
cutoff and one enters region II where the infrared sensitiv
of 3-loop ~and higher loop diagrams! becomes subdominan

In region II-b, the production mechanism receives a co
tribution from large gluon momentum and the approxim
tions done in the previous calculations may become inc

rs
-

11The formula forMeff
2 has been extended here to hold for ha

slightly virtual photons@15#.

FIG. 5. Comparison ofm andD/r in the (q,q0) plane. In region
I, the magnetic mass is the most important regulator; the 3-l
contribution is as large as the 2-loop one. In regions II-a and I
the magnetic mass is a subdominant regulator, and the higher-
contributions are subdominant. In region II-b,L can become hard
and some of our approximations become invalid~see@9#!.
1-5



ex

ia-
rd

on
ha
rs
h
e
th

lo-
t
uo
an
ha
fo

d
lia

y

it is
stic

this
tic
in
ll
nt
rge

of
the
n of
the
ts

for
by

P. AURENCHE, F. GELIS, AND H. ZARAKET PHYSICAL REVIEW D61 116001
rect. However, it was found by an explicit calculation@9#
that the expressions valid in region II-a could be safely
trapolated to the case of soft virtual photon at rest (q50) in
region II-b. However, there is the possibility that 3-loop d
grams give important contributions in region III due to ha
gluon exchanges, but this is a different story.

IV. SUMMARY AND OUTLOOK

In this paper, we have considered higher order correcti
to photon production by a quark-gluon plasma, with emp
sis on the infrared singularities due to ultrasoft transve
gluons. When one sums over all the possible cuts throug
given Abelian topology, there are cancellations that prev
the quark propagators from becoming infinite, making
higher-loop corrections infrared finite.

The generalization of this result to non-Abelian topo
gies is not straightforward. Indeed, the above argumen
flawed already at the stage of counting the number of gl
propagators. Loosely speaking, because of the 3-
4-gluon couplings, the number of gluons can be larger t
the number of independent momenta. The loop counting
QCD gives for the number of gluon integrations

L215ng2~n31n4!<ng , ~20!

where n3 and n4 are respectively the number of 3- an
4-gluon vertices. As a consequence, unlike in the Abe
or
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topologies for whichL215ng , the gluon propagators pla
an active role in the KLN compensations~if any!, and much
more elaborate arguments are required. As a side note,
also impossible to apply in the thermal case the heuri
power counting argument of Poggio and Quinn@16#, since
some gluons have an infrared count of23 ~instead of22 at
T50) because of the Bose-Einstein statistical weight.

We have also considered the possible competition of
mechanism of regularization with a hypothetical magne
mass of orderg2T. The result is that there exists a region
the (q,q0) plane ~roughly speaking, for photons of sma
invariant mass! where the magnetic mass is the domina
regulator, and where the higher-loop corrections are as la
as the two-loop result, and should be resummed.

Further extensions of this work include the treatment
non-Abelian topologies, the study of resummations in
region where the magnetic mass dominates, the extensio
the 2-loop calculation for hard massive photons, and also
study of how the finite lifetime of quarks in a plasma affec
the colinear singularities found at 2-loop.
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