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Finite temperature properties of the SO(3) lattice gauge theory
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We make a numerical study of the finite temperature properties o5 @®@) lattice gauge theory. As its
symmetry properties are quite different from those of #14(2) LGT, a different set of observables has to be
considered in this model. We study several observables, such as the plaquette squa¢2) thenopole
density, the fundamental and adjoint Wilson line, and the tiled Wilson line correlation function. Our simula-
tions show that th&(2) monopoles condense at strong coupling just as in the bulk system. This transition is
seen at approximately the same location as in the bulk system. A surprising observation is the multiple
valuedness of the adjoint Wilson line at high temperatures. At high temperatures, we observe long lived
metastable states in which the adjoint Wilson line takes positive and negative values. The numerical values of
other observables in these two states appear to be almost the same. We study these states using different
methods and also make comparisons with the high temperature behavior 8{U{l29 LGT. Finally, we
discuss various interpretations of our results and point out their relevance for the phase diagra®@f3the
LGT at finite temperature.

PACS numbds): 12.38.Gc, 05.70.Fh, 11.15.Ha

[. INTRODUCTION The U(n uv)s are the plaquette variables that are the ori-
ented product of th&U(2) link variables along an elemen-
Lattice gauge theoried GTs) at non-zero temperatures tary square and are constructed as
have been studied extensively for many years. They have
provided us with models for the confinement-deconfinement  U(n uv)=U(n w)U(n+u »)UT(n+v u)UT(nv). (2)
phase transition which is expected to occur in realistic theo- ) ) )
ries such as quantum chromodynamics. The thermodynamie (N «) are theSU(2) variables defined on the links. The
properties of theSU(2) and SU(3) LGTs have also been basic observable that is studied in simulations is the Wilson-
vigorously studied[1]. Nevertheless, the implications of Polyakov line (henceforth called the Wilson liethis is
LGTs for continuum Yang-Mills theories are not completely defined as
clear. There are many questions about the high temperature 5
phase which have still eluded an understanding; some of _ :
these are a precise characterization of the phase, the structure Li(x)=TrP ex;{ : fo AX)dxy
of its elementary excitations, and its static and dynamic
properties. This makes the study of the finite temperatur@he subscripf indicates that the trace is taken in the funda-
properties of LGTs a subject of continuing interest. mental representation of the group. In analogy with the Wil-
The pioneering work if2] was the first non-perturbative son loop, the expectation value of this observable can be
calculation to show that quarks are deconfined at high temnterpreted as the free energy of a static quark in a heat bath

peratures. The analysis 2] is done in the strong coupling (at a temperatur@—1). This connection is made explicit by
limit (g>1) of the SU(2) LGT. In this limit, the partition  \yiting it in the form

function of theSU(2) LGT is rewritten as a 3D spin model
with a globalZ(2) symmetry. The ordered phase of this spin (Li(x)y=exd — BF(X)]. (4)
model corresponds to the deconfined phase and the disor-
dered phase corresponds to the confined phase. Followiny non-zero expectation value of the Wilson line signals de-
this calculation, Monte Carlo simulatiof8] provided fur-  confinement; a zero expectation value signals confinement.
ther evidence that the transition takes place in the physicalhis observable is the order parameter for studying the
weak coupling limit g<1). These simulations are usually confinement-deconfinement phase transition $1U(N)
done[for theSU(2) LGT] using the Wilson actiofd] which ~ LGTs. The importance of the center of the gauge group,
is defined as Z(N) for SU(N), was further underlined if6] where it was
proposed that the critical behavior of Z8J(N) gauge theo-
S= ﬁ E trU(n w). (1) ries could be understood in terms of the critical behavior of
2 n 3D spin models having a glob@l(N) symmetry. The group
Z(N), which is the center of the grolU(N), plays a spe-
cial role in the deconfinement transition. This is because of
*Email address: srinath@theory.tifr.res.in an extra symmetry in the finite temperature gauge theory that
"Email address: sharat@imsc.ernet.in arises from the periodic boundary conditions in the Euclid-
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ean time direction; gauge transformations which are periodiphases, and only th&(2) degrees of freedom behave differ-
(in time) up to a constant center element leave the actiorently in these two phases. The presence of these additional
invariant. The Wilson line picks up a phase under the actiorZ(2) degrees of freedom should lead to a richer phase dia-

of these gauge transformations; it transforms as gram in which both sides undergo phase transitions into a
_ high temperature phase. Another issue which has been dis-
L (%)= ZLs(x); ) cussed recently is the difficulty in separating a bulk and a

finite temperature transition. The finite temperature proper-
ties of the mixed actio®U(2) LGT (introduced il 9]) were

son line at high temperatures signals a spontaneous breakirruecently studied in10] and it was found that the deconfine-
of the Iobalgcenterps mmet ?m vin ?hat the hiah tem_ngent transition joined the bulk transition, making it difficult
9 y ¥, IMpying 9 0_separate the two. This raises the issue of whether it is

perature phase is degenerate with the two degenerate states. . N
related by aZ transformation. Numerical simulations of the possible to make any meaningful distinction between these

SU(2) LGT observe these degenerate states as metastal%Yt\éo transitions. Similar stgd|es havg aIsp been madg with a
T ; - : . mixed actionSU(3) LGT in [11]. It is with these motiva-
states in simulations. At high temperatures, the Wilson lin

. o . . g[ions in mind that we have tried to understand the finite
settles to either a positive or a negative value and remains 'Pem erature properties of t0(3) LGT. The Monte Carlo
either of these two states for very long simulation times. The_; P prop :

order of the transition to the high temperature phase has al simulation method is used to arrive at the numerical results.

e run into many puzzling features in our studies of the
been investigated thoroughly in ttf&U(2) and theSU(3) Cs
LGTs. The expectations ifb], concerning the order of the SQ(3) LGT. Our studies indicate that t%0(3) LGT has a

phase transition, have been borne out for §é(2) [6] and much richer behavior than tt&U(2) LGT. In this paper we

the SU(3) [7] LGTs in which one observes a 3D Ising like first present our numeric_al observr_:ltions and Iat_er ma_lke pro-
critical behavior and a 30¥(3) like first order transition posals for their physical interpretation. We consider different

respectively. scenarios for the phase diagram of 8€(3) LGT. Though

. ) . . . we do not have a convincing proof for any particular sce-
Since lattice actions are anyway not unique, it is natural to__ . . .
_ . . . _hario, we present several reasons for favoring the scenario

study the finite temperature properties of LGTs using equiva;, . .
that we believe is true.

lent actions. The universality of lattice gauge theory actions We first observe that the Wilson line in the fundamental

requires that different actions, which correspond to dlfferentrepresentation is not an order parameter inSI&3) LGT.

the same physics in the continuum limit. One such LGT isq-hls IS beca_use the global(2) symmetry prgsent in the
defined by SU(2) LGT is promoted to a local symmetry in ti80(3)
LGT. The center transformation can now depend on the spa-

tial position and acts as

hereZ is an element of the center and, for the gr&ik2), it
is either+1 or —1. Therefore, a non-zero value of the Wil-

S= % > trU(p). (6)
p

L (X) = Z(X)L4(X). ()
Unlike the Wilson action, the trace of the plaquette is taken

in Fhe adjoint representation. The traces in the two represensince [ocal symmetries are never spontaneously brfkah
tations are related by this forces the average value of the Wilson line in the fun-
tr. U= (tr. U)2— damental representation to be always zero. Only observables
aU=(tryU)°—1. (7 : o .
which are invariant under this local symmetry can have a

Though this action is defined usiigjJ(2) link variables and NON-zero average value in this model. Before we discuss
the SU(2) Haar measure, it describes &©(3) LGT be- these observables, it is illuminating to rewrite the action for
cause the link variable§)(n,x) and —U(n,u) have the t_he SQ(_S) LGT in a slightly different form. T_hls mvol_ves
same weight. In this paper, we will report on our studies withlinéarizing the square term of the trace by introducing an
this action and we will encounter some unexpected and in@uxillary Gaussian field \(p)] on the plaquettes, after

There are several reasons why a study of the finite tem-
perature properties of th8((3) LGT can be useful and \/Ea 1
important. TheSQ(3) LGT has the same naive continuum S= 3 > trU(p)A(p)—7 > Mp)2. 9
p p

limit as theSU(2) LGT, and is expected to lead to the same

physics as thesU(2) LGT. Furthermore, since the group

SO(3) has no non-trivial center subgroup lik&U(2), it  In the above form, th& O(3) LGT is like anSU(2) LGT
would be interesting to see how it can reproduce the sammmteracting with additional Gaussian plaquette degrees of
properties as th&U(2) LGT in the absence of a non-trivial freedom. These plaquette variables are Zki2) degrees of
center subgroup. Also, unlike tHt8U(2) LGT, theSQ(3)  freedom. This form also shows that ti8&0(3) LGT has
LGT has a first order bulk transition g~ 2.6 that is driven  additional degrees of freedom compared with ®E(2)

by the condensation ¢f(2) monopoleg8]. The condensa- LGT. The SU(2) LGT is recovered when the additional
tion of theseZ(2) monopoles has nothing to do with decon- Z(2) variables are frozen ta-1. The above form of the
finement. Both sides of the bulk transition are confiningaction, unlike the form in Eq(6), is also convenient for

114505-2



FINITE TEMPERATURE PROPERTIES OF THEOQ(3) ... PHYSICAL REVIEW D 61 114505

simulations for which a heat bath or an overrelaxation algo- La=Lf2—1. (15)
rithm has to be implemented. The action has the 1@&l)
invariance In this form, it is easy to see that the adjoint Wilson line is
invariant under the locaZ(2) transformation in Eq(8) and
U(n,u)—=U(n,u) M(p)—=—A(p), (10 is in general non-zero. In analogy with the fundamental Wil-

. . : son line in theSU(2) LGT, we expect the adjoint Wilson
theA(p)s being the plaquettes touching the likn, ). To line to tell us something about the deconfinement transition

study this model, we must construct observables that are in- S .
variant under these local gauge transformations. Wilson!" the SO(3) LGT. The physical interpretation attached to

loops and Wilson-Polyakov lines fail to satisfy this criterion the fundamental Wilson line carries over to the adjoint Wil-

and their average values are identically zero. NevertheIesgo?hlénZa.lgir:te?;urr:;exgtgie Tgfégyir?;igesftﬁe:l?fii (at a
we can discuss the behavior of several observables which a% tJ 1 Ql'h' ) ' P b iting it

invariant under these local gauge transformations. One suc mperaturgs . This Is again seen by writing it as
observable is a sheet variable. An example of a sheet vari- L.(x))=exd — BF.(x 16

able is the “tiled” Wilson loop {La(x))=exd = AFa(x)]. (16

A non-zero value of this observable implies that such a static
W(C):H u(l) H A(p). (1D source has a finite free energy. It must be noted, however,
leC peC that confinement of adjoint sources is to be understood
. ) i slightly differently from confinement of fundamental
The first part of the observable is the usual Wilson 100pgqrces. An adjoint sourgehich is a non-Abelian charge in
defmed over a Ioo'p'.i, and the other parF consists of the thej=1 representation ddU(2)] canalways bind with two
auxillary z(2) variables which are defined on all the g, qamental sourceg € 1/2) and form a color singlet bound

plaquettes enclosed by the lo@p The tiled Wilson 100p  giate * Similarly, two widely separated adjoint sources will
cannot be given the usual physical interpretation of the pog,m o color singlet bound states without any string join-

tential of a quark-antiquark pair because additiat) de- g the two. Hence, unlike the fundamental Wilson line, the
grees of freedom are involved in its definition. Neverthelessadjoint Wilson line is always non-zero, and it is not an order
it is an interesting gauge invariant variable that i”CO,rporate?)arameter in the strict sense. Nevertheless, it can show dis-
both the SU(2) and thez(2) degrees of freedom in the ,niinuous behavior across a phase transition just like any
SQ(3) LGT. Similarly, we can define a “tiled” Wilson line  qher observable. Since the behavior of an adjoint source
correlation function as depends on its ability to bind to fundamental sources, we
expect the adjoint source to closely follow the behavior of
W(x,y)=trLi(x)L:(y) [T N(p). (120 fundamental sources. This is true for t&dJ(2) LGT in
peC which the adjoint Wilson line can equally well be used to
locate the deconfinement transition. Finally, the other gauge
Snvariant variable we consider is the square of the plaquette
variable defined as

We expect this observable to be useful in studying the finit
temperature properties of ttf&0O(3) LGT. TheZ(2) mono-
pole density,p, can be extracted from the(p) variables as

follows: P=(1/3)trU(p)2. (17
p(c)= l 1—sg H Ap) || (13) This measures the energy density in a bulk sysytem.
2 p peac In the next section we present our numerical studies of the

) o o ) _above-mentioned observables, and then we attempt to pro-
This definition of the monopole density is also gauge invarijide a physical interpretation to our results.

ant. By definition, aZ(2) monopole is present in a 3D cube
whenever the product of th&(2) auxillary variables border-

. . . . Il. NUMERICAL RESULTS
ing the cube is negative. TH&2) monopoles can be imag-

ined as lattice monopole configurations that carry az{&) In this section we present our numerical results. We first
magnetic flux. Another observable of interest is the Wilsonbriefly describe the systematics of the simulation. A me-
line in the adjoint representation that is defined as tropolis updatgwith 3 hits) followed by overrelaxation up-
5 dates(2 hitg was used to generate the configurations. Mea-
_ ; surements were made every 10 sweeps after omitting the first
La(x)=TraP exp( ! fo A(x)dx4). (14 1000 configurations. We performed runs ranging from 10000

to 50000 Monte Carlo sweeps. The link variables and the
This observable can also be studied in 86(2) [13-13  Gaussian variables were updated separately. Since any simu-
and theSU(3) [16] LGTs at finite temperature, and it can be lation should also incorporate the local invariance in Eq.
used to monitor the deconfinement transition. However, th€10), the transformations in Eq10) were implemented ev-
adjoint Wilson line plays a much more essential role in theery time a measurement was made. This is done by randomly
study of deconfinement in th8O(3) LGT. For the group changing the sign of a link variable and simultaneously
SU(2), this observable can be expressed in terms of thehanging the signs of all the auxiliary variables which are in
fundamental Wilson lind.; by the relation contact with this link. This process is repeated until it has
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been performed on all the links in the lattice. The link vari- havior of these two observables. The discontinuous jump in
ables were updated by multiplying them with 8tJ(2) el-  these quantities suggests a first order transition just as is
ement chosen at random from a table consisting of 50 elesbserved in the bulk system. There is no indication of any
ments which was biased to lie close to the unit element. Thether phase transition. The abrupt change in these observ-
auxillary Gaussian variables were updated by adding to themables signals a phase transition between the two regimes
a number randomly chosen in the intervat¢ut,cut). The g <25 andB,>2.5. The region3,<2.5 is a condensate of
value of the cut was chosen S0 .that an acceptance rate gt2) monopoles while the regiof,> 2.5 has virtually zero
around 40% was roughly maintained for both the updateq,onopole density. Even the location of the phase transition,

variables. A finite temperature simulation is mimicked by cr~2 5, is very close to that observed in the bulk system
choosing a lattice of small temporal extent, a large spatia acr%é é)

extent, and periodic boundary conditiofwith period 8~ 1) a . . S
in the temporal direction. We have made our studies on lat- We now come to the behavior of the Wilson line in the

tices of different sizes. The maximum spatial size used wa@dioint representationLg) which is the most interesting as-
N, =10 and the maximum temporal size wds="7. Unless pect of our studies. At low temperatures, it remains very
" .

otherwise mentioned, the lattice size is usuaffy3. small, but it jumps to a non-zero va_Iue at high temperat_ures.
We have decided to present our numerical results firsthis jump occurs acrosg~2.5 which is the same point
along with some explanations, and only in the end do wevhere the plaquette square and #2) monopole density
start giving our interpretations. Though this may appear a bishow a discontinuous behavior. The startling feature is that
tedious, there are some reasons for doing this. The numerictiie adjoint Wilson line takes two distinct values at high tem-
results are interesting in their own right and many of themperatures. Depending on the starting configuration of the
are quite unexpected. Even before we discuss matters of ilMonte Carlo run, the adjoint Wilson line takes either a posi-
terpretation, the numerical observations themselves presetive or a negative value. A cold staftorresponding to an
some puzzling features. The other reason for this approach iitial configuration where all the link variables are unity
that the numerical results can always be considered sepalways leads to the state with, positive, while a hot start
rately from any physical interpretation we wish to attach to(corresponding to a initial configuration where all the link
them; they can be regarded as empirical observations thatriables are randomly distributedsually leads to the state
have to be properly explained. with L, negative. The two metastable states are shown in
The observables that were studied were the plaquettig. 2(a). The reason why we call them metastable states will
square, theZ(2) monopole density, the adjoint and funda- be explained later. In order to test whether these states are
mental Wilson line, the tiled Wilson line correlation func- truly long lived metastable states the updating algorithm was
tion, and the auxillaryZ(2) variable. We shall discuss these tampered with in various ways, but these states always ap-
in turn. We shall use the terms sm@), and largeB, inter-  peared. In fact, theaison d’gre for simulating the action in
changeably with low temperature and high temperature reEqg. (9) was to design an overrelaxation algorithm which
spectively. could be used to verify these metastable states. Another sur-
The Z(2) monopole density and the plaquette squareprising feature is that the average value of the plaquette
show an abrupt change g,~2.5. Figure 1 shows the be- square observable in both these metastable states appears to

25 25 T T T T T T T
b
2 | 2| . i
+
1.5 1.5 ++ . FIG. 2. (a) The two metastable
. 1 . 1+ - s_tates folL, at ,8_a= 3.5. The posi-
Y - sl i tive value ofL, is reached after a
cold start, and the negative value
0 0+ +  ++ - A
is reached after a hot stath) The
0.5 05 + oy N variation ofL, with 3,.
_1 1 1 1 1 1 1 1 1 1 _1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 15 2 25 3 35 4 45
NS/10 beta
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be almost(but not exactly equal. The value of th&(2) LGT at high temperatures. The distribution lof in the L,
monopole density is exteremely small at high temperaturepositive state is very similar to its distribution in the high
and is not significantly different in these two metastabletemperature phase of tf®U(2) LGT. At low temperatures,
states. We also mention that we have hardly been able to séiee distributions ol; andL, in the SU(2) theory are very
any tunnelings between these two metastable states exceptsgimilar to those in theSQ(3) theory and so we do not
a situation to be described later. A plot bf vs B, is pre-  present them. From these plots, the state wWwithpositive in
sented in Fig. 2b. At high temperatures, we show the valuethe SQ(3) LGT is seen to be quite similar to the high tem-
of L, in both the metastable states which are observed iperature(deconfinedl phase of theSU(2) LGT. The state
simulations. with L, negative is, of course, absent in tB&J(2) LGT. Let
Before accounting for these metastable states, we take @& now compare the distribution of the adjoint Wilson line in
look at the distribution functiongnormalized to 1 of the  thel, negative state with the low temperatukg,~0, state.
adjoint and fundamental Wilson line at high and low tem-Both profiles are peaked &t,~—1, but there is a tail ex-
peratures. They will help us to understand the structure of theending all the way tot+ 3 in one, whereas in the other, the
high and low temperature states. We have plotted the singlgil is truncated very sharply. A similar comparison of the
site distribution function because that gives more informadistribution shows that the two states differ only by the
tion about the configurations in these states. Figures 3 and gharpness of their peaks centered on 0. From the above ob-
show these distributions for the the two high temperaturgervations, we conclude that although we see only one phase
states. In the state with, negative, there is a sharp peak at transition at3,~2.5, and this transition involves only the
—1 while the state with_, positive is peaked at a positive 7(2) degrees of freedom, the distribution functions of the
value (close to+3). We have already noted that the funda- fundamental and adjoint Wilson line are sufficiently modi-
mental Wilson line will always have a zero expectation valuefied across the transition. The, negative state at high tem-

because of the local(2) symmetry. This requires perature and the low temperature state are quite similar in
their configurations, which are peaked abbyt—1; only
(L¢(x))=0. (18 the width of the distributions are different in the two cases.

On the other hand, thé, positive state has a peak at a
A zero expectation value can arise in different ways. Eitheifferent location. Likewise, the distribution af; in the low
the values ot ; can be peaked about zero or there can be twaemperature phase differs from the one in the negative
peaks at non-zero values symmetrically distributed abougtate only by the width of its peak. In the, positive state,
zero. The distribution ofl; in the two high temperature however, thel; distribution is quite different and has two
states shows that both these possibilities occur.lThposi-  double peaks symmetrically placed about zero.
tive state has double peaks symmetrically placed about zero; Another observable which can also be monitored is the
the L, negative state has a sharp peak about zero. At lovaverage of the auxilliary plaguette variable. This observable
temperatures, the distribution of is broadly peaked about is not gauge invariant and represents the additich@)
zero. The distribution of , shows a peak at 1 but there is  degrees of freedom in th8Q(3) LGT. It is similar toL
a tail stretching all the way to 3. These are shown in Fig. 5because it can arbitrarily flip its sign giving it a zero average
In Fig. 6 we also display similar distributions for ti84J(2)  value. Though its average value is always zero, its distribu-

1.4 T
1.2

1k
0.8
0.6
04
0.2

FIG. 4. The distribution oL
and L, in the L, negative state.
. Ba=3.5.
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tion undergoes a change across the transition just a3his  translates into a rapid fall of the correlation function. At high
is shown in Fig. 7. At low temperatures, it has a broad peakemperatures, a different argument can be made. The very
centered on zero; at high temperatures, it has two peaksmall(virtually zerg Z(2) monopole density means that vir-
placed symmetrically about the origin. This means that theually all the cubes in the lattice satisfy
higher momentglike \(p)? which is gauge invariaftwill
show a discontinuous behavior across the transition. o(c)=+1. (19

Now we turn to another aspect of our numerical results.
We had mentioned earlier that in the states withnegative ~ This condition can be satisfied by
and L, positive, the values of observables such as the
plaguette square and tE€2) monopole density were almost _
equal. This should be checked for different valueggfand MPp) |)\||gp 2(l). 20
N,. On anN_=3 lattice, the two states have the same value
of the plaquette square observable for a wide range of couFhe extraZ(2) variableq z(1)] that occur on the Wilson line
plings. The differences between the two states start showingorrelation function can be absorbed in the Haar invariant
up only at very large couplings. We plot the time evolution measure, and the Wilson line correlation function reduces to
(Fig. 8 of the plaquette square observable for these twdhe correlation function of two fundamental Wilson lines,
metastable states on &h.=3 lattice for two different cou- apart from some normalization factors that arise because of
plings, 8.5and 10.5. We notice that the two values start the absolute value of th&(p) variables. Since the extra
moving apart only aftel3,=8.5. The same feature is ob- Z(2) variables can be absorbed away, the action of the
served when we go to lattices of temporal siige=2. This SQO(3) LGT reduces to that of th&U(2) LGT. In the
means that at very high temperatut&sge 8, or smallN,), SU(2) LGT, at high temperatures, the correlation function
the L, positive and_, negative states begin to differ slightly of two fundamental Wilson lines approaches a non-zero
from each other at least in the values of the plaquette squanalue at large distances. This is precisely the behavior seen
observablgwhich is the energy density in a bulk system  for the tiled Wilson line correlation function in the, posi-

The tiled Wilson line correlation function also behavestive state.
differently at low and high temperatures. At low tempera- So far the results were for asymmetric lattices. We now
tures, it falls rapidly to zero at large distances; in the tworecord some observations on symmetric lattices. In the infi-
high temperature phases, it again behaves differently; in theite lattice size limit, a symmetric lattice corresponds to the
L, positive state, it reaches a non-zero value at large disaulk zero-temperature system. However, simulations are al-
tances, and in thé, negative state, it falls to zero at large ways done on finite lattices. A finite symmetric lattice can
distances just as in the low temperature phase. This is showaiso be regarded as a finite temperature system whose spatial
in Fig. 9. This measurement of the correlation function wasvolume is smal(sinceN,~N_). When the spatial volume is
done on a 189X 3 lattice. Some simple arguments can besmall, the tunneling probability between metastable states
given for this behavior of the tiled Wilson line correlation will increase[since it goes as exp(aV) where « is some
function. At strong coupling, it is natural to expect the tiled positive constant an¥l is the volumé. The simulations on a
Wilson line correlation function to have an area law. Thissymmetric lattice are more likely to see tunnelings between

3 1 1 1 1 1 1 1 1 1 04
o5 L 0.35
5L 0.3
g sl 0.25 FIG. 6 The d_istribution ol
a 0.2 and L, in the high temperature
1 phase of theSU(2) theory. B¢
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metastable states and this is indeed the case. For [&yge ment of density from thé , negative region to thé, posi-
(3.5), the state withL, negative also appears whenever thetive region, but this time the transition to a single peak oc-
simulation is begun from a hot start. The state with a coldcurs at a larger value dfi. (N,=5). This suggests that the
start rarely settles down to a steady value and oscillates ds, positive state appears at higher valuesNof for larger
shown in Fig. 10. This behavior occurs for many couplingsvalues of 8,. The above distributions were plotted after
(and seeds of the random number genejasmd is not a gathering data from 50000 iterations. We have also studied
feature of any particular run or updating algorithm. Also it the densities of.; at a single site as the temperature is in-
occurs only for large symmetric lattices and is never ob-creased and we again observe the shape changing from a
served on, for instance, aN,=3 lattice. It is natural to single peak centered on zero to a double peak symmetrically
interpret this oscillation as tunneling between degenerate atistributed about zerfl5,2Q.

almost degenerate metastable states. If this is indeed the Finally we wish to make a few remarks about the shift in
case, we can study the tunneling probability between thesthe critical value of3, as a function ofN,. The bulk tran-
states. This suggests a small experiment. So far, the temporsition moves to8,~2.4 on anN_=2 lattice and is ai3,
extent of the lattice was kept fixed lt =3 and the tempera- ~2.52 on aN,.=3 lattice. We have not observed any signifi-
ture was varied by varyin@, . We now fix 8, and varyN.,. cant shift on arN =4 lattice.

This has the effect of varying the temperature at a fixed This concludes our numerical studies of 8€(3) LGT.
coupling (which can be chosen to be lajgdhe reason for Before we interpret our numerical results, we would like to
doing this is as follows: fixing3, and varyingN, not only  point out an important relation between the couplings of the
has the effect of varying temperature, bulif is kept fixed, SU(2) and theSQ(3) LGT at weak coupling. The relation

it also has the effect of achieving a simulation in a smallbetweeng; and 8, when both are large is

volume. This will aid tunnelings between metastable states

which are degenerate or almost degenerate. We choose two 8

values of 8,; they are 3.5 and 8.5. The purpose of this ,Bf:§,Ba. (21)
exercise is to see how the tunneling probabilities are affected

as one increases the temperature. We find it convenient to

plot the distribution function oL, (now this refers to the This relation is true in the naive classical limit and does not
value of the adjoint Wilson line averaged over all lattice represent the effects of all the quantum corrections but it is
siteg as a function oN, (8~ 1). This evolution is shown in still a good guide to the weak coupling behavior of the
Fig. 11. On lattices of large temporal extent, one sees tw®U(2) and theSO(3) LGTs. If there is a deconfinement
peaks in the distribution of , and these are centered on transition in theSQ(3) LGT at a large coupling, which is
positive and negative values. One notices a gradual moveseparated from the bulk transition, it must occupgt-2.6.
ment of density from thé , negative region to the, posi-  This means that the corresponding transition in $ié(2)

tive region asN, is decreased. FoN,=4, the two peaks LGT must occur at3;>5.6 (assuming that the weak cou-
have disappeared and there is only a single peak over the pling relation is approximately valid at these couplings
positive state. This same experiment is repeated in Fig. 18imulations in[17] have shown thai3{'=2.76 on aN,

for a higher coupling (8.5) and one again observes a move= 16 lattice. This would mean that deconfinement transitions
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"c8.5" -------
0.85 - . 0.85 - i
FIG. 8. Plaquette square
o 08} 4 a o08F

evolving with Monte Carlo
0.75 | - 0.75 | - sweeps. The values @, are (a)

0.7 | 4 07 L 8.5 and(b) 10.5.

5 1 1 1 1 1 1 1 1 1 ) 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
NS/10 NS/10

114505-7



SRINATH CHELUVARAJA AND H. S. SHARATCHANDRA PHYSICAL REVIEW D61 114505

0045 + L L L 07 T T T T T T T T T 003 T LI LI T T T
0.04 a - i *
0.035 - 069 1 b 0.025 ¢
003 1 088 1 o0z | ] FIG. 9. The tiled Wilson line
-~ 0025 1. % 1 = correlation function in thga) L,
& 0.02 - 1% os6f 4 £ o015} - ; e
. 15} negative phase(b) L, positive
0.015 — 0.65 4 -
0.01 F i ) 0.01 | - phase, and thé) low temperature
o005 F * 4 0.64 - =] 0.005 |- N 1 phase.3,=3.5 in (a) and (b) and
0F o+ 063 . ) + Ba=2.0in(c).
5 | NN T I N TN T O | 2 T T R T T B B .. 0 T T I I I A B I .
11.522.533.544.55 1152253354455 11522.533.544.55
X X X

in the SQ(3) LGT require very large temporal lattices. Such observation that observables such as the plaguette square ap-
large temporal lattices correspond to very low temperaturepear to take almost the same values in these two states. This
(in lattice units. behavior is very reminiscent of the high temperature phase of

We will now gather together all our numerical observa-the SU(2) LGT in which one observes metastable states
tions and try to tie them up to arrive at a consistent physicalyhich are related by &(2) transformation. In the&sU(2)
picture. We will find that this presents several difficulties and| GT, the globalz(2) symmetry ensures that the two states
that we are faced with many possibilities. The discontinuous,ye the same free energy. In t86X3) LGT, there is no

behavior of the plaquette square and {@) monopole den-  opyiqus symmetry relating the, positive andL, negative
sity at 8,~2.5 appears to be a replica of the transition in the

bulk It look i fini t hardl states; the presence of two degenerate minima in the free
ﬁ.ﬁ tshys%/t(;m.t t O.Ct). S az ' tr:.”'tte temtpera}ture € glctst ‘irh yenergy in the absence of any such symmetry would be quite
shirtthe (..) ransition. AS this transition 1S So simiiarto €, oy 3 kaple instance. Moreover, although the physical in-
bulk transition, we expect that only tiZ&2) degrees of free- : . . : A
. . . . terpretation of the, positive state is quite clear—it is simi-
dom are changing across it. Hence we expect the confinin 1o the deconfined phase of t5&)(2) LGT—thel . neqa-
properties of the gauge theory to be unchanged across th] ! P (2) - aN€g

transition. That the two phases differ by a distribution of thellve state does not easily admit a physical inte_rpretat_ion.
Z(2) degrees of freedom is also clear from Fig. 13. Thesé—|owever, as both these states seem to appear immediately

observations are also in line with the studies madggin after the bulk transition, we are led to the different possibili-

We now come to the behavior of the adjoint Wilson Iineties considered by10] in their studies of the mixed action

which is the most striking aspect of our numerical results. AtS.L.J(Z) lattice gauge theory. These [r!clyéi)eonly bulk tran-
ition and no deconfinement transitidii,) only deconfine-

low temperatures, the adjoint Wilson line has a very smalf®

numerical valug(in fact it is very close to zero all the way :_nent tr_zf[\ﬁsmon andt_ no bﬁ!khtransmon, a'(:ﬂ) :wo tra|nS|- ith
until the transition. This small value at low temperatures s "ONS With a Separation which we aré unable 1o resolve wi

quite unexpected because a static quark in the adjoint reprg-ur U“me”ca' meth_ods. Possibility goes against many the-
sentation can always bind with a gluon and form a state o retical and numerical arguments favoring a deconfinement

finite energy. Though we expect the adjoint Wilson line to betransition at high temperatures. Possibilit) requires the

always non-zero, there is no reason why it should take SUCHansition to be of second order according to the arguments

a small value at low temperatures. Nonetheless, in the stror [5]. It alsq requires _the transition point to shift as the
coupling approximation, mporal lattice size is increased. We have not noticed any

significant shift in the critical coupling fromN,=3-4.

(L)y~(Ba/3)"N7, Though we do not have a proof for any of these possibilities,

the third possibility seems to be the least dramatic of the

and is quite small on the lattices that we are using. Thighree. Before proceeding further to interpret our numerical
explains the small value df, in the strong coupling region results, we take the point of view that the presence olthe

though it does not provide a reason why should be small negative state is quite significant and has to be properly ac-

all the way until the phase transition. The adjoint Wilson linecomodated in any scheme. Though the physical interpreta-

taking two distinct values at high temperatures is the mostion of the L, positive state is quite clear, the, negative
unexpected feature of our results. Equally puzzling is thestate still needs to be explained.

(22
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Let us examine two possible interpretations. One possibl&rom the slightly different numerical values of the plaquette
interpretation is that we have only the bulk transition drivensquare operator in these two statesich measures the en-
by theZ(2) monopoles. As we have observed only one tranergy density in the bulk systemthe tiled Wilson line corre-
sition, and the states with, positive and_, negative appear lation function differs drastically in the, positive state and
immediately after this transition, this may seem quite athe L, negative state. Morover, the exact physical equiva-
promising explanation. One may also think that these twdence of these states, in the absence of a symmetry relating
states are physically equivalent. A recent measurement ithe two, would be quite a remarkable instance. We have not
[18] of the correlation length of the adjoint Wilson line came been able to discover any symmetry that mapsLthg@osi-
up with the result that it was the same in the two states. Thisive state to thé., negative state and which leaves the action
seems to support the picture of two distinct but physicallyinvariant. In the absence of such an explicit symmetry trans-
equivalent states. Nevertheless, this interpretation does ha¥ermation, we cannot be sure that there does indeed exist
its problems. Our studies of the plaquette square observabich a transformation. The phase diagram ofSl¥3) LGT
and the tiled Wilson line correlation function show that theseat non-zero temperature in this scenario, where there is only
two observables behave differently in the two states. Apara single bulk transition, would be as in Fig. 13 without the
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L the L, negative state. A cold stafin which the initialL, is
| +3) is already close to thé, positive state and always
1 reaches that state. A hot start, on the other hand, corresponds
] to Li~0 and usually settles to the, negative state. If the
_ effective potential has two minima of different depths, then
even a local minimum can appear as a very long lived meta-
stable state. Such examples are known to occur in spin glass
systems. Since our updating algorithm is a local algorithm, it
will find it difficult to move the system away from a local
minimum. Morover, if there is no symmetry connecting
these two minima, it is difficult to make global updatesch
as flipping of all the spinswhich move the system from one
minimum to the other. A mean field analy$i9] by one of
| the authorgS.C) shows that thé, negative state persists as
. a local minimum, even at high temperatures, and this may
1 explain its appearance in simulations even at large couplings.
| Though we have not been able to directly detect a phase
A B BN transition at large coupling, our observations of tunneling
1 2 3 4 5 6 probabilities on lattices of largl , show that there is a pas-
ﬂa sage from a double peak structure to a single peak structure
. ) o at high temperatures. The argument after &1) also tells
FIG. 13. Possible phase diagram of t8€X3) LGT at finite ;5 that the search for this transition has to be carried out at
temperatur_e. The solid I|_n_e is the bulk transition. The dotted line IS/ery low temperaturedlarge temporal lattices In this pic-
the deconfinement transition. ture, the phase diagram of t80(3) LGT would be as in
Fig. 13. The solid line is th&(2) driven transition which, at
dotted line. There is only the bulk phase transition which isleast on arN,=3 lattice, is a first order transition. At zero
driven by theZ(2) monopoles. temperature, both sides of the transition are confining phases
The other interpretation is that the states withpositive  and at a non-zero temperature both phases undergo transi-
and L, negative are physically quite different. From a nu-tions to a common high temperature phase. The dotted line is
merical standpoint, this seems to be supported by our obsethe location of the phase transition from the bulk phase to the
vations of the plaquette square observable and the tiled Wildeconfined phase. This line lies very close to fheaxis as
son line correlation function, both of which behave the transition temperature is quite low. At largg, the line
differently in these two states. Also, a comparison of thewill be similar to the line in theSU(2) LGT as is expected
distributions ofL, at high and low temperatures suggestsfrom the universality of lattice actions. We consider this sce-
that theL , negative state and the,~0 (which is the low nario to be more plausible, taking into consideration our nu-
temperature confining phasstate are structurally similar, merical results and theoretical expectations.
apart from the width of their distribution functioisf L , and We now wish to discuss some theoretical issues which
L¢). Our observations on symmetric lattices also suggest thdtave an important bearing on the interpretation of our re-
this state can be associated with the bulk system. A study dfults. It can be shown that the expectation value of the ad-
the tunneling probabilities indicated that there was a passageint Wilson line is always a non-negative quantity. This
from theL, negative region to thé, positive region as we basically follows from the fact that a static source in the
increased the temperature. This would suggest that_the adjoint representation can always form a bound state with a
negative state is associated with the b(dknfining phase gluon and give a positive contribution to the partition func-
which passes into a deconfining phase at high temperaturegon. In fact, the free energy interpretation of the average
The tiled Wilson line correlation function also has the samevalue of the adjoint Wilson line in Eq16) presupposes that
behavior in the low temperature phase and lthenegative it is always a non-negative quantity. However, we seem to be
state. An important consequence of this interpretation is thgetting negative values in simulations. The fundamental Wil-
existence of a phase transition between the bulk phase amn line in theSU(2) LGT also takes positive and negative
the deconfined phase at large couplings, which is quite difvalues. For the fundamental Wilson line, one gets around this
ferent from theZ(2) transition. Let us mention some of the contradiction by saying that it is the correlation function of
guestions raised by this picture. If the two states are physitwo Wilson lines which can be given the physical interpre-
cally very different, why is it that they always seem to appeairtation of measuring the free energy of a quark-antiquark pair
together? Within our present analysis we cannot answer thi®21]. This correlation function is always positive and there is
question satisfactorily but it is possible that there are twono problem with the free energy interpretation. The average
minima in the effective potential at high temperatures whichvalue of an isolated fundamental Wilson line on a finite lat-
are closely spaced, and this causes the configurations to gide is in principle always zero, because tunneling between
trapped in one of the two, almost degenerate, minima. Alsothe two metastable states always restores the symmetry; in-
we should emphasize that it is only the cold start that alwayslividual Wilson lines are measured in simulations for purely
ends up in thé, positive state; a hot start usually ends up inoperational reasons. The same avenue is not open for the
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adjoint Wilson line. Even an isolated adjoint Wilson line can closer to each other on very large temporal lattices. We con-
be non-zero, and it is always a non-negative quantity. Thigecture that in this limit, these distributions will resemble the
seems to contradict the observations made in simulations icorresponding distributions in tHeU(2) LGT.

which we have observed negative values for the adjoint Wil- In this paper we have mainly emphasized the numerical
son line. The way out is that in finite systems, there will results of our studies of th8O(3) LGT. We have observed
always be tunnelingéthough one may have to wait a very a deconfining phase at high temperatures which is just like
long time between the metastable statedich in this case the deconfining phase of th®@U(2) LGT. As there is no

are not connected by any symmetrin theSQ(3) LGT, the  global Z(2) symmetry operating in this model, this is a de-
tunnelings are between the, positive and the., negative  confining phase without any symmetry breaking as in the
states, and since these states are non-uniformly distributeslU(2) LGT. We have also observed the bulk transition
about zero, they can give a net positive value for the averag&hich is driven by theZ(2) degrees of freedom. In the

of L,. This is clearly seen in Fig. 11 and Fig. 12 where thecourse of our studies, we have stumbled into a new meta-
distributions ofL, ensure that the mean value bf is al-  stable state which would have beermpriori very difficult to
ways in the positive region. The reason why we have calledjuess. The incorporation of this new state in the model pre-
the states observed in numerical simulations as metastabéents us with several difficulties, and a reconciliation of the
states is that their thermodynamic significance is not obvinumerical observations with our physical intuition leads us
ous. Though we observe states having a positive and a neg&- consider different scenarios. We have pointed out two
tive value ofL, in numerical simulations, the average value possible scenarios for the phase diagram ofS3k¥%3) LGT.

of L, is got by averaging over these two metastable states. IBoth of them are able to explain some of the observations
the thermodynamic limit, the value 4t ) in any phase is made in simulations, but they also pose problems for a com-
always a non-negative quantity. If there is a phase transitioplete reconciliation between numerical observations and
at high temperatures, the observable that detects the tranghysical expectations. Our analysis does show, however, that
tion is L,. Figure 11 shows that average bf need not theSQ(3) LGT has a much richer behavior than tB&)(2)
change discontinuously even though there is a multiple peakGT. It is quite likely that these features persist in systems
structure forL, across the phase transition. This is becausevhich have bulk transitions and which are also expected to
the mean value ok, (which is always a positive quantjty have finite temperature deconfinement transitions.

gradually increases as the temperature is increased. We now One of the author§S.C) has tried to make some analyti-
make a few remarks about the continuum limit. Apart fromcal calculations in order to explain the puzzling features of
the thermodynamic limit, one also has to take the continuunthe SO(3) LGT [19]. A mean field analysis of th&O(3)

limit so that the lattice system goes over to some physicalGT reveals the presence of thg negative and_, positive
system(in this case, Yang-Mills theojy This requires taking states at high temperatures. The structure of the metastable
the simultaneous limitdN,—o anda—0, and the passage states in simulations, at high and low temperatures, can also
to this limit can also affect the physical properties of thebe explained by the mean field theory. The mean field theory
lattice system; the order of the phase transition can alsanalysis also predicts the existence of a phase transition at
change as we approach the continuum limit and may evelarge 8, for the SO(3) LGT [19].

become second order. The possibility of a second order
phase transition in the continuum limit is also indicated by
the fact that the absolute value of the adjoint Wilson line
decreases as the temporal lattice size is increased. Thus, theOne of the author$S.C) would like to acknowledge use-
multiple peaks seen in the adjoint Wilson line will move ful discussions with Rajiv Gavai and Saumen Datta.
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