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Radiative leptonic decays ofB mesons in QCD
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We compute the form factors parametrizing radiative leptonic decays of heavy mBSenge* v for
photon energies much larger tharycp, where perturbative QCD methods for exclusive processes can be
combined with the heavy quark effective theory. The form factors can be reliably obtained in this region in an
expansion in powers of\/E,. The leading term in this expansion displays an additional spin symmetry
manifested in the equality of form factors of vector and axial vector currents. The leading twist form factors
can be written as the convolution of tBemeson light-cone wave function with a hard scattering amplitude,
which is explicitly calculated to one-loop order. The Sudakov double logarithms of the form
[(as/'rr)logz(?_Ey/A)]” are resummed to all orders. As an application we present a method for determining the
CKM matrix elementV | from a comparison of photon spectraBnand D radiative leptonic decays.

PACS numbegps): 13.20.He, 12.39.Hg, 13.40.Hq

[. INTRODUCTION massless final lepton, which we will consider everywhere in
the following, the leading contributions té,(E,) come
The radiative leptonic decaB™— y»||* has received a from pole diagrams with @°=1" intermediate state and
great deal of attention in the literatuf&—7] as a means of those tof 5(E,) from JP=1" stated1]. The dominant con-
probing aspects of the strong and weak interactions of #&ibution comes from theéB** state, which is degenerate
heavy quark system. The presence of the additional photowith B* in the heavy mass limit
in the final state can compensate for the helicity suppression
of the rate present in the purely leptonic mode. As a result, Q.8
the branching ratio for the radiative leptonic mode can be as fuW(E,)= mfs* +oe 2
large as 10° for the u* case[6], which would open up a 7
possibility for directly measuring the decay const&gt[4]. where the ellipsis stands for contributions from higher states
A study of this decay can offer also useful information about . h th bers afd .
the Cabibbo-Kobayashi-MaskawéCKM) matrix element with the same guantum numbers afie= Mg —Mg . Qq IS
Vol the light quark electric charge in units of the electron charge.
ubl -

. — l .
Preliminary data from the CLEO Collaboration indicate -I;kE‘; hgglrjorluiﬁ: ?r?rtﬁr;it:f V_3u§i\ﬁm[&ar{?‘&e;grz;sfate
an upper limit on the branching rati&(B* — ye* v) of 2.0 Y pling y4a i

10" * at the 90% confidence levgs]. With the better sta- tors fy o have been also computed in the constituent quark

S . . model [4,5], using light-cone QCD sum rulg$] and in a
tistics expected from the upcomirgjfactories, the observa- light-front model[7].

tion and experimental study of this decay could become soon L N N
) ) : Momentum conservation in tH@™ — y»| ™ decay can be
feasible. It is therefore of some interest to have a good the- . N . )
. . L - _written asmgv =g+ p,,, with q being the momentum of the
oretical control over the theoretical uncertainties affecting . Y oo
lepton pair. The photon energy is given by

the relevant matrix elements.

The hadronic matrix element responsible for this decay 2
can be parametrized in terms of two form factors defined as E =p. :%_ g 3
y=U Py : ()
2  2mg
1 _
ﬁ(V(py:€)|b7u(1_75)Q|B(U)> and depending on the invariant mass of the lepton pair, 0
<g?<mg, it takes values within the window<0E < mg/2.
_ ) g : n
=e(u,e*,v,p.)fW(E.,)+i[e(v-p,) In this paper we study the radiative leptonic deddy
vV e —yve" in the kinematical regiom ocp<E., where the per-
—(p,) u(€* - 0) 1 A(E,). (1)  turbative QCD methods developed|itQ] for exclusive pro-
cesses can be applied.
The photon energy in the rest frame of tBemeson isE, In the limit m,— and the photon energy satisfyirtg,

=v-p,. The absolute normalization of the matrix element>Aqcp, the large momentum of heavy quark is carried
(1) can be fixed, in the limit of a soft photon, with the help of away by the lepton pair and does not affect the hadronic part
heavy hadron chiral perturbation theory. In the limit of aof the decay. Therefore, it becomes convenient to subtract
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away the largem,v component of théb quark momentum Il. LIGHT-CONE B MESON WAVE FUNCTION

and define a new transfer momentuapby We consider a heavip meson with the flavor conteihig
and momentunp=mgv moving along thez axis. Its light-
~ cone wave function can be expanded into a sum of multipar-
q=q+myv 4) ticle Fock component$B)=|bq)+|bgg)+--- . The va-
lence component is written explicitly as

and qﬂ O(mb) In the kinematical reg|0|1E >AQCD this

1) .1 JO—
momentum is space-likg2=A2—2AE ,<0 with A=mg |B)=Lb E ks k) —=[|g?(k,1)b°(k’, 1))
—my, being the binding energy. VNe Ky kg V2
Introducing the subtracted momentupone notices that 9ok, 1Y BPK 1)), ®)

in the leadingm,— limit the kinematics of our problem is

very similar to the one for ther®— y(p.)+y*(q) decay . —
discussed if10]. This suggests to apply7 QCD factorization The light quarkq and heavy quark in the B meson have

theorems in order to expand the form factdgsa(E,) in light-cone momenta= (k. ,k,) andmyv +k’, rtfspefztively.
inverse powers of, or equivalently 1£.,. In this formal- ~ This gives the constraints, +k’=Av, andk, +k; =0,
ism the form factors of interest can be ertten as the convowith A =mg—m, the binding energy of th& meson. The
lution of a hard Scatterlng amplltude with the transverse mOTange of variation Of( is the |nterva|(0 (mb+ A)U+) cor-

mentum dependent wave function of thB meson, responding tok’,=(Av,,—myw.). The wave function

(ki k). ianifi i
We will work in a reference frame where the photon Iz,(b(l;+) inj%/ takes values significantly different from zero for

moves along the *” light-cone direction and has light- _ _ .

cone Components of the momentm:(o’zEy/v+ ’ol)_l The ||ght cone wave fUnCthlﬂl(k+ ,kJ_) is related to the

The transfer momentum is given b§~2|=(/TU+ Alv, usual Bethe- Salpeter wave functidn,; at equal light-cone
1 0 ” 0

—2E,/v,,0,). Then, to leading order in E/ (leading time” 7=x+x?,

twist) and a5 we find

W (k)= f 426 £(0 T 3 (0)P(0.)q.(£) B(mgo)),

dk, d?k k+,k (7)
fy(E,)=fA(E,) Qq\/ f L k)

2(2m)3 Ky as

+O(AYE?). (5 i - dk_
\I,aﬁ(kJr !kJ_)EJ_wE\PaB(k)

The wave functiony(k, ,k,) depends on the +” light-

cone componenk_, , and transverse momentuiy,, of the _ \/N_c i[u 1o,

. . . - a 1T)Uﬁ(vvl)

light quark momentum in thé meson. Its properties are V2myo 4 )(2k.) V2

studied in Sec. I, where its moments are related to matrix o R

elements of local heavy-light operators. The expres$in —Uy(k, Dvg(v, 1) ]e(ky k). (8)

for the form factorsfy, A(E,) as integrals over the light-cone

wave functiony(k,) is derived in Sec. lll. The radiative The quark fields appearing in the definition of the Bethe-

corrections to this result induce a logarithmic dependence o8alpeter wave function are quantized on the light cone:
E,, in addition to the power law E/, . These include dou-
bly logarithmic Sudakov correctlons and mass-singular loga- 1 5 _ 5 _
rithms of the light quark mass logyj, which are resummed q,(x)= 2 [ap,xua(k,)\)e*'k'“rb{)\va(k,)\)e'k'x],
in Sec. IV. A few numerical estimates made with the help of K + '
a model wave function are presented in Sec. V, where we 9
present also a method for extracting the CKM matrix ele- o ]
ment|V,,| from a comparison of the photon spectréBimnd where the creation and annihilation operators satisfy
D radiative leptonic decays. A few details concerning thelak , & k/ v'1 = Ok O - The light-cone spinors are de-
calculation of the radiative corrections are presented in théined as in [11] and are normalized according to
Appendix. u(k,\) v, u(k,\) =2k,
The static heavy antiquark field(x) is related to the
usual b field by b(x)=€™"*h(x) and satisfies
Throughout the paper we shall use the following definition of the? N(X)=—h(x).  The  path-ordered factor P(0.£)
light-cone componentsk, = (k. ,k_,k,) with k.=ko*k; and —Pexp[—lgfgdzA(z)] is introduced to ensure gauge in-
k, =(kq,ks). variance of the Bethe-Salpeter wave function.
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Using the explicit expressions for the light-cone spinors

u(k,\") andov(k’,\) given in[10] one finds the following
result for the wave functio8) in the limit of an infinitely
heavyb quark:

- N,
\Paﬁ(k+ 1ki) \/—v 'J/(k+ 1kL)
- . 1+9
X (k++aL'kL)A+TVS )
ap
(10)
satisfying the usual on-shell conditions
KW (k. k,)=0, ¥(k, k)b=—-P(k, k). (11

We denoted byA , =y_ vy, /4 the projector on the space of
fast-moving particles along the z axis.

PHYSICAL REVIEW D61 114510

dé_ [ —i n
7(75—)

o

1
¢2Ncw(k+>=n§0 o

% eik+§,/2<o|ﬁ,y+ '}’5(|D +)nq| B(va)>
(15

Taking thej™ moment with respect t&, one obtains the
desired connection to local operatdsee alsd12]):

vNc/Zf:dk+(k+)jw(k+)=<0|F7+ ¥s(iD +)|B(mgu)).
(16)

The first few moments of the wave function can be simply
expressed in terms of known hadronic quantities. e
the corresponding matrix element on the RHS of @) is
determined by the decay constant of Biemeson in the static
limit defined as

It is convenient to define the one-dimensional wave

functior? (k. ) by integrating over the transverse momenta

wk,)= f pk. K 12
which satisfies
1 /N, 1+
. N2 Ai——s aﬁlﬂ('@)
d¢
=f7w27, £ 0] Th( 0>P<O§)qa( )|B<p>>
(13
Multiplying both sides by {, ys) g, gives
o P
Bk [ Lo
><<0|Th(0)7+75<J( )IB(vaD
(14

This relation can be used to express the momenig(&f. )

in terms of matrix elements of local operators. To see this,
the time-ordered product on the right-hand qiB&1S) of Eq.

(14) is expanded into a power series of the separation on th
light cone. This gives

<0|F7#75Q|B(msv)>=fsmsvﬂ 17
One finds the normalization condition
* k+> k+) 2

d — —|=\/——fgmg. 18

fo <v+l'//v+ \/NCB B (18

The first momenj =1 is given by the matrix element

[ ()l \f<0|hy+y5<uo+)q|8 (mev))

(19

Ky

U+

3 AmeB
This result agrees with the intuitive notion that the averaged
spectator quark momentum is proportional to the binding
energy of the heavy hadron. To prove it, one starts by writing
the most general form for the following matrix element,
compatible with Lorentz covariance:
(0lhy,,¥5(iD,)a|B(mgv)) =ag,, +bv,v,. (20
The equation of motion for the light quark fiel® q(x) =0
implies the constraintd+b=0. Another equation for these
parameters can be obtained with the help of the relation

Av,{0[hy, y5a|B(mgv))=(0[hy, ys(iD,)q|B)

+(0[hy,7s(iD,)qB).
(21
Multiplying both sides by ” and using the static quark equa-
flon of motion iv-Dh(x)=0, one obtains a+b

= \/—AmeB. Solving fora andb gives the result presented
in Eg. (19).
In the presence of radiative corrections, the connection

2We denote bothy(k) and y(k.) with the same letter. The dis- between the light-cone wave function and matrix elements of
tinction between them is made through their arguments. local operators is changed. For example, the zeroth moment
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(18) acquires a scale dependence typical of matrix elements k’ k’
of operators in the effective theory with heavy quarks
[13,14). In the rest frame of thd meson (,=1) this is

given by, after modified minimal subtractighS) renormal-

ization,
A K > K >
2 o dsz aSC,: ‘LLLLLLL -HLLLLL
\/N—CfB(Mh)mB: fo dk+fwlﬁ(k+,kﬂ T+ (@) ®)

FIG. 1. Leading order diagrams contributing to the radiative
3 m leptonic decayB* —W'y. The double line denotes the heavy quark
Xy~ E'Og_luz +Ar(ko) +F(ko) ¢ |- b, the zigzag line th&V boson and the wiggly line a photon.
h

(22)  wave function and the second is resummed into a factor
. . . o similar to the one in Eq(25).2
The termA g(ko) contains an IR singularity, which is regu-  The IR singular terms can be resummed to all ordersin
lated with dimensional regularization i@ =4—2e dimen-  sing the QCD evolution equations. In the resulting expres-

sions. The quantitied r(ko) andF (ko) are given by sion the contribution of multiple virtual soft gluon emissions
exponentiates and it can be factorized out from the wave
R wu? Ko function. This suggests to absorb the IR singular tévp
Air(ko)=2| N, +|09E 2y’ [as well as the mass singular logarithm lag?) as ex-
0 plained abovginto the light-cone wave function. For the
Kot \K2—m2 K purpose of normalization alone, one can define thus a modi-
x| log——2 — _ogi|-1]- —2 fied wave function, to one-loop order,
ko— Vk5—m? k§—m?
—m?2 _ —m? - N aC
ol i 2ykommT | m2vkom M Tk, kA =k, K Dexd 2 A (0 -k) +O(ad)
2 2 2 2 A s
Ko+ Vk§—m? ko— Vkg—m?
2 2 2 E 3 A2
T 4(kg—m?) S“F S
+ 2~ 2milog———|, 23 |1 ar 2992 (26)
m
k)2 . | Ko+ ko—m2 o . satisfying the normalization condition
= ) =2 | —
O i | - e )
4 0 | (aS(mb))wo de f P, Tk, KA
+ . N m = ’ ’
( ) NC B'''B aS(A) 0 + (271_)317[1 + 0L
We denoted hereN!R=1/e— ye+log(4w) and ko=v-k @.Cr

X1+

—1(k,+K%/k,). The IR singularity inAz(Ko) originates ype F(ko>)- (27)

from soft-gluon exchange betwebrandu in the initial state.
The coefficient ofN!R depends on the anglé between the . . _
momenta of théd andu quarks coskt=(v-k)/m and is well |t will be shown below that the hard scattering amplitude to
known as the QCD bremsstrahlung function. Notice that iton€-loop order is IR finite only when convoluted with this
receives an imaginary contribution due to the instantaneou@edified wave function.
(Coulomb interaction.

The scale-dependent paramet in Eg. (22) is re-
lated to the physpical decapy constgfgﬁgil [13,?4] Il LEADING TWIST ANALYSIS OF ~ B—ylw,
To leading order inxg there are two diagrams contribut-
ag(my) | ~2Po ing to the matrix elemen(tl), shown in Fig. 1. Only diagram
as(,uh)) fa(sn)- (25 (@), where the photon is emitted from the light line, contrib-

utes to leading order in 1, . Using the wave functiof8), it

The logarithmic dependence @i, on the right-hand side of €an be written as

Eqg. (22) matches that of the parametiy( ), as it should.

The remaining mass-singular logarithm can be absorbed into

the wave function by introducing a factorization scaé 3Note that this redefinition of the wave function applies strictly for
satisfying m<Agcp<A<u,.  Writing Iog(mzl,uﬁ) the purpose of the normalization condition. The precdiselepen-
=log(m?/A?)+log(A% ), the first term is absorbed into the dence of the wave functio(k, ,A) is derived below in Sec. IV.

B=
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dk, d?k, ( N dk, d?k,
r,= f—Tr\Ifk Kk ri= f—
=) Gy ek 2 2(2m)°
X (1 y) P2 é*) (29 T | Wik K, er O KBy
5 _2kp7+|8 . r ( + 1 L) (mbv+k,_p7)2_mg7u(75) .

34
The trace can be easily computed with the help of the basic 34

relations Performing the trace gives for the heavy quark contribution
to the form factors

Tr{(ks +a, K D)A L P, Y5 pys) =~ v (kiny +ky) g, 1 redk.dk )
29 (E,)=Qp\5 f gk )
2 mE,Jo 2(2m)3

- - 1 A A2
Tr{(ky+a, ‘K )A P, ys5y5=—sv.ie(n_k ,n.,B), X|1+0 —,—”
+ 1R + 5 ﬁ} 2 + 1 + E/y mbEy
(30)
_ fgmg (35
2m,E,

to which the expressiof28) can be reduced by application

of the identity where we used the normalization conditid®8) for the wave

function. This correction is potentially important for the case
= - i of charmed meson decays.

YuYe v = Oua ¥y ¥ Gra¥y gwyaJrls(M'V'a"B)yﬁy?él) The equality of the fc})lrm factors in Eq32) to lowest
order inag can be understood as the consequence of a larger
symmetry group of the Green functions in Fig. 1 to leading
order in 1E,. To see this, one notes that the momentum of
the light quark entering the weak vertex contains a large
light-like component p=k—p,=—E,n_+k, with n.

We find in this way the following results for the form
factors to the tree level:

fu(E,)=fa(E,)=fr(E,) =(1,0,0£1). Therefore a natural description of this quark is
R in terms of the light-cone component of the quark figld
o IN. 1 foodk+d2kL Wk, K)) defined as
TSIV 2E,Jo 202m)3 ke
_ AELAN_ %) _ Y-
|22 q-=¢€-v A—Q. - 4 ’ (36)
1L
X | 1— 2Eyk+) (32

satisfyingA _q_=q_ orh_q=0. The corresponding Dirac
action reads, when expressed in terms of this compdiént
The form factorf+(E,) of the tensor current is encountered _ _

when considering the radiative rare de@y: vvy. It is de- q(iD)q=q-(—in_-D)q-+O(1E,), (37)

fined by the matrix element which contains an additional &) symmetry group com-

pared with the original one. This can also be seen in terms of
the Feynman rules for the light quark line:

1 —
\/m<7(p716)|b0-,u,1)75q|5(v)>

k_
. . propagator: i Py S
=if+(E,)[(Py) €, —€,(Py).]- (33 —2E,(n_-k)+k+ie
(The tensor structurejv,—v €, is forbidden by gauge in- =l ——— 2(n_ ;)-He +O(1E,) (38

variance) The matrix element of théo,,q current can be
obtained from this one with the help of the identity,,
= (ilz)suvaﬁgaﬁy5'

The corrections to the resul82) arising from the cou- ) ) —
pling of the photon to the heavy quafkig. 1(b)] are sup- To leading order in B, and 1fn,, the weak currenbI’q
pressed byA/m, . In fact the leading term in this expansion can be written a&®T'q_, with h{?) the staticb quark field
is calculable in terms of known quantities only. The corre-satisfying y°hP)=—h®) Using the properties of the fields
sponding correction is given by g- and h,(jb) one can derive the following relation

vertex: —igy,ti=—ig(—n_), t°+O(1E,). (39

114510-5
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k’ k’

F,(Jb)YMQ— =- (n_),ﬁﬁb’q_ +i SOaMﬁ(n—)aHl()b) 7/375(31—(1-10)

Taking the matrix element of Eq40) between(y(p,,€)|
and|B(v)), and noting tha¢y(p,,,€)|h{”q|B(v))=0, gives

~
~~

o
N’

(y(E,n_,e)|h?y,q_|B(v))

:iSOQuB(n—)a<7(Eyn— !6)|E()b)7B75q—|B(U)>'

q
Q
a
a
a2
a
a
a
a
aQ
2
a
]
2

(41)
| | K
which reduces td\(E,)=fA(E,) in the rest frame ob. ‘LL'HLL "171111
Note that this is very different from other symmetry groups © ()

appearing in particle physics like flavor or spin as it is not FIG. 2. One-loop corrections to the radiative leptonic decay

app_arent in the hadron Spectrum;_ rather it is a §ymmetry Oé*%Wy. The curly line represents a gluon. The quark wave func-
an internal part of a Feynman diagram mediating & decay,p, renormalization corrections are not shown.

process. Similar arguments have been usdd @hto derive

relations among semileptonic form factorsBr- 7r,p using .

the additional symmetry of the so-called large energy effec- J(a):f d’l

tive theory for the final state hadrda5]. (2m)*

In the following we will show by explicit calculation to

one-loop order that the equalitfs(E,)=fa(E,) is pre- 1

served beyond the tree level, for the leading terms in an

expansion of these form factors in powers d 1/ Radiative

corrections change the simple power lav 1 by introduc- (44)

ing a logarithmic dependence on the photon energy. To lead-

ing order in 1E, and 1, these corrections are given by The heavy quark can be taken on shell such that its residual

(with i=V,A,T) momenturrk satisfiesy - k' =0. In fact the integral§® and
{((1—x)J@) are free of infrared and collinear divergences.
The exact results for these integrals are presented in the Ap-

><(—u-|+u-|<'+ie)[(|+E|—|<)2+ie](|2+ie)'

¢ (E (as(mb))‘z’ﬁo IN. 1 fwdk W(ky) pendix in Eqs(A7),(A8). In the limitk, /E,— 0 they have
i(Ey)= as(en) 22E,Jo K, the asymptotic expansions
asCr i 1 _2E, 2x? k.
X | 1+ ——8(un.E, K )). (42) J<a>=—(—-|o 2—’——+o(—>]
477 i Yyt (477')2E,y 2 g k+ 3 Ey
(45
The first factor accounts for the different renormalization of _
the weak current in the static quark eff_ective theo_ry a_1nd<(1_X)J(a)>= : —ElogzzE“rlo 2E,
QCD[13,14. The dependence on the hybrid renormalization (477)2E7 2 K. 9 4
scaleu, cancels between this factor and the hard gluon cor- 5
rection in the effective theory; . _ 2i+ o Ky (46)
We consider in the following the one-loop radiative cor- 3 E, |

rections to the diagram in Fig.(d). The heavy-light vertex
correction shown in Fig. @) has the form(for a general The UV divergent integral® is evaluated using dimen-

weak currenbl’q) sional regularization id =4—2¢ dimensions. One obtains
~ N @) i UV 2E Kk,
A= —ig*CR{[T L@ — (v §ID]- [T (@ K8 2= g\ N Tl 2 (47)
Mh
~To-(q-K((1-x)I®)}. 43

with NYV=1/e — yg + log(4m).
Combining these results one finds the following contribu-
The scalar integral® is defined by[the definition of tions from the heavy-light vertex correction to thefactors
((1—x)J@) is given in the Appendik from the diagram in Fig. @):

114510-6
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2E.K 2F 2F £ — £+ 2ig°Ce{£[— (2—26)3P +2(p,,- k) (I — 3P
83 = 8@ =NV~ log—2— — log? - +log, !
+ +
Hn +IP - IPN T+ 2(e* k)L —I® + 3P — 3P 4 g P)y,
472
- T +2. (48) (49)
The light-light vertex correction shown in Fig(l intro-
duces a correction to the photon coupling of the form The scalar factors(” are defined by
4
30 30 00— [ 9] (L0l 5
(007 9,0) 4 2_ 2. 2 ; 27 (50
2m)(+p,—kK)*—m+ie][l1°=2I-k+ie](I“+ie)

JELb):J(lb)ku""](Zb)pw' (51
I =399, + 3K, K, IP KD+ Pyks) +IED0 (52)

These integrals have collinear singularities, which will be regulated by giving the light quark anm@keir explicit results
in the limit m?< p,-k are given in the Appendiksee Eqs(A9)]. The term proportional toe* - k) p,, in the vertex correction
(49 vanishes after the integration O\Iié_[. Keeping only the first term amounts to a multiplicative correction of the lowest

order result. Using the results, E§\9), one obtains the following contributions to tidgcoefficients from the diagram in Fig.
2(b):

2E K 2E K
8P = 60 =N2Y —log—2— + 2log—2—— 1. (53)
Mh m

The self-energy correction on the internal light quark liféy. 2(c)] contributes
2E k
8 =5 =—NYV+log—2— 1. (54)
Mh
Finally, the box diagraniFig. 2(d)] is given by

¢l T(K+1—p.) & (K+1)d
2m)* (—v-1+ie[(I+k—p,)2—mP+ie](12+2]-k+ie)(12+ie)

B=igchf (55)

The term of ordet? in the loop momentum has an IR singularity, which is regulated as before using dimensional regulariza-
tion. The total contribution of the box diagram to theoefficient is given by(for bothi=V,A)

1
Elf(kL'IL_|+k+)

2m)° (—v-1+ie[(I+k—p,)2—m?+ie](12+2l-k+ie)(12+ie)

o B0k HE (ke —k, 1)+

5= —2i(4m)? f (56)

Here the contribution of th©(1?) terms is of order E, and thus subleading. The first two terms|® and ~1*, can be
computed to leading order i, by expanding the large denominator &s-k— py)z—mzz —2E, (I, +k,). The numerator
of the first two terms can be arranged as the sum of two terms, one of which just cancels the dendminktoy plus a
remainder

2(v-K) (1, +k, )+ (57)

E,2(v-K)k, +E, (I k;—k -1,)=E,

The first term has exactly the structure of the scalar integral appearing in the correctign We obtain for the total
contribution of the box diagram to leading ordertr as

d°I L (k)PTks =k -y ] (58)

(d) —; 2 . .
o7 =i(4m) {2(” K ir(v k)+f(277)[, (—v-1+ie) (I, +k ) (12420 -k+ie)(12+ie)
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with J,r(kp) the IR singular integral defined and computed in the Appefside Eq(A11)]. The second integral in E458)
is IR finite and can be easily computed by combining the last two denominators with Feynman parameters. This gives

f d*l (1)
2m* (—v-1+ie)(l.+k)(1%+2l-k+ie)(12+ie)

‘fldxf d4 (1, —xk 1, —xk,)

Jo (2m)% (—v-1+xkg+ie)[|+ +k, (1—x)](12—m2x2+i €)2
i 1 o (I —xky,—xk,)

——— | dx| dl, 59
swzfo XJO [, +k (1=)][1% —2x], ko+m?x?—i€] &9

where we performed the integration over the light-cone coordinatds . Inserting these results into the second integral in
Eq. (58) one obtains

i (k)2[r (= I, i
———f de dl, 5 —=—
8m2 ki Jo Jo o T[4k (1-x)][12 —2xl kot m2XP—i€] (41)2

lo 2k—*+2 ilo Ky (60)
9 2k, Tem%, )

Finally, we obtain the following result fot® to leading  factors inB— 17,y decays can be written s
twist:

Ne[ as(my) | ~#Po 1
fv.a(E,)=Qq 7(a b) =

k k
8= 50 =i(4m)2 2kgd|r(Ko) +100% 5 + 27rilogs—. as(2E,) E
2k, 2k, 7 7
(60 xfwdk*dzlzf//(k K)Tu(k, K) (62
o 2(277')3 + RN H + L

We are now in a position to write down the complete
one-loop correction to the form factors f&—Iv,y. The

individual contributions from the diagrams of Fig. 2 and ,hare the hard scattering kerrig (k. ,K, ) is given to one-
their total result are presented in Table I. There are a feVYoop order by
remarks which can be made about these results.

(i) The box diagranjFig. 2(d)] contains an IR divergent
term (61) which depends ork, through the quantity - k.

Note that this is different from the case of the pion form 1k, ,El):i 1+ &V)CF _|0922E“/+ Elogg
factor, which is IR finitg{17], and contains only mass singu- + 4m ki 277k
larities. However, the IR singular term can be seen to be
precisely identical to the one appearing in the one-loop cor- 5 2E.)k; A2 |Zi
rection, Eq.(22), to the decay constarfi. As explained in + §|09—2— THOQZ 1+ —
Sec. ll, it can be absorbed into tBemeson light-cone wave m +
function, leaving a IR-finite Wilson coefficient depending .
only on the light-cone momentum componént. . kf

(i) The dependence on théS hybrid scaleu;, cancels, as —2milog| 1+ E : (63

it should, between th& coefficient and the corresponding
factor in Eqg.(42). We will choose for this scale.=2E,,
with which the first factor accounts explicitly for the large
logarithms] (as/m)log(my/2E.) |" in leading logarithmic ap-
proximation.

Note that this result for the form factors is sensitive to the
dependence of the wave function on the transverse momenta,

(i) The equality of the leading twist form factors for through .the ]ast twc.) Ferms. Aftgr |ntegrat|or_1 ovar, these
terms will give a finite correction to the light-cone wave

different currents noted at the tree levg}(E,)=fa(E,) . ; o
persists to one-loop order. In view of the symmetry argu_functlon. The last term in Eq63) will give the form factors

ments justifying this equality at the tree level, it is tempting

to conjecture that this is a general result for the leading twist

form factors, valid to all orders in the strong coupling. “The modified wave functios(k, ,k,) in this expression con-
With these remarks, the leading twist result for the formtains only the exponentiated IR singularity.

114510-8



RADIATIVE LEPTONIC DECAYS OFB MESONS IN QCD PHYSICAL REVIEW D61 114510

TABLE I. One-loop contributions to the form factor from indi- a.C 2
vidual diagrams. The IR singular contributionA r(Kg) r(0)+r(b)—f dk, zp(k+) ds-F f dl, ——
=i(4m)?2kodir(Ko) — 2[N'R+log(u?nP)] is identical to the one an (ky)?
appearing in the one-loop correction tg, Eq. (23), and can be
absorbed into th8 meson light-cone wave function as explained in 1 2E Kk
Sec. II. X Ok, — I+)+ Iog—
Diagram Contributions t&;(E,)
- [ ks po| sk -1)
oo 2Ek, 2E, 2E, 47°
2(a) NY—log—2— —log?— +log—" —— +2
g 2 K. k. 3
N 2k w7 T<°><|+> (64
2(b) N: Iog— +2Iog? 1
whereT®(1,)=1/, is the tree-level hard scattering ampli-
_ NUV y + _ H + +
2©) N +|09 2 1 tude. The kernekC(k. ,1.) is given by
k k
2(d i(4m?22) +log? - +2milogs— aCel (21, 6(k,—1 1
@ (4 2o +log 5+ 2rilog ik, 1 y=2eSe (BT} Ly ),
2 k+(k+_|+) + 2
2(Z3°°-1) —INY+Zlog—; —NF (65)
o
L1(ZHQET_ 1) NUY—NIR where the _term proport_iongl t6(k+—l_+)_cor_nes_ from_ the
wave function renormalization. The distribution is defined
| by
oF K 2 as usua
Total INVV— |og—72Jr + %Io%
¥ 2E, | 2E, " 2EK, 4n? f(k+,I+)+=f(k+,l+)—5(k+—l+)fdr+f(k+,r+).
oG +logy = +2log— o=~ —- (66)
+AIR(k0)+|092k_+ +277ilogk—+ Integrating ovell . gives the explicit one-loop result for
2o 2 the mass-singular logarithn{§3). However, writing the re-

sult in this form helps us to resum these logarithms to all
orders. To do this, one cuts the integral over the transverse
loop momentum in Eq(64) to a certain cutoffA. This will

also a complex phase. These features are in contrast to tlhe chosen identical to the one introduced in the normaliza-
pion form factor case, where transverse momentum effectson condition(27). The logarithm resulting from integration
are absent to leading twist. over the rangan®<[2<A? is then absorbed into the wave

function 7(k.. ,A) by defining

IV. MASS-SINGULAR LOGARITHMS AND SUDAKOV _ 2
EFFECTS ¢(I+,A2)=f dk+zp(k+)(5(k+—l+)+IC(k+,I+)Iog;;—2 .

m
The expression for the form factof62) contains mass- 67)

singular logarithms log@,k; Im?) as well as Sudakov

double logarithms Io%[ZE /k,) which must be resummed to Expressed in terms of the wave functigifk. ,A), the
all orders. In this section we will discuss these issues in turnform factor is written as

. . . N (o (E / as(Mp) )2% 1
A. Resummation of collinear singularities v,A( ) Qq aS(ZE ) Ey
The hard scattering amplitudg,(k,) contains collinear

logarithms log(Z k. /n?), which arise only from the dia- Xfocdk Wk, 2E.K.)
gram 2b) and the wave function renormalization constant. In + k.
the former, these logarithms are produced by integration over
the transverse momenta in the regioA< |?<2E,/k+ . The w| 1+ as(2E,)Ce { —log? 2£+ §|og_2E
propagator of the struck quark can be written in this region 4 Ky
as k—p,+1)2=—2E,(k,+1,)+ - . Keeping only the 42 K.
leading terms in E.,, the contribution of this diagrarplus _Im log? 5. 2k F2m Iog—} 68)
the tree contributiohis proportional to 3 2ko
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Taking the logarithmic derivative of E¢67) with respect  with Q_=2E,, Q. =—k., Q?=Q.,Q_ andv,.=1. Cal-

to A2 gives the integral equation satisfied Byl . ,A?): culating S we write the integration measure ad’l
=1dl,.dl_d?, and perform thd , integration by taking
residues at the poles corresponding to three different propa-

d _ o0 —~ . . . .
A2— (1, A2 :j dk, (k. | K. ,A2). gators. One finds that the integral is different from zero pro-
dAzw( + A% o (ke T )gks A7) vided thatl _ belongs to one of the regions<0_<Q_ and
(69 | _>Q_. One checks that in the second case the gluon has

large components of the momenta and its contribution is as-
This is the analogue of the Brodsky-Lepage evolution equasociated with short distancéard subprocess. In the first
tion which governs the evolution of the light-cone wave ase, thel. integral is given by the residue at,
function of a heavy meson with the factorization scale. The=!1/(2l-) —ie which effectively amounts to putting the vir-
moments of the wave function are renormalized multiplica-tUbal gluon on shelll>=0. Then, introducing the scaling vari-

tively with the anomalous dimensions ablex=1_/Q_ one finds
S
2 n :aSCF 1 n -
AT K=\ ae g (ke (70 :}fld_xf 2 4-2x |
2Jo X Jo " T[x+12/[x(2E,)?]][2E k; (1—x) +1%/x]
where (k)= [dk, (k,)"#(k, ,A). The 0" moment of the (73

wave function evolves with the same anomalous dimensio

3a.Ce/(87) as previously derived in Sec. [bee Eq(27)]. %he denominators effectively set the limits on the integration

ranges, such that the leading doubly logarithmic correction

arises from the regiofin the rest frame of th& meson

B. Sudakov resummation s 2

o . kys<I_<2E,, kil _sIisIZ. (74)
The radiative correction to the form factofgE,) con-

tains double logarithms of the large ratio f@F,/k.). The In this way, one calculates the one-loop correction to the

explicit calculation of the preceding section shows that suctbudakov form factor as

logarithms arisg(in the Feynman gaugdrom a one loop 2 5 19

correction to the vertebh— W of the weak decay of thb S= fZEV%J'Z ﬂ( 2_ l_—) _ JZk*EVﬂmI_L

quark into a light quark with momentu®=p,—k. It is ke = Jiao 12 2E, A L

easy to see that in the rest frame of tBemeson in the

kinematical regiorE > A ocp, the light quark moves close to @e2dlf  (2E,)? [ (2e,2dlI?

the “+" light-cone direction along the photon momentum +f —In _j 2

with the energy Q-v)~E, and small virtuality Q?

~—2(p,-k) such thaQ?(2Q-v)?=O(A/E,). Itis the ra-  The reason why we represented the one-loop correction in

tio of the scale®Q?/(2Q-v)?<1 that enters as an argument this particular form is that it admits generalization to higher

into Sudakov double logarithms. The appearance of largerders in the coupling constant that effectively resums Suda-

negative corrections is related to enhancement of the contrkov logarithms. Each term in the rhs of E§5) comes from

bution of soft virtual gluons propagating collinear to the pro-different parts of the gluon phase space and has the follow-

duced light quark, close to the direction of photon momen4dng interpretation. The last term describes collinear emission

tum. In contrast with the inclusive distributions where it is of on-shell energetic gluon,_=O(E,), |, <I_ and If

canceled against the contribution of real soft gluon emis=I.1_=O(k,E,) (collinear regiop, and gives rise to a

sions, virtual soft gluon contribution survives for an exclu- single collinear logarithm. The first two terms correspond to

sive distribution like the one under consideration due to thesoft gluon emission on two different infrared scalés,

(75

2 2 2
2k.E, |7 iy 2Bk, T

absence of real soft gluons in the final states. ~l_~1,=0(k,) (soft region and |,~I_~I,
Let us consider the one-loop Sudakov correction to the= O(\k, E,) (infrared region, and produce double logarith-
weak decay vertex: mic contributions. Examining higher order corrections to the
5 5 b—Wq vertex one can sho_w that the_same regions of gluon
Fo1-%cs sl ,4(Q-v) 1o 4(Q-v) momenta provide the dominant contribution to the Sudakov
47 " F 99— 9 —Q? form factors. Moreover, since the emission of collinear and

(71)  Soft gluons occurs on different time scale their contribution
factorizes out a$18]

with 2(Q-v)=2E, and Q%= —2E,k, in the rest frame of F=F 2 2)E (02 2
the B meson. The Sudakov form fact&is given by the H(Q% IF(Q4.QLQ- )
following one-loop Feynman integral: XFg(Q%,Q0,0Q_ ,u?Fr(Q:Q_,Q%,u% (76
44 (40_—21_) with Q_=2E, and Q,=—k, . Here the hard subprocess
S=j J — U+ (72 Fy takes into account short distance corrections to the weak
(2m)? (—v-l+ie)(I?+ie)[(Q—1)2+ie€] decay vertexl ,~Q. , while F;, Fg andF,z denote contri-
)23
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butions of collinear and soft gluons on different momentum  Expanding the QCD running coupling constan(I?) in
scales. The parametgr entering Eq.(76) plays the role of  powers ofa(E,) and performing the integration in E79)
the factorization scale. The subprocesBgsand F\g admit  one can expand the exponenElinto a series of the form

an operator definition as expectation values of Wilson linesy(aL?)", ag(aSLZ)n, coowithn=12, ..., as=ayE,)
originating as eikonal phase of quarks interacting with softand L =In(E,/k,) to which we shall refer as leading-order
gluons. Using this interpretation one can show that ghe (LO), next-to-leading ord¢NLO), ... corrections. In par-

evolution of Fg and F,g subprocesses is in one-to-one cor-

respondence with the renormalization properties of Wilsont'Clljlatrr’] tc]f. trlet LOt apprqxu;at?l%n BPYOVtehS enoulgh to keep
lines. In this way, using evolution equations for different only the first two terms in Eq(79). Using the one-loop run-

subprocesses and teindependence d¥, one finds that the hing of the strong coupling
Sudakov form factor obeys the following evolution equation: 4
>. a
%)= —g (80)
dinF as(l1 22
=T(ag(Q%))+ To(as(Q?)) Aoln(lLA%)

dinE
! with Bo=11-3n; and replacingl’¢,s, Y its one-loop ex-
1 (2Ey)2d|f ) pression, one gets
- EJ;E K. l_zrcusp(as(li))- (77
T 2Ck 2E.k. (1 2E/k.
This evolution equation involves three functions of the cou- So= 5" ~log A2 log 5log A2

pling constant that appear as anomalous dimensions in the

evolution equations for different subprocesses. Two of them 2E, 2E, Kk, k.
I'eusp @and Iy are related to renormalization dfight-like) +log——loglog—— +log—-loglog -
Wilson loops whilel” is related to the UV renormalization of
the weak decay vertex:

(8D

which agrees with the result [19]. The overall effect of the
@, Sudakov form factor is to depress the form factors at large
[eus=—Ce+O( a?), To=0+0(a?), values ofE, . One can systematically improve the accuracy
m of Eq. (79) by taking into account NLO terms. To this end
one should include two-loop corrections to the coupling con-
= a_SCF+ O( aﬁ). (79) stant f?mdl“cu_Sp as WeII- as qne-loop correction to the anoma-
™ lous dimensiond™ defined in Eq.(798).

Neglecting thel', term one can write the solution to the

evolution equatior(77) as V. APPLICATION

The decay rate foB— yy,| ™ differential in the lepton

2 and photon energy is

deh If 2

=07 - d?r aGE|V p/°m3 2 2 2

EdE, " a2m?  (LAED+HR(E)I(—2xy+2xy
e Y

+x—2x%y+x3) = 2f o(E,) fU(E,)
XX(1=x)(1+x—2y)}. (82

. fqiﬂ Q-

5 12 |n_2rcu5[(a’s(|f))
Q* 1T I

2dl?
- f(f*—r(as(li)). 79

2 12
It We denoted herg=1-2E,/mg andy=2E./mg, in terms
Comparing Eq.(79) with the one-loop expressiofv5) we  Of which the available phase space is described-ag0,1)
conclude that, first, Sudakov logarithms exponentf@#] ~ andy=(x,1). An integration over all possible values of the
and, second, the exponent of the Sudakov form factor i§lectron energy gives for the rate as function of the photon
formally given by the one-loop expression in which the €nergy
“bare” QCD coupling constant is replaced by an anomalous

dimension with a particular choice of the normalization scale dar aGE|V,p/°mg ) 5 3
given by gluon transverse momentuﬁm The perturbative d_Ey_ 122)2 [FACEy) +TU(E) IX(1=X)°.
expansion79) is valid provided that the integration ovl{r (83)

does not go below the Landau singularities of the coupling

constant. This means that the resummed expres3i@nis  Our results for the form factor§y, A(E,) can be therefore
valid provided thatki>AQCD. In the practical application turned into a prediction for the shape of the photon spectrum
discussed below, the Sudakov form factor kar below the in this decay. To leading twist, theEl/ dependence of these
singularity atk , = A ocp Will be frozen at its value just above form factors yields a symmetrical photon spectradiii/dx

this point. x(1—X).
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TABLE II. Light-cone wave function parameteasandR corresponding to several values of the binding
energyA and the width parametes.

A=0.3 GeV A=0.35 GeV A=0.4 GeV
o (GeV) 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
a (GeV) 0.37 0.27 0.05 0.44 0.36 0.19 0.51 0.44 0.30
R (GeV ) 2.70 3.29 3.87 2.28 2.65 3.09 1.96 2.23 2.59

Neglecting radiative corrections, the form factors param{19). This is most restrictive provided that one choosés

etrizing theB™ — 1" vy decay are given by =3/4A, which gives the resuli86).
) . It is interesting to note that a hadronic parameter related
fu a(E ):fsﬂ(Q R— Qp Lo A° R= (k)™ to R appears also in the description of the nonfactorizable
VALY 2E,\ Y m, Ei ' ((ky)%) corrections to nonleptoniB— 77 decayd 25| (called there

84 1/\g). Our results suggest therefore a method for extracting
(84) this parameter in a model-independent way from datdon
where we included also the leading/m,, correction com- — yev decays.

puted in Eq.(35). To eliminate the dependence dg and V,, we will
Extrapolating the tree-level form factof84) over the en-  present our results for the photon spectrum by normalizing it
tire phase space gives, for the integrated decay rate, to the pure leptonic decay rate fBr" — wv, which is given
by
G|Vl *mg Qb)|°
F(B+—>|V)/)=a—sz(QuR—— (85) G2|V |2m3 m,\?2 m?
2882 My + _ ZFITubl B eof Tp _ e
N(B™—puv) 87 fB( mB) 1 mé . (88

This result is identical to the one obtained [iB] from a

qguark model calculation of the annihilation graph, with the For illustrative purposes we will adopt in the following
identificationR— 1/m,, (the inverse constituent quark mass numerical estimates a two-parameter ansatz for the heavy
In fact the appearance of the inverse constituent quark masseson light-cone wave function inspired by the oscillator
is @ common aspect of quark model calculations of longmodel of[26]

distance effects produced by weak annihilation topologies

with emission of one photon or glud22]. Such contribu- 1

tions have been investigated in many processes sudh as l//(k+)=/\/k+exp( - F(h—a)z)- (89
—py [23] andB—D* y [24]. @

O_ur QCD-t_)ased deriva_tion gives SfUCh comp_utations e will vary the width parametep in the rangew=0.1-0.3
precise meaning by replacing the ambiguous notion of CONEsev. The parameters/ and a will be determined from the

stituent quark mass with a wgll-define_d integral_ over thenormalization conditions discussed in Sec. Il. For a given

light-cone B meson wave function. Besides specifying the — o -

limits of validity of this result, such an approach allows onevalué ©of A, these normalization conditions set an upper

to compute also strong interactions corrections to it in a sysPound _on _the width parametew, given by wmax

tematic way. =(8/3y27)A (corresponding ta=0). The latter will be
It is possible to derive a model-independent lower limittaken betweem =0.3 GeV and 0.4 GeV. The resulting nu-

on the magnitude of th& parameter, under the assumption merical value of the constaRtogether with the parametar

that the light-cone wave function is everywhere positive, e given in Table Il for several choices af and o.

which is reasonable for the ground staemeson. This Taking fg=175 MeV and|V,,|=3.25<10 % [27,2§

bound reads gives, for the muoni®™ decay mode a branching ratio,

K%y 3 + = -7
. §k+i -2 ©6) B(B*—pur)=2.3x10"". (90)
' For a typical range of value®=2—3 GeV ! (see Table I,
and can be proved with the help of the inequality the tree-level integrated rat85) predicts a ratio
1 B(B*—ye'v)
—+bk,=2\b, k,>0. 8 ———————=2.0R?=8-18, (91)
k+ + \/— + ( 7) B(B+—>,U,v)

Hereb is an arbitrary real positive number. Multiplying with which implies branching ratios of abo(—5)x 10~ for the
#(k,) and integrating overk. gives the inequalityR  B* radiative leptonic mode, in agreement with the general
;2\/5—§Ab, where we used the normalization condition estimates of5].
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A similar analysis can be made for the radiative leptonic * T - . . —
" i one-loop -------
decay D" —ye’», for which one obtains the ratio of | % gerloop - |
branching ratios i
3
B D+—> e+y 2
(—7)=0.07( Q¢R— %) =0.09-0.16. 25}
B(D"— uv) mg
(92 2

Note that the charmed quark contribution can be appreciable: s
and can account for up to 50% of the light quark contribu-
tion. Neglecting SB) breaking effects and small kinemati- *'f
cal corrections, the denominator can be related to the muonit
branching ratio foD; decay which has been measured:

V 27_ D+) o 05 1 15 2 25 3
B(Duwv):(—v“’)( B(DS—n"v)
cs

+
7(Ds) FIG. 3. Typical leading twist form factor§(E,) (i=V,A) for
~(0.68+0.37) X 1073, (93) B— yev decays. The solid line shows the tree-level result, the dot-

ted line includes one-loop corrections to the hard scattering ampli-

We used here the CLEO resufi{D— u*v)=(6.2+3.1) tude, and the dashed line includes the resummed Sudakov form

x 103 [29]. This predicts an absolute branching ratio for thefactor truncated with a cutoff ak(.)min=Aqcp- We useag(m)

radiativeD " decay of =0.3 anda=0.36 GeV,w=0.2 GeV, corresponding td.=0.35
GeV.

B(D"—ye*v)=(0.82+0.65x 104 (94)

mostly due to the double logarithm in the one-loop hard

scattering amplitude; the leading-logarithmic factor in Eq.

(62) makes a positive contribution. This illustrates the impor-

Somewhat larger absolute values are obtained forOfie
radiative decay width, which is enhanced by the larger CKM

mat_rix element/cs. Neg_lecting SL(J?_’) breaking+in the+had— tance of the double logarithms I%(QEy/k+), which have to
ronic parameterl?sone finds for this cas#(Ds —ye"»)  pe resummed to all orders. The third curve in Figs. 3 and 4
=(0.9+0.8)x 10", again in agreement with the estimates ghoys the spectrum obtained by resumming the Sudakov

of [5]. _ _ logarithms to all orders, as explained in Sec. IV.
While useful as an order of magnitude estimate, we stress “yyhjje the functional form of the hadronic matrix element
that the relation(85) and the numerical results obtained with R(E,) depends on the detailed form of tifenknown B
Y

its help are not rigorous predictions of QCD in any well- yeson Jight-cone wave function, it is important to note that it

defined limit. The reason for this is that the predicti@4) is independent of the heavy quark mass(up to calculable
for the form factorsf\, A(E,) receives uncontrollable correc-

tions of orderAzlEf/ as soon as the photon enery does . . . . .
not lie within the region of applicability of our analysis gz*gﬁg% =
Aqcp<<E,. A similar statement can be made about the cor-*| 1
responding predictions for the charged lepton energy spec, |
trum, which requires knowledge of the form factors over the
entire range ot,,. e
In order to avoid these problems, we will restrict our con-
siderations to quantities defined with a sufficiently high
lower cut onE, . When radiative corrections are taken into “f
account, the hadronic matrix elemeRtn Eq. (84) acquires

a logarithmic dependence dh, given by Eq.(62):

2

1 ag(my) | 2o = (k) o
R = o) | au(2E dem )
<(k+) > aS( 7) 0 + o L L L . L
0 0.5 1 15 2 25 3
aCr A E (GeV)
x| 1+ SE)|+0l = —|. (95 _
4 E, my FIG. 4. The photon spectrum B* — ye™ v normalized to the

o ) pure muonic leptonic decay rate. The solid line represents the tree-
We show in Fig. 3 the results obtained for the form factorsievel result, assuming=3 GeV . The dotted line includes the

and in Fig. 4 for the photon energy spectrum using the treeeffects of the one-loop strong correctitonly the logarithmswith

level form factors and including the one-loop correction ay(m,)=0.3, and the dashed line includes the resummed Sudakov
computed in Sec. lll. This correction decreases the rate, adgarithms. The same parameters are used for the lightBoveve
least in the region of validity of our results. This effect is function as in Fig. 3.
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logarithmic corrections One would like to eliminate it by
taking ratios of the photon spectra BhandD radiative lep-
tonic decays. However, the large value of thend¢orrection

in the latter case would introduce large corrections to such
ratio, which shows that some knowledgeR(E,) is neces-
sary.

1
(B —u'v)

dI'(B*—ye"v)
dE,

am Q
::3:(Qu (E,) - b)(

PHYSICAL REVIEW [B1 114510

With this view in mind, we propose in the following a
two-step procedure for determining the magnitude of the
CKM matrix element|V,,|. In the first step, the hadronic
gunctionR®(E,) is determined in a regioB > A ocp from
the normahzed photon spectrum B decays

B Xa(1—Xg)

1-mZ/ma

m,

(96)

with xg=1-(2E,)/mg. We used on the RHS the leading twist result for Bie form factors; the Ih, correction is very
small and will be neglected. The superscrlptm(ﬁ)(Ey) labels the heavy quark flavor.
In the second step, one takes the ratio of photon spectBaaind D decays, which is given by

— T (B"—ye'y)

i v_( W (o) ) 2o
d |V ©(E_)— f
— T (D" —vye'y) cdl | QuR'(E,)—Qc/m/ \Mb p/ Xp
dE,
Ved | QuR®(E,)—Qe/m,/ | as(mc) Mo, %o

whereR®)(E,) is known from Eq.(96). We used here the
logarithmic dependence on the heavy quark ni@Ssfor the
RQ(E,) coefficients

ag(mg)
ag(mp)

—2IBgy
) (98)

RO(E,)=(ROE,), §=(

and the large mass scaling 1d43,14 for the pseudoscalar

decay constants
—2IBy mMp
) Vmg

fg

E_
The result(97) can be used to determine the CKM matrix
element|Vy|.

ag(mg)

ag(me) ©9

tonic decays. However, this would introduce an additional
uncertainty on the theoretical side through (S)JUbreaking
effects.

VI. CONCLUSIONS

We studied in this paper the form factors for the radiative
leptonic decay of a heavy mesda.g.,B™— ye™ v) in an
expansion in powers of the inverse photon enerdy, 1/To
leading orderO(1/E,) these form factors are given by a
convolution of the light-con® meson wave functiog/(k )
with an infrared-finite hard scattering kerrig} (k . ,IZL), Eq.
(63).

Physically, this problem is very similar to theyy* pion
form factorFm(Qz) studied in[10,17], where a similar fac-

The leading corrections to this determination come fromtorization can be established for the leading twist contribu-

higher-twist effects of ordeO(AzlEZ) in the D™ meson

tion of O(1/Q?). However, there are some important differ-

radiative leptonic form factors. Thelr magnitude can be estiences, the most striking of which concerns the dependence

mated by comparing the normalized photon spe@6ain B
andD decays. Although for th®& case these corrections are

on the transverse momentum to leading twist revealed in the
form of the hard scattering amplitudi, (k. ,IZL). Such a

expected to be well under control over a reasonably widejependence is absent in the case of the pion form factor, and

range of values foE,, it is questionable whether in tHe
case such a large energy regidihcp<E, exists at all.
Since the maximum photon energy accessiblB idecays is

its appearance can be traced to the presence of the second
dimensional parametde, (the light-cone projection of the
light quark momentum in thé& meson in addition to the

only about 0.93 GeV, the higher twist effects can be exjarge scaleE,. On the practical side, this implies a certain

pected to contribute no less than 10% to theneson form
factors.

A similar determination ofV | can be performed using
instead ofD*, the more accessibB_; meson radiative lep-

loss of pred|ct|ve power: while the logarithmic dependence
on E, is well determined, the constant term depends on the
preuse form of the full 3-dimensional light-cor® wave
function.

114510-14
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FM(QZ) case consists in the appearance of Sudakov doublg(® =
logarithms, which have to be resummed to all orders. This
feature has been noted previously in the context of Bhe
—a(p) semileptonic form factors of a heavy hadron in 1d a4l 1
[19,20, where these Sudakov effects have been resummed Zf Xf . = ;
(up to next-to-leading order Numerically, their effect is 0 2m)* (—v-I+ief[l+x(q—k)]*~s+ie}?
most important near the upper end of the photon energy
spectrum. i (= 1 1

An interesting qualitative result of our analysis is the :_QL d|+fo dxm, (A1)
equality of form factors of different currentd(E,) N 0+
=fa(E,) at leading twist. While this equality was estab- _
lished by an explicit one-loop calculation, it is probably awith s=—x(1—x)(q—k)?. After shifting the loop momen-
general result, true to all orders in the strong coupling. In dum | —|—x(q—k), one integrates over the light-cone com-
perturbative QCD language, the reason for this equality rootgonent _ using the Cauchy theorem and, subsequently, over
in the dominance of the momentum integration regionshe transverse momentul.
where the propagator of the struck quaske Fig. 2 can be The integral with one power df, in the numerator can be
approximated with a light-like eikonal line. This relation can reduced to a two-point function plus a UV finite integral by
be formalized by going over to an effective thedd5]  first combining the massless denominators with a Feynman
where the couplings of gluons to this line possess a highesarameter as above. This gives, for the numerator,
symmetry.

A similar approach has been taken[6] to derive rela-
tions among semileptonic decay form factors of a heavy had- - ~
ron. However, in the latter case the hard one-gluon exchange  l«—la=X(q=K)o=(v-Dvot (1), =X(q=K),
mechanism can be shown to introduce corrections to these

A second important complication compared to the J, d4l 1

2m* (—v-1+ie)[(I+q—K)2+ie](I?+ie)

relations, already at leading twist. This is different from our =—[-v-1+xv-(q—K)]v,
case where these relations appear to be preséatdeast at
one-loop orderunder inclusion of the hard gluon exchange. —X[(q=K)y—v-(q=K)]+(1,),. (A2)

Finally, our formalism can be used to put previous quark
model estimates of radiative leptonic dec4$$on a more
firm theoretical basis by giving a precise definition of the
light quark constituent mass. Our approach is likely to give
reliable description of the form factors in the larfgg region,
up to controllable corrections of ord&r?/E> . This comple-
ments an alternative approach presentedLinwvhich is best

The first term cancels the heavy quark propagator in the de-
nominator, and thel (), term vanishes after integration over
4. one obtains, in this way,

suited to the lowk,, region, where the heavy hadron chiral (@_ d4l [,
perturbation theory is expected to be applicable. a = 4 T a— K2+ 2.
o Using as input parameter the binding energy & meson (2m)" (zv-IHiell+a-k +iel '6()A3)

A, we gave several estimates for the branching ratios of

these modes. As a by-product, we presented also a method - -

for extracting the CKM matrix elemenV | by comparing =0, 3@ -[(q-Kk),~v-(q—K) }(xI?)

photon energy spectra in radiative leptoBi@andD decays. (A4)

with
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APPENDIX: SCALAR INTEGRALS
X

i (= 1
We present here a few details relevant for the computa- (xJ@)=— _zf d|+j Xs————— (AB)
tion of the radiative corrections. The scalar integral appear- 8w Jo 0 15=2Xqol++s

ing in the heavy-light vertex correctiolf® is computed by

first combining the two massless propagators with the help of These integrals can be evaluated exactly with the follow-
a Feynman parameter ing results:
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oo i 1 L ( riVE—2E.k, | rz\/E—ZEyk+) AL ( @—1) 772]
== = Ll T o T 2l T oo . el T T
(4m)% (E,—A) V€ 2E .k, (VE+1) 2E .k, (VE+1) Je+i) o 2
(AT)
((1—x)J(a)>=J“"—(x\](a)):E 1+ 294 | — og4(E7_A)2\/E+ 142t I0g8(Ey_A)2\/E
2 3 (47)? 4(E,—A)é 2E k¢ 2E Kk 2E, K +r,q
NP ) g8(Ey—K)2\/E_ og 2J¢ 2Bk, IOgZEyk++r1
2E.k, | 7 2E Kk, +1, 1+VE (E,~AM)A1+&) 2EKi+T,
(2E k4)? o 2E Kk, +r (2E ky)? o 2Bk, +r, (A8)
(E,—A)2(2E k;—r )g %E k+(1+1/\/_) (E,~ M)A2E K, —rp)é °%E K (1+11E)
with é=1+2E k. /(E,—A)? andry ,=4(E,— A)2(+ 1+ &) = 2E k,
The vertex correction to the photon coupling to the light quark is parametrized in terms of the integrals
H 2
goo Y [ L 52Pyk 7
(4m)2 2p, k| 2 m> 3
[ 1 2p,-k 1 2p ?
IP)= 0 — 5log? —~ KT
P (4 2%*( Te 2% 3
i 1 2p,-k 2p,-k
IP)= (Io 2 —2), IP)=——— | NYV+3—log—%—
2 am? 2, k| S Ta@me| e ut
i 1 2p, -k 5
(b) — y -
Js (4m)? 2py_k(log " 2). (A9)
When computing the one-loop correctionftg and the box diagram, one encounters the IR singular integral
dPl 1 (Amu2x?)€
Jir(v-kK)= fo f . (A10
RO = | S (o xie) (1742l Kt ie)(P+ie) (477)2 Tt O oy —iep e A0

The IR singularity has been regulated with dimensional regularizatidh=## — 2e dimensions. The integral overcan be
computed explicitly with the resuliwith Q=uv - k)

In(Q)=— = (N'R+Iog—'u2 Iog—Q Y T o | YT ‘Q_m)
T am? 2y@@-m2 [\ )| Q@2 2l Q+VQ2—nm?
2JQ%—m?| 2 4(Q*—m?)
Li (Q \/52_m2 e 2m|og—] (A1D)

with NLR= 1/e— ye+log(4w). In the limit Q>m this agrees with the expression given in Appendix G3ff].
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