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We compute nonperturbatively the average up-down and strange quark masses from the large momentum
(short-distancebehavior of the quark propagator in the Landau gauge. This method, which has never been
applied so far, does not require the explicit calculation of the quark mass renormalization constant. Calcula-
tions were performed in the quenched approximation, by uéit@) improved Wilson fermions. The main
results of this study aren}'(2 GeV)=5.8(6) MeV andmf'(2 GeV)=136(11) MeV. Using the relations be-
tween different schemes, obtained from the available four-loop anomalous dimensions, we alsf%ind
=7.6(8) MeV andmf®'=177(14) MeV, and the modified minimal subtraction scherMS) masses
m"S(2 GeV)=4.8(5) MeV andml(2 GeV)=111(9) MeV.

PACS numbgs): 12.15.Ff, 11.15.Ha, 12.38.Gc

I. INTRODUCTION The two standard definitions of the lattice quark masses
are based on the vecto¥WI) and the axial-vectofAWI)
Determination of quark masses is becoming one of thehiral Ward identitie§22]. The VWI relates the bare quark
most intensive fields of investigation in lattice Q¢D-14].  mass to the value of the Wilson hopping parameterm?2
The accuracy of the predictions is significantly improving = (1/x— /k¢i). With this definition, one can easily show
mainly because of two recent theoretical developments:  that the mass renormalization constanZjg(u) =Zg*(u).
Nonperturbative renormalization procedures have beedhe definition based on the AWI is am
introduced[15,16] in order to remove the systematic uncer- =(@|d,A,|B8)/{«|P|B), whered, A, andP are the diver-
tainties coming from the truncation of perturbative series ingence of théimproved axial-vector current and the pseudo-
the calculation of the relevant renormalization constantsScalar —density, respectively. In this case/m(uw)
These procedures also provide an appropriate nonperturbi—ZA/ZP(#)- ) ]
tive, short-distance definition of the quark masses either in " this paper, in order to calculate the renormalized quark
the so-called regularization invariafRl) momentum sub- Mass, we adopt a new method based on the study of the large

atl | 5 | .
traction(MOM) or Schralinger functional schemes. The re- P behé%v'or of the renormallzed quark propagator. The
lation between the mass in the RI-MOM schefwéich wil method is based on the idea that at large Euclidean momenta

be used in this studyand in the modified minimal subtrac- itis _p_ossible to m_atqh latice _anc_j COU“”“_“”‘ correlators by
. — & or the renormalization arou requiring the vamshmg_m_c ch_|_raI|ty violating fqrm factors
tion §cheme MS). scheme, o | group I[23,25}. This procedure is justified by the following two ob-
Invariant mass, '3 known at nlext-to-next-to-leadlng ordelgeryations. The first is that at large momenta the renormal-
EHHII:I(E%)[H]S] ?: Co\r’]%;yu[j;cgggjrggﬁgnat‘:]er:)erXt'to'NNLo ized perturbation theory becomes chirally invariéeplicit

’ Y. chiral symmetry breaking effects induced by the regulariza-

A. ;econd important theoretical progress.is the .redUCtiOQion are reabsorbed by imposing the validity of the chiral
of finite cutoff (O(a)) effects obtained by improving the Ward identities, while violations from the nonvanishing
lattice fermion action and operators. The perturbative procequark masses disappear at large momerftae second ob-
duref, pl)lroposed n F;ef@lg,[zoj, has been regen:}ly Z)I(_tlgrlj&ed servation is that the contributions due to the spontaneous
to afully npnpertur ativéX(a) mprqvgment yt_ € breaking of chiral symmetry, which are absent in perturba-
Collaboration 21], so that the remaining discretization errors tion theory, die off at large momenta. Thus, both effects

2 ) : ’
are onrlly of0(a’). lind d lattice d . decrease as we go deeper into the Euclidean region.
_In tfehpiatlsthyear, ievera n epeﬂ entb attice etermclina— The simplest application of this idea is the possibility of
tions of the light quark mass¢8-11] have been presented, o|ating the quark mass to the renormalized quark propagator
adopting both nonperturbative renormalization procedures
and nonperturbative improvement. i &5(p?)
P - 2
S(p)=Fa-l(p2)+ pZ 1)

The con\_/ersion_ of the results to tMS scheme is only necessary since, at Iargepz, we expec{26]
for comparison with other calculations for which the quark masses
are renormalized perturbatively. Otherwise, the method of [Ré&f.
allows us, in principle, to obtain the renormalized quark masses for & (p2):m+<aq> 4mas +0O( 1/p4) 2
the RI-MOM scheme in a completely nonperturbative way. 2 3p2 '
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In particular, the quark mass renormalized in the RI-MOM i a“s—l(p.’u)
scheme can be directly extracted from the quark propagator 4—8Tr 7#—'
renormalized in the same scheme by using 9Py p2=p2
2Ty, S0
1 . = Lo Tr y,——— =1
()= 5 TS H(Pi) T2 ) 48 MPu Jpo-p2

In summary, Eqs(3) and(6) are all we need to extract quark
where the trace is over both color and spin indit&p; w) masses from propagators. The procedure becomes rather
is the (improved quark propagator renormalized at somecomplicated, however, if we want to extend it to the nonper-
scale u. Since the quark propagator is a gauge dependeritrbatively improved case. The drawback with the method of
quantity, the definition of the RI-MOM mass also dependsRef. [15] is that the improvement progratwhich was ini-
on the gauge. tially carried out for on-shell quantitigsnust be extended to

At large momenta and up to discretization errors, @y. Off-shell Green functions on nongauge invariant states and
is equivalent to the definition of the quark mass based on th#volves additional counterterms for a ful’(a) improve-
AWI. Chiral symmetry provides a relation between the in-ment[23]. The strategy followed in this case will be illus-

verse quark propagatd®(p; «) ~*, and the amputated Green tra:edrin detail inESe% II. 4(6) have b g
function of the pseudoscalar densitz§(5(p;,u), computed n this paper, Eqs(3) and(6) have been used to compute

the average up-down and the strange quark masses by per-
between externdbff-shell) quark states of equal momerpia forming a lattice QCD calculation in the quenched approxi-
The AWI then reads

mation. We use the nonperturbatively improved acfi?m,
and improve the quark propagator in the chiral limit. The
2mg( ) As(pi ) =5S H(piw)+S Hp;u)ys. (4 O(a) improvement procedure for off-shéiauge noninvari-
and quantities has been discussed in H&f3]. Since that
paper has not been published yet, we will describe here in
some detail the specific case of the quark propagator. For
technical reasons, which are related to the mixing with non—
gauge-invariant higher-dimensional operatgsgee belowy,
we are not able to improve the propagator out of the chiral
limit.® Therefore, our determination of the quark masses is
affected by(’)(gﬁam) systematic errors. Since the value of
1 - the inverse lattice spacing in this simulation & *
15 1L ysAs(pip) 2= y2=1. (3 =2.72GeV, these errors are expected to be negligible for the
strange and the light quark masses.
) ) ) ) We conclude this section by summarizing the main results
By tracing both sides of Eq4) with ys and by using EQS), ¢ this paper. From the study of the quark propagator, we

the relation(3) is readily derived. Note that & in Eq.(3) IS eyiract the(quenchetilight and strange quark masses in the
not chosen in the perturbative region, i.e.>Aqcp, the  RI_MOM scheme:

definition of the quark mass will be affected by nonperturba-

tive, chirally breaking contributions proportional to the quark _ g, _ RI _

condensate and higher-dimensional operators appearing i (2GeV)=5.8(6) MeV, mg (2 GeV)=13611) Me\('?)
higher power corrections{1/p?").

The advantage in determining the masses from the quar. h it _ d ¢ with th ¢ Ref
propagators is that it is not necessary to calculate explicitl ese resulls are in very good agreement wi ose of Ret.

RI _ RI
the mass renormalization constafite., Z(x) or Zp(w)]. Ok Namelymgi(2 GeV)=138(15) MeV andm(2 GeV)

This is merely a consequence of the fact that the renormal-:5'6(5) MeV. )

ized quark propagator is directly expressed in terms of the USing the NNNLO perturbative formulas of R¢1.8], we
renormalized quark mass. Unlike in the case of the VWI, the?Ptain the renormalization group invariant quark masses
critical value of the hopping parametet.,;; is also not RGI RGI

needed(which is the advantage inherent to the use of the m ' =7.6(8) MeV, mg~'=17714) MeV, (8)
AWI). There is, however, one renormalization constant for

any quark-mass definition; in our case, using B, thisis  where the renormalization group invariant quark mass is de-
the quark-field renormalization constafy. In the RI-MOM  fined according to the convention usually adopted in pertur-
schemeZ,, is fixed by the following renormalization condi- bative calculation$17,18,29, i.e.,

tion:

All quantities in Eq.(4) are assumed to be renormaliz@ehd
improved in the same scheme and at the same sgall
the RI-MOM schemedand in a fixed gaugethe Green func-

tion f\s(p;,u) satisfies the following renormalization condi-
tion [15]:

3The general problem of the improvement out of the chiral limit
2We note, in passing, that by using this method we were not abléas not been solved yet, although several interesting proposals exist
to extract the value of the quark condens@@e [23,24,27,28
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RGI_ |: —498 i 1
= | Ym 'Po, 9 =y
mq #[nwmq(ﬂ)(as(ﬂ)) 9 Ol:Zqo-,qu,uvq! Oz:gngr(Fwa)-
with Y and 8, being scheme independéht. . L L ,
Finally, the quark masses in tiMS read O3=m-qq, O,=mqD+my)q, Os=q(D+mgp) q’(13)
NLO NNLO NNNLO
wherem is the bare subtracted mass dbd-my is the bare

m,M_S(Z GeV)={5.25); 4.95); 4.85)} MeV, Dirac operator appearing i8,. The operators), and O
can be reabsorbed in the definition of the bare strong cou-
mg/l_s(z GeV)={12009); 1149); 1119)} MeV, pling and the quark mass. A major simplification comes from

(12) the restriction of improvement to physical amplitudes, for
which the equations of motion can be used. In this way, one
where the numbers within the curly brackets are obtaineds left with one (Clover) counterterm only©;, the coeffi-
after converting the RI-MOM results to théS one to NLO,  cient of which was computed nonperturbatively in HefL].
NNLO, and NNNLO accuracy, respectively. The details on The equations of motion cannot be used to improve off-
anomalous dimensions and beta function are listed in thghell quantitiegsuch as the quark propagatoin this case,
Appendix. one must also consider the operat6lgs. As for operators
We note that in most of the phenomenological applica-which are Becchi-Rouet-Stora-TyutiBRST) allowed but
tions, for example with QCD sum rules, the theoretical ex-not gauge invariant, only the BRST variation otd,A7,
pressions are only known to the NLO and, for consistency(wherec?® andAZ are the antighost and gauge fields, respec-
the quark masses at the same accuracy should be used. tively) may contribute. This term, however, can be absorbed
Similarly, we stress that lattice calculations of quarkinto a redefinition of the gauge-fixing parametg28]. Be-
masses, in which the mass renormalization constants hawides the terms in the action considered above, in [R8&f.it
been determined by usinne-loop perturbation theory, has been also shown that, for the quark propagator, there is
should be compared with our NLO results of Efj1), since  another operator, which is not BRST invariant but may con-
they have been derived at the same order of accuracy. tribute to off-shell correlation functiondecause its presence
Preliminary results obtained with the method discussed ifis not excluded by Slavnov-Taylor identitjed he effects of
this paper were already presented: see R3ff]. 0,5 and of this extra operator can be eliminated with a
simple redefinition of the quark field:
Il. IMPROVED QUARK PROPAGATOR
(x)=2Z YA 1+bgma){1+acy(D +mg) +acyeid}ta(x).

The general problem of improving gauge noninvariant,q (14)

off-shell correlation functions has been studied in R28].
Since this paper is still unpublished, in this section we will . -
discuss in some detail the nonperturbative improvement of )’\{g ”(()(‘)’;’7192'50“53 how tbe unknown coefficients,
the lattice quark propagator t6(a). [Zq7"=24" “(1+bgma)], c (corresponding to the coef-
ficient of the operato©s), andcyg,, present in Eq(14), can
be determined from the analysis of the lattice bare quark
propagatorS, (p).

The original idea of improveme81] (later developed in  From Eq.(14), it follows that the relation betwee8 (p)
Ref.[32] for gauge theorigsconsists of adding, to both the nd the improved, renormalized quark propagafé(p),

a}ft'OT and”operators, a caomple;? ;et of ?lgugrﬁdlmensmr& onstructed in terms of the quark fields,and g, respec-
(“irrelevant”) operators, the coefficients of which are tune tively, has the form

so as to cancel finite cutoff effectso a desired order of
lattice spacinyg Specifically, the improvement of the Wilson ] .
action toO(a) is achieved by adding a set of dimension-five SL(p)=(1-2acyeiB)Z4S(p) —2acy. (15
operatord21],

A. The subtracted quark propagator

| In this equation, it is convenient to express the renormalized
S=Sy+a ¢ | d*0=9(x), 12 quark propagato(p) in terms of the two invariant scalar
Sw i;l ' X0 (x) (12 form factorsé;(p?) and6,(p?) defined in Eq(1). For fur-

ther use, we remark that at largé, up to power-suppressed
allowed by gauge invariance and discrete lattice symmetrie§~1/p?) and logarithmic corrections,o;(p?)=1 and

namely o,(p%)=m, wherem is the renormalized quark mass. After
substituting Eq(1) into Eq. (15), one finds

“Note that in Ref[16], another convention has been used: 1 ) R A
MEC= lim M) (280 /) sl ) 8o (10 o1 (p?) = 1—2Tr[—|¢SL(I3)]:Zq((Tl(pz)_ZaCNG|Uz(p2)),
= ql M ol mas(u)] TmFo.

p—o (16)
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FIG. 1. The left figure shows the effect of the correction due to the facterzfp?). Empty symbols denote the quantities extracted
directly from the lattice quark propagator. The filled circles denote the effect of the correction. Note that the error bars are smaller the
symbols used. The value of the constamis obtained from a fit to our data in the langferegion is shown in the right figure. Both figures
correspond toc=0.1344.

UzL(IOZ)_ 1 B , o In the largep? region, by using Eq(18), it is then possitlle to
Tz 13 'LSL(p) = —2acy + 2acyeiZq01(P%) determine an “effective” renormalization constarZ,,,
o which reduces t&@, in the chiral limit. Moreover, in terms of
7 o2(P) ap the coefficient;,, computed through E¢19), we can define
a p2

p a “subtracted” quark propagato&(p), as

where a1, 5 (p?) are the analog ofr, p?) for the lattice
bare propagator.

Using Egs.(16) and (17), the coefficientss, and Z,cyg;
can be determined as follows: at largé and in the chiral
limit, since ,~1/p2—0, it is in principle possible to sepa-
ratec(’] andZ,cyg using thep? dependence oF; ; the over-
all renormalization constanZ,, including its O(a) mass -2 ¢
dependence, can then be determined by combining®.  (15). In the presence afyg, however S(p) andS(p) differ
with the renormalization conditio(6). In practice, however, by terms of O(cygam), up to (small logarithmic correc-
this procedure is very difficult to implement. The reason istions. We conclude that, by following the procedure outlined
that the logarithmigp? dependence of(p?), entering the above, we are able to exactly improve the quark propagator
right-hand side of Eq(17), is very mild. This is especially in the chiral limit. Qut of the chiral limit, sinc&yg, is of
true in the Landau gauge, where it starts at oraﬂéris per- (’)(gg) in perturbation theory, the propagator is affected by
turbation theory. Thus, it is very hai@ not impossiblg to  (O(gjam) discretization errors. In the range of quark masses
disentangle the contributions coming from the twoconsidered in this paper, these terms are expected to be
coefficients’ c(; andcyg; - smaller than other statistical and systematic uncertainties.

Let us return to the largp? behavior of the lattice quark They may be important, however, in the calculation of heavy
propagator, in the limit where power and logarithmic correc-quark masses.
tions can be neglected. In this limit, Eq4.6) and (17) be-
come

S(p)=Z4 '[SL(p) +2aTy]. (20)

If the coefficientcyg were equal to zero, the subtracted
propagatorS(p) would correspond to the improved, renor-
malized quark propagatof(p), as can be seen from Eq.

B. Practical implementation

crlL(pz):Zq(l—ZacN@m)EZq (18) Let us now discuss how the improvement procedure for

the lattice quark propagator works in practice. As a prelimi-

and nary (and instructive step, we consider the inverse unsub-
tracted lattice propagator expressed in terms of the usual

form factors,>; andX,, ,

SCHp)=—iB21(p?) + 35 (P?). (21)

o 2)
2._p(2p =—2ac,+2acygZy= —2a%,. (19

3. is special in that itsp?> behavior is protected by the

SA promising way to separately computg and cyg nonpertur-
VWI, 3, (p?)~constZ,, as can be seen in Fig.(@mpty

batively is from the study of the quark-gluon vertex.
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circles.® By using Eqs(1) and(17) in the largep? limit one AL ]
finds 1.00 - Lo
[ o ]
_ i 2 6]
_ (P> \2 Lt - %P) o -
2)=37(p? 1+(02L— 2 075 [ S ]
o (P9)=247(p ){ p2o1 (p?) : o o) ]
_ i o)
=31 (pA[L+0(@%p?)]. 22 gsol o° ]
i O
The effect of the?(a?) term in Eq.(22) is important at large A C&@o @ ]
p2, as shown in Fig. 13, (p?) (empty circles is indeed  g25 ]
flat, Whereawl’f(pz) (empty squaresis not. The reason is w ]
the presence of the contact teGin the factor 0.00 i etume @000 e 000000000 0 |
2 2 ’ R T TS S
1+2%p?=1+ % p?—1+48;%a%p?, (29 05 10 15 20
p oy (p?) (ap)z
at large p°>. For =0, instead, the factor £z°p*~1 FIG. 2. Empty symbols deno&,, (p?), extracted directly from

+m?/p?—1. Thus the dangeroud(a?) terms of Eq.(22)  the lattice quark propagator. The filled symbols correspond to the
jeopardize thep? behavior thato; should have in the con- subtracted form factoB , (p?). lllustrated is the case with
tinuum. =0.1344.

The following procedure has been adopted to get rid of
the O(a?) corrections induced by the contact terfrisloti- B=6.2 corresponds to 2 Gé¥p?<15 Ge\? in physical
vated by Eq(22), we first multiply the original lattice propa- units. By comparison with Eq19), the coefficientA is evi-
gator by the overall factor, (2z%p?). Since the action is dently A= — 2a’ . From the fit of our data to Eq25), we
only O(a) improved, this subtraction is formally irrelevant. btain A=0 617211) to be compared td®"P=0 57'3 as
The multiplication, however, removes the dependence Oﬁomputed in one-loépiboosted perturbation thec;r){Sé].B

2 2 H 2 H
UéL(p )T?P P ctc))mmg fr.omF.thel(’)t()a ) effec; d|3ﬁussed According to Eq.(3), the parameteB is proportional to the
above. This can be seen In Fig. 1 by comparing the squarecﬁlark mass, so that it is expected to vanish in the chiral limit.

and fiI[ed circle;.'lt is important to add thaﬁfor eachk) has The value that we obtain3=0.0036), is consistent with
been fixed by fitting to a constant the ratio expectations. It clearly demonstrates that the contribution of
the term proportional to the quark condensate is negligible in
=— (24) the range of momenta chosen for the fit. This point was
p™ o recently questioned in Ref35]. From our fit this contribu-
tion appears to be completely negligible fot=3 Ge\?, as
expected from OPE, i¢q_q>~A%CD. Finally, we also obtain
C=0.0244), for theparameter which contains the informa-
tion on residuatd(a?) effects. Note that without the correct-

1 0oL

in the largep? region. The data and the fit are displayed in
Fig. 1 for k=0.1344. The numerical values farwill be
given in the next section. The multiplication by {&2p?)

flattens thep? dependence of bothr;, ando,, . This effect . 2 5 .
: . - ing factor (1+z we would have obtainedC=
's particularly prorjounced fary, , as can be seen in Fig. 1. —%.07(7(3) v(vhich pis) larger than the above results. This
We now describe t,h e.procedure followed to remove theshows that the residugd(a?) effects are smaller than those
constant contact terrn/, in Eq. (20). After the multiplica-
tion of the proba atorqb (22207, we fit (p?) to the induced by the contact terms.
: propag y (£2°p7), we it oz (P To summarize, we subtract the unwanted discretization
form expected from the operator product expangiorb), :
o . effects using
namely(up to logarithmic corrections
2 = ip_ T2(p?)
UZL(zp ) — A+ 262 +Ca?p?, (25 S(P)= 5201(p2)+ _pr:SL(p)(1+Zzp2)_A_Cazp2-
p amp (26)

in the region of large Euclidean momenta where the OPE _

applies. We have used the interval €.8°p?<2.0, which at The resulting improved propagat@®(p), exhibits a good
chiral behavior at large? and its inverse has smail(a?)
corrections>,,(p?) is expected to be a slowly varying func-

. 2 . . - 2
5Throughout this paper, we adopt a continuum notation in whichtIon of the momentum at largp®, with a logarithmicp

ap, stands for sirgp,). Thus, for instancea®p? corresponds to d_ependence gov_erne_d by the quark mass anomalouzs dimen-
3, sir(ap,) andap is equal toX,y, sin@p,). sion. As shown in Fig. 2, the bare form factQ¥, (p<))

"Although not mentioned before, it is clear that there are other
O(a?) effects, besides those induced by tf¥a) contact term,
resulting in the factor (+z%p?). These, however, are found to be ®The perturbative calculation &
much smaller, see below. coefficient is gauge dependent.

!

4 indicates explicitly that this
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T ] As discussed in the previous section, E2f) involves the
1 determination of the constamt From the fit of our data to
] Eq. (24) in the interval 1.% (ap)?<2, we obtain

o, (0)/p°
o z={0.5813),0.5912),0.6053),0.6392)}, (28

] in decreasing order with respect to th@arameter. With the
rEsEEEEEE value ofz at hand, we follow the subtraction procedure de-

] scribed in the previous section and obtain the renormalized
propagator, from which the quark masses can be derived. We

[ 1 now present the numerical results 6§ and for the quark
I ‘\ ] masses in different schemes.
[ IR e~ S80I e---800-0-9-0--0-0-0-0-0-0-0-90--0--0--

05 1.0 15 20

(ap)’ We fit the form factorS ;, (p?) to a constant, in the large

FIG. 3. The effect of subtraction of the contact teij, from momentum region. Accordlng. o E2q6)' the yalue of that
e ’ constant corresponds, up to tid) «g) corrections[17,18],

the scalar part of the quark propagator. Squares denptp?, as . .
obtained from unsubtractddlbeit corrected by the (&zzpz) fac- _to the value of the quark field renorm.ahzatlon C.OHStﬁat"
n the RI-MOM scheme. From a fit in the region of large

tor] propagators corresponding to the four values of the hoppind( 2 . 2 Vi
parameters used in this study. The filled symbols defigtén?, ap)“e[1,1.8] (corresponding to 74p°<13.2 GeV in

obtained after the subtraction of the term du&}dsee Eq(26)], physical unity, we obtain

and extrapolated to the chiral limit. ~
Zq={O.84£{2),0.8412),0.8463),0.839(2)}. (29

A. The quark field renormalization constant Z

exhibits, instead, a strong linear dependencepn)t, in-
duced by theO(a) contact term proportional tTd(;. This
effect disappears in the subtracted form fadgr (p?), de- zqu)(z Ge\)=0.8533), (30)
fined fromS~%(p), as shown in the same plot.

As a further confirmation of the effectiveness of the sub-which is to be compared witEg°)=O.875, from one-loop
traction, we show (% z2p?) o, (p?)/p? in Fig. 3 for differ-  (boosted perturbation theory33]. Note that the quark-mass
ent values of. At large p? and for all the values of the dependence af,, (p?), which according to Eq(18) comes
quark masses, this quantity has a good plateau corresponfilom both the mass dependent termZig and the term pro-
ing, up to further®(a?) corrections, to the contact terriC,  portional tocyg, is rather weak.
that we want to subtract. In the same figure, we also show
oy pz)/ p2, after the subtraction and extrapolated to the chi- B. Extracting the physical quark mass
ral limit (filled circles. This curve demonstrates the accuracy

of the subtraction procedure, since in this limit we expect From the subtracted inverse propagal®r.'(p), we get.
T5(p?)/p?~(qq)/p*. the renormalized quark mass in the RI-MOM scheme which,

according to Eq(3), corresponds at large? to

These values extrapolatéiihearly) to the chiral limit givé

I1l. NUMERICAL DETAILS AND PHYSICAL RESULTS i (pz)
N : mRl() =—2— (3D)
In this section we briefly recall some elements of the lat- 3 (p?) ’
tice calculation, which are explained in great detail in Ref. . p?=pu?

[34], and present our physical results. These results are oz;h_ o ttected by th ing

tained on a sample of 200 quenched gauge fields configurd-"iS_guantity is unaffected by the correcting factor (1
tions, on a 24X 64 lattice, and a3=6.2. The value of the +27p7). In F|g. 4, we d'sp'ag’,“ () for different valu_es of
inverse lattice spacinga '=2.72(11) GeV, is obtained X The numerical value om™(u«) can be read off directly

from themy» mass. The quark propagators have been com{rom Fig. 4. Note tham®(,) is derived in a completely
nonperturbative way.

uted by using the nonperturbativel}(a) improved Wilson X - .
P y g b &i(a) imp In practice, to reduce the statistical fluctuations we extract

action for four different values of the light quark masses .

I . . . 2
which correspond to the following set of the hopping param-M_ (#o), from afitin the interval 1.%(ua)"<1.8 and cor-

responding to 7.5 G\ u’<13 GeV?, by using

eters:
()
x€4{0.1352,0.1349,0.1344,0.1333 (27 mRl(w)= i) MR (o), (32
Mo
All other details concerning the analysis of the light hadron
spectrum can be found in R¢B4] where a subset of the 100
configuration was analyzed. %The value ofx,,;; is 0.13585619).
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L T — T L— I e L A
L i 0 x=0.1333
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FIG. 4. The lattice quark masses corresponding to the indicated £, 5. Renormalization group invariant quark masses, obtained
« values, in the RI-MOM scheme. They have been obtained usinggier dividing out the scale depending part in the RI-MOM scheme
Eq. (31). The error bars are not visible, because they are smallef, N30 accuracyc®'(u), from the quark masses depicted in Fig.
than the symbols used in this figure. 4. Dashed lines correspond to the fitting interval use).

with c'() computed in perturbation theory. We have cho-yith other calculations, to evolve the masses downuto
sen (uoa)?=1.45, in the middle of the fitting interval, cor- =2 GeV. Indeed, it would be much more convenient to
responding tquo=3.28 GeV. With this procedure the error \york at a scaleu=3 GeV where the uncertainty induced by
induced by the use of perturbation theory is negligible;nigher order perturbative corrections is negligible.

namely, we find that the differences between NLO and “\we now illustrate the procedure adopted to obtain the
NNNLO are less than 1%. The reason is that the expressiogyark masses in different schemes. The renormalization
in Eq. (32) depends on the ratio af"s evaluated at differ- group invariant quark mass, which is a scheme and scale

ent but close scales. ol _ independent quantity, is related tdX'(x) by the expression
The numerical values of™'(w) have been obtained by

using the quenched expression farg(u) with Agcp

RI
=318 MeV [36]. We checked that by usingAqcp mRG'=mS|(M) (34)
=238 MeV, as found in Ref.16], the central value of the ()’

masses is increased by less than 1%. _
To compute the physical values of the light and theWhereas for theS mass we have
strange quark masses, we invoke the procedure described in
Ref.[9],[34]. The masses are fitted as quadratic functions of _ _ . cMS( ) g
the squared pseudoscalar meson masses. By using the m"S( ) = cMS(p)mg®'= ) Ma (w). (39
method of “physical lattice planes[4], we fix the average H
up-down and strange quark masses, fromf@ndK meson,  The resulting values afng® should be flat in a large range
respectively’” The results are the following: of u?, as confirmed by the data shown in Fig. 5. By using
Eq. (34), we obtain the following results

mi'(3.28 GeVy=5.1(5) MeV,
NLO  NNLO NNNLO

m&'(3.28 GeJ=1189) MeV. (33
mR®'={8.59); 7.88); 7.68)} MeV,
Since it is customary to give the quark masses at the renor-
malization scalex=2 GeV, we again use E¢32) to rescale RGI_ . .
o ={1961 18214); 17714)} MeV.
mR!(3.28 GeV) tom™(2 GeV). This time, we have to run me=={196(15); 18214); (14} Me (36)
the mass to a lower scale than the one used in the fitting
procedure (7.5 Ge¥sn?<13 GeVh). For this reason the |n the MS case, from Eq(35) we get the results quoted in
uncertainty due to higher orders is larger than before, namelgq, (11).
of the order of 4%. The results are those given in &j.We In the calculation ofmR¢' andm'v'_s(,u) we have used the
. - . . . q L
note, in passing, that there is no reason, if not for Comparisopyical value ofag(s), corresponding targ(M,)=0.118
[38], computed with the appropriate number of active fla-
vors, e.g.,n;=4 at 2 GeV. This choice can be justified by
1%Note that consistent results are obtained whend#hmeson is  assuming that the masses in Ef). are the physical ones, up
used to extract the strange quark mass. to some unknown quenching errors. We checked, however,
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that the results by using the quenched with Aqgcp ACKNOWLEDGMENTS
=318 MeV would be different by less than 2% in all of the
cases considered in this paper. We thank Massimo Testa and Konstantin Chetyrkin for
illuminating and valuable discussions. We are also grateful
CONCLUSION to Chris Dawson, Alain Le Yaouanc, Carlotta Pittori, Steve

_ Sharpe, and Gian Carlo Rossi for interesting discussions on
~ We have applied a new method to compute the renormakhe jmplementation of the method presented in this paper. V.
ized quark masses from the lattice quark propagator using and G.M. acknowledge the M.U.R.S.T. and the INFN for

the OPE. We have discussed the subtleties related to thr?atrtial support. D.B. thanks the INFN for financial support.
improvement of the propagator and especially the troubles

arising from the presence of contact terms. Some of these
problems could be avoided by working wiB(x) instead of

S (p). Feasibility studies are underway. The main results,
given in the introduction, are very compatible with the val- ) ] ) )
ues of the masses obtained by standard lattice methods. They N this appendix we list the formulas which have been
are also in very good agreement with the recent result of Ret/Sed to compute the perturbative scale dependence of the

[39], M"S(2 GeV)=114+24 MeV, obtained by using the duark masses.

model independent QCD sum rule analysis ata NNNgee ~ 1he effective QCD coupling is governed by tjgefunc-
Ref.[40] alsQ. tion which is known to four loops,

APPENDIX

d (asp)|  — o [edw)|"*?
2.~ | &s __ s 6
12 Mz( - 2 Bl = | 0w, (A1)
where the coefficients al87]:
_1 2 _1 02 38
BO_Z 11_§nf : Bl—E 1 —3 M)
— 1 (2857 5033 325
MS_ — veY 2
2 _64( > 18 " E4 ”f>’
ws_ 1 149753 1078361+ 6508 N 50065+ 6472 3) |2 1093 , "
Ps =256 6 162+ 27 )Nt 1yt gr () NIt g i) (A2)
The coefficients of the mass anomalous dimension, which describes the running of the quark mass,
, d o @\
wrz M) =—mu) 2 '\ ——|  +O0(eg(w), (A3)
M n=0 T

are also known up to four loops in both RI8] and MS [29] schemes. We list them all;

Ym =1,
— 1/202 20 1 52
(y%>>MS=E(?—3nf), (y<n}>)R'=E(12€r3nf),
— 1 2216 160 140
(2) MS_ " - _ a2
(’Vm ) 64{1249_( 27 + 3 ))nf 81 nf y
(2RI 1120911 3344 18386 128 3 +928 )
(m)" =623~ 3 27 g (B Mt i),
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(3)\WS 1 | 4603055 135680 91723 34192 1840
()= o] s 0 (3 8800K(5) — |+ g £(3) BB (4) ~ g L(5) |

5242 800 3 160 4|2 332 64 3) |2
m‘*‘Té( )—Ti( )|ng— m—2—7§( ) Ing
(3\RI_ 1 | 300665987 15000871 3+ 6160 7535473 627127 3 4160 5
(7m)" =556 ~ 648 108 ‘T3¢0 Tpg 52 ¢33 )i
670948 6416 3) |2 18832 , Al
243 27 ()N g N (Ad)
The corresponding evolution parts in the running quark masses are
489 ag( ) 25335863 19 ag(u)\?
RI 4/1 S -~ Ss\e)
= as(p) ’{” 242( pu ) 1205536 6 ‘¥ ( pu
48247704573745 170324909 3 +35 5 ag(u)\® A5
220410533376 2500056 - > T 360 || T ’ (AS5)
— 499 ag(p)| 6375961 ag(w)\? [344717507317 6293
MS( ) — a/1 I Ss s
C )= as(p) 1{” 726( p ) 4216601 p 55102633344 3564°>)
25 o
-5 ( 5(“)) ] (A6)
v
for n;=0, and
8803/ as(w) 5679460183 119 ag(w)\?
RI _ 12/25 s - S
¢ u) = aslp) |1+ 3750( 5 ) { 337500000 30 *° ( =
145331802600670511437607219 19 c s(,u) A7
91125000000000 21600000 {3+ §( ) ’ (A7)
— 3803[ ag(u) 793412683 4 ag(wm)\?
MS,  \ 12/25 s - s
)= aslp) {“ 3750( B ) [337500000 5 ( =
57222640693973 2202791 3+ 4 c ag(u)\3 A8
7593750000000 3375005( ) g( ) ( ) T ' (A8)
for ny=4.
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