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Radiative leptonic decays ofB mesons in QCD
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We compute the form factors parametrizing radiative leptonic decays of heavy mesonsB1→ge1n for
photon energies much larger thanLQCD , where perturbative QCD methods for exclusive processes can be
combined with the heavy quark effective theory. The form factors can be reliably obtained in this region in an
expansion in powers ofL/Eg . The leading term in this expansion displays an additional spin symmetry
manifested in the equality of form factors of vector and axial vector currents. The leading twist form factors
can be written as the convolution of theB meson light-cone wave function with a hard scattering amplitude,
which is explicitly calculated to one-loop order. The Sudakov double logarithms of the form
@(as /p)log2(2Eg /L)#n are resummed to all orders. As an application we present a method for determining the
CKM matrix elementuVubu from a comparison of photon spectra inB andD radiative leptonic decays.

PACS number~s!: 13.20.He, 12.39.Hg, 13.40.Hq
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I. INTRODUCTION

The radiative leptonic decayB1→gn l l
1 has received a

great deal of attention in the literature@1–7# as a means o
probing aspects of the strong and weak interactions o
heavy quark system. The presence of the additional pho
in the final state can compensate for the helicity suppres
of the rate present in the purely leptonic mode. As a res
the branching ratio for the radiative leptonic mode can be
large as 1026 for the m1 case@6#, which would open up a
possibility for directly measuring the decay constantf B @4#.
A study of this decay can offer also useful information abo
the Cabibbo-Kobayashi-Maskawa~CKM! matrix element
uVubu.

Preliminary data from the CLEO Collaboration indica
an upper limit on the branching ratioB(B1→ge1n) of 2.0
31024 at the 90% confidence level@8#. With the better sta-
tistics expected from the upcomingB factories, the observa
tion and experimental study of this decay could become s
feasible. It is therefore of some interest to have a good
oretical control over the theoretical uncertainties affect
the relevant matrix elements.

The hadronic matrix element responsible for this dec
can be parametrized in terms of two form factors defined

1

A4pa
^g~pg ,e!ub̄gm~12g5!quB~v !&

5«~m,e* ,v,pg! f V~Eg!1 i @em* ~v•pg!

2~pg!m~e* •v !# f A~Eg!. ~1!

The photon energy in the rest frame of theB meson isEg
5v•pg . The absolute normalization of the matrix eleme
~1! can be fixed, in the limit of a soft photon, with the help
heavy hadron chiral perturbation theory. In the limit of
0556-2821/2000/61~11!/114510~17!/$15.00 61 1145
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massless final lepton, which we will consider everywhere
the following, the leading contributions tof V(Eg) come
from pole diagrams with aJP512 intermediate state and
those tof A(Eg) from JP511 states@1#. The dominant con-
tribution comes from theB* 1 state, which is degenerat
with B1 in the heavy mass limit

f V~Eg!5
Qub

2~Eg1D!
f B* 1•••, ~2!

where the ellipsis stands for contributions from higher sta
with the same quantum numbers andD5mB* 2mB . Qq is
the light quark electric charge in units of the electron char
The hadronic parameterb.3 GeV21 parametrizes the
BB* g coupling in the heavy quark limit@9#. The form fac-
tors f V,A have been also computed in the constituent qu
model @4,5#, using light-cone QCD sum rules@6# and in a
light-front model@7#.

Momentum conservation in theB1→gn l l
1 decay can be

written asmBv5q1pg , with q being the momentum of the
lepton pair. The photon energy is given by

Eg5v•pg5
mB

2
2

q2

2mB
, ~3!

and depending on the invariant mass of the lepton pair
,q2,mB

2 , it takes values within the window 0,Eg,mB/2.
In this paper we study the radiative leptonic decayB1

→gne1 in the kinematical regionLQCD!Eg where the per-
turbative QCD methods developed in@10# for exclusive pro-
cesses can be applied.

In the limit mb→` and the photon energy satisfyingEg
@LQCD , the large momentum of heavy quark is carri
away by the lepton pair and does not affect the hadronic
of the decay. Therefore, it becomes convenient to subt
©2000 The American Physical Society10-1
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away the largembv component of theb quark momentum

and define a new transfer momentumq̃ by

q5q̃1mbv ~4!

and q̃m5O(mb
0). In the kinematical regionEg@LQCD this

momentum is space-likeq̃25L̄222L̄Eg,0 with L̄5mB
2mb being the binding energy.

Introducing the subtracted momentumq̃ one notices that
in the leadingmb→` limit the kinematics of our problem is
very similar to the one for thep0→g(pg)1g* (q̃) decay
discussed in@10#. This suggests to apply QCD factorizatio
theorems in order to expand the form factorsf V,A(Eg) in
inverse powers ofq̃2, or equivalently 1/Eg . In this formal-
ism the form factors of interest can be written as the con
lution of a hard scattering amplitude with the transverse m
mentum dependent wave function of theB meson,
c(k1 ,k').

We will work in a reference frame where the photo
moves along the ‘‘2 ’’ light-cone direction and has light-
cone components of the momentumpg5(0,2Eg /v1 ,0').1

The transfer momentum is given byq̃5(L̄v1 ,L̄/v1

22Eg /v1,0'). Then, to leading order in 1/Eg ~leading
twist! andas we find

f V~Eg!5 f A~Eg!5QqANc

2

1

Eg
E dk1d2k'

2~2p!3

c~k1 ,k'!

k1

1O~L2/Eg
2!. ~5!

The wave functionc(k1 ,k') depends on the ‘‘1’’ light-
cone component,k1 , and transverse momentum,k' , of the
light quark momentum in theB meson. Its properties ar
studied in Sec. II, where its moments are related to ma
elements of local heavy-light operators. The expression~5!
for the form factorsf V,A(Eg) as integrals over the light-con
wave functionc(k1) is derived in Sec. III. The radiative
corrections to this result induce a logarithmic dependence
Eg , in addition to the power law 1/Eg . These include dou-
bly logarithmic Sudakov corrections and mass-singular lo
rithms of the light quark mass log(m), which are resummed
in Sec. IV. A few numerical estimates made with the help
a model wave function are presented in Sec. V, where
present also a method for extracting the CKM matrix e
mentuVubu from a comparison of the photon spectra inB and
D radiative leptonic decays. A few details concerning t
calculation of the radiative corrections are presented in
Appendix.

1Throughout the paper we shall use the following definition of
light-cone components:km5(k1 ,k2 ,k') with k65k06k3 and
k'5(k1 ,k2).
11451
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II. LIGHT-CONE B MESON WAVE FUNCTION

We consider a heavyB meson with the flavor contentb̄q
and momentump5mBv moving along thez axis. Its light-
cone wave function can be expanded into a sum of multip
ticle Fock componentsuB&5ub̄q&1ub̄qg&1••• . The va-
lence component is written explicitly as

uB&5
dab

ANc
(

k1 ,kW'

c~k1 ,kW'!
1

A2
@ uqa~ k̃,↑ !b̄b~ k̃8,↓ !&

2uqa~ k̃,↓ !b̄b~ k̃8,↑ !&]. ~6!

The light quarkq and heavy quarkb̄ in the B meson have
light-cone momentak̃[(k1 ,kW') andmbṽ1 k̃8, respectively.
This gives the constraintsk11k18 5L̄v1 and kW'1kW'8 50,

with L̄5mB2mb the binding energy of theB meson. The
range of variation ofk1 is the interval„0,(mb1L̄)v1…, cor-
responding tok18 5(L̄v1 ,2mbv1). The wave function
c(k1) only takes values significantly different from zero fo
k1 /v1<L̄.

The light-cone wave functionc(k1 ,kW') is related to the
usual Bethe-Salpeter wave functionCab at equal light-cone
‘‘time’’ t5x01x3,

Cab~k!5E d4jeik•j^0uT1h̄b~0!P~0,j!qa~j!uB~mBv !&,

~7!

as

Cab~k1 ,kW'![E
2`

` dk2

2p
Cab~k!

5
ANc

A~2mbv1!~2k1!

1

A2
@ua~ k̃,↑ !v̄b~v,↓ !

2ua~ k̃,↓ !v̄b~v,↑ !#c~k1 ,kW'!. ~8!

The quark fields appearing in the definition of the Beth
Salpeter wave function are quantized on the light cone:

qa~x!5(
k̃,l

1

A2k1

@ak̃,lua~ k̃,l!e2 ik•x1bk̃,l
† va~ k̃,l!eik•x#,

~9!

where the creation and annihilation operators sati
$ak̃,l , ak̃8,l8

†
%5d k̃,k̃8dl,l8 . The light-cone spinors are de

fined as in @11# and are normalized according t
ū( k̃,l)g1u( k̃,l)52k1 .

The static heavy antiquark fieldh(x) is related to the
usual b field by b(x)5eimbv•xh(x) and satisfies
v”h(x)52h(x). The path-ordered factor P(0,j)
5Pexp@2 ig*j

0dzA(z)# is introduced to ensure gauge in
variance of the Bethe-Salpeter wave function.
0-2
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Using the explicit expressions for the light-cone spino
u( k̃,l8) and v̄( k̃8,l) given in @10# one finds the following
result for the wave function~8! in the limit of an infinitely
heavyb quark:

Cab~k1 ,kW'!52
ANc

A2v1k1

c~k1 ,k'!

3H ~k11aW'•kW'!L1

11v”
2

g5J
ab

,

~10!

satisfying the usual on-shell conditions

k”C~k1 ,kW'!50, C~k1 ,kW'!v”52C~k1 ,kW'!. ~11!

We denoted byL15g2g1/4 the projector on the space o
fast-moving particles along the1z axis.

It is convenient to define the one-dimensional wa
function2 c(k1) by integrating over the transverse momen

c~k1![E d2k'

~2p!3
c~k1 ,kW'! ~12!

which satisfies

2
1

v1
ANc

2 H L1

11v”
2

g5J
ab

c~k1!

5E
2`

` dj2

2p
eik1j2/2^0uTh̄b~0!P~0,j!qaS 1

2
j2n2D uB~p!&.

~13!

Multiplying both sides by (g1g5)ba gives

A2Ncc~k1!5E
2`

` dj2

2p
eik1j2/2

3^0uTh̄~0!g1g5qS 1

2
j2n2D uB~mBv !&.

~14!

This relation can be used to express the moments ofc(k1)
in terms of matrix elements of local operators. To see t
the time-ordered product on the right-hand side~RHS! of Eq.
~14! is expanded into a power series of the separation on
light cone. This gives

2We denote bothc( k̃) andc(k1) with the same letter. The dis
tinction between them is made through their arguments.
11451
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A2Ncc~k1!5 (
n50

`
1

n! E dj2

2p S 2 i

2
j2D n

3eik1j2/2^0uh̄g1g5~ iD 1!nquB~mBv !&.

~15!

Taking the j th moment with respect tok1 one obtains the
desired connection to local operators~see also@12#!:

ANc/2E
0

`

dk1~k1! jc~k1!5^0uh̄g1g5~ iD 1! jquB~mBv !&.

~16!

The first few moments of the wave function can be simp
expressed in terms of known hadronic quantities. Forj 50
the corresponding matrix element on the RHS of Eq.~16! is
determined by the decay constant of theB meson in the static
limit defined as

^0uh̄gmg5quB~mBv !&5 f BmBvm . ~17!

One finds the normalization condition

E
0

`

dS k1

v1
DcS k1

v1
D5A 2

Nc
f BmB . ~18!

The first momentj 51 is given by the matrix element

E
0

`

dS k1

v1
D S k1

v1
DcS k1

v1
D5A 2

Nc
^0uh̄g1g5~ iD 1!quB~mBv !&

5
4

3
A 2

Nc
L̄ f BmB . ~19!

This result agrees with the intuitive notion that the averag
spectator quark momentum is proportional to the bind
energy of the heavy hadron. To prove it, one starts by writ
the most general form for the following matrix elemen
compatible with Lorentz covariance:

^0uh̄gmg5~ iD n!quB~mBv !&5agmn1bvmvn . ~20!

The equation of motion for the light quark fieldiD” q(x)50
implies the constraint 4a1b50. Another equation for these
parameters can be obtained with the help of the relation

L̄vn^0uh̄gmg5quB~mBv !&5^0uh̄gmg5~ iDQ n!quB&

1^0uh̄gmg5~ iDW n!quB&.

~21!

Multiplying both sides byvn and using the static quark equa
tion of motion iv•Dh(x)50, one obtains a1b

5A2L̄ f BmB . Solving fora andb gives the result presente
in Eq. ~19!.

In the presence of radiative corrections, the connect
between the light-cone wave function and matrix elements
local operators is changed. For example, the zeroth mom
0-3
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~18! acquires a scale dependence typical of matrix elem
of operators in the effective theory with heavy quar
@13,14#. In the rest frame of theB meson (v151) this is
given by, after modified minimal subtraction~MS! renormal-
ization,

A 2

Nc
f B~mh!mB5E

0

`

dk1E d2kW'

~2p!3
c~k1 ,k'!S 11

asCF

4p

3H 2
3

2
log

m2

mh
2

1D IR~k0!1F~k0!J D .

~22!

The termD IR(k0) contains an IR singularity, which is regu
lated with dimensional regularization inD5422e dimen-
sions. The quantitiesD IR(k0) andF(k0) are given by

D IR~k0!52S N«
IR1 log

m2

m2D F k0

2Ak0
22m2

3S log
k01Ak0

22m2

k02Ak0
22m2

22p i D 21G2
k0

Ak0
22m2

3FLi2S 2Ak0
22m2

k01Ak0
22m2D 2Li2S 22Ak0

22m2

k02Ak0
22m2D

1
p2

6
22p i log

4~k0
22m2!

m2 G , ~23!

F~k0!52F k0

2Ak0
22m2 S log

k01Ak0
22m2

k02Ak0
22m2

22p i D 21G
14. ~24!

We denoted hereN«
IR51/e2gE1 log(4p) and k05v•k

5 1
2 (k11kW'

2 /k1). The IR singularity inD IR(k0) originates
from soft-gluon exchange betweenb andu in the initial state.
The coefficient ofN«

IR depends on the angleq between the
momenta of theb andu quarks coshq5(v•k)/m and is well
known as the QCD bremsstrahlung function. Notice tha
receives an imaginary contribution due to the instantane
~Coulomb! interaction.

The scale-dependent parameterf B(mh) in Eq. ~22! is re-
lated to the physical decay constantf B by @13,14#

f B5S as~mb!

as~mh!
D 22/b0

f B~mh!. ~25!

The logarithmic dependence onmh on the right-hand side o
Eq. ~22! matches that of the parameterf B(mh), as it should.
The remaining mass-singular logarithm can be absorbed
the wave function by introducing a factorization scaleL2

satisfying m!LQCD!L!mh . Writing log(m2/mh
2)

5 log(m2/L2)1log(L2/mh
2), the first term is absorbed into th
11451
ts
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wave function and the second is resummed into a fac
similar to the one in Eq.~25!.3

The IR singular terms can be resummed to all orders inas
using the QCD evolution equations. In the resulting expr
sion the contribution of multiple virtual soft gluon emission
exponentiates and it can be factorized out from the w
function. This suggests to absorb the IR singular termD IR
@as well as the mass singular logarithm log(L2/m2) as ex-
plained above# into the light-cone wave function. For th
purpose of normalization alone, one can define thus a m
fied wave function, to one-loop order,

c̃~k1 ,k' ,L!5c~k1 ,kW'!expS asCF

4p
D IR~v•k!1O~as

2! D
3S 11

asCF

4p

3

2
log

L2

m2D ~26!

satisfying the normalization condition

A 2

Nc
f BmBS as~mb!

as~L! D 2/b0

5E
0

`

dk1E d2kW'

~2p!3
c̃~k1 ,k' ,L!

3S 11
asCF

4p
F~k0! D . ~27!

It will be shown below that the hard scattering amplitude
one-loop order is IR finite only when convoluted with th
modified wave function.

III. LEADING TWIST ANALYSIS OF B\g l n l

To leading order inas there are two diagrams contribu
ing to the matrix element~1!, shown in Fig. 1. Only diagram
~a!, where the photon is emitted from the light line, contri
utes to leading order in 1/mb . Using the wave function~8!, it
can be written as

3Note that this redefinition of the wave function applies strictly f
the purpose of the normalization condition. The preciseL depen-

dence of the wave functionc̃(k1 ,L) is derived below in Sec. IV.

FIG. 1. Leading order diagrams contributing to the radiat
leptonic decayB1→Wg. The double line denotes the heavy qua
b, the zigzag line theW boson and the wiggly line a photon.
0-4



as

n

d

n
re

ion

se

rger
ng
of

rge

is

s of

s

RADIATIVE LEPTONIC DECAYS OFB MESONS IN QCD PHYSICAL REVIEW D61 114510
Gm5QqE dk1d2k'

2~2p!3
TrS C~k1 ,kW'!gm

3~12g5!
k”2p” g

22k•pg1 i«
e”* D . ~28!

The trace can be easily computed with the help of the b
relations

Tr$~k11aW'•kW'!L1Pvg5gbg5%52v1~k1n11k'!b ,
~29!

Tr$~k11aW'•kW'!L1Pvg5gb%52
1

2
v1i«~n2 ,k' ,n1 ,b!,

~30!

to which the expression~28! can be reduced by applicatio
of the identity

gmgagn5gmagn1gnagm2gmnga1 i«~m,n,a,b!gbg5 .
~31!

We find in this way the following results for the form
factors to the tree level:

f V~Eg!5 f A~Eg!5 f T~Eg!

5QqANc

2

1

Eg
E

0

`dk1d2k'

2~2p!3

c~k1 ,kW'!

k1

3 S 12
kW'

2

2Egk1
D . ~32!

The form factorf T(Eg) of the tensor current is encountere
when considering the radiative rare decayB→nn̄g. It is de-
fined by the matrix element

1

A4pa
^g~pg ,e!ub̄smng5quB~v !&

5 i f T~Eg!@~pg!men* 2em* ~pg!n#. ~33!

~The tensor structureem* vn2vmen* is forbidden by gauge in-

variance.! The matrix element of theb̄smnq current can be
obtained from this one with the help of the identitysmn

5( i /2)«mnabsabg5.
The corrections to the result~32! arising from the cou-

pling of the photon to the heavy quark@Fig. 1~b!# are sup-
pressed byL/mb . In fact the leading term in this expansio
is calculable in terms of known quantities only. The cor
sponding correction is given by
11451
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Gm
(h)5QbE dk1d2k'

2~2p!3

3Tr S C~k1 ,kW'!e”*
2mbv”2k” 81p” g1mb

~mbv1k82pg!22mb
2
gm~g5!D .

~34!

Performing the trace gives for the heavy quark contribut
to the form factors

f i
~b!~Eg!5QbANc

2

1

mbEg
E

0

`dk1d2k'

2~2p!3
c~k1 ,kW'!

3F11OS L

Eg
,

L2

mbEg
D G

5Qb

f BmB

2mbEg
~35!

where we used the normalization condition~18! for the wave
function. This correction is potentially important for the ca
of charmed meson decays.

The equality of the form factors in Eq.~32! to lowest
order inas can be understood as the consequence of a la
symmetry group of the Green functions in Fig. 1 to leadi
order in 1/Eg . To see this, one notes that the momentum
the light quark entering the weak vertex contains a la
light-like component p5k2pg52Egn21k, with n6

5(1,0,0,61). Therefore a natural description of this quark
in terms of the light-cone component of the quark fieldq2

defined as

q25eiEg(n2•x)L2q, L25
g1g2

4
, ~36!

satisfyingL2q25q2 or n”2q50. The corresponding Dirac
action reads, when expressed in terms of this component@15#

q̄~ iD” !q5q̄2~2 in2•D !q21O~1/Eg!, ~37!

which contains an additional SU~2! symmetry group com-
pared with the original one. This can also be seen in term
the Feynman rules for the light quark line:

propagator: i
k”2p” g

22Eg~n2•k!1k21 i e

5 i
2n”2

22~n2•k!1 i e
1O~1/Eg! ~38!

vertex: 2 iggmta52 ig~2n2!mta1O~1/Eg!. ~39!

To leading order in 1/Eg and 1/mb , the weak currentb̄Gq

can be written ash̄v
(b)Gq2 , with hv

(b) the staticb quark field
satisfyingg0hv

(b)52hv
(b) . Using the properties of the field

q2 andhv
(b) one can derive the following relation
0-5
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h̄v
(b)gmq252~n2!mh̄v

(b)q21 i«0amb~n2!ah̄v
(b)gbg5q2 .

~40!

Taking the matrix element of Eq.~40! between^g(pg ,e)u
anduB(v)&, and noting that̂g(pg ,e)uh̄v

(b)quB(v)&50, gives

^g~Egn2 ,e!uh̄v
(b)gmq2uB~v !&

5 i«0amb~n2!a^g~Egn2 ,e!uh̄v
(b)gbg5q2uB~v !&,

~41!

which reduces tof V(Eg)5 f A(Eg) in the rest frame ofv.
Note that this is very different from other symmetry grou
appearing in particle physics like flavor or spin as it is n
apparent in the hadron spectrum; rather it is a symmetry
an internal part of a Feynman diagram mediating a de
process. Similar arguments have been used in@16# to derive
relations among semileptonic form factors inB→p,r using
the additional symmetry of the so-called large energy eff
tive theory for the final state hadron@15#.

In the following we will show by explicit calculation to
one-loop order that the equalityf V(Eg)5 f A(Eg) is pre-
served beyond the tree level, for the leading terms in
expansion of these form factors in powers of 1/Eg . Radiative
corrections change the simple power law 1/Eg by introduc-
ing a logarithmic dependence on the photon energy. To le
ing order in 1/Eg and 1/mb these corrections are given b
~with i 5V,A,T)

f i~Eg!5S as~mb!

as~mh!
D 22/b0

QqANc

2

1

2Eg
E

0

`

dk1

c~k1!

k1

3 S 11
asCF

4p
d i~mh ,Eg ,k1! D . ~42!

The first factor accounts for the different renormalization
the weak current in the static quark effective theory a
QCD @13,14#. The dependence on the hybrid renormalizat
scalemh cancels between this factor and the hard gluon c
rection in the effective theoryd i .

We consider in the following the one-loop radiative co
rections to the diagram in Fig. 1~a!. The heavy-light vertex
correction shown in Fig. 2~a! has the form~for a general
weak currentb̄Gq)

Lm52 ig2CF$@G#@S (a)2~v•q̃!J(a)#2@G~q”̃2k” !v”

2Gv•~ q̃2k!#^~12x!J(a)&%. ~43!

The scalar integralJ(a) is defined by @the definition of
^(12x)J(a)& is given in the Appendix#
11451
t
of
y

-

n

d-

f
d
n
r-

J(a)5E d4l

~2p!4

3
1

~2v• l 1v•k81 i e!@~ l 1q̃2k!21 i e#~ l 21 i e!
.

~44!

The heavy quark can be taken on shell such that its resi
momentumk satisfiesv•k850. In fact the integralsJ(a) and
^(12x)J(a)& are free of infrared and collinear divergence
The exact results for these integrals are presented in the
pendix in Eqs.~A7!,~A8!. In the limit k1 /Eg→0 they have
the asymptotic expansions

J(a)5
i

~4p!2Eg
H 2

1

2
log2

2Eg

k1
2

2p2

3
1OS k1

Eg
D J
~45!

^~12x!J(a)&5
i

~4p!2Eg
H 2

1

2
log2

2Eg

k1
1 log

2Eg

k1

2
2p2

3
1OS k1

Eg
D J . ~46!

The UV divergent integralS (a) is evaluated using dimen
sional regularization inD5422« dimensions. One obtains

S (a)5
i

~4p!2 S N«
UV2 log

2Egk1

mh
2

12D ~47!

with N«
UV51/«2gE1 log(4p).

Combining these results one finds the following contrib
tions from the heavy-light vertex correction to thed i factors
from the diagram in Fig. 2~a!:

FIG. 2. One-loop corrections to the radiative leptonic dec
B1→Wg. The curly line represents a gluon. The quark wave fu
tion renormalization corrections are not shown.
0-6
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dV
(a)5dA

(a)5N«
UV2 log

2Egk1

mh
2

2 log2
2Eg

k1
1 log

2Eg

k1

2
4p2

3
12. ~48!

The light-light vertex correction shown in Fig. 2~b! intro-
duces a correction to the photon coupling of the form
11451
e”* →e”* 12ig2CF$e”* @2~222«!J3
(b)12~pg•k!~J(b)2J1

(b)

1J2
(b)2J5

(b)!#12~e* •k!p” g@2J(b)1J1
(b)2J2

(b)1J5
(b)#%.

~49!

The scalar factorsJi
(b) are defined by
est
.

lariza-
~J(b),Jm
(b) ,Jmn

(b)!5E d4l

~2p!4

~1,l m ,l ml n!

@~ l 1pg2k!22m21 i«#@ l 222l •k1 i«#~ l 21 i«!
~50!

Jm
(b)5J1

(b)km1J2
(b)pgm , ~51!

Jmn
(b)5J3

(b)gmn1J4
(b)kmkn1J5

(b)~kmpgn1pgmkn!1J6
(b)pgmpgn . ~52!

These integrals have collinear singularities, which will be regulated by giving the light quark a massm. Their explicit results
in the limit m2!pg•k are given in the Appendix@see Eqs.~A9!#. The term proportional to (e* •k)p” g in the vertex correction
~49! vanishes after the integration overkW' . Keeping only the first term amounts to a multiplicative correction of the low
order result. Using the results, Eq.~A9!, one obtains the following contributions to thed i coefficients from the diagram in Fig
2~b!:

dV
(b)5dA

(b)5N«
UV2 log

2Egk1

mh
2

12log
2Egk1

m2
21. ~53!

The self-energy correction on the internal light quark line@Fig. 2~c!# contributes

dV
(c)5dA

(c)52N«
UV1 log

2Egk1

mh
2

21. ~54!

Finally, the box diagram@Fig. 2~d!# is given by

B5 ig2CFE d4l

~2p!4

G~k”1 l”2p” g!e”* ~k”1 l”!v”

~2v• l 1 i e!@~ l 1k2pg!22m21 i e#~ l 212l •k1 i e!~ l 21 i e!
. ~55!

The term of orderl 0 in the loop momentum has an IR singularity, which is regulated as before using dimensional regu
tion. The total contribution of the box diagram to thed coefficient is given by~for both i 5V,A)

d (d)522i ~4p!2E dDl

~2p!D

Eg2~v•k!k11Eg~ l 1k12k'• l'!1
1

2
l 2~k'• l'2 l 1k1!

~2v• l 1 i e!@~ l 1k2pg!22m21 i e#~ l 212l •k1 i e!~ l 21 i e!
. ~56!

Here the contribution of theO( l 2) terms is of order 1/Eg and thus subleading. The first two terms,; l 0 and ; l 1, can be
computed to leading order inEg by expanding the large denominator as (l 1k2pg)22m2.22Eg( l 11k1). The numerator
of the first two terms can be arranged as the sum of two terms, one of which just cancels the denominatorl 11k1 , plus a
remainder

Eg2~v•k!k11Eg~ l 1k12k'• l'!5EgF2~v•k!~ l 11k1!1S l 1

~k'!2

k1
2k'• l'D G . ~57!

The first term has exactly the structure of the scalar integral appearing in the correction tof B . We obtain for the total
contribution of the box diagram to leading order inEg as

d (d)5 i ~4p!2H 2~v•k!JIR~v•k!1E dDl

~2p!D

l 1~k'!2/k12k'• l'

~2v• l 1 i e!~ l 11k1!~ l 212l •k1 i e!~ l 21 i e!
J ~58!
0-7
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with JIR(k0) the IR singular integral defined and computed in the Appendix@see Eq.~A11!#. The second integral in Eq.~58!
is IR finite and can be easily computed by combining the last two denominators with Feynman parameters. This giv

E d4l

~2p!4

~ l 1 ,l'!

~2v• l 1 i e!~ l 11k1!~ l 212l •k1 i e!~ l 21 i e!

5E
0

1

dxE d4l

~2p!4

~ l 12xk1 ,l'2xk'!

~2v• l 1xk01 i e!@ l 11k1~12x!#~ l 22m2x21 i e!2

52
i

8p2E0

1

dxE
0

`

dl1

~ l 12xk1 ,2xk'!

@ l 11k1~12x!#@ l 1
2 22xl1k01m2x22 i e#

~59!

where we performed the integration over the light-cone coordinatesl 2 ,l' . Inserting these results into the second integra
Eq. ~58! one obtains

2
i

8p2

~k'!2

k1
E

0

1

dxE
0

`

dl1

l 1

@ l 11k1~12x!#@ l 1
2 22xl1k01m2x22 i e#

52
i

~4p!2 S log2
k1

2k0
12p i log

k1

2k0
D . ~60!
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Finally, we obtain the following result forl (d) to leading
twist:

dV
(d)5dA

(d)5 i ~4p!2 2k0JIR~k0!1 log2
k1

2k0
12p i log

k1

2k0
.

~61!

We are now in a position to write down the comple
one-loop correction to the form factors forB→ l n̄ lg. The
individual contributions from the diagrams of Fig. 2 an
their total result are presented in Table I. There are a
remarks which can be made about these results.

~i! The box diagram@Fig. 2~d!# contains an IR divergen
term ~61! which depends onkW' through the quantityv•k.
Note that this is different from the case of the pion for
factor, which is IR finite@17#, and contains only mass singu
larities. However, the IR singular term can be seen to
precisely identical to the one appearing in the one-loop c
rection, Eq.~22!, to the decay constantf B . As explained in
Sec. II, it can be absorbed into theB meson light-cone wave
function, leaving a IR-finite Wilson coefficient dependin
only on the light-cone momentum componentk1 .

~ii ! The dependence on theMS hybrid scalemh cancels, as
it should, between thed coefficient and the correspondin
factor in Eq.~42!. We will choose for this scalem52Eg ,
with which the first factor accounts explicitly for the larg
logarithms@(as /p)log(mb/2Eg)#n in leading logarithmic ap-
proximation.

~iii ! The equality of the leading twist form factors fo
different currents noted at the tree levelf V(Eg)5 f A(Eg)
persists to one-loop order. In view of the symmetry arg
ments justifying this equality at the tree level, it is tempti
to conjecture that this is a general result for the leading tw
form factors, valid to all orders in the strong coupling.

With these remarks, the leading twist result for the fo
11451
w

e
r-

-

t

factors inB→ l n̄ lg decays can be written as4

f V,A~Eg!5QqANc

2 S as~mb!

as~2Eg! D
22/b0 1

Eg

3E
0

`dk1d2kW'

2~2p!3
c̃~k1 ,kW'!TH~k1 ,kW'! ~62!

where the hard scattering kernelTH(k1 ,kW') is given to one-
loop order by

TH~k1 ,kW'!5
1

k1
H 11

as~2Eg!CF

4p F2 log2
2Eg

k1
1

5

2
log

2Eg

k1

1
5

2
log

2Egk1

m2
2

4p2

3
1 log2S 11

kW'
2

k1
2 D

22p i logS 11
kW'

2

k1
2 D G J . ~63!

Note that this result for the form factors is sensitive to t
dependence of the wave function on the transverse mome
through the last two terms. After integration overkW' , these
terms will give a finite correction to the light-cone wav
function. The last term in Eq.~63! will give the form factors

4The modified wave functionc̃(k1 ,k') in this expression con-
tains only the exponentiated IR singularity.
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also a complex phase. These features are in contrast to
pion form factor case, where transverse momentum eff
are absent to leading twist.

IV. MASS-SINGULAR LOGARITHMS AND SUDAKOV
EFFECTS

The expression for the form factors~62! contains mass-
singular logarithms log(2Egk1 /m2) as well as Sudakov
double logarithms log2(2Eg /k1) which must be resummed t
all orders. In this section we will discuss these issues in tu

A. Resummation of collinear singularities

The hard scattering amplitudeTH(k1) contains collinear
logarithms log(2Egk1 /m2), which arise only from the dia-
gram 2~b! and the wave function renormalization constant.
the former, these logarithms are produced by integration o
the transverse momenta in the regionm2< lW'

2 <2Egk1 . The
propagator of the struck quark can be written in this reg
as (k2pg1 l )2.22Eg(k11 l 1)1••• . Keeping only the
leading terms in 1/Eg , the contribution of this diagram~plus
the tree contribution! is proportional to

TABLE I. One-loop contributions to the form factor from ind
vidual diagrams. The IR singular contributionD IR(k0)
5 i (4p)22k0JIR(k0)22@N«

IR1 log(m2/m2)# is identical to the one
appearing in the one-loop correction tof B , Eq. ~23!, and can be
absorbed into theB meson light-cone wave function as explained
Sec. II.

Diagram Contributions tod i(Eg)

2~a! N«
UV2log

2Egk1

m2
2log2

2Eg

k1
1log

2Eg

k1
2

4p2

3
12

2~b! N«
UV2log

2Egk1

m2
12log

2Egk1

m2
21

2~c! 2N«
UV1log

2Egk1

m2
21

2~d! i~4p!2 2k0JIR~k0!1log2
k1

2k0
12pilog

k1

2k0

1
2 (Z2

QCD21) 2
1
2N«

UV1
3
2log

m2

m2
2N«

IR

1
2 (Z2

HQET21) N«
UV2N«

IR

Total 3
2N«

UV2log
2Egk1

m2
1

1
2log

m2

m2

2log2
2Eg

k1
1log

2Eg

k1
12log

2Egk1

m2
2

4p2

3

1DIR~k0!1log2
k1

2k0
12pilog

k1

2k0
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G (0)1G (b)5E dk1c~k1!F 1

k1
1

asCF

4p S E dl1

2

~k1!2

3 u~k12 l 1!1
1

2k1
D log

2Egk1

m2 G
5E dk1dl1c~k1!S d~k12 l 1!

1K~k1 ,l 1!E
m2

2Egk1d lW'
2

lW'
2 D TH

(0)~ l 1!, ~64!

whereTH
(0)( l 1)51/l 1 is the tree-level hard scattering amp

tude. The kernelK(k1 ,l 1) is given by

K~k1 ,l 1!5
asCF

4p F S 2l 1u~k12 l 1!

k1~k12 l 1! D
1

1
1

2
d~k12 l 1!G ,

~65!

where the term proportional tod(k12 l 1) comes from the
wave function renormalization. The1 distribution is defined
as usual by

f ~k1 ,l 1!15 f ~k1 ,l 1!2d~k12 l 1!E dr1 f ~k1 ,r 1!.

~66!

Integrating overl 1 gives the explicit one-loop result fo
the mass-singular logarithms~53!. However, writing the re-
sult in this form helps us to resum these logarithms to
orders. To do this, one cuts the integral over the transve
loop momentum in Eq.~64! to a certain cutoffL. This will
be chosen identical to the one introduced in the normal
tion condition~27!. The logarithm resulting from integration
over the rangem2, lW'

2 ,L2 is then absorbed into the wav

function c̃(k1 ,L) by defining

c̃~ l 1 ,L2!5E dk1c~k1!S d~k12 l 1!1K~k1 ,l 1!log
L2

m2D .

~67!

Expressed in terms of the wave functionc̃(k1 ,L), the
form factor is written as

f V,A~Eg!5QqANc

2 S as~mb!

as~2Eg! D
22/b0 1

Eg

3E
0

`

dk1

c̃~k1 ,2Egk1!

k1

3S 11
as~2Eg!CF

4p H 2 log2
2Eg

k1
1

5

2
log

2Eg

k1

2
4p2

3
1 log2

k1

2k0
12p i log

k1

2k0
J D . ~68!
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Taking the logarithmic derivative of Eq.~67! with respect
to L2 gives the integral equation satisfied byc̃( l 1 ,L2):

L2
d

dL2
c̃~ l 1 ,L2!5E

0

`

dk1K~k1 ,l 1!c̃~k1 ,L2!.

~69!

This is the analogue of the Brodsky-Lepage evolution eq
tion which governs the evolution of the light-cone wa
function of a heavy meson with the factorization scale. T
moments of the wave function are renormalized multiplic
tively with the anomalous dimensions

L2
d

dL2
^k1

n &5
asCF

4p S 2

n12
1

1

2D ^k1
n &, ~70!

where^k1
n &5*dk1(k1)nc̃(k1 ,L). The 0th moment of the

wave function evolves with the same anomalous dimens
3asCF /(8p) as previously derived in Sec. II@see Eq.~27!#.

B. Sudakov resummation

The radiative correction to the form factorsf i(Eg) con-
tains double logarithms of the large ratio log2(2Eg /k1). The
explicit calculation of the preceding section shows that s
logarithms arise~in the Feynman gauge! from a one loop
correction to the vertexb→Wq of the weak decay of theb
quark into a light quark with momentumQ5pg2k. It is
easy to see that in the rest frame of theB meson in the
kinematical regionEg@LQCD the light quark moves close t
the ‘‘1’’ light-cone direction along the photon momentu
with the energy (Q•v);Eg and small virtuality Q2

;22(pg•k) such thatQ2/(2Q•v)25O(L̄/Eg). It is the ra-
tio of the scalesQ2/(2Q•v)2!1 that enters as an argume
into Sudakov double logarithms. The appearance of la
negative corrections is related to enhancement of the co
bution of soft virtual gluons propagating collinear to the pr
duced light quark, close to the direction of photon mome
tum. In contrast with the inclusive distributions where it
canceled against the contribution of real soft gluon em
sions, virtual soft gluon contribution survives for an excl
sive distribution like the one under consideration due to
absence of real soft gluons in the final states.

Let us consider the one-loop Sudakov correction to
weak decay vertex:

F512
as

4p
CFS, S5 log2

4~Q•v !2

2Q2
2 log

4~Q•v !2

2Q2

~71!

with 2(Q•v)52Eg and Q2522Egk1 in the rest frame of
the B meson. The Sudakov form factorS is given by the
following one-loop Feynman integral:

S5 i E d4l

~2p!2

~4Q222l 2!v1

~2v• l 1 i e!~ l 21 i e!@~Q2 l !21 i e#
~72!
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with Q252Eg , Q152k1 , Q25Q1Q2 and v151. Cal-
culating S we write the integration measure asd4l
5 1

2 dl1dl2d2l' and perform thel 1 integration by taking
residues at the poles corresponding to three different pro
gators. One finds that the integral is different from zero p
vided thatl 2 belongs to one of the regions, 0, l 2,Q2 and
l 2.Q2 . One checks that in the second case the gluon
large components of the momenta and its contribution is
sociated with short distance~hard! subprocess. In the firs
case, the l 1 integral is given by the residue atl 1

5 l'
2 /(2l 2)2 i e which effectively amounts to putting the vir

tual gluon on shell,l 250. Then, introducing the scaling var
ablex5 l 2 /Q2 one finds

S

5
1

2E0

1dx

x E
0

`

dl'
2 422x

@x1 l'
2 /@x~2Eg!2##@2Egk1~12x!1 l'

2 /x#
.

~73!

The denominators effectively set the limits on the integrat
ranges, such that the leading doubly logarithmic correct
arises from the region~in the rest frame of theB meson!

k1< l 2<2Eg , k1l 2< l'
2 < l 2

2 . ~74!

In this way, one calculates the one-loop correction to
Sudakov form factor as

S5E
k1

2Egdl2

l 2
E

k1 l 2

l 2
2 dl'

2

l'
2 S 22

l 2

2Eg
D5E

k1
2

2k1Egdl'
2

l'
2

ln
l'
2

k1
2

1E
2k1Eg

(2Eg)2dl'
2

l'
2

ln
~2Eg!2

l'
2

2E
2Egk1

(2Eg)2dl'
2

l'
2

. ~75!

The reason why we represented the one-loop correctio
this particular form is that it admits generalization to high
orders in the coupling constant that effectively resums Su
kov logarithms. Each term in the rhs of Eq.~75! comes from
different parts of the gluon phase space and has the foll
ing interpretation. The last term describes collinear emiss
of on-shell energetic gluon,l 25O(Eg), l 1! l 2 and l'

2

5 l 1l 25O(k1Eg) ~collinear region!, and gives rise to a
single collinear logarithm. The first two terms correspond
soft gluon emission on two different infrared scales,l 1

; l 2; l'5O(k1) ~soft region! and l 1; l 2; l'
5O(Ak1Eg) ~infrared region!, and produce double logarith
mic contributions. Examining higher order corrections to t
b→Wq vertex one can show that the same regions of glu
momenta provide the dominant contribution to the Sudak
form factors. Moreover, since the emission of collinear a
soft gluons occurs on different time scale their contributi
factorizes out as@18#

F5FH~Q1
2 ,m2!FJ~Q1

2 ,Q1Q2 ,m2!

3FS~Q1
2 ,Q1Q2 ,m2!FIR~Q1Q2 ,Q2

2 ,m2! ~76!

with Q252Eg and Q152k1 . Here the hard subproces
FH takes into account short distance corrections to the w
decay vertex,l m;Q1 , while FJ , FS andFIR denote contri-
0-10
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butions of collinear and soft gluons on different momentu
scales. The parameterm entering Eq.~76! plays the role of
the factorization scale. The subprocessesFS and FIR admit
an operator definition as expectation values of Wilson lin
originating as eikonal phase of quarks interacting with s
gluons. Using this interpretation one can show that them
evolution of FS and FIR subprocesses is in one-to-one co
respondence with the renormalization properties of Wils
lines. In this way, using evolution equations for differe
subprocesses and them independence ofF, one finds that the
Sudakov form factor obeys the following evolution equatio

dlnF

dlnEg
5G„as~Q1

2 !…1G0„as~Q2
2 !…

2
1

2E2Egk1

(2Eg)2dl'
2

l'
2

Gcusp„as~ l'
2 !…. ~77!

This evolution equation involves three functions of the co
pling constant that appear as anomalous dimensions in
evolution equations for different subprocesses. Two of th
Gcusp and G0 are related to renormalization of~light-like!
Wilson loops whileG is related to the UV renormalization o
the weak decay vertex:

Gcusp5
as

p
CF1O~as

2!, G0501O~as
2!,

G5
as

p
CF1O~as

2!. ~78!

Neglecting theG0 term one can write the solution to th
evolution equation~77! as

24lnF5E
Q2

2

Q2dl'
2

l'
2

ln
l'
2

Q2
2

Gcusp„as~ l'
2 !…

1E
Q2

Q1
2 dl'

2

l'
2

ln
Q1

2

l'
2

Gcusp„as~ l'
2 !…

2E
Q2

Q1
2 dl'

2

l'
2

G„as~ l'
2 !…. ~79!

Comparing Eq.~79! with the one-loop expression~75! we
conclude that, first, Sudakov logarithms exponentiate@21#
and, second, the exponent of the Sudakov form facto
formally given by the one-loop expression in which t
‘‘bare’’ QCD coupling constant is replaced by an anomalo
dimension with a particular choice of the normalization sc
given by gluon transverse momentuml'

2 . The perturbative
expansion~79! is valid provided that the integration overl'

2

does not go below the Landau singularities of the coupl
constant. This means that the resummed expression~79! is
valid provided thatk1

2 @LQCD. In the practical application
discussed below, the Sudakov form factor fork1 below the
singularity atk15LQCD will be frozen at its value just abov
this point.
11451
s
ft

n

:

-
he
m

is

s
e

g

Expanding the QCD running coupling constantas( l'
2 ) in

powers ofas(Eg) and performing the integration in Eq.~79!
one can expand the exponent lnF into a series of the form
as(asL

2)n, as
2(asL

2)n, . . . with n51 ,2 , . . . , as5as(Eg)
and L5 ln(Eg /k1) to which we shall refer as leading-orde
~LO!, next-to-leading order~NLO!, . . . corrections. In par-

ticular, to the LO approximation it proves enough to ke
only the first two terms in Eq.~79!. Using the one-loop run-
ning of the strong coupling

as~ lW'
2 !5

4p

b0ln~ l'
2 /L2!

~80!

with b05112 2
3 nf and replacingGcusp by its one-loop ex-

pression, one gets

SLO5
2CF

b0
H 2 log

2Egk1

L2
logF1

2
log

2Egk1

L2 G
1 log

2Eg

L
loglog

2Eg

L
1 log

k1

L
loglog

k1

L J , ~81!

which agrees with the result in@19#. The overall effect of the
Sudakov form factor is to depress the form factors at la
values ofEg . One can systematically improve the accura
of Eq. ~79! by taking into account NLO terms. To this en
one should include two-loop corrections to the coupling co
stant andGcusp as well as one-loop correction to the anom
lous dimensionsG defined in Eq.~78!.

V. APPLICATION

The decay rate forB→gn l l
1 differential in the lepton

and photon energy is

d2G

dEedEg
5

aGF
2 uVubu2mB

3

4~2p!2
$@ f A

2~Eg!1 f V
2~Eg!#~22xy12xy2

1x22x2y1x3!22 f A~Eg! f V~Eg!

3x~12x!~11x22y!%. ~82!

We denoted herex5122Eg /mB andy52Ee /mB , in terms
of which the available phase space is described asx5(0,1)
andy5(x,1). An integration over all possible values of th
electron energyy gives for the rate as function of the photo
energy

dG

dEg
5

aGF
2 uVubu2mB

4

12~2p!2
@ f A

2~Eg!1 f V
2~Eg!#x~12x!3.

~83!

Our results for the form factorsf V,A(Eg) can be therefore
turned into a prediction for the shape of the photon spectr
in this decay. To leading twist, the 1/Eg dependence of thes
form factors yields a symmetrical photon spectrumdG/dx
}x(12x).
0-11
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TABLE II. Light-cone wave function parametersa andR corresponding to several values of the bindi

energyL̄ and the width parameterv.

L̄50.3 GeV L̄50.35 GeV L̄50.4 GeV
v ~GeV! 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

a ~GeV! 0.37 0.27 0.05 0.44 0.36 0.19 0.51 0.44 0.30
R ~GeV21) 2.70 3.29 3.87 2.28 2.65 3.09 1.96 2.23 2.59
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Neglecting radiative corrections, the form factors para
etrizing theB1→ l 1ng decay are given by

f V,A~Eg!5
f BmB

2Eg
S QuR2

Qb

mb
D1OS L2

Eg
2 D , R[

^~k1!21&

^~k1!0&
,

~84!

where we included also the leadingL/mb correction com-
puted in Eq.~35!.

Extrapolating the tree-level form factors~84! over the en-
tire phase space gives, for the integrated decay rate,

G~B1→ lng!5a
GF

2 uVubu2mB
5

288p2
f B

2 S QuR2
Qb

mb
D 2

. ~85!

This result is identical to the one obtained in@5# from a
quark model calculation of the annihilation graph, with t
identificationR→1/mu ~the inverse constituent quark mass!.
In fact the appearance of the inverse constituent quark m
is a common aspect of quark model calculations of lo
distance effects produced by weak annihilation topolog
with emission of one photon or gluon@22#. Such contribu-
tions have been investigated in many processes suchB
→rg @23# andB→D* g @24#.

Our QCD-based derivation gives such computation
precise meaning by replacing the ambiguous notion of c
stituent quark mass with a well-defined integral over
light-cone B meson wave function. Besides specifying t
limits of validity of this result, such an approach allows o
to compute also strong interactions corrections to it in a s
tematic way.

It is possible to derive a model-independent lower lim
on the magnitude of theR parameter, under the assumptio
that the light-cone wave function is everywhere positiv
which is reasonable for the ground stateB meson. This
bound reads

R>
^k1

0 &

^k1&
5

3

4L̄
, ~86!

and can be proved with the help of the inequality

1

k1
1bk1>2Ab, k1.0. ~87!

Hereb is an arbitrary real positive number. Multiplying wit
c(k1) and integrating overk1 gives the inequalityR

>2Ab2 4
3 L̄b, where we used the normalization conditio
11451
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e

s-

t

,

~19!. This is most restrictive provided that one choosesAb

53/4L̄, which gives the result~86!.
It is interesting to note that a hadronic parameter rela

to R appears also in the description of the nonfactoriza
corrections to nonleptonicB→pp decays@25# ~called there
1/lB). Our results suggest therefore a method for extract
this parameter in a model-independent way from data oB
→gen decays.

To eliminate the dependence onf B and Vub , we will
present our results for the photon spectrum by normalizin
to the pure leptonic decay rate forB1→mn, which is given
by

G l~B1→mn!5
GF

2 uVubu2mB
3

8p
f B

2 S mm

mB
D 2S 12

mm
2

mB
2 D . ~88!

For illustrative purposes we will adopt in the followin
numerical estimates a two-parameter ansatz for the he
meson light-cone wave function inspired by the oscilla
model of @26#

c~k1!5Nk1expS 2
1

2v2
~k12a!2D . ~89!

We will vary the width parameterv in the rangev50.1–0.3
GeV. The parametersN anda will be determined from the
normalization conditions discussed in Sec. II. For a giv
value of L̄, these normalization conditions set an upp
bound on the width parameterv, given by vmax

5(8/3A2p)L̄ ~corresponding toa50). The latter will be
taken betweenL̄50.3 GeV and 0.4 GeV. The resulting nu
merical value of the constantR together with the parametera

are given in Table II for several choices ofL̄ andv.
Taking f B5175 MeV and uVubu53.2531023 @27,28#

gives, for the muonicB1 decay mode a branching ratio,

B~B1→mn!52.331027. ~90!

For a typical range of valuesR5223 GeV21 ~see Table II!,
the tree-level integrated rate~85! predicts a ratio

B~B1→ge1n!

B~B1→mn!
52.02R2.8218, ~91!

which implies branching ratios of about~2–5)31026 for the
B1 radiative leptonic mode, in agreement with the gene
estimates of@5#.
0-12
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A similar analysis can be made for the radiative lepto
decay D1→ge1n̄, for which one obtains the ratio o
branching ratios

B~D1→ge1n!

B~D1→mn!
50.07S QdR2

Qc

mc
D 2

.0.0920.16.

~92!

Note that the charmed quark contribution can be apprecia
and can account for up to 50% of the light quark contrib
tion. Neglecting SU~3! breaking effects and small kinemat
cal corrections, the denominator can be related to the mu
branching ratio forDs

1 decay which has been measured:

B~D1→m1n!5S Vcd

Vcs
D 2t~D1!

t~Ds
1!

B~Ds
1→m1n!

.~0.6860.37!31023. ~93!

We used here the CLEO resultB(Ds→m1n)5(6.263.1)
31023 @29#. This predicts an absolute branching ratio for t
radiativeD1 decay of

B~D1→ge1n!5~0.8260.65!31024. ~94!

Somewhat larger absolute values are obtained for theDs
1

radiative decay width, which is enhanced by the larger CK
matrix elementVcs . Neglecting SU~3! breaking in the had-
ronic parameterR one finds for this caseB(Ds

1→ge1n)
5(0.960.8)31023, again in agreement with the estimat
of @5#.

While useful as an order of magnitude estimate, we str
that the relation~85! and the numerical results obtained wi
its help are not rigorous predictions of QCD in any we
defined limit. The reason for this is that the prediction~84!
for the form factorsf V,A(Eg) receives uncontrollable correc
tions of orderL2/Eg

2 as soon as the photon energyEg does
not lie within the region of applicability of our analysi
LQCD!Eg . A similar statement can be made about the c
responding predictions for the charged lepton energy sp
trum, which requires knowledge of the form factors over t
entire range ofEg .

In order to avoid these problems, we will restrict our co
siderations to quantities defined with a sufficiently hi
lower cut onEg . When radiative corrections are taken in
account, the hadronic matrix elementR in Eq. ~84! acquires
a logarithmic dependence onEg given by Eq.~62!:

R~Eg!5
1

^~k1!0&
S as~mb!

as~2Eg! D
22/b0E

0

`

dk1

c̃~k1!

k1

3 S 11
asCF

4p
d~Eg! D1OS L

Eg
,
L

mb
D . ~95!

We show in Fig. 3 the results obtained for the form facto
and in Fig. 4 for the photon energy spectrum using the tr
level form factors and including the one-loop correcti
computed in Sec. III. This correction decreases the rate
least in the region of validity of our results. This effect
11451
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mostly due to the double logarithm in the one-loop ha
scattering amplitude; the leading-logarithmic factor in E
~62! makes a positive contribution. This illustrates the impo
tance of the double logarithms log2(2Eg /k1), which have to
be resummed to all orders. The third curve in Figs. 3 an
shows the spectrum obtained by resumming the Suda
logarithms to all orders, as explained in Sec. IV.

While the functional form of the hadronic matrix eleme
R(Eg) depends on the detailed form of the~unknown! B
meson light-cone wave function, it is important to note tha
is independent of the heavy quark massmb ~up to calculable

FIG. 3. Typical leading twist form factorsf i(Eg) ( i 5V,A) for
B→gen decays. The solid line shows the tree-level result, the d
ted line includes one-loop corrections to the hard scattering am
tude, and the dashed line includes the resummed Sudakov
factor truncated with a cutoff at (k1)min5LQCD . We useas(mb)

50.3 anda50.36 GeV,v50.2 GeV, corresponding toL̄50.35
GeV.

FIG. 4. The photon spectrum inB1→ge1n normalized to the
pure muonic leptonic decay rate. The solid line represents the t
level result, assumingR53 GeV21. The dotted line includes the
effects of the one-loop strong correction~only the logarithms! with
as(mb)50.3, and the dashed line includes the resummed Suda
logarithms. The same parameters are used for the light-coneB wave
function as in Fig. 3.
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logarithmic corrections!. One would like to eliminate it by
taking ratios of the photon spectra inB andD radiative lep-
tonic decays. However, the large value of the 1/mc correction
in the latter case would introduce large corrections to suc
ratio, which shows that some knowledge ofR(Eg) is neces-
sary.
r
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a

With this view in mind, we propose in the following
two-step procedure for determining the magnitude of
CKM matrix elementuVubu. In the first step, the hadroni
functionR(b)(Eg) is determined in a regionEg@LQCD from
the normalized photon spectrum inB1 decays
1

G l~B1→m1n!

dG~B1→ge1n!

dEg
5

amB

3p S QuR(b)~Eg!2
Qb

mb
D 2S mB

mm
D 2 xB~12xB!

12mm
2 /mB

2
, ~96!

with xB[12(2Eg)/mB . We used on the RHS the leading twist result for theB1 form factors; the 1/mb correction is very
small and will be neglected. The superscript onR(b)(Eg) labels the heavy quark flavor.

In the second step, one takes the ratio of photon spectra inB andD decays, which is given by

d

dEg
G~B1→ge1n!

d

dEg
G~D1→ge1n!

5UVub

Vcd
U2S QuR(b)~Eg!

QdR(c)~Eg!2Qc /mc
D 2S mB

mD
D 3S f B

f D
D 2 xB

xD
1•••

5UVub

Vcd
U2S QuR(b)~Eg!

QdzR(b)~Eg!2Qc /mc
D 2S as~mb!

as~mc!
D 24/b0S mB

mD
D 2xB

xD
, ~97!
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whereR(b)(Eg) is known from Eq.~96!. We used here the
logarithmic dependence on the heavy quark mass~95! for the
R(Q)(Eg) coefficients

R(c)~Eg!5zR(b)~Eg!, z5S as~mc!

as~mb! D
22/b0

~98!

and the large mass scaling law@13,14# for the pseudoscala
decay constants

f B

f D
.S as~mb!

as~mc!
D 22/b0AmD

mB
. ~99!

The result~97! can be used to determine the CKM matr
elementuVubu.

The leading corrections to this determination come fr
higher-twist effects of orderO(L2/Eg

2) in the D1 meson
radiative leptonic form factors. Their magnitude can be e
mated by comparing the normalized photon spectra~96! in B
andD decays. Although for theB case these corrections a
expected to be well under control over a reasonably w
range of values forEg , it is questionable whether in theD
case such a large energy regionLQCD!Eg exists at all.
Since the maximum photon energy accessible inD decays is
only about 0.93 GeV, the higher twist effects can be
pected to contribute no less than 10% to theD meson form
factors.

A similar determination ofuVubu can be performed using
instead ofD1, the more accessibleDs

1 meson radiative lep-
i-

e

-

tonic decays. However, this would introduce an additio
uncertainty on the theoretical side through SU~3! breaking
effects.

VI. CONCLUSIONS

We studied in this paper the form factors for the radiat
leptonic decay of a heavy meson~e.g., B1→ge1n) in an
expansion in powers of the inverse photon energy 1/Eg . To
leading orderO(1/Eg) these form factors are given by
convolution of the light-coneB meson wave functionc(k1)
with an infrared-finite hard scattering kernelTH(k1 ,kW'), Eq.
~63!.

Physically, this problem is very similar to thepgg* pion
form factorFpg(Q2) studied in@10,17#, where a similar fac-
torization can be established for the leading twist contrib
tion of O(1/Q2). However, there are some important diffe
ences, the most striking of which concerns the depende
on the transverse momentum to leading twist revealed in
form of the hard scattering amplitudeTH(k1 ,kW'). Such a
dependence is absent in the case of the pion form factor,
its appearance can be traced to the presence of the se
dimensional parameterk1 ~the light-cone projection of the
light quark momentum in theB meson! in addition to the
large scaleEg . On the practical side, this implies a certa
loss of predictive power: while the logarithmic dependen
on Eg is well determined, the constant term depends on
precise form of the full 3-dimensional light-coneB wave
function.
0-14
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A second important complication compared to t
Fpg(Q2) case consists in the appearance of Sudakov do
logarithms, which have to be resummed to all orders. T
feature has been noted previously in the context of theB
→p(r) semileptonic form factors of a heavy hadron
@19,20#, where these Sudakov effects have been resum
~up to next-to-leading order!. Numerically, their effect is
most important near the upper end of the photon ene
spectrum.

An interesting qualitative result of our analysis is t
equality of form factors of different currentsf V(Eg)
5 f A(Eg) at leading twist. While this equality was esta
lished by an explicit one-loop calculation, it is probably
general result, true to all orders in the strong coupling. I
perturbative QCD language, the reason for this equality ro
in the dominance of the momentum integration regio
where the propagator of the struck quark~see Fig. 2! can be
approximated with a light-like eikonal line. This relation ca
be formalized by going over to an effective theory@15#
where the couplings of gluons to this line possess a hig
symmetry.

A similar approach has been taken in@16# to derive rela-
tions among semileptonic decay form factors of a heavy h
ron. However, in the latter case the hard one-gluon excha
mechanism can be shown to introduce corrections to th
relations, already at leading twist. This is different from o
case where these relations appear to be preserved~at least at
one-loop order! under inclusion of the hard gluon exchang

Finally, our formalism can be used to put previous qua
model estimates of radiative leptonic decays@5# on a more
firm theoretical basis by giving a precise definition of t
light quark constituent mass. Our approach is likely to giv
reliable description of the form factors in the largeEg region,
up to controllable corrections of orderL2/Eg

2 . This comple-
ments an alternative approach presented in@1# which is best
suited to the low-Eg region, where the heavy hadron chir
perturbation theory is expected to be applicable.

Using as input parameter the binding energy of aB meson
L̄, we gave several estimates for the branching ratios
these modes. As a by-product, we presented also a me
for extracting the CKM matrix elementuVubu by comparing
photon energy spectra in radiative leptonicB andD decays.
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APPENDIX: SCALAR INTEGRALS

We present here a few details relevant for the compu
tion of the radiative corrections. The scalar integral appe
ing in the heavy-light vertex correctionJ(a) is computed by
first combining the two massless propagators with the hel
a Feynman parameter
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J(a)5E d4l

~2p!4

1

~2v• l 1 i e!@~ l 1q̃2k!21 i e#~ l 21 i e!

5E
0

1

dxE d4l

~2p!4

1

~2v• l 1 i e!$@ l 1x~ q̃2k!#22s1 i e%2

52
i

8p2E0

`

dl 1E
0

1

dx
1

l 1
2 22xq̃0l 11s

, ~A1!

with s52x(12x)(q̃2k)2. After shifting the loop momen-
tum l→ l 2x(q̃2k), one integrates over the light-cone com
ponentl 2 using the Cauchy theorem and, subsequently, o
the transverse momentuml' .

The integral with one power ofl a in the numerator can be
reduced to a two-point function plus a UV finite integral b
first combining the massless denominators with a Feynm
parameter as above. This gives, for the numerator,

l a→ l a2x~ q̃2k!a5~v• l !va1~ l'!a2x~ q̃2k!a

52@2v• l 1xv•~ q̃2k!#va

2x@~ q̃2k!a2v•~ q̃2k!#1~ l'!a . ~A2!

The first term cancels the heavy quark propagator in the
nominator, and the (l')a term vanishes after integration ove
l. One obtains, in this way,

Ja
(a)[E d4l

~2p!4

l a

~2v• l 1 i e!@~ l 1q̃2k!21 i e#~ l 21 i e!
~A3!

52vaS (a)2@~ q̃2k!a2v•~ q̃2k!#^xJ(a)&
~A4!

with

S (a)5E dnl

~2p!n

1

@~ l 1q̃2k!21 i e#~ l 21 i e!
~A5!

and

^xJ(a)&52
i

8p2E0

`

dl 1E
0

1

dx
x

l 1
2 22xq̃0l 11s

. ~A6!

These integrals can be evaluated exactly with the follo
ing results:
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J(a)52
i

~4p!2

1

~Eg2L̄ !Aj
H 2Li2S 2

r 1Aj22Egk1

2Egk1~Aj11!
D 1Li2S 2

r 2Aj22Egk1

2Egk1~Aj11!
D 23Li2S 2

Aj21

Aj11
D 1

p2

2 J ,

~A7!

^~12x!J(a)&5J(a)2^xJ(a)&5
1

2 S 11
1

j D J1
i

~4p!2

1

4~Eg2L̄ !j
H 6log

4~Eg2L̄ !2Aj

2Egk1
1S 11

r 1

2Egk1
D log

8~Eg2L̄ !2Aj

2Egk11r 1

2S 11
r 2

2Egk1
D log

8~Eg2L̄ !2Aj

2Egk11r 2
26log

2Aj

11Aj
2

2Egk1

~Eg2L̄ !2~11j!
log

2Egk11r 1

2Egk11r 2

1
~2Egk1!2

~Eg2L̄ !2~2Egk12r 1!j
log

2Egk11r 1

2Egk1~111/Aj!
2

~2Egk1!2

~Eg2L̄ !2~2Egk12r 2!j
log

2Egk11r 2

2Egk1~111/Aj!
J ~A8!

with j5112Egk1 /(Eg2L̄)2 and r 1,254(Eg2L̄)2(611Aj)62Egk1 .
The vertex correction to the photon coupling to the light quark is parametrized in terms of the integrals

J(b)5
i

~4p!2

1

2pg•k S 2
1

2
log2

2pg•k

m2
2

p2

3 D
J1

(b)5
i

~4p!2

1

2pg•k S log
2pg•k

m2
2

1

2
log2

2pg•k

m2
2

p2

3
21D

J2
(b)5

i

~4p!2

1

2pg•k S log
2pg•k

m2
22D , J3

(b)5
i

4~4p!2 S N«
UV132 log

2pg•k

mh
2 D

J5
(b)5

i

~4p!2

1

2pg•k S log
2pg•k

m2
2

5

2D . ~A9!

When computing the one-loop correction tof B and the box diagram, one encounters the IR singular integral

JIR~v•k!5m2eE dDl

~2p!D

1

~2v• l 1 i«!~ l 212l •k1 i«!~ l 21 i«!
5

i

~4p!2

1

e
G~11e!E

0

`

dx
~4pm2x2!e

@~xk2v !22 i«#11e
. ~A10!

The IR singularity has been regulated with dimensional regularization inD5422e dimensions. The integral overx can be
computed explicitly with the result~with Q5v•k)

JIR~Q!5
i

~4p!2

1

2AQ22m2 H S N«
IR1 log

m2

m2D F log
Q2AQ22m2

Q1AQ22m2
12p i G1Li2S 2AQ22m2

Q1AQ22m2D
2Li2S 22AQ22m2

Q2AQ22m2D 1
p2

6
22p i log

4~Q22m2!

m2 J ~A11!

with N«
IR51/e2gE1 log(4p). In the limit Q@m this agrees with the expression given in Appendix C of@30#.
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