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Asymptotic scaling of the gluon propagator on the lattice
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We pursue the study of the high energy behavior of the gluon propagator on the lattice in the Landau gauge
in the flavorless case (nf50). It was shown in a preceding paper that the gluon propagator did not reach
three-loop asymptotic scaling at an energy scale as high as 5 GeV. Our present high statistics analysis includes
also a simulation atb56.8 (a.0.03 fm), which allows us to reachm.10 GeV. Special care has been
devoted to the finite lattice-spacing artifacts as well as to the finite-volume effects, the latter being acute at
b56.8 where the volume is bounded by technical limits. Our main conclusion is strong evidence that the gluon
propagator has reached three-loop asymptotic scaling, atm ranging from 5.6–9.5 GeV. We buttress up this
conclusion on several demanding criteria of asymptoticity, including scheme independence. Our fit in the 5.6
GeV to 9.5 GeV window yieldsLMS5319614220

110 MeV, in good agreement with our previous resultLMS

5295620 MeV, obtained from the three-gluon vertex, but it is significantly above the Schro¨dinger functional
method estimate: 238619 MeV. The latter difference is not understood. Confirming our previous paper, we
show that a fourth loop is necessary to fit the whole (2.8–9.5) GeV energy window.

PACS number~s!: 12.38.Gc, 11.15.Ha
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I. INTRODUCTION

In previous works, we tackled the nonperturbative cal
lation of the QCD running coupling constant in two differe
ways: ~i! by using the three-gluon coupling@1,2# and ~ii ! by
matching the behavior of the lattice regularized gluon pro
gator to the one predicted by perturbation theory@3#. The
latter method was expected to benefit from the very go
statistical accuracy of the propagators and thus yield a ra
precise estimate of the strong coupling constant in its ul
violet ~UV! regime, i.e., ofLQCD. Unluckily we could not
satisfy this program for the unexpected reason thatthe gluon
propagator has not yet reached the asymptotic scaling
scales of2.5–5.0 GeV. This conclusion was supported
several different tests. In particular, the remainder of a str
scheme dependence when using one-, two- and three-
formulas indicated the compelling need of higher orders
the perturbative expansion. Still we observed that the inc
sion of third-loop corrections improved the asymptoticity~al-
beit not enough! over the two-loop results. We were nat
rally tempted to extend the analysis to higher energy sc
where any perturbative expansion, with a fixed number
terms, should progressively improve. This is the basic m
vation of the present paper.

Since we want to reach ever larger momenta on the
tice, we have to assure that the dominant lattice artifacts
under control. We must also ensure that the energy wind
in which we could test scaling of the gluon propagator,

*Email address: Philippe.Boucaud@th.u-psud.fr
†Email address: roiesnel@cpht.polytechnique.fr
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large enough. The reason is that at large scales, the cou
constant has a very mild logarithmic dependence. If the w
dow is too narrow, the higher order terms might mimic t
lower order ones, which we consider, and thus introduc
bias in LQCD. A very wide energy window has been ex
plored in Ref.@4# by using Schro¨dinger functional technique
When using the methods based on Green functions@1–3#, it
is more difficult to vary the energy scales by several ord
of magnitude. Moreover, one deals with more scales:
lattice spacinga, the linear lattice extensionL, and the mo-
menta of the gluonsp2. On the other hand, compared to th
Schrödinger functional method, we believe that the Gre
functions have a simpler physical meaning and, being c
ceptually very different, represent a necessary test.

The requirement of larger momentum scales impl
smaller lattice spacings if we are to keep the UVO(a2p2)
artifacts under control (ap!1). Equivalently, we need to
perform simulations at largerb, which ~for reasonable com-
puting time! also means smaller volumes and potentia
dangerous infrared~IR! finite-volume artifacts. To preven
these problems, we need to ensureLp@1.

The question is whether we can find an ensemble of
tice results1 satisfying all requirements, i.e., that the lattic
artifacts are small enough@O(L21)!p!O(a21)# and that
the energy window is large. This is a very demanding
quirement because a small change in the coupling cons

1By a lattice result, we mean a value of the bare propagator f
one value ofp2 obtained on a lattice with a givenb, and in a
specific volume.
©2000 The American Physical Society08-1
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D. BECIREVIC et al. PHYSICAL REVIEW D 61 114508
can induce a large uncertainty inLQCD. To avoid the statis-
tical uncertainties in that respect, we work with 1.000 ind
pendent gauge field configurations at every stage of
research.2 To keep the energy window large enough, we ne
to fit simultaneously the lattice data obtained at differe
lattice spacings. In other words, we must ensure that
small momentum lattice data with largeb and large momen-
tum data with small~but reasonable! b are compatible. In
order to achieve that and to reduce systematic uncertain
to the level of statistical ones, one evidently needs to con
both IR and UV lattice artifacts for all the data. Therefore
major part of this paper is devoted to these issues: the re
tion of the UV and IR systematic uncertainties. The discre
zation errors are monitored by working at three values of
bare lattice coupling:

b5$6.0, 6.2, 6.8%. ~1!

A lattice spacinga2152.72(11) GeV has recently bee
measured atb56.2 with a nonperturbatively improved ac
tion @5#. For a direct comparison with@1–3#, in this paper we
will keep a21(b56.2)52.75 GeV which is well within the
error bars. Other lattices are calibrated relatively to this o
by using the lattice measurement of the string tension@6#.
We take

a215$1.97 GeV, 2.75 GeV, 6.10 GeV%, ~2!

at b56.0, 6.2, and 6.8, respectively. Thus, our lattice sp
ings vary from 0.03 fm to 0.10 fm. The study atb
56.8 (a.0.03 fm) allows us to reach momenta up
;10 GeV. The main study of the finite-volume effects
performed atb56.0, by repeating the calculation with th
following lattice volumes:

V5$124, 164, 244, 324%. ~3!

From this study we deduced an efficient parametrization
the finite volume effects~18!, which allows us to extrapolate
our high momentum data to theV→` limit. An important
cross-check is provided by two volumes atb56.8:

V5$164, 244%, ~4!

while for b56.2, we work with the volumeV5244 only.
An improved version of the method used in Ref.@3# to

cure lattice hypercubic effects has been applied. Nonhy
cubic finite spacing effects have been dealt with by comp
ing different values ofb.

Curing the above-mentioned artifacts, we could keep m
of our lattice points. We discarded those which exhibit lar
corrections.

In this paper, we will not deal with the small momentu
behavior of the gluon propagator. We postpone it to o
forthcoming publications. This part has so far attracted a
of attention in the literature@7–13# ~for a review with a

2The only exception is the simulation at (6.0, 324), where we
have 100 configurations.
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rather complete list of references, see Ref.@14#!, while, to
our knowledge, the large momentum gluon propagator
not been studied in detail, except for a preliminary approa
in @9#. Preliminary results of this paper were presented too
Ref. @15#.

The remainder of this paper is organized as follows:
Sec. II we outline the generalities of the method we u
~previously described in Ref.@3#!, and introduce the main
perturbation theory tools. In Sec. III, the lattice artifacts a
discussed. Those related to hypercubic geometry are el
nated by improving the method presented in Ref.@3#. A pro-
cedure allowing us to treat empirically the finite-volume e
fects is described. In Sec. IV we perform a three-loop fit
the gluon propagator in the modified momentum space s
traction (MOM) scheme and apply the test of scheme ind
pendence, by considering a~5.6–9.5! GeV window in which
only the data atb56.8 are used. Section V is devoted to t
study of the whole window, ranging from 2.8 up to 9.5 Ge
by combining all lattice data. We discuss our results in S
VI and conclude in Sec. VII.

II. GENERAL DESCRIPTION OF THE METHOD

The Euclidean two-point Green function in momentu
space writes in the Landau gauge:

Gm1m2

(2) a1a2~p,2p!5da1a2S dm1m2
2

pm1
pm2

p2 D G(2)~p2!, ~5!

wherea1 ,a2 are the color indices ranging from 1 to 8. Th
bare gluon propagator in the Landau gauge~see, for instance
Ref. @3#! is such that

lim
L→`

d ln Z3~m,L!

d ln m2
[ lim

L→`

d ln@m2Gbare
(2) ~m,L!#

d ln m2
~6!

is independent of any regularization scheme.Z3(m,L) is the
gluon renormalization constant in the MOM~or MOM)
scheme at the pointp25m2, andL is a generic notation for
the UV cutoff @a21 or (d24)21].

It is well known that them and theL dependences o
Z3(m,L) factorize when one drops all the terms vanishing
L→` ~see Ref.@16#!, and we can write:

Z3~m,L!5Z3
R~m!Z3

b~L!1O~1/L!, ~7!

where the evolution of bothZ3
R(m) andZ3

b(L) is described
by the Callan-Symanzik equations

S d

d ln m2 2GR~m! DZ3
R~m!50,

S d

d ln L2 2Gb~L! DZ3
b~L!50. ~8!

From QCD perturbation theory we know that
8-2
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ASYMPTOTIC SCALING OF THE GLUON PROPAGATOR . . . PHYSICAL REVIEW D61 114508
d ln Z3
R~m!

d ln m2
5GR~m!

52S g0

4p
a1

g1

~4p!2
a2

1
g2

~4p!3
a31O~a4!D , ~9!

where it is understood that the coupling constant in a gi
scheme is a function ofm such that

]a

] ln m
5b~a!52

b0

2p
a22

b1

~2p!2
a32

b2

~4p!3
a41O~a5!,

~10!

with

b0511, b1551, g05
13

2
, ~11!

in the flavorless case (nf50), while g1 , g2, and b2 are
scheme dependent. To be specific, in the flavorlessMOM,
scheme,3

b2.4824, g15
29

8
, g2.960. ~12!

Lattice calculations provide us with the bare propagator
in a finite volume which, besides the UV cutoff (L;1/a),
introduces an additional length dimensionL ~the physical
volume beingL4). As we shall see, finite-volume effects, a
well as hypercubic artifacts, should be eliminated first
order to have access to the renormalization constant in
~6!, Z3(m,1/a).

Equations formally analogous to Eqs.~9! and~10! can be
obtained from the second line of Eq.~8!, with the substitu-
tions of 1/a for L and of the lattice bare coupling consta
ab53/(2pb) for the renormalized one. Unhappily th
anomalous dimension coefficientsg1

b ,g2
b have not been de

termined to our knowledge, presumably due to the difficu
of the task. Any perturbative calculation ofZ3

b(1/a) appears
thus to be limited to one loop:

d ln Z3
b~1/a!

dab~1/a!
5

g0
b

b0

1

ab~1/a!
, ~13!

for which it can easily be proved thatg0
b52g0.

Our generalstrategy, as explained in Ref.@3#, will be to
integrate simultaneously Eqs.~9!,~10! up to three loops in a
given scheme. The solutions depend on the initial val
Z3

R(m0) and a(m0). They are related to the lattice resul

3Details of the computation of the parametersb2 , g1 , g2 in this
scheme can be found in Refs.@3,17#.
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Z3(m,1/a) through Eq.~7!. When we restrict our computa
tion to the lattice data atb56.8, Z3

b(1/a) is just an overall
irrelevant multiplicative constant. With our three values
b, two ratios of three„Z3

b(6.8)/Z3
b(6.2), Z3

b(6.8)/Z3
b(6.0),

Z3
b(6.2)/Z3

b(6.0)… are necessary for appropriate matching
all our lattice data. These ratios will be fitted and compa
to one-loop predictions in Sec. V.

Finally, knowledge ofa(m0) in a given scheme allows
the determination ofLQCD in this scheme and, hence, o

LQCD
MS .

III. LATTICE ARTIFACTS

We refer to Ref.@1# for technical details concerning th
lattice setup in our simulations, the calculation of the Gre
functions, their Fourier transform, the checks of theda1 ,a2

color dependence of the propagators, and the set of mom
considered for the different lattices studied. Since the rele
of Ref. @1#, we increased the statistical quality of our da
and further explored various lattice volumes and various v
ues ofb. As mentioned in the Introduction, of special inte
est for this study are the results of our simulation perform
at b56.8 at two volumes 164 and 244. The high statistical
accuracy of our data made a detailed study of system
uncertainties possible and mandatory.

A. Hypercubic artifacts and other „a2p2
… effects

We start with the discretization errors. In a finite hype
cubic volume the momenta are the discrete sets of vecto

pm5
2p

L
nm , ~14!

where the components ofnm are integers andL is the lattice
size. The propagators have been averaged as usual ove
hypercubic isometry groupH4. The momenta correspondin
to different orbits ofH4, but belonging to the same orbit o
the continuum isometry group SO~4! @e.g., nm5(2,0,0,0),
andnm5(1,1,1,1)], have been analyzed according to an
proved version of the method proposed in Ref.@3#.

Let us briefly recall the elements of that method. T
main idea is based on the fact that, on the lattice, an invar
scalar form factor, such asG(2)(p2), is indeed a function of
four invariantsp[n][(mpm

n , n52,4,6,8. We will neglect the
invariants with degree higher than 4 since, in any case, t
vanish at least as;a4. Thus, we parametrize and expand t
lattice two-point scalar form factor as a function of the tw
remaining invariants which, on dimensional grounds, app
asp2 anda2p[4] :

Glat
(2)~p2,a2p[4] ;L,a!5Glat

(2)~p2,0;L,a!

1
]G

]~a2p[4] !
U

a2p[4]50

a2p[4] .

~15!
8-3
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D. BECIREVIC et al. PHYSICAL REVIEW D 61 114508
]G/](a2p[4] )ua2p[4]50 is a symbolic notation for thelattice
hypercubic slope. This equation summarizes our method
reduce hypercubic artifacts and contains all the assumpt
on which the method relies. We make the hypothesis that
lattice propagator for the discrete momenta belonging to
ferentH4 orbits takes values according to a certain contin
ous functional behavior. When several orbits exist for o
p2, to the extent that a linear approximation is licit, thehy-
percubic slopecan be extracted and the extrapolation
a2p[4]50, by using Eq.~15!, can be made. We have check
that the linear approximation~15! is indeed good enough
This is what has been done in Ref.@3#. Now we elaborate
further on this method in order to improve its accuracy a
extend its applicability.

A simple dimensional argument leads
]G/(a2]p[4] )ua2p[4]50}1/p4, asL→`, suggesting the fitting

FIG. 1. Plot~a! showsp2(]G/a2]p[4] )ua2p[4]50 as a function of
the scalep evaluated on 244 lattices atb56.0, 6.2 6.8. Plot~b!
compares the ‘‘hypercubic-free propagator’’ defined from E
~15!,~16! ~black circles! and the propagator computed by direct e
trapolation toa2p[4]50 ~white circles!, plotted as a function of the
momentum.
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form b/p4, whereb is a constant.4 At this point, from the
study of the lattice hypercubic slope for different values
b, we extracted the values of termb/p4 and examined the
behavior of the remainder. We find that the logarithm
2b1p4]G/(a2]p[4] )ua2p[4]50 is well described by a linea
function of Lp. This leads us to

]G

]~a2p[4] !
U

a2p[4]50

5
b

p4@11c exp~2dLp!#. ~16!

By fitting our data to the above form and by keepin
x2/NDF.1 ~see Fig. 1a!, we obtained the set of paramete
given in Table I.

The values forc and d in Table I are presented to sho
the order of magnitude. Their errors, estimated by using
jackknife method, are misleading since the parameters
strongly correlated. A refined statistical study is not nec
sary for our purpose, since we follow the jackknife analy
cluster by cluster to the end.

On the other hand, it is rewarding that the errors inb in
Eq. ~1! are small, which is essential for an accurate infini
volume limit. It is also encouraging thatb varies only slowly
with a, which justifies our neglecting higher order term
O(a4p[6] ), etc., and it clearly confirms that we do control th
lattice hypercubic artifacts. We can now take advantage
the good fit obtained with Eq.~16! and compute thelattice
hypercubic slopein cases where only one orbit exists@for
instance, whenn255, we only havenm5(2,1,0,0) and its
H4 orbit#.

To summarize, by using Eq.~16!, we extrapolate
Glat

(2)(p2,a2p[4] ;L,a) to what we will call thehypercubic-
free propagator Glat

(2)(p2,0;L,a). In Ref. @3#, we discussed
the improvement brought in by our previous (a2p[4]50)
extrapolation approach with respect to other methods to
duce hypercubic artifacts. The use of Eq.~16! allows even
better accuracy on slopes: not only does it allow an extra
lation to a2p[4]50 when only one orbit exists but it als
helps to reduce the uncertainty by taking benefit of
neighboring values ofn2 when the error is locally too large
The outcome of this improvement is depicted in Fig. 1
where the resulting curve joining the points obtained by

4For example, the hypercubic correction for the free propaga

1/p̃251/(p22
1

12a2p[4] )1•••, would be 1/12p4.

TABLE I. The values of the parametersb, c, d, as obtained by
fitting our data to Eq.~16!.

b b c d

6.0 0.117~9! 1.1~1.5! 0.15~8!

6.2 0.109~2! 1.9~1.2! 0.18~3!

6.8 0.100~5! 0.6~8! 0.13~5!

.

8-4
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FIG. 2. Plot~a! contains the hypercubic-free propagators evaluated on 124 ~black squares!, 164 ~black circles!, 244 ~white circles!, 324

~white squares! lattices atb56.0. The same data extrapolated toL→` according to the parametrization given by Eqs.~18!,~19! are plotted
in ~b!.
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ing Eq. ~16! is much smoother than the one obtained
separate extrapolation5 for eachn2.

It is important to add that not allO(a2) artifacts are elimi-
nated: for instance, the lattice artifacts}a2p2, which do not
break SO~4! invariance, are still present. One way to de
with this problem is to compare the data at different valu
of b. One can also study the stability of the results when
maximum value ofp2 used in the fits is varied. We hav
checked this stability in the fits presented below.

B. Finite-volume effects

After removing hypercubic artifacts, we are left with th
hypercubic-free propagator. The dependence on the le
scaleL, as we previously mentioned, is apparent from Fig
The elimination of this additional length scale should
done in order to compute the renormalization constant for
Landau gauge gluon propagator:

Z3~m,1/a!5 lim
L→`

@p2Glat
(2)~p2,0;L,a!#p25m2. ~17!

In doing so, we will not attempt a theoretical understand
of the expected finite-volume dependence of the bare pro
gator. We will be content if we obtain a reliable empiric
parametrization for the dependence on the lattice volum
Glat

(2)(p2,0;L,a) which will allow us to take the required limi
~17!. For dimensional reasons, we will take it as a function
Lp anda/L. We note that the difference among the data
fixed b and various volumes gets bigger as we move towa
lower p2. This is illustrated in Fig. 2 where we plo

5Note, however, that even in the latter case, the resulting curv
by far smoother than the one obtained by simply averaging
orbits or by selecting the ‘‘democratic’’ points, as advocated in R
@9#. This improvement was already illustrated in Ref.@3#.
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p2Glat
(2)(p2,0;L,a). We tried severalAnsätze for this param-

etrization function and finally found that

Glat
(2)~p2,0;L,a!5Glat

(2)~p2,0;`,a!F11v1S a

L D 4

1v2 exp~2v3Lp!G , ~18!

with

v15450~40!, v250.44~16!, v350.177~25!, ~19!

gives the best fit to the behavior onL of hypercubic-free
propagators evaluated on 124, 164, 244, 324 lattices in the
energy window6 (1.5–3.0) GeV atb56.0. This parametri-
zation is not efficient at lower energies, as can be seen in
2b.

Once the parametrization function from propagato
evaluated atb56.0 is established, it can be applied to o
results at 164 and 244 lattices atb56.8. The agreement afte
extrapolation shown by the curves resulting from the e
trapolation in Fig. 3 is a crucial test for the validity of such
parametrization for finite-volume effects.

Thus, Eqs.~17!-~19! lead to a nonperturbative evaluatio
of the renormalization constantZ3(m,1/a), which is pre-
cisely the quantity we want to compare to the predictions
perturbative QCD.

is
e

f.

6In this procedure we assume that the volume 324 is already infi-
nite; i.e., we takeGlat

(2)
„p2,0;32,a(6.0)….Glat

(2)
„p2,0;`,a(6.0)…. In

the fit to the form~18!, the energy window is chosen such that t
total x2/NDF;2.
8-5
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FIG. 3. This figure is analogous to Fig. 2 forb56.8. Black~white! circles correspond to 244 (164) lattices.
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IV. FITTING IN THE MOM SCHEME AT HIGH ENERGIES

In this section we perform the matching of the perturb
tive predictions for theMOM renormalization constant to
our lattice result at high energies. We follow the meth
outlined in Sec. II and refer the reader to Ref.@3# for more
details.

We consider the coupled differential equations~9!,~10! in
the MOM scheme, where the coefficientsg1 , g2 , b2 are
those given in Eq.~12!. We fit our data atb56.8 for
Z3(m,1/a), with a solution of these coupled equations in t
energy window (5.6–9.5) GeV. The result of this fit is

Z3~9.5 GeV!51.3107~9!,

FIG. 4. The plot shows~solid line! the best fit toZ3(m,1/a) with
the three-loop formula together with the lattice results atb56.8
after extrapolation toL→` from both 164 and 244 lattice volumes
for 5.6 GeV,m,9.5 GeV. The fit is continued outside the ener
window as a dashed line.
11450
-

aMOM~9.5 GeV!50.190~3!, x2/NDF50.29. ~20!

The x2/NDF is significantly smaller than 1 which may be
sign of some correlation between the points at different v
ues of the energym.

As explained in@3#, LMS can be estimated from the abov
quantities~20! by using the perturbative expressions to tw
and three-loop accuracy. We obtain

L (3 loop)
MS .0.346 L (3 loop)

MOM 5319614 MeV,

L (2 loop)
MS .0.346 L (2 loop)

MOM .375 MeV, ~21!

where the error is only statistical at this stage. The existe
of a good fit~see Fig. 4! by itself is not a sufficient proof of
asymptoticity: next-to-three-loop corrections could be mi
icked by a simple rescaling ofLQCD in the considered energ
range@3#. This is why we developed a consistent method
test asymptoticity by exploring the scheme depende
within the domain of so-calledgood schemes: one investi-
gates the dispersion of the result forLMS when we vary the
schemes, by varyingg1 andg2, in all the possible ways such
that the successive terms in the perturbative series~9!,~10!
are at most as large as the preceding ones.7 In Ref. @3#, we
found that this dispersion is of;35 MeV for LMS fixed
from the fit of the gluon propagator at;4 GeV to the three-
loop perturbative expression. In the present study, when
ing LMS at around 9.5 GeV, this dispersion~in the same
domain of schemes! is of ;10 MeV only.

Note that the difference in Eq.~21! between two and three
loops, although smaller than at 4 GeV, is still sizable, in
cating the necessity to include the third loop term.

7This is the generalization of the effective charge approach p
posed in Ref.@16#.
8-6
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ASYMPTOTIC SCALING OF THE GLUON PROPAGATOR . . . PHYSICAL REVIEW D61 114508
V. GLOBAL DESCRIPTION AND ASYMPTOTIC
PATTERN

Our analysis at high energy in the previous section se
to establish that a signal of three-loop perturbative scalin
found in the energy window (5.6–9.5) GeV. By includin
the data obtained atb56.0 andb56.2, one can make th
energy window larger: 2.8 GeV&m&9.5 GeV ~the choice
for the lower limit will be discussed below!. However, as
already mentioned in the end of Sec. II, any global fit
volves two additional parameters, the ratiosZ3

b(6.0)/Z3
b(6.8)

and Z3
b(6.2)/Z3

b(6.8). Moreover, we do not expect a thre
loop perturbative behavior to work in the whole energy w
dow. In Ref. @3#, we showed that the propagator was n
asymptotic to three loops at;4 GeV. The difference be
tweenL (3 loop)

MS in Eq. ~21! and;350 MeV as found in Ref.
@3#, confirms that statement. Thus, at least the fourth lo
correction is necessary for the global fit. Unfortunately, su
a perturbative result is not available in theMOM scheme.

With these five free parameters, a global fit turns out to
unstable. A global study of our lattice data would neverth
less enable a direct test of consistency for the whole in
mation we extract from gluon propagator. For that reason
adopt the following strategy. First, we take the value
L (3 loop)

MS given in Eq.~21! to be the asymptotic one, i.e., w
assume the gluon propagator to reach asymptoticity at t
loops for the energy window studied in the previous secti
Then we fix the fourth loop correction to the three-loop p
turbative expression by fitting the data obtained in our sim
lations atb56.0 andb56.2, corresponding to the energ
range (2.8–4.3) GeV. Once the fourth loop correction
known, we will verify the asymptoticity of the gluon propa
gator in the entire energy window (2.8–9.5) GeV.

The four-loop information about the gluon propagator

MOM scheme is encoded in the coefficientsg3
MOM and

b3
MOM . These two coefficients are not independent but

lated through the expression@17,3#

g3
MOM

~4p!4
1

b3
MOM

~4p!4

g0

b0
5

g3

~4p!4
1

b3

~4p!4

g0

b0
, ~22!

which is valid for any renormalization scheme in whichg1

5g1
MOM , g25g2

MOM and b25b2
MOM , listed in Eq. ~12!.

Thus, there is only one free parameter to be fitted. For s
plicity, we choose among the set of schemes satisfying
~22! the one withb350, ĝ3 being that free parameter. Fo
such a renormalization scheme,

ZR~m!5Z(3)~m!expS 1

3~4p!3

ĝ3

b0
@â3~m!2a0

3# D ~23!

is, up to higher irrelevant orders, the solution to the four-lo
coupled equations analogous to Eqs.~9! and ~10!, where
Z(3)(m) is the solution of the three-loop problem, witha0
being the initial strong coupling constant atm0 for both,
three and four loops. The results of the fit in the ene
window (2.8–4.3) GeV read~see Fig. 5!
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Z3
b
„a~6.0!…

Z3
b
„a~6.8!…

50.995~3!,
Z3

b
„a~6.2!…

Z3
b
„a~6.8!…

51.012~2!,

ĝ35~2.261.6!3104 ~x2/NDF51.17!, ~24!

where the errors on the ratios ofZ3
b’s do not take into ac-

count the uncertainty coming from the errors in the latt
spacing ratios. This uncertainty does not exceed 1%. W
the lower limit of the energy window takes values belo
2.8 GeV, thex2/NDF rapidly increases, which indicates th
end of the four-loop matching. This is illustrated in Fig. 6
The upper limit is fixed byap<p/2. We note also that the
fitted values of the ratios~24! are very close to 1.0, and

FIG. 5. One-, two-, three-, and four-loop perturbative curv

obtained from our best fits ofaMOM(9.5 GeV) andĝ3 are pre-
sented in plot~a!. Notice that all these curves are computed w

LMOM5319614 MeV. The points correspond to the lattice eval
ations atb56.0, 6.2 divided by our best fits of the ratios ofZ3

b

referred tob56.8 (Z3
b is taken to be 1 atb56.8). Plot~b! shows

the same perturbative curves and the lattice data atb56.8.
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somewhat larger than the results obtained by using the
loop lattice perturbation theory.8

The estimatedĝ3 is not as large as it might look:

ĝ3a/4p

g2
.0.6 and

ĝ3a3/~4p!3

g0
;0.05 ~25!

8For comparison, the one-loop perturbative values of the two
tios are Z3

b(6.0)/Z3
b(6.8)50.929 andZ3

b(6.2)/Z3
b(6.8)50.947, in

clear disagreement with the fitted values@Eq. ~24!# even if the small
uncertainty in the lattice spacing is considered. On the contrary
fitted ratio Z3

b(6.2)/Z3
b(6.0)51.017 is in good agreement with th

one-loop perturbative prediction 1.019.

FIG. 6. Plot~a!: the x2/NDF for the global fit obtained after the
estimation of the four-loop contribution as a function of the low
limit for the energy window. Plot~b!: the global fit of all the lattice
results with the four-loop corrected perturbative formula~the solid
line curve in Fig. 5! from Eq. ~23!.
11450
e-

at m54.0 GeV. The large error forĝ3 quoted in Eq.~24! is
not surprising because the determination ofĝ3 strongly de-
pends onaMOM(9.5 GeV). In other words, a very small un
certainty inaMOM is reflected in the large error forĝ3 in our
energy window (2.8–4.3) GeV. Thus the computation
the value forĝ3 from perturbation theory would considerab
reduce the systematic uncertainty ofaMOM(9.5 GeV) and,
hence, ofLMS.

At this point, we can check the consistency by performi
a global fit over the entire window 2.8 GeV<m

<9.5 GeV, with the values ofĝ3 and of the ratiosZ3
b taken

from Eq. ~24!. The result of such a fit is depicted in Fig. 6
The global estimate ofLMS does not modify the one we
obtained at large energies (5.6 GeV<m<9.5 GeV) given
in Eq. ~21!, whereas the globalx2/NDF is 0.79.

Finally, we should assess the systematic uncertainty in
duced by the assumption of the three-loop asymptoticity~i.e.,
ĝ350) for 5.6 GeV<m<9.5 GeV. The simplest estimat
of the nonasymptoticity errors consists in monitoring t
value of LMS, while varying the coefficientĝ3Þ0. uĝ3u is

reasonably bounded by 4pg2
MOM/a(m) over the whole win-

dow. From the previous works@3,4# and from the presen
study we see that the nonasymptoticity has a tendenc
provoke overestimates ofLMS ~the effectiveL (3 loop)

MS de-
creases as the matching is performed at higher energ!.
This observation is sufficient to exclude the negative val

of ĝ3. Then, by varying 0<ĝ3<4pg2
MOM/a(5.6 GeV)

;42 000 we obtain an uncertainty inLMS of ;20 MeV.
Thus, the Landau gauge gluon propagator analysis resul

LMS5319614220
110, ~26!

where the upper limit for the systematic uncertainty com
from the dispersion we observed by exploring the domain
three-loop good schemes, aroundMOM, over the (g1 ,g2)
plane. It is important to note that the uncertainty in the va

of LMS would be considerably reduced if the valueg3
MOM

was known. Not only the220 MeV would be reduced, bu
also the dispersion over the set of good schemes to
loops would be fairly restrained.

Reciprocally, if LMS was known accurately from an
other source, we could use our data to fitĝ3 rather accu-
rately. For example, takingLMS strictly equal to the centra
value in Eq.~26! would give

g3
MOM

~4p!4
1

b3
MOM

~4p!4

g0

b0
U

LMS5319 MeV

50.8860.04, ~27!

where we have used Eq.~22!. But let us repeat, the fitted
value for ĝ3 varies quickly whenLMS is varied within the
error bars, which explains the large error in Eq.~24! or,
equivalently,

-

e

r
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g3
MOM

~4p!4
1

b3
MOM

~4p!4

g0

b0
50.960.6. ~28!

VI. DISCUSSION

The estimate ofLMS is significantly higher than the on
obtained with the Schro¨dinger functional @4#, LMS5238
619 MeV. Zero-flavor nonrelativistic QCD~NRQCD! re-
sults @18#, although not directly expressed in terms ofLMS,
seem to agree with the result from Schro¨dinger functional.
Estimates from string tension cover a large range of valu
244(8) MeV @6#, 293(18)263

125 MeV @19#. On the other
hand, the value recently obtained directly from the trip
gluon vertex,LMS5295620 MeV in @1#, and the less re-
cent 340~50! MeV @2#, along with the one obtained in thi
paper, favor the larger values ofLMS. The discrepancy is o
the order of three sigma. The method based on the Sc¨-
dinger functional and the one based on Green functions
quite different so that a direct comparison is not easy. Co
it be that the reason for this discrepancy is simply that we
not reach a enough large energy? In other words, could i
that the difference betweenLMS5238619 MeV and the
result~26! were simply due to the fact that next to third ord
terms, which are not used in the fit leading to Eq.~26!, do
mimic a largerLMS? To investigate this question we use
simple check: had we assumed the result forLMS in Ref. @4#
to be the right asymptotic one, we would have obtained

g3
MOM

~4p!4
1

b3
MOM

~4p!4

g0

b0
U

LMS5238 MeV

58.4260.08, ~29!

over the same energy window used for Eq.~27!,
(2.8–9.5) GeV, thex2/NDF being 0.89. The Schro¨dinger
functional result applied to our data would then imply th
the Landau gauge gluon propagator is not asymptotic at t
loops at the energy scale of 9 GeV. The four-loop contrib
tion in this case would be much bigger than the three-lo
one~about 4 times!. This seems rather unlikely. We therefo
conclude that the valueLMS obtained by using the Schro¨-
dinger functional technique is difficult to accommodate w
the gluon propagator data by using the three-loop express
There may be some unknown systematic effect explain
this discrepancy. To solve this puzzle one may search
possible nonperturbative effects which have not been ta
under consideration in the present study. A thoroughful a
detailed analysis of the implications of power correctio
which may be supposed for instance to mimick all neglec
terms in perturbation series, is under way@20#.

Let us finally make a comment about the convergence
the gluon propagator. The direct connection between
renormalization constant in theMOM scheme and the gluon
propagator makes the gluon momentum the natural sca
this scheme. The scales in theMOM scheme are significantly
larger than the corresponding ones in the modified minim
11450
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subtraction (MS) scheme, typically by a factor of 1/0.34
@see Eq.~21!#. The Landau pole in theMOM scheme is
around 1 GeV. As the perturbative regime of the propaga
is expected to settle in when log(m/LMOM) is large enough, it
is then not too surprising that high perturbative orders
important around;3 GeV and higher energies are need
to reach a three-loop perturbative scaling.

VII. CONCLUSIONS

The main goal of the present work was to go deeper i
the study of the asymptoticity of the Landau gauge glu
propagator. The matching of its nonperturbative evaluat
from lattice with perturbative predictions gives us an es
mate of the strong coupling constant and hence ofLQCD @3#.

We have carefully examined the lattice spacing effec
particularly the hypercubic artifacts and the finite-volum
ones. We find a close linearity ina2p[4] of the gluon propa-
gator, with the slope given by Eq.~16!, which removes effi-
ciently the hypercubic artifacts. The finite-volume effects,
the region of large momenta, are parametrized by the rela
~18!.

After having subtracted the lattice artifacts, we found th
the four-loop contribution is negligible above;5 GeV, but
becomes important below this energy, confirming the c
clusion of Ref.@3#. In its turn the four-loop perturbative sca
ing fails below 2.8 GeV: the Landau gauge gluon propaga
reaches very slowly the asymptoticity.

We therefore have fitted with a three-loop formula ov
the energy window 5.6 GeV<m<9.5 GeV. The rather
good fit leads toL (3 loop)

MS 5319614 MeV. A fitted four-loop
formula has been used to extend the fit over the larger en
window (2.8–9.5) GeV. We have obtained a consistent
scription of all our lattice data.

Our final result is

LMS5319614220
110a21~6.2!

2.75 GeV
MeV, ~30!

with the errors discussed in detail in Sec. V. Although
combination of theoretical results is always delicate, we m
try to combine this result with the one obtained from t
study of the three gluon vertex@1#, LMS5295620 MeV.
This results in an overall flavorless estimate from the glu
Green functions: 275 MeV<LMS<343 MeV.
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