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Kinoshita-Lee-Nauenberg theorem, magnetic mass, and thermal photon production
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We study the infrared singularities associated with ultrasoft transverse gluons in the calculation of photon
production by a quark-gluon plasma. Despite the fact that the Kinoshita-Lee-Nauenberg theorem works in this
context and provides cancellations of infrared singularities, it does not prevent the production rate of low
invariant mass dileptons to be sensitive to the magnetic mass of gluons and therefore the rate to be
nonperturbative.

PACS numbgs): 11.10.Wx

I. INTRODUCTION contributions involving the bremsstrahlung mechanism over-
whelms 1-loop contributions for the production of a soft real
It is widely accepted that infrared singularities are generphoton. The insertion of an exchanged gluon in the hard
ally stronger in thermal field theories with bosons, comparediuark loop (see Fig. 1 generates collinear singularities
to their counterparts at zero temperature. This is due to th&hich are powerlike as in 2-loop diagrams while they are
singular behavior of the Bose-Einstein statistical weight a@nly logarithmic in the 1-loop contributions: as a conse-
zero energy, which affects massless bosonic fitlds. a quence,_when these singularities are regularized by the re-
consequence of these stronger singularities, only partial resUmmation of the thermal mass,.~gT on the quark propa-
sults exist concerning their cancellation in the calculation ofJ20rS, the two-loop diagrams get an enhancement by powers
observable quantities in thermal massless thedges[1] °f 9 '+ whereg s the strong coupling constant. _
for instance. So far, there is no general translation in the The contribution of th? d_|agram of_F_|g. 1, although domi-
language of thermal field theory of the arguments given f0|nated by a soft gluon, is infrared finite. In fact, even the

this cancellation aff=0 by Kinoshita[2], and Lee and colntr||bu_t|on %f the traE.sverse.gllljon IS f|n|'Fe n th% pa(;tlcyla}r
Nauenberd3]. calculation, due to kinematical constraints. Indeed, it is

. trivial to see that the two delta functions corresponding to the
The r(_esummanon of h'afd thermal loo@sTL) [4] partly _cut quarks 8(P2—M2)8(R+L)2—M2) become d(P2
cures this problem by giving a thermal mass to otherwise™ 2) 5(R2—M2) in the limit of vanishingL, and that the
massless fields, such as gauge bosons. Nevertheless, ‘h@’lw o g,

static magnetidtransversg modes remain massless in this atter pair of delta functions do not have a common sup_porF i
framework and may still generate infrared singularities, ad/l=70: for the bremsstrahlung process we are considering
exemplified by the calculation of the fermion damping rateh‘gre thze ENErgiepo Zand ro have the same sign and hence
[5]. In QCD, it is believed that a thermal mass for the staticP” — M= andR"—M:, cannot vanish simultaneously, what-
transverse modes is generated nonperturbatively at the scat¥er the value oR? Itis therefore kinematics, via ther-
g2T, but this mass may be too small to be an efficient reguMionthermal mass, that prevents infrared singularities in this
lator.

A particular area where this infraredR) problem be- /
comes relevant is the thermal production of particles. In this
paper, we focus mainly on the production of photons by a
qguark gluon plasma. The production rates are calculated as
the imaginary part of a self-energy diagram evaluated at fi-
nite temperaturg6], and are expected to be observable quan-
tities that should come out finite in a consistent calculation. )

In a recent study7-9], it has been shown that 2-loop /

FIG. 1. 2-loop dominant contribution to photon production. The
blob indicates that the gluon propagator includes the resummation
IFor a field of masam, the statistical weightto be evaluated of hard thermal loops. The quark propagators include a thermal
on-shell in the real-time formalishis bounded byT/m. massM .., arising from the HTL resummation in the hard limit.
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infrared sensitivity of the above expression. The conclusions
of this naive power counting are the following:

(i) If the additional gluon is longitudinal, its cutoff is a
thermal mass of ordegT , and the corresponding contribu-
tion is suppressed by one powergtompared to the 2-loop
one.

(i) If the additional gluon is transverse it is natural to
assume the regulator to be the magnetic masg°T, and
we have(3-loop~(2-loop).

FIG. 2. Example of 3-loop contribution for photon production. Therefore, it seems that if we keep adding transverse glu-
One of the gluons cannot become ultrasoft due to kinematics, and isns in the quark loop, we generate contributions that are all
displayed in boldface. The other, unconstrained, gluon is displayeg 1he same order of magnitude. This fact is very similar to
as usual. the argument given by Linde for the breakdown of perturba-
tion theory in thermal QCD, although in the different context
of the calculation of the free enerd$0].

. . . There is nevertheless one reason why this power counting
by studying the limitM..—0. A stronger divergence was . e 90 naive. One should indeed keep in mind that this
found in the transverse gluon contribution, indicating thatestimate is valid only for a given cut through the 3-loop

M., played a role in the regularization of this potentially gizgram. It does not take into account potential compensa-
dangerous contribution. tions that may occur when one is summing all the possible

fBUtI this kinematicgl cuto_ff dr(])es notkalpply to qddir:iorzqu cuts. In this paper, we are going to study in more detail this
soft gluons one may insert in the quark loop, as In the Ia'possibility, and its interplay with a magnetic mass at the
gram of Fig. 2, for instance. Indeed, in topologies involving scaleg?T

more than one exchanged gluon, the kinematical argument
given above constrains only the sum of the momenta of the
cut gluons. Therefore, we know that+ L, cannot vanish, [l. INFRARED CANCELLATIONS

which tells us thatfor instance L has a lower bound at the An'i tant feat f the ab le is the fact that
scalegT, butL, can still become arbitrarily smaland this N important feature ot the above example 1S the fact tha
éhe quark propagatorgarticipate in the overall infrared di-

leads to an infrared divergence for the cut depicted in Fig. X .
when the ultrasoft gluon is transverse. Indeed when comyergence of the diagram. In fact, if some quark propagators

. i o were not becoming singular in the IR limit, the diagram
pared to the 2-loop diagram, the additional gluon proviges . . .
two coupling constantsji) two quark propagatorsiii) a set wou]d have been finite py power.countlng. This can be gen-
of gluon spectral density and statistical weight, divd the eralized to a topology with an arbitrary number of exchanged

" . . gluons (but without 3- and 4-gluon verticg$ Indeed, for
\?vr;aignsgjt?; z:t];tgj : %?S&Oenglo\?vlgf Qbﬁﬁ:lnegc,tmg everythlngthese topologies, the number of loopsis related to the

number of gluons, by

particular topology by providing a natural cutoff of ordgF
on the gluon momenturh. This statement was tested|ig]

(3-Ioop)~(2-loop)><g2f d*Ling(Ly)p(Ly) L=1+ng. @)
XS(PHLYS(RLY) One of theL loop integrals is an integratiod*P over the
o s T T T guark momentum which is hard, and is not concerned by the
~(2-loop) X g j |1d|1|— 2T T IR problem. The remaining — 1 integrals are over the mo-
. thE menta of theng soft gluons. The fact thdt— 1=n, tells that
9°T even if each gluon comes with the singular factor
~(2-loop) XT’ @) n_(19p(L), itis accompanied by a phase spaée which is

enough to make the integral finite. For these topologies, it is
where p is the spectral function of the additional gluon, the quark propagators which are ultimately responsible for
whereu is introduced as a regulator on the integral oMer the IR divergences. Indeed, it is trivial to see that if one
We used the fact that the quarks are hard, and mostlguark propagator is cut, then some other quark propagators
on-shelf because of the cut crossing the quark loop. It isbecome infinite when the gluon momenta go to zero. This is
important to stress here that each fermion propagator bringke reason why we are going to focus on the quarks, and do
an extra factot, in the denominator, thus contributing to the not care about the gluon propagators.

There is another, symmetric, contribution coming from the re- “n this paper, we are considering only Abelian topologies, since
gion of phase space whetg is of ordergT andL can become this is enough for our purpose of studying the interplay between the

arbitrarily small. magnetic mass and possible cancellations. Later on, we indicate
3The role played by the small off-shellness of the additionalwhy the arguments given here cannot be applied to non-Abelian
quarks will be considered later on in this paper. topologies.
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}WW Ki=2 La (4)

\L éiug ng % We can now use thé functions to perform explicitly the
P integral overp®, which gives after splitting the propagators

i into positive and negative energy terms

FIG. 3. Generic configuration for which cancellations in the
infrared sector occur. Again, the gluons all include the HTL correc- A= f RE
tion. The gluons do not need to be parallel for the argument to
work, since the gray area hides the details of how the gluons are
attached to the upper quark line. The inderunning from 0 ton, 1
indicates which quark propagator is cut on the lower fermion line. 2 (af,p,{Li})jl;Ii [a; T e —}- )
1

n n 1
ALin (19p(L; —
p L1 a'Lin @Dy Tr [T 50

n

It is rather easy to show that there are cancellations at the . . 0
level of the quark propagators occurring in the calculation ofvhere we denotew;= \/[(PJ_r _ki) +M2 and aj=-—k;
the imaginary part of1%. Let us illustrate it in the reason- + €w;. According to this definition, all the:” become equal

ably general situation where we have a single quark loop teo e+/(p?+M?2 when the gluon momenta go to zero. We see
which are connected the two external photons, and an arbthat denominators where both’s carry the same sign van-
trary number of internal gluongbut without non-Abelian ish in this limit. The IR singularities therefore show up in the
couplings; see Fig.)3To simplify, we detail only the lower vanishing denominatore;” — a; . Only the second line in

fermion line, and hide the details of the upper line in a com-gq. (5) is relevant in the followmg discussion, and it can be
plicated function we do not need to specify. compactly rewritten as

Since we are going to demonstrate cancellations among
the various contributions to the dispersive part of the photon
polarization tensor, it is convenient to work in tRéA for-
malism[11], in which cutting rules exist that are both very {e;
simple and very close to tHE=0 ones[12].° Therefore, all
the contributions to the imaginary partHf can be obtained One can simply observe that for every denominatgr

by cuts dividing the diagram into two connected pieces, eaciT ¢ aj with numerator(a; ,p, {L }) appears a denominator
of these parts containing at least one external leg. a; —a; with a numeratolF(«; ,p,{L;}) (all the other de-

By summing over the index of the cut quark on the |owernom|nators being the samél'he S|mple poles therefore can-
fermion line, the contribution of the diagram of Fig. 3 can becel trivially. This can be extended to the more complicated
written a$ situation where more than twe;s tend to a common value,

which amounts to proving that these denominators appear in

-

[
I+ o

af pALH]] —— ®)
N i#i o' —q

4 ” . o a combination that remains finite for any configuration of the
AEJ d*p |1:[ d*Lin_(17)p(L) Tr|F(p°%p.{Li}) a;’s. For that purpose, let us consider an expression suth as
: F1= S, Fla]] —
n= ()
XE S((P+K;)? m)EWZ ©) = i a— a

and show that such a quantity is always finite provided some
regularity property of the functioR. The shortest way to see
that is to notice thaf,, is the leading coefficient of the
Lagrange polynomial of degree that interpolates between
the points(«; ,F(a;)):

where the functiorF hides all the details about the denomi-
nators on the upper quark lih¢as well as the fermionic
statistical factors, which do not play any role in the follow-
ing), and where we have defined

SIf the R/A amplitudes are finite, then so are the time-ordered n(X)= 2 F(a; )l;ll — _F XM+ ®)
ones. Nevertheless, checking the compensations for an arbitrary A
number of loops with the rules found [13] would be awkward  ag sych F, is finite for every value of they’s if the func-

since it is not possible to write all the contributions as cut dlagramstlon F is n times differentiable. Indeed, |f several points
If one insists on using the closed time p&@iTP) formalism as an (a; ,F(a;)) collapse into a single point of multiplicity, the

exercise, then the rules given [ib4] are a better starting point. Lagrange polynomial has a finite limit, and coincides vfith

6 . . . .
| In th? RIA f?gmal'sm’ Wﬁ.p'Ck thde mr?.St singular E;ece for each and its firstm— 1 derivatives at this point. One can note that
gluon, |.e.,nB( 7 p(L;). Failing to do this, we would get a sup-

pressed contribution compared to the 2-loop result.

"This function does not depend on the position of the cut on the
lower quark line, but depends on the position of the cut on the upper 8At this stage, we can drop all the superscrigtsince the com-
line. pensations occur in fact for each given setp$.
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this argument also applies to insertions of self-energies on
the quark line. Indeed, the only peculiarity of self-energy
insertions is that they force several's to have the same
value even if thd_; do not tend to zero; and the above proof
works for any configuration of the;’s, whatever the cause
that makes them equal.

Although the above argument has been presented in the ) o
case of a 2-point function, it still works for the dispersive FIG. 4. Notations used for the 3-loop contributions.
part of anyn-point function (just attach more photons or
gluons to the shaded part of Fig). 3

diagram of Fig. ], respectively for the cut&) and (b):

dL,
— 2 o
IIl. COMPETITION WITH THE MAGNETIC MASS Fab=0 J W(ng)(sz)pTP(Ll)
The result of the previous section is that the product of all 0. (19,1)n (19
the quark propagators remains finite in the IR sector when % T 1’2 g ! - 9)
the sum over the cuts has been performed. When considering [(P£Ly)*~MZI[(RELy)*—MZ]

the imaginary part it shows that, for a fixed cut on the upper ) ) i
line, there is no singularity in the propagators of the lowerVhere P7? is the transverse projector, apd is the trans-
line. The argument should be repeated for the upper lineverse spectral function of the gluofnly the transverse
which is made finite by summing over all the ways of cuttingmode of the ultrasoft gluon is relevant; the other gluon can
it. These cancellations between different cuts occur within &€ transverse or longitudinal, as in the 2-loop calculation
given topology, and correspond to compensation betweemhe factors of formP,/[(P= L,)2-~M2] come from the
real and virtual corrections. They can therefore be seen asfarmion propagators in the hard momentum approximation.
form of the Kinoshita-Lee-Nauenbef&LN) theorem. We can further simplify these factors by evaluating them at
We point out some differences with the usual version ofP2=M?2 since they are to be multiplied by the 2-loop inte-
the KLN theorem at zero temperature where the exchangegrand which contains &(P?— MOZC). Noticing that[see Eq.
gluons are bare gluons. At finite temperature we deal with46) in [8]]
resummed gluons and the most dangerous divergences arise
when cutting spacelike transverse gluons which are shielded P,R,P7(L1)~—pr(1—cos6,), (10
by a “small” magnetic mass. The timelike gluons are
shielded with a “large” thermal mass of ordgim and do not where#, is the angle between the vectgrandl,, it is easy
lead to any infrared problems in the context of this study. to perform the angular integral explicitly, which give
We are now going to apply the above considerations to

study explicitly the 3-loop example already presented in Fig. 40 1-cos6;

2. As we have already seen in the Introduction, one of the 1[(Pi L)2—M2][(R+L)°—M2]
gluon momenta has a lower bound thanks to kinematics,

while the other gluon is not constrained in the ultrasoft limit. T ( X+ A }In 2rl 1(X+1)iA‘ _ 1)
Let us choose the gluon on the riglmomentumL ;) to be prlf “drl4| | 2rl 1(x—1)tA|

ultrasoft while momentuni. remains soft. This kinematical

2
constraint prevents the propagators of the lower quarks to +7T(1_X ) n X+1| _ n2rll(x+1)tA}
become infinite wher.,;—0: they always remain off-shell - pliA x—1]| 2rl(x=1)xA| |
by some amount controlled by, . The constraint also sim- (11)

plifies the pattern of cancellation of infrared divergences in

the upper line since the propagators of momentBmL where we denotgz|2/|1 andA=2P-Q+ Q2. The general
+L;~P+L whenlL;—0 cannot diverge for the same rea- result established in the previous section says that the sum
son. In consequence we need only the two cuts depicted igver the cuts for this quantity should have a finite limit when
Fig. 4 to get rid of all the zeros in the denominatdtsturns I,—0 at fixedx (i.e., when the 4 components bf tend to

out to be convenient to perform the change of variaBle zerg. One can see that this is not the case in the contribu-
+L,;—P in the second contribution, as indicated in Fig. 4.tions of the individual cuts, since we have

Moreover, we neglect ; in front of L whenever these two

impulsions appear togethéas inL,+L~L). With these f 40 1—coS0,

notations and approximations, one can readily see that the 1[(|:>i Ll)Z—Mi][(Ri L,)2— Mi]

additional ultrasoft gluon brings the following factors, to be

multiplied by the 2-loop integrand.e., the integrand for the

m(1—x3) x+1\ 4arx
+ In *
x—1| " pLA’

o PLA

(12
®We also have to take into account the other possibility with

soft andL ultrasoft which is easily done by multiplying the final (Where we have neglected terms regular ih but occurs
result by a factor 2. trivially for the sum of the two cuts since the singuldy H
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part drops out. The interesting quantity is in fact the scale at
which this cancellation occurs. The only dimensional quan-
tity to which I can be compared with in the above expres-
sions islf ~A/r. Carrying out the integration or,l; we
find the following finite result:

II-b

II-a
g°Tr
Farn™ 51 (13
~ g2T
When we add a magnetic magsinto the game, we have
two regularization mechanisms in competition, and we must
compare the scales at which they operate, the most efficient
being the one that has the largest scale. A convenient way to q
introducé® the magnetic mass is via the following sum rule:

FIG. 5. Comparison ofc andA/r in the (g,qo) plane. In region

+oodx P-(11,%) B(0) I, the magnetic mass is the most important regulator; the 3-loop
f =T B(X)~ 5—>, (14 contribution is as large as the 2-loop one. In regions ll-a and Il-b,
= 2 X 1+ the magnetic mass is a subdominant regulator, and the higher-loop

o . . . . contributions are subdominant. In region Ildb,can become hard
which is a reasonable approximationBfis not singular at 554 some of our approximations become invagide[9]).
x=0 and does not increase too much wixdrecomes large.
Adding the two cuts and approximating(19)~T/I;x, we (i) If on the contrary, the scald/r dominates or if the
find that the 2-loop integrand is to be multiplied by the factorregulator on the gluon propagator is the Debye mass, then
) the 3-loop diagrams lead to a negligable correction to the
g TrJ*“‘ lpdly [ [A+2rl,] 2-loop result, and it is expected that this hierarchy will be
m2A Jo 17+ 2| NA=2r 1l valid between 4-loop and 3-lopp . [8].

It remains now to make a bit more explicit the comparison

i betweenA/r and n. For that purpose, let us recall that the
arl,

Fatp™~

A
rly

A+2rl4
A-2rl4

]' (15 expression ofA =2P-Q+ Q? can be taken from the 2-loop
calculation[7]:
We can now give analytical limits for this factor in two

In’

cases. If the magnetic mass dominates over the $tatie- Méﬁ
fined above, we have A~pago 1—0059+2—p2 , (18)
2
g7 i
Farp ~ —~1, (16) whered is the angle betweep andq, and wheré&
rus>A ™ Q2
2 _p\p2

while in the opposite limit i} <u) we recover Eq(13). Mer=M:.+ Eg—pr. (19

E _ g°Tr <1 17 Due to the extremely singular nature of the integral oger

AP n 24 ' [7.8], the order of magnitude Ak is goMZ24/p. Taking into

account the fact that~p+q, and p~T, we divide the
Let us mention that if the additional gluon in Fig. 4 is lon- (q,qo) plane in two regions where respectively or A/r
gitudinal a similar calculation as above goes through wherelominateqsee Fig. 5. In region I, i.e., roughly the region of
wu is to be replaced by the Debye mass of orgé&r so that small virtuality, the magnetic mass is the most important
the factorF,,, is of orderg<<1. regulator and, as seen above, the 3-loop contribution is as
The conclusion is therefore the following. large as the 2-loop contribution: the production mechanism
(i) If the magnetic masg is the relevant regulator, then becomes nonperturbative and resummations should be con-
the 3-loop diagram gives a “correction” of order one to the sidered. Increasing the virtuali9? of the photon increases
prefactor of the 2-loop result, and this is likely to be the case\ [see Eq.(19)] which eventually becomes the dominant
for higher loop corrections also. In this regime, the photoncutoff and one enters region Il where the infrared sensitivity
production rate is sensitive to the magnetic mass, and onef 3-loop (and higher loop diagram®ecomes subdominant.
must resum an infinite series of diagrams. In region ll-b, the production mechanism receives a con-
tribution from large gluon momentum and the approxima-
tions done in the previous calculations may become incor-

This does not tell much about the way the magnetic mass enters
in the gluon propagator: it just tells that the self-energy of the trans-
verse gluon satisfiel (x=0)=p? which is a definition analo-  *The formula forMZ; has been extended here to hold for hard
gous to that of the Debye screening mass. slightly virtual photong15].
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rect. However, it was found by an explicit calculatifd]  topologies for whichL —1=n,, the gluon propagators play
that the expressions valid in region Il-a could be safely ex-an active role in the KLN compensatiofi§ any), and much
trapolated to the case of soft virtual photon at rest Q) in more elaborate arguments are required. As a side note, it is
region Il-b. However, there is the possibility that 3-loop dia- also impossible to apply in the thermal case the heuristic
grams give important contributions in region Il due to hard power counting argument of Poggio and Quir6], since

gluon exchanges, but this is a different story. some gluons have an infrared count-e8 (instead of—2 at
T=0) because of the Bose-Einstein statistical weight.
IV. SUMMARY AND OUTLOOK We have also considered the possible competition of this

In this paper, we have considered higher order correction@1€chanism ofzregularlzanon. with a hypothetical magnetic
to photon production by a quark-gluon plasma, with emphaimass of ordeg“T. The result is that there exists a region in
sis on the infrared singularities due to ultrasoft transverséhe (q,qo) plane (roughly Speaklng, for phptons of sr_naII
gluons. When one sums over all the possible cuts through ®variant mass where the magnetic mass is the dominant
given Abelian topology, there are cancellations that prevenfegulator, and where the higher-loop corrections are as large
the quark propagators from becoming infinite, making theaS the two-loop result, and should be resummed.
higher-loop corrections infrared finite. Furthe.r extensions of this work include the treatment of

The generalization of this result to non-Abelian topolo- NON-Abelian topologies, the study of resummations in the
gies is not straightforward. Indeed, the above argument i€89ion where the magnetic mass dominates, the extension of
flawed already at the stage of counting the number of gluo€ 2-loop calculation for hard massive photons, and also the
propagators. Loosely speaking, because of the 3- angtudy o_f how t_he fll’llt.e. lifetime of quarks in a plasma affects
4-gluon couplings, the number of gluons can be larger thaf#he colinear singularities found at 2-loop.
the number of independent momenta. The loop counting for
QCD gives for the number of gluon integrations
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L—1=ng—(n3+ny)=<ng, (20)
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