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Light quark masses from lattice quark propagators at large momenta
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We compute nonperturbatively the average up-down and strange quark masses from the large momentum
~short-distance! behavior of the quark propagator in the Landau gauge. This method, which has never been
applied so far, does not require the explicit calculation of the quark mass renormalization constant. Calcula-
tions were performed in the quenched approximation, by usingO(a) improved Wilson fermions. The main
results of this study areml

RI(2 GeV)55.8(6) MeV andms
RI(2 GeV)5136(11) MeV. Using the relations be-

tween different schemes, obtained from the available four-loop anomalous dimensions, we also findml
RGI

57.6(8) MeV and ms
RGI5177(14) MeV, and the modified minimal subtraction scheme (MS) masses

ml
MS(2 GeV)54.8(5) MeV andms

MS(2 GeV)5111(9) MeV.

PACS number~s!: 12.15.Ff, 11.15.Ha, 12.38.Gc
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I. INTRODUCTION

Determination of quark masses is becoming one of
most intensive fields of investigation in lattice QCD@1–14#.
The accuracy of the predictions is significantly improvi
mainly because of two recent theoretical developments:

Nonperturbative renormalization procedures have b
introduced@15,16# in order to remove the systematic unce
tainties coming from the truncation of perturbative series
the calculation of the relevant renormalization constan
These procedures also provide an appropriate nonpertu
tive, short-distance definition of the quark masses eithe
the so-called regularization invariant~RI! momentum sub-
traction ~MOM! or Schrödinger functional schemes. The re
lation between the mass in the RI-MOM scheme~which will
be used in this study! and in the modified minimal subtrac
tion scheme (MS) scheme,1 or the renormalization group
invariant mass, is known at next-to-next-to-leading ord
~NNLO! @17#, and very recently even at next-to-NNLO
~NNNLO! @18#, in continuum perturbation theory.

A second important theoretical progress is the reduc
of finite cutoff „O(a)… effects obtained by improving th
lattice fermion action and operators. The perturbative pro
dure, proposed in Refs.@19#,@20#, has been recently extende
to a fully nonperturbativeO(a) improvement by the ALPHA
Collaboration@21#, so that the remaining discretization erro
are only ofO(a2).

In the past year, several independent lattice determ
tions of the light quark masses@9–11# have been presented
adopting both nonperturbative renormalization procedu
and nonperturbative improvement.

1The conversion of the results to theMS scheme is only necessar
for comparison with other calculations for which the quark mas
are renormalized perturbatively. Otherwise, the method of Ref.@15#
allows us, in principle, to obtain the renormalized quark masses
the RI-MOM scheme in a completely nonperturbative way.
0556-2821/2000/61~11!/114507~10!/$15.00 61 1145
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The two standard definitions of the lattice quark mas
are based on the vector~VWI ! and the axial-vector~AWI !
chiral Ward identities@22#. The VWI relates the bare quar
mass to the value of the Wilson hopping parameter, 2am
5(1/k21/kcrit). With this definition, one can easily show
that the mass renormalization constant isZm(m)5ZS

21(m).
The definition based on the AWI is 2am̄
5^au]mAmub&/^auPub&, where]mAm and P are the diver-
gence of the~improved! axial-vector current and the pseud
scalar density, respectively. In this case,Zm̄(m)
5ZA /ZP(m).

In this paper, in order to calculate the renormalized qu
mass, we adopt a new method based on the study of the l
p2 behavior of the renormalized quark propagator. T
method is based on the idea that at large Euclidean mom
it is possible to match lattice and continuum correlators
requiring the vanishing of chirality violating form factor
@23,25#. This procedure is justified by the following two ob
servations. The first is that at large momenta the renorm
ized perturbation theory becomes chirally invariant~explicit
chiral symmetry breaking effects induced by the regulari
tion are reabsorbed by imposing the validity of the chi
Ward identities, while violations from the nonvanishin
quark masses disappear at large momenta!. The second ob-
servation is that the contributions due to the spontane
breaking of chiral symmetry, which are absent in perturb
tion theory, die off at large momenta. Thus, both effe
decrease as we go deeper into the Euclidean region.

The simplest application of this idea is the possibility
relating the quark mass to the renormalized quark propag

Ŝ~p!5
ip”

p2 ŝ1~p2!1
ŝ2~p2!

p2 , ~1!

since, at largep2, we expect@26#

ŝ2~p2!.m1^q̄q&
4pas

3p2 1O~1/p4!. ~2!

s

or
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In particular, the quark mass renormalized in the RI-MO
scheme can be directly extracted from the quark propag
renormalized in the same scheme by using

mq
RI~m!5

1

12
Tr@Ŝ21~p;m!#p25m2, ~3!

where the trace is over both color and spin indices.2 Ŝ(p;m)
is the ~improved! quark propagator renormalized at som
scalem. Since the quark propagator is a gauge depend
quantity, the definition of the RI-MOM mass also depen
on the gauge.

At large momenta and up to discretization errors, Eq.~3!
is equivalent to the definition of the quark mass based on
AWI. Chiral symmetry provides a relation between the
verse quark propagator,Ŝ(p;m)21, and the amputated Gree
function of the pseudoscalar density,L̂5(p;m), computed
between external~off-shell! quark states of equal momentap.
The AWI then reads

2m̂q~m!L̂5~p;m!5g5Ŝ21~p;m!1Ŝ21~p;m!g5 . ~4!

All quantities in Eq.~4! are assumed to be renormalized~and
improved! in the same scheme and at the same scalem. In
the RI-MOM scheme~and in a fixed gauge!, the Green func-
tion L̂5(p;m) satisfies the following renormalization cond
tion @15#:

1

12
Tr@g5L̂5~p;m!#p25m251. ~5!

By tracing both sides of Eq.~4! with g5 and by using Eq.~5!,
the relation~3! is readily derived. Note that ifm in Eq. ~3! is
not chosen in the perturbative region, i.e.,m@LQCD, the
definition of the quark mass will be affected by nonperturb
tive, chirally breaking contributions proportional to the qua
condensate and higher-dimensional operators appearin
higher power corrections (}1/p2n).

The advantage in determining the masses from the qu
propagators is that it is not necessary to calculate explic
the mass renormalization constants@i.e., ZS(m) or ZP(m)#.
This is merely a consequence of the fact that the renorm
ized quark propagator is directly expressed in terms of
renormalized quark mass. Unlike in the case of the VWI,
critical value of the hopping parameterkcrit is also not
needed~which is the advantage inherent to the use of
AWI !. There is, however, one renormalization constant
any quark-mass definition; in our case, using Eq.~3!, this is
the quark-field renormalization constantZq . In the RI-MOM
schemeZq is fixed by the following renormalization cond
tion:

2We note, in passing, that by using this method we were not a
to extract the value of the quark condensate~2!.
11450
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TrFgm

]Ŝ21~p;m!

]pm
G

p25m2

[
i

48
Zq~m!TrFgm

]S21~p!

]pm
G

p25m2

51. ~6!

In summary, Eqs.~3! and~6! are all we need to extract quar
masses from propagators. The procedure becomes ra
complicated, however, if we want to extend it to the nonp
turbatively improved case. The drawback with the method
Ref. @15# is that the improvement program~which was ini-
tially carried out for on-shell quantities! must be extended to
off-shell Green functions on nongauge invariant states
involves additional counterterms for a fullO(a) improve-
ment @23#. The strategy followed in this case will be illus
trated in detail in Sec. II.

In this paper, Eqs.~3! and~6! have been used to compu
the average up-down and the strange quark masses by
forming a lattice QCD calculation in the quenched appro
mation. We use the nonperturbatively improved action@21#,
and improve the quark propagator in the chiral limit. T
O(a) improvement procedure for off-shell~gauge noninvari-
ant! quantities has been discussed in Ref.@23#. Since that
paper has not been published yet, we will describe here
some detail the specific case of the quark propagator.
technical reasons, which are related to the mixing with no
gauge-invariant higher-dimensional operators~see below!,
we are not able to improve the propagator out of the ch
limit.3 Therefore, our determination of the quark masses
affected byO(g0

2am) systematic errors. Since the value
the inverse lattice spacing in this simulation isa21

.2.72 GeV, these errors are expected to be negligible for
strange and the light quark masses.

We conclude this section by summarizing the main res
of this paper. From the study of the quark propagator,
extract the~quenched! light and strange quark masses in t
RI-MOM scheme:

ml
RI~2 GeV!55.8~6! MeV, ms

RI~2 GeV!5136~11! MeV.
~7!

These results are in very good agreement with those of R
@9#, namelyms

RI(2 GeV)5138(15) MeV andml
RI(2 GeV!

55.6~5! MeV.
Using the NNNLO perturbative formulas of Ref.@18#, we

obtain the renormalization group invariant quark masses

ml
RGI57.6~8! MeV, ms

RGI5177~14! MeV, ~8!

where the renormalization group invariant quark mass is
fined according to the convention usually adopted in per
bative calculations@17,18,29#, i.e.,

le

3The general problem of the improvement out of the chiral lim
has not been solved yet, although several interesting proposals
@23,24,27,28#.
7-2
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LIGHT QUARK MASSES FROM LATTICE QUARK . . . PHYSICAL REVIEW D61 114507
mq
RGI5 lim

m→`

mq~m!„as~m!…2gm
~0!/b0, ~9!

with gm
(0) andb0 being scheme independent.4

Finally, the quark masses in theMS read

NLO NNLO NNNLO

ml
MS~2 GeV!5$5.2~5!; 4.9~5!; 4.8~5!% MeV,

ms
MS~2 GeV!5$120~9!; 114~9!; 111~9!% MeV,

~11!

where the numbers within the curly brackets are obtai
after converting the RI-MOM results to theMS one to NLO,
NNLO, and NNNLO accuracy, respectively. The details
anomalous dimensions and beta function are listed in
Appendix.

We note that in most of the phenomenological appli
tions, for example with QCD sum rules, the theoretical e
pressions are only known to the NLO and, for consisten
the quark masses at the same accuracy should be used

Similarly, we stress that lattice calculations of qua
masses, in which the mass renormalization constants h
been determined by using~one-loop! perturbation theory,
should be compared with our NLO results of Eq.~11!, since
they have been derived at the same order of accuracy.

Preliminary results obtained with the method discusse
this paper were already presented: see Ref.@30#.

II. IMPROVED QUARK PROPAGATOR

The general problem of improving gauge noninvaria
off-shell correlation functions has been studied in Ref.@23#.
Since this paper is still unpublished, in this section we w
discuss in some detail the nonperturbative improvemen
the lattice quark propagator toO(a).

A. The subtracted quark propagator

The original idea of improvement@31# ~later developed in
Ref. @32# for gauge theories! consists of adding, to both th
action and operators, a complete set of higher-dimensio
~‘‘irrelevant’’ ! operators, the coefficients of which are tun
so as to cancel finite cutoff effects~to a desired order o
lattice spacing!. Specifically, the improvement of the Wilso
action toO(a) is achieved by adding a set of dimension-fi
operators@21#,

S5SW1a(
i 51

n

ciE d4xOi
~d55!~x!, ~12!

allowed by gauge invariance and discrete lattice symmetr
namely

4Note that in Ref.@16#, another convention has been used:

mq
RGI5 lim

m→`

mq~m!@~2b0 /p!as~m!#2gm
~0!/b0. ~10!
11450
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4
q̄smnFmnq, O25

1

2g0
2 mTr~FmnFmn!,

O35m2q̄q, O45mq̄~D”J1m0!q, O55q̄~D”J1m0!2q,
~13!

wherem is the bare subtracted mass andD” 1m0 is the bare
Dirac operator appearing inSw . The operatorsO2 and O3
can be reabsorbed in the definition of the bare strong c
pling and the quark mass. A major simplification comes fro
the restriction of improvement to physical amplitudes, f
which the equations of motion can be used. In this way, o
is left with one ~Clover! counterterm only,O1 , the coeffi-
cient of which was computed nonperturbatively in Ref.@21#.

The equations of motion cannot be used to improve o
shell quantities~such as the quark propagator!; in this case,
one must also consider the operatorsO4,5. As for operators
which are Becchi-Rouet-Stora-Tyutin~BRST! allowed but
not gauge invariant, only the BRST variation ofc̄a]mAm

a

~wherec̄a andAm
a are the antighost and gauge fields, resp

tively! may contribute. This term, however, can be absorb
into a redefinition of the gauge-fixing parameters@23#. Be-
sides the terms in the action considered above, in Ref.@23# it
has been also shown that, for the quark propagator, the
another operator, which is not BRST invariant but may co
tribute to off-shell correlation functions~because its presenc
is not excluded by Slavnov-Taylor identities!. The effects of
O4,5 and of this extra operator can be eliminated with
simple redefinition of the quark field:

q̂~x!5Zq
~0!21/2~11bqma!$11acq8~D” 1m0!1acNGI]” %q~x!.

~14!

We now discuss how the unknown coefficientsZq

@Zq
21/25Zq

(0)21/2(11bqma)#, cq8 ~corresponding to the coef
ficient of the operatorO5), andcNGI , present in Eq.~14!, can
be determined from the analysis of the lattice bare qu
propagator,SL(p).

From Eq.~14!, it follows that the relation betweenSL(p)
and the improved, renormalized quark propagator,Ŝ(p),
constructed in terms of the quark fields,q and q̂, respec-
tively, has the form

SL~p!5~122acNGIip” !ZqŜ~p!22acq8 . ~15!

In this equation, it is convenient to express the renormali
quark propagatorŜ(p) in terms of the two invariant scala
form factorsŝ1(p2) and ŝ2(p2) defined in Eq.~1!. For fur-
ther use, we remark that at largep2, up to power-suppresse
(;1/p2) and logarithmic corrections,ŝ1(p2).1 and
ŝ2(p2).m, wherem is the renormalized quark mass. Afte
substituting Eq.~1! into Eq. ~15!, one finds

s1L~p2!5
1

12
Tr@2 ip”SL~p!#5Zq„ŝ1~p2!22acNGIŝ2~p2!…,

~16!
7-3
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FIG. 1. The left figure shows the effect of the correction due to the factor (11z2p2). Empty symbols denote the quantities extract
directly from the lattice quark propagator. The filled circles denote the effect of the correction. Note that the error bars are sm
symbols used. The value of the constantz as obtained from a fit to our data in the largep2-region is shown in the right figure. Both figure
correspond tok50.1344.
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s2L~p2!

p2 5
1

12
Tr@SL~p!#522acq812acNGIZqŝ1~p2!

1Zq

ŝ2~p2!

p2 , ~17!

wheres1L,2L(p2) are the analog ofŝ1,2(p2) for the lattice
bare propagator.

Using Eqs.~16! and ~17!, the coefficientscq8 andZqcNGI

can be determined as follows: at largep2 and in the chiral
limit, since ŝ2;1/p2→0, it is in principle possible to sepa
ratecq8 andZqcNGI using thep2 dependence ofŝ1 ; the over-
all renormalization constantZq , including its O(a) mass
dependence, can then be determined by combining Eq.~16!
with the renormalization condition~6!. In practice, however,
this procedure is very difficult to implement. The reason
that the logarithmicp2 dependence ofŝ1(p2), entering the
right-hand side of Eq.~17!, is very mild. This is especially
true in the Landau gauge, where it starts at orderas

2 is per-
turbation theory. Thus, it is very hard~if not impossible! to
disentangle the contributions coming from the tw
coefficients,5 cq8 andcNGI .

Let us return to the largep2 behavior of the lattice quark
propagator, in the limit where power and logarithmic corre
tions can be neglected. In this limit, Eqs.~16! and ~17! be-
come

s1L~p2!.Zq~122acNGIm![Z̃q ~18!

and

s2L~p2!

p2 .22acq812acNGIZq[22ac̃q8 . ~19!

5A promising way to separately computecq8 andcNGI nonpertur-
batively is from the study of the quark-gluon vertex.
11450
s

-

In the largep2 region, by using Eq.~18!, it is then possible to
determine an ‘‘effective’’ renormalization constant,Z̃q ,
which reduces toZq in the chiral limit. Moreover, in terms of
the coefficientc̃q8 , computed through Eq.~19!, we can define

a ‘‘subtracted’’ quark propagator,S̃(p), as

S̃~p!5Z̃q
21@SL~p!12ac̃q8#. ~20!

If the coefficient cNGI were equal to zero, the subtracte
propagatorS̃(p) would correspond to the improved, reno
malized quark propagator,Ŝ(p), as can be seen from Eq
~15!. In the presence ofcNGI , however,S̃(p) andŜ(p) differ
by terms ofO(cNGIam), up to ~small! logarithmic correc-
tions. We conclude that, by following the procedure outlin
above, we are able to exactly improve the quark propag
in the chiral limit. Out of the chiral limit, sincecNGI is of
O(g0

2) in perturbation theory, the propagator is affected
O(g0

2am) discretization errors. In the range of quark mass
considered in this paper, these terms are expected to
smaller than other statistical and systematic uncertaint
They may be important, however, in the calculation of hea
quark masses.

B. Practical implementation

Let us now discuss how the improvement procedure
the lattice quark propagator works in practice. As a prelim
nary ~and instructive! step, we consider the inverse unsu
tracted lattice propagator expressed in terms of the u
form factors,S1L andS2L ,

SL
21~p!52 ip”S1L~p2!1S2L~p2!. ~21!

S1L is special in that itsp2 behavior is protected by the
VWI, S1L(p2);const5ZV , as can be seen in Fig. 1~empty
7-4



-

o

-

t.
o

ar

in

.
th

P

it.

of
in

as

-
t-

is
e

ion

-

men-
ic

he

e

the

LIGHT QUARK MASSES FROM LATTICE QUARK . . . PHYSICAL REVIEW D61 114507
circles!.6 By using Eqs.~1! and~17! in the largep2 limit one
finds

s1L~p2!5S1L
21~p2!F11S s2L~p2!

p2s1L~p2! D
2

p2G21

→S1L
21~p2!@11O~a2p2!#. ~22!

The effect of theO(a2) term in Eq.~22! is important at large
p2, as shown in Fig. 1.S1L(p2) ~empty circles! is indeed
flat, whereass1L

21(p2) ~empty squares! is not. The reason is
the presence of the contact termc̃q8 in the factor

11z2p2[11S s2L~p2!

p2s1L~p2! D
2

p2→114c̃q8
2a2p2, ~23!

at large p2. For c̃q850, instead, the factor 11z2p2;1
1m2/p2→1. Thus the dangerousO(a2) terms of Eq.~22!
jeopardize thep2 behavior thats1 should have in the con
tinuum.

The following procedure has been adopted to get rid
the O(a2) corrections induced by the contact terms.7 Moti-
vated by Eq.~22!, we first multiply the original lattice propa
gator by the overall factor, (11z2p2). Since the action is
only O(a) improved, this subtraction is formally irrelevan
The multiplication, however, removes the dependence
s1L(p2) on p2, coming from theO(a2) effect discussed
above. This can be seen in Fig. 1 by comparing the squ
and filled circles. It is important to add thatz ~for eachk! has
been fixed by fitting to a constant the ratio

z5
1

p2

s2L

s1L
~24!

in the largep2 region. The data and the fit are displayed
Fig. 1 for k50.1344. The numerical values forz will be
given in the next section. The multiplication by (11z2p2)
flattens thep2 dependence of boths1L ands2L . This effect
is particularly pronounced fors1L , as can be seen in Fig. 1

We now describe the procedure followed to remove
constant contact termcq8 , in Eq. ~20!. After the multiplica-
tion of the propagator by (11z2p2), we fit s2L(p2) to the
form expected from the operator product expansion~OPE!,
namely~up to logarithmic corrections!

s2L~p2!

p2 5A1
B

a2p2 1Ca2p2, ~25!

in the region of large Euclidean momenta where the O
applies. We have used the interval 0.5<a2p2<2.0, which at

6Throughout this paper, we adopt a continuum notation in wh
apm stands for sin(apm). Thus, for instance,a2p2 corresponds to
Sm sin2(apm) andap” is equal toSmgm sin(apm).

7Although not mentioned before, it is clear that there are ot
O(a2) effects, besides those induced by theO(a) contact term,
resulting in the factor (11z2p2). These, however, are found to b
much smaller, see below.
11450
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b56.2 corresponds to 2 GeV2<p2<15 GeV2 in physical
units. By comparison with Eq.~19!, the coefficientA is evi-
dently A522ac̃q8 . From the fit of our data to Eq.~25!, we
obtain A50.617(11), to be compared toA~BPT!50.573, as
computed in one-loop~boosted! perturbation theory@33#.8

According to Eq.~3!, the parameterB is proportional to the
quark mass, so that it is expected to vanish in the chiral lim
The value that we obtain,B50.003(6), is consistent with
expectations. It clearly demonstrates that the contribution
the term proportional to the quark condensate is negligible
the range of momenta chosen for the fit. This point w
recently questioned in Ref.@35#. From our fit this contribu-
tion appears to be completely negligible forp2*3 GeV2, as
expected from OPE, if̂q̄q&;LQCD

3 . Finally, we also obtain
C50.022(4), for theparameter which contains the informa
tion on residualO(a2) effects. Note that without the correc
ing factor (11z2p2) we would have obtainedC5
20.070(3), which is larger than the above results. Th
shows that the residualO(a2) effects are smaller than thos
induced by the contact terms.

To summarize, we subtract the unwanted discretizat
effects using

S̃~p!5
ip”

p2 s̃1~p2!1
s̃2~p2!

p2 5SL~p!~11z2p2!2A2Ca2p2.

~26!

The resulting improved propagator,S̃(p), exhibits a good
chiral behavior at largep2 and its inverse has smallO(a2)
corrections.S2(p2) is expected to be a slowly varying func
tion of the momentum at largep2, with a logarithmicp2

dependence governed by the quark mass anomalous di
sion. As shown in Fig. 2, the bare form factor„S2L(p2)…

h

r

8The perturbative calculation ofc̃q8 indicates explicitly that this
coefficient is gauge dependent.

FIG. 2. Empty symbols denoteS2L(p2), extracted directly from
the lattice quark propagator. The filled symbols correspond to

subtracted form factorS̃2L(p2). Illustrated is the case withk
50.1344.
7-5
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exhibits, instead, a strong linear dependence in (pa)2, in-
duced by theO(a) contact term proportional toc̃q8 . This

effect disappears in the subtracted form factorS̃2L(p2), de-
fined from S̃21(p), as shown in the same plot.

As a further confirmation of the effectiveness of the su
traction, we show (11z2p2)s2L(p2)/p2 in Fig. 3 for differ-
ent values ofk. At large p2 and for all the values of the
quark masses, this quantity has a good plateau corresp
ing, up to furtherO(a2) corrections, to the contact term; c̃q8
that we want to subtract. In the same figure, we also sh
s̃2(p2)/p2, after the subtraction and extrapolated to the c
ral limit ~filled circles!. This curve demonstrates the accura
of the subtraction procedure, since in this limit we exp
s̃2(p2)/p2;^q̄q&/p4.

III. NUMERICAL DETAILS AND PHYSICAL RESULTS

In this section we briefly recall some elements of the l
tice calculation, which are explained in great detail in R
@34#, and present our physical results. These results are
tained on a sample of 200 quenched gauge fields config
tions, on a 243364 lattice, and atb56.2. The value of the
inverse lattice spacing,a2152.72(11) GeV, is obtained
from themK* mass. The quark propagators have been co
puted by using the nonperturbativelyO(a) improved Wilson
action for four different values of the light quark mass
which correspond to the following set of the hopping para
eters:

kP$0.1352,0.1349,0.1344,0.1333%. ~27!

All other details concerning the analysis of the light hadr
spectrum can be found in Ref.@34# where a subset of the 10
configuration was analyzed.

FIG. 3. The effect of subtraction of the contact term,c̃q8 , from
the scalar part of the quark propagator. Squares denotes2 /p2, as
obtained from unsubtracted@albeit corrected by the (11z2p2) fac-
tor# propagators corresponding to the four values of the hopp
parameters used in this study. The filled symbols denotes̃2 /p2,
obtained after the subtraction of the term due toc̃q8 @see Eq.~26!#,
and extrapolated to the chiral limit.
11450
-

nd-

w
i-

t

-
.
b-

ra-

-

-

As discussed in the previous section, Eq.~26! involves the
determination of the constantz. From the fit of our data to
Eq. ~24! in the interval 1.1<(ap)2<2, we obtain

z5$0.581~3!,0.591~2!,0.605~3!,0.639~2!%, ~28!

in decreasing order with respect to thek parameter. With the
value ofz at hand, we follow the subtraction procedure d
scribed in the previous section and obtain the renormali
propagator, from which the quark masses can be derived.
now present the numerical results forZq and for the quark
masses in different schemes.

A. The quark field renormalization constant Zq

We fit the form factorS̃1L(p2) to a constant, in the large
momentum region. According to Eq.~6!, the value of that
constant corresponds, up to tinyO(as

2) corrections@17,18#,
to the value of the quark field renormalization constant,Zq ,
in the RI-MOM scheme. From a fit in the region of larg
(ap)2P@1,1.8# ~corresponding to 7.4&p2&13.2 GeV2 in
physical units!, we obtain

Z̃q5$0.849~2!,0.847~2!,0.846~3!,0.839~2!%. ~29!

These values extrapolated~linearly! to the chiral limit give9

Zq
~0!~2 GeV!50.853~3!, ~30!

which is to be compared withZq
(0)50.875, from one-loop

~boosted! perturbation theory@33#. Note that the quark-mas
dependence ofS1L(p2), which according to Eq.~18! comes
from both the mass dependent term inZq and the term pro-
portional tocNGI , is rather weak.

B. Extracting the physical quark mass

From the subtracted inverse propagator,S̃21(p), we get
the renormalized quark mass in the RI-MOM scheme whi
according to Eq.~3!, corresponds at largep2 to

mRI~m!5
S̃2~p2!

S̃1~p2!
U

p25m2

. ~31!

This quantity is unaffected by the correcting factor
1z2p2). In Fig. 4, we displaymRI(m) for different values of
k. The numerical value ofmRI(m) can be read off directly
from Fig. 4. Note thatmRI(m) is derived in a completely
nonperturbative way.

In practice, to reduce the statistical fluctuations we extr
mRI(m0), from a fit in the interval 1.1<(ma)2<1.8 and cor-
responding to 7.5 GeV2&m2&13 GeV2, by using

mRI~m!5
cRI~m!

cRI~m0!
mRI~m0!, ~32!

9The value ofkcrit is 0.135855~19!.
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with cRI(m) computed in perturbation theory. We have ch
sen (m0a)251.45, in the middle of the fitting interval, cor
responding tom053.28 GeV. With this procedure the erro
induced by the use of perturbation theory is negligib
namely, we find that the differences between NLO a
NNNLO are less than 1%. The reason is that the expres
in Eq. ~32! depends on the ratio ofcRI’s evaluated at differ-
ent but close scales.

The numerical values ofcRI(m) have been obtained b
using the quenched expression foras(m) with LQCD
5318 MeV @36#. We checked that by usingLQCD
5238 MeV, as found in Ref.@16#, the central value of the
masses is increased by less than 1%.

To compute the physical values of the light and t
strange quark masses, we invoke the procedure describ
Ref. @9#,@34#. The masses are fitted as quadratic functions
the squared pseudoscalar meson masses. By using
method of ‘‘physical lattice planes’’@4#, we fix the average
up-down and strange quark masses, from thep andK meson,
respectively.10 The results are the following:

ml
RI~3.28 GeV!55.1~5! MeV,

ms
RI~3.28 GeV!5118~9! MeV. ~33!

Since it is customary to give the quark masses at the re
malization scalem52 GeV, we again use Eq.~32! to rescale
mRI(3.28 GeV) tomRI(2 GeV). This time, we have to run
the mass to a lower scale than the one used in the fit
procedure (7.5 GeV2&m2&13 GeV2). For this reason the
uncertainty due to higher orders is larger than before, nam
of the order of 4%. The results are those given in Eq.~7!. We
note, in passing, that there is no reason, if not for compari

10Note that consistent results are obtained when thef meson is
used to extract the strange quark mass.

FIG. 4. The lattice quark masses corresponding to the indic
k values, in the RI-MOM scheme. They have been obtained u
Eq. ~31!. The error bars are not visible, because they are sma
than the symbols used in this figure.
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with other calculations, to evolve the masses down tom
52 GeV. Indeed, it would be much more convenient
work at a scalem*3 GeV where the uncertainty induced b
higher order perturbative corrections is negligible.

We now illustrate the procedure adopted to obtain
quark masses in different schemes. The renormaliza
group invariant quark mass, which is a scheme and s
independent quantity, is related tomRI(m) by the expression

mq
RGI5

mq
RI~m!

cRI~m!
, ~34!

whereas for theMS mass we have

mMS~m!5cMS~m!mq
RGI5

cMS~m!

cRI~m!
mq

RI~m!. ~35!

The resulting values ofmq
RGI should be flat in a large rang

of m2, as confirmed by the data shown in Fig. 5. By usi
Eq. ~34!, we obtain the following results

NLO NNLO NNNLO

ml
RGI5$8.5~9!; 7.8~8!; 7.6~8!% MeV,

ms
RGI5$196~15!; 182~14!; 177~14!% MeV.

~36!

In the MS case, from Eq.~35! we get the results quoted i
Eq. ~11!.

In the calculation ofmq
RGI andmMS(m), we have used the

physical value ofas(m), corresponding toas(MZ)50.118
@38#, computed with the appropriate number of active fl
vors, e.g.,nf54 at 2 GeV. This choice can be justified b
assuming that the masses in Eq.~7! are the physical ones, u
to some unknown quenching errors. We checked, howe

d
g

er

FIG. 5. Renormalization group invariant quark masses, obtai
after dividing out the scale depending part in the RI-MOM sche
to N3LO accuracy,cRI(m), from the quark masses depicted in Fi
4. Dashed lines correspond to the fitting interval used in~32!.
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that the results by using the quenchedas with LQCD

5318 MeV would be different by less than 2% in all of th
cases considered in this paper.

CONCLUSION

We have applied a new method to compute the renorm
ized quark masses from the lattice quark propagator u
the OPE. We have discussed the subtleties related to
improvement of the propagator and especially the troub
arising from the presence of contact terms. Some of th
problems could be avoided by working withSL(x) instead of
SL(p). Feasibility studies are underway. The main resu
given in the introduction, are very compatible with the va
ues of the masses obtained by standard lattice methods.
are also in very good agreement with the recent result of R
@39#, ms

MS(2 GeV!5114624 MeV, obtained by using the
model independent QCD sum rule analysis at a NNNLO~see
Ref. @40# also!.
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APPENDIX

In this appendix we list the formulas which have be
used to compute the perturbative scale dependence o
quark masses.

The effective QCD coupling is governed by theb func-
tion which is known to four loops,
m2
d

dm2 S as~m!

p D52 (
n50

3

bnS as~m!

p D n12

1O„as
6~m!…, ~A1!

where the coefficients are@37#:

b05
1

4 S 112
2

3
nf D , b15

1

16S 1022
38

3
nf D ,

b2
MS5

1

64S 2857

2
2

5033

18
nf1

325

54
nf

2D ,

b3
MS5

1

256F149753

6
23564z~3!2S 1078361

162
1

6508

27
z~3! Dnf1S 50065

162
1

6472

81
z~3! Dnf

21
1093

729
nf

3G . ~A2!

The coefficients of the mass anomalous dimension, which describes the running of the quark mass,

m2
d

dm2 mq~m!52m~m! (
n50

3

gm
~n!S as~m!

p D n11

1O„as
5~m!…, ~A3!

are also known up to four loops in both RI@18# andMS @29# schemes. We list them all;

gm
~0!51,

~gm
~1!!MS5

1

16S 202

3
2

20

9
nf D , ~gm

~1!!RI5
1

16S 1262
52

9
nf D ,

~gm
~2!!MS5

1

64F12492S 2216

27
1

160

3
z~3! Dnf2

140

81
nf

2G ,
~gm

~2!!RI5
1

64F20911

3
2

3344

3
z~3!2S 18386

27
2

128

9
z~3! Dnf1

928

81
nf

2G ,

7-8



LIGHT QUARK MASSES FROM LATTICE QUARK . . . PHYSICAL REVIEW D61 114507
~gm
~3!!MS5

1

256F4603055

162
1

135680

27
z~3!28800z~5!2S 91723

27
1

34192

9
z~3!2880z~4!2

18400

9
z~5! Dnf

1S 5242

243
1

800

9
z~3!2

160

3
z~4! Dnf

22S 332

243
2

64

27
z~3! Dnf

3G ,
~gm

~3!!RI5
1

256F300665987

648
2

15000871

108
z~3!1

6160

3
z~5!2S 7535473

108
2

627127

54
z~3!2

4160

3
z~5! Dnf

1S 670948

243
2

6416

27
z~3! Dnf

22
18832

719
nf

3G . ~A4!

The corresponding evolution parts in the running quark masses are

cRI~m!5as~m!4/11H 11
489

242S as~m!

p D1F25335863

1405536
2

19

6
z~3!G S as~m!

p D 2

1F48247704573745

220410533376
2

170324909

2509056
z~3!1

35

36
z~5!G S as~m!

p D 3J , ~A5!

cMS~m!5as~m!4/11H 11
499

726S as~m!

p D1
6375961

4216608S as~m!

p D 2

1F344717507317

55102633344
1

6293

3564
z~3!

2
25

6
~5!G S as~m!

p D 3J , ~A6!

for nf50, and

cRI~m!5as~m!12/25H 11
8803

3750S as~m!

p D1F5679460183

337500000
2

119

30
z~3!G S as~m!

p D 2

1F14533180260067051

91125000000000
2

1437607219

21600000
z~3!1

19

4
z~5!G S as~m!

p D 3J , ~A7!

cMS~m!5as~m!12/25H 11
3803

3750S as~m!

p D1F793412683

337500000
2

4

5
z~3!G S as~m!

p D 2

1F57222640693973

7593750000000
2

2202791

337500
z~3!1

5

3
z~4!2

7

18
z~5!G S as~m!

p D 3J , ~A8!

for nf54.
cl.

ys

lz

ys

ti-
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