
PHYSICAL REVIEW D, VOLUME 61, 114505
Finite temperature properties of the SO„3… lattice gauge theory
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We make a numerical study of the finite temperature properties of theSO(3) lattice gauge theory. As its
symmetry properties are quite different from those of theSU(2) LGT, a different set of observables has to be
considered in this model. We study several observables, such as the plaquette square, theZ(2) monopole
density, the fundamental and adjoint Wilson line, and the tiled Wilson line correlation function. Our simula-
tions show that theZ(2) monopoles condense at strong coupling just as in the bulk system. This transition is
seen at approximately the same location as in the bulk system. A surprising observation is the multiple
valuedness of the adjoint Wilson line at high temperatures. At high temperatures, we observe long lived
metastable states in which the adjoint Wilson line takes positive and negative values. The numerical values of
other observables in these two states appear to be almost the same. We study these states using different
methods and also make comparisons with the high temperature behavior of theSU(2) LGT. Finally, we
discuss various interpretations of our results and point out their relevance for the phase diagram of theSO(3)
LGT at finite temperature.

PACS number~s!: 12.38.Gc, 05.70.Fh, 11.15.Ha
s
a
en
eo
m

f
ly
tu

ct
i

u

e
em

l
in
is
wi

ic
ly

ri-
-

e
on-

a-
il-
be

bath
y

e-
ent.
the

up,

of

of
that
id-
I. INTRODUCTION

Lattice gauge theories~LGTs! at non-zero temperature
have been studied extensively for many years. They h
provided us with models for the confinement-deconfinem
phase transition which is expected to occur in realistic th
ries such as quantum chromodynamics. The thermodyna
properties of theSU(2) and SU(3) LGTs have also been
vigorously studied@1#. Nevertheless, the implications o
LGTs for continuum Yang-Mills theories are not complete
clear. There are many questions about the high tempera
phase which have still eluded an understanding; some
these are a precise characterization of the phase, the stru
of its elementary excitations, and its static and dynam
properties. This makes the study of the finite temperat
properties of LGTs a subject of continuing interest.

The pioneering work in@2# was the first non-perturbativ
calculation to show that quarks are deconfined at high t
peratures. The analysis in@2# is done in the strong coupling
limit ( g@1) of the SU(2) LGT. In this limit, the partition
function of theSU(2) LGT is rewritten as a 3D spin mode
with a globalZ(2) symmetry. The ordered phase of this sp
model corresponds to the deconfined phase and the d
dered phase corresponds to the confined phase. Follo
this calculation, Monte Carlo simulations@3# provided fur-
ther evidence that the transition takes place in the phys
weak coupling limit (g!1). These simulations are usual
done@for theSU(2) LGT# using the Wilson action@4# which
is defined as

S5
b f

2 (
n m,n

trfU~n mn!. ~1!

*Email address: srinath@theory.tifr.res.in
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The U(n mn)s are the plaquette variables that are the o
ented product of theSU(2) link variables along an elemen
tary square and are constructed as

U~n mn!5U~n m!U~n1m n!U†~n1n m!U†~n n!. ~2!

U(n m) are theSU(2) variables defined on the links. Th
basic observable that is studied in simulations is the Wils
Polyakov line ~henceforth called the Wilson line!; this is
defined as

L f~x!5Trf P expS i E
0

b

A~x!dx4D . ~3!

The subscriptf indicates that the trace is taken in the fund
mental representation of the group. In analogy with the W
son loop, the expectation value of this observable can
interpreted as the free energy of a static quark in a heat
~at a temperatureb21). This connection is made explicit b
writing it in the form

^L f~x!&5exp@2bF~x!#. ~4!

A non-zero expectation value of the Wilson line signals d
confinement; a zero expectation value signals confinem
This observable is the order parameter for studying
confinement-deconfinement phase transition inSU(N)
LGTs. The importance of the center of the gauge gro
Z(N) for SU(N), was further underlined in@5# where it was
proposed that the critical behavior of 4DSU(N) gauge theo-
ries could be understood in terms of the critical behavior
3D spin models having a globalZ(N) symmetry. The group
Z(N), which is the center of the groupSU(N), plays a spe-
cial role in the deconfinement transition. This is because
an extra symmetry in the finite temperature gauge theory
arises from the periodic boundary conditions in the Eucl
©2000 The American Physical Society05-1
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ean time direction; gauge transformations which are perio
~in time! up to a constant center element leave the ac
invariant. The Wilson line picks up a phase under the act
of these gauge transformations; it transforms as

L f~x!→ZLf~x!; ~5!

hereZ is an element of the center and, for the groupSU~2!, it
is either11 or 21. Therefore, a non-zero value of the W
son line at high temperatures signals a spontaneous brea
of the global center symmetry, implying that the high te
perature phase is degenerate with the two degenerate s
related by aZ transformation. Numerical simulations of th
SU(2) LGT observe these degenerate states as metas
states in simulations. At high temperatures, the Wilson l
settles to either a positive or a negative value and remain
either of these two states for very long simulation times. T
order of the transition to the high temperature phase has
been investigated thoroughly in theSU(2) and theSU(3)
LGTs. The expectations in@5#, concerning the order of the
phase transition, have been borne out for theSU(2) @6# and
the SU(3) @7# LGTs in which one observes a 3D Ising lik
critical behavior and a 3DZ(3) like first order transition
respectively.

Since lattice actions are anyway not unique, it is natura
study the finite temperature properties of LGTs using equ
lent actions. The universality of lattice gauge theory actio
requires that different actions, which correspond to differ
regularizations of quantum field theories, should reprod
the same physics in the continuum limit. One such LGT
defined by

S5
ba

3 (
p

traU~p!. ~6!

Unlike the Wilson action, the trace of the plaquette is tak
in the adjoint representation. The traces in the two repres
tations are related by

tra U5~ trf U !221. ~7!

Though this action is defined usingSU(2) link variables and
the SU(2) Haar measure, it describes anSO(3) LGT be-
cause the link variablesU(n,m) and 2U(n,m) have the
same weight. In this paper, we will report on our studies w
this action and we will encounter some unexpected and
teresting phenomena.

There are several reasons why a study of the finite t
perature properties of theSO(3) LGT can be useful and
important. TheSO(3) LGT has the same naive continuu
limit as theSU(2) LGT, and is expected to lead to the sam
physics as theSU(2) LGT. Furthermore, since the grou
SO(3) has no non-trivial center subgroup likeSU(2), it
would be interesting to see how it can reproduce the sa
properties as theSU(2) LGT in the absence of a non-trivia
center subgroup. Also, unlike theSU(2) LGT, the SO(3)
LGT has a first order bulk transition atba'2.6 that is driven
by the condensation ofZ(2) monopoles@8#. The condensa-
tion of theseZ(2) monopoles has nothing to do with deco
finement. Both sides of the bulk transition are confini
11450
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phases, and only theZ(2) degrees of freedom behave diffe
ently in these two phases. The presence of these additi
Z(2) degrees of freedom should lead to a richer phase
gram in which both sides undergo phase transitions int
high temperature phase. Another issue which has been
cussed recently is the difficulty in separating a bulk and
finite temperature transition. The finite temperature prop
ties of the mixed actionSU(2) LGT ~introduced in@9#! were
recently studied in@10# and it was found that the deconfine
ment transition joined the bulk transition, making it difficu
to separate the two. This raises the issue of whether
possible to make any meaningful distinction between th
two transitions. Similar studies have also been made wit
mixed actionSU(3) LGT in @11#. It is with these motiva-
tions in mind that we have tried to understand the fin
temperature properties of theSO(3) LGT. The Monte Carlo
simulation method is used to arrive at the numerical resu
We run into many puzzling features in our studies of t
SO(3) LGT. Our studies indicate that theSO(3) LGT has a
much richer behavior than theSU(2) LGT. In this paper we
first present our numerical observations and later make
posals for their physical interpretation. We consider differe
scenarios for the phase diagram of theSO(3) LGT. Though
we do not have a convincing proof for any particular sc
nario, we present several reasons for favoring the scen
that we believe is true.

We first observe that the Wilson line in the fundamen
representation is not an order parameter in theSO(3) LGT.
This is because the globalZ(2) symmetry present in the
SU(2) LGT is promoted to a local symmetry in theSO(3)
LGT. The center transformation can now depend on the s
tial position and acts as

Ł f~x!→Z~x!Ł f~x!. ~8!

Since local symmetries are never spontaneously broken@12#,
this forces the average value of the Wilson line in the fu
damental representation to be always zero. Only observa
which are invariant under this local symmetry can have
non-zero average value in this model. Before we disc
these observables, it is illuminating to rewrite the action
the SO(3) LGT in a slightly different form. This involves
linearizing the square term of the trace by introducing
auxillary Gaussian field@l(p)# on the plaquettes, afte
which the action becomes

S5
Aba

A3
(

p
trfU~p!l~p!2

1

4 (
p

l~p!2. ~9!

In the above form, theSO(3) LGT is like anSU(2) LGT
interacting with additional Gaussian plaquette degrees
freedom. These plaquette variables are theZ(2) degrees of
freedom. This form also shows that theSO(3) LGT has
additional degrees of freedom compared with theSU(2)
LGT. The SU(2) LGT is recovered when the additiona
Z(2) variables are frozen to11. The above form of the
action, unlike the form in Eq.~6!, is also convenient for
5-2
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FINITE TEMPERATURE PROPERTIES OF THESO(3) . . . PHYSICAL REVIEW D 61 114505
simulations for which a heat bath or an overrelaxation al
rithm has to be implemented. The action has the localZ(2)
invariance

U~n,m!→2U~n,m! l~p!→2l~p!, ~10!

thel(p)s being the plaquettes touching the linkU(n,m). To
study this model, we must construct observables that are
variant under these local gauge transformations. Wil
loops and Wilson-Polyakov lines fail to satisfy this criterio
and their average values are identically zero. Neverthel
we can discuss the behavior of several observables which
invariant under these local gauge transformations. One s
observable is a sheet variable. An example of a sheet v
able is the ‘‘tiled’’ Wilson loop

W~C!5)
l PC

U~ l ! )
pPC

l~p!. ~11!

The first part of the observable is the usual Wilson lo
defined over a loopC, and the other part consists of th
auxillary Z(2) variables which are defined on all th
plaquettes enclosed by the loopC. The tiled Wilson loop
cannot be given the usual physical interpretation of the
tential of a quark-antiquark pair because additionalZ(2) de-
grees of freedom are involved in its definition. Neverthele
it is an interesting gauge invariant variable that incorpora
both the SU(2) and theZ(2) degrees of freedom in th
SO(3) LGT. Similarly, we can define a ‘‘tiled’’ Wilson line
correlation function as

W~x,y!5tr L f~x!L f~y! )
pPC

l~p!. ~12!

We expect this observable to be useful in studying the fin
temperature properties of theSO(3) LGT. TheZ(2) mono-
pole density,r, can be extracted from thel(p) variables as
follows:

r~c!5
1

2 F12sgnS )
p pP]c

l~p! D G . ~13!

This definition of the monopole density is also gauge inva
ant. By definition, aZ(2) monopole is present in a 3D cub
whenever the product of theZ(2) auxillary variables border
ing the cube is negative. TheZ(2) monopoles can be imag
ined as lattice monopole configurations that carry a netZ(2)
magnetic flux. Another observable of interest is the Wils
line in the adjoint representation that is defined as

La~x!5TraP expS i E
0

b

A~x!dx4D . ~14!

This observable can also be studied in theSU(2) @13–15#
and theSU(3) @16# LGTs at finite temperature, and it can b
used to monitor the deconfinement transition. However,
adjoint Wilson line plays a much more essential role in
study of deconfinement in theSO(3) LGT. For the group
SU(2), this observable can be expressed in terms of
fundamental Wilson lineL f by the relation
11450
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221. ~15!

In this form, it is easy to see that the adjoint Wilson line
invariant under the localZ(2) transformation in Eq.~8! and
is in general non-zero. In analogy with the fundamental W
son line in theSU(2) LGT, we expect the adjoint Wilson
line to tell us something about the deconfinement transit
in the SO(3) LGT. The physical interpretation attached
the fundamental Wilson line carries over to the adjoint W
son line. It measures the free energy of a static source (Fa)
in the adjoint representation placed inside a heat bath
temperatureb21. This is again seen by writing it as

^La~x!&5exp@2bFa~x!#. ~16!

A non-zero value of this observable implies that such a st
source has a finite free energy. It must be noted, howe
that confinement of adjoint sources is to be understo
slightly differently from confinement of fundamenta
sources. An adjoint source@which is a non-Abelian charge in
the j 51 representation ofSU(2)] canalways bind with two
fundamental sources (j 51/2) and form a color singlet boun
state. Similarly, two widely separated adjoint sources w
form two color singlet bound states without any string joi
ing the two. Hence, unlike the fundamental Wilson line, t
adjoint Wilson line is always non-zero, and it is not an ord
parameter in the strict sense. Nevertheless, it can show
continuous behavior across a phase transition just like
other observable. Since the behavior of an adjoint sou
depends on its ability to bind to fundamental sources,
expect the adjoint source to closely follow the behavior
fundamental sources. This is true for theSU(2) LGT in
which the adjoint Wilson line can equally well be used
locate the deconfinement transition. Finally, the other ga
invariant variable we consider is the square of the plaqu
variable defined as

P5~1/3!tr U~p!2. ~17!

This measures the energy density in a bulk sysytem.
In the next section we present our numerical studies of

above-mentioned observables, and then we attempt to
vide a physical interpretation to our results.

II. NUMERICAL RESULTS

In this section we present our numerical results. We fi
briefly describe the systematics of the simulation. A m
tropolis update~with 3 hits! followed by overrelaxation up-
dates~2 hits! was used to generate the configurations. M
surements were made every 10 sweeps after omitting the
1000 configurations. We performed runs ranging from 100
to 50000 Monte Carlo sweeps. The link variables and
Gaussian variables were updated separately. Since any s
lation should also incorporate the local invariance in E
~10!, the transformations in Eq.~10! were implemented ev-
ery time a measurement was made. This is done by rando
changing the sign of a link variable and simultaneou
changing the signs of all the auxiliary variables which are
contact with this link. This process is repeated until it h
5-3
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FIG. 1. ~a! Plaquette square
~P! and ~b! Z(2) monopole den-
sity (r), as a function ofba .
There is an abrupt rise inP and a
fall in r, at ba'2.5.
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been performed on all the links in the lattice. The link va
ables were updated by multiplying them with anSU(2) el-
ement chosen at random from a table consisting of 50
ments which was biased to lie close to the unit element.
auxillary Gaussian variables were updated by adding to th
a number randomly chosen in the interval (2cut,cut). The
value of the cut was chosen so that an acceptance ra
around 40% was roughly maintained for both the upda
variables. A finite temperature simulation is mimicked
choosing a lattice of small temporal extent, a large spa
extent, and periodic boundary conditions~with periodb21)
in the temporal direction. We have made our studies on
tices of different sizes. The maximum spatial size used w
Ns510 and the maximum temporal size wasNt57. Unless
otherwise mentioned, the lattice size is usually 7333.

We have decided to present our numerical results
along with some explanations, and only in the end do
start giving our interpretations. Though this may appear a
tedious, there are some reasons for doing this. The nume
results are interesting in their own right and many of th
are quite unexpected. Even before we discuss matters o
terpretation, the numerical observations themselves pre
some puzzling features. The other reason for this approac
that the numerical results can always be considered s
rately from any physical interpretation we wish to attach
them; they can be regarded as empirical observations
have to be properly explained.

The observables that were studied were the plaqu
square, theZ(2) monopole density, the adjoint and fund
mental Wilson line, the tiled Wilson line correlation func
tion, and the auxillaryZ(2) variable. We shall discuss thes
in turn. We shall use the terms smallba and largeba inter-
changeably with low temperature and high temperature
spectively.

The Z(2) monopole density and the plaquette squ
show an abrupt change atba'2.5. Figure 1 shows the be
11450
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havior of these two observables. The discontinuous jump
these quantities suggests a first order transition just a
observed in the bulk system. There is no indication of a
other phase transition. The abrupt change in these obs
ables signals a phase transition between the two regi
ba,2.5 andba.2.5. The regionba,2.5 is a condensate o
Z(2) monopoles while the regionba.2.5 has virtually zero
monopole density. Even the location of the phase transit
ba

cr'2.5, is very close to that observed in the bulk syst
(ba

cr'2.6).
We now come to the behavior of the Wilson line in th

adjoint representation (La) which is the most interesting as
pect of our studies. At low temperatures, it remains ve
small, but it jumps to a non-zero value at high temperatu
This jump occurs acrossb'2.5 which is the same poin
where the plaquette square and theZ(2) monopole density
show a discontinuous behavior. The startling feature is t
the adjoint Wilson line takes two distinct values at high te
peratures. Depending on the starting configuration of
Monte Carlo run, the adjoint Wilson line takes either a po
tive or a negative value. A cold start~corresponding to an
initial configuration where all the link variables are unit!
always leads to the state withLa positive, while a hot start
~corresponding to a initial configuration where all the lin
variables are randomly distributed! usually leads to the stat
with La negative. The two metastable states are shown
Fig. 2~a!. The reason why we call them metastable states
be explained later. In order to test whether these states
truly long lived metastable states the updating algorithm w
tampered with in various ways, but these states always
peared. In fact, theraison d’être for simulating the action in
Eq. ~9! was to design an overrelaxation algorithm whi
could be used to verify these metastable states. Another
prising feature is that the average value of the plaqu
square observable in both these metastable states appe
e

FIG. 2. ~a! The two metastable
states forLa at ba53.5. The posi-
tive value ofLa is reached after a
cold start, and the negative valu
is reached after a hot start.~b! The
variation ofLa with ba .
5-4
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FIG. 3. The distribution ofL f

and La in the La positive state.
ba53.5.
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be almost~but not exactly! equal. The value of theZ(2)
monopole density is exteremely small at high temperatu
and is not significantly different in these two metasta
states. We also mention that we have hardly been able to
any tunnelings between these two metastable states exce
a situation to be described later. A plot ofLa vs ba is pre-
sented in Fig. 2b. At high temperatures, we show the val
of La in both the metastable states which are observed
simulations.

Before accounting for these metastable states, we ta
look at the distribution functions~normalized to 1! of the
adjoint and fundamental Wilson line at high and low te
peratures. They will help us to understand the structure of
high and low temperature states. We have plotted the si
site distribution function because that gives more inform
tion about the configurations in these states. Figures 3 a
show these distributions for the the two high temperat
states. In the state withLa negative, there is a sharp peak
21 while the state withLa positive is peaked at a positiv
value ~close to13). We have already noted that the fund
mental Wilson line will always have a zero expectation va
because of the localZ(2) symmetry. This requires

^L f~x!&50. ~18!

A zero expectation value can arise in different ways. Eit
the values ofL f can be peaked about zero or there can be
peaks at non-zero values symmetrically distributed ab
zero. The distribution ofL f in the two high temperature
states shows that both these possibilities occur. TheLa posi-
tive state has double peaks symmetrically placed about z
the La negative state has a sharp peak about zero. At
temperatures, the distribution ofL f is broadly peaked abou
zero. The distribution ofLa shows a peak at21 but there is
a tail stretching all the way to 3. These are shown in Fig
In Fig. 6 we also display similar distributions for theSU(2)
11450
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LGT at high temperatures. The distribution ofLa in the La
positive state is very similar to its distribution in the hig
temperature phase of theSU(2) LGT. At low temperatures,
the distributions ofL f andLa in the SU(2) theory are very
similar to those in theSO(3) theory and so we do no
present them. From these plots, the state withLa positive in
the SO(3) LGT is seen to be quite similar to the high tem
perature~deconfined! phase of theSU(2) LGT. The state
with La negative is, of course, absent in theSU(2) LGT. Let
us now compare the distribution of the adjoint Wilson line
theLa negative state with the low temperature,La '0, state.
Both profiles are peaked atLa'21, but there is a tail ex-
tending all the way to13 in one, whereas in the other, th
tail is truncated very sharply. A similar comparison of theL f
distribution shows that the two states differ only by t
sharpness of their peaks centered on 0. From the above
servations, we conclude that although we see only one ph
transition atba'2.5, and this transition involves only th
Z(2) degrees of freedom, the distribution functions of t
fundamental and adjoint Wilson line are sufficiently mod
fied across the transition. TheLa negative state at high tem
perature and the low temperature state are quite simila
their configurations, which are peaked aboutLa521; only
the width of the distributions are different in the two case
On the other hand, theLa positive state has a peak at
different location. Likewise, the distribution ofL f in the low
temperature phase differs from the one in theLa negative
state only by the width of its peak. In theLa positive state,
however, theL f distribution is quite different and has tw
double peaks symmetrically placed about zero.

Another observable which can also be monitored is
average of the auxilliary plaquette variable. This observa
is not gauge invariant and represents the additionalZ(2)
degrees of freedom in theSO(3) LGT. It is similar to L f
because it can arbitrarily flip its sign giving it a zero avera
value. Though its average value is always zero, its distri
FIG. 4. The distribution ofL f

and La in the La negative state.
ba53.5.
5-5
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FIG. 5. The distribution ofL f

and La in the low temperature
phase.ba52.0.
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tion undergoes a change across the transition just asL f . This
is shown in Fig. 7. At low temperatures, it has a broad pe
centered on zero; at high temperatures, it has two pe
placed symmetrically about the origin. This means that
higher moments@like l(p)2 which is gauge invariant# will
show a discontinuous behavior across the transition.

Now we turn to another aspect of our numerical resu
We had mentioned earlier that in the states withLa negative
and La positive, the values of observables such as
plaquette square and theZ(2) monopole density were almos
equal. This should be checked for different values ofba and
Nt . On anNt53 lattice, the two states have the same va
of the plaquette square observable for a wide range of c
plings. The differences between the two states start show
up only at very large couplings. We plot the time evoluti
~Fig. 8! of the plaquette square observable for these
metastable states on anNt53 lattice for two different cou-
plings, 8.5 and 10.5. We notice that the two values sta
moving apart only afterba58.5. The same feature is ob
served when we go to lattices of temporal sizeNt52. This
means that at very high temperatures~largeba or smallNt),
theLa positive andLa negative states begin to differ slightl
from each other at least in the values of the plaquette sq
observable~which is the energy density in a bulk system!.

The tiled Wilson line correlation function also behav
differently at low and high temperatures. At low temper
tures, it falls rapidly to zero at large distances; in the t
high temperature phases, it again behaves differently; in
La positive state, it reaches a non-zero value at large
tances, and in theLa negative state, it falls to zero at larg
distances just as in the low temperature phase. This is sh
in Fig. 9. This measurement of the correlation function w
done on a 10333 lattice. Some simple arguments can
given for this behavior of the tiled Wilson line correlatio
function. At strong coupling, it is natural to expect the tile
Wilson line correlation function to have an area law. Th
11450
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translates into a rapid fall of the correlation function. At hig
temperatures, a different argument can be made. The
small ~virtually zero! Z(2) monopole density means that vi
tually all the cubes in the lattice satisfy

s~c!511. ~19!

This condition can be satisfied by

l~p!5ulu )
l P]p

z~ l !. ~20!

The extraZ(2) variables@z( l )# that occur on the Wilson line
correlation function can be absorbed in the Haar invari
measure, and the Wilson line correlation function reduce
the correlation function of two fundamental Wilson line
apart from some normalization factors that arise becaus
the absolute value of thel(p) variables. Since the extra
Z(2) variables can be absorbed away, the action of
SO(3) LGT reduces to that of theSU(2) LGT. In the
SU(2) LGT, at high temperatures, the correlation functi
of two fundamental Wilson lines approaches a non-z
value at large distances. This is precisely the behavior s
for the tiled Wilson line correlation function in theLa posi-
tive state.

So far the results were for asymmetric lattices. We n
record some observations on symmetric lattices. In the i
nite lattice size limit, a symmetric lattice corresponds to t
bulk zero-temperature system. However, simulations are
ways done on finite lattices. A finite symmetric lattice c
also be regarded as a finite temperature system whose sp
volume is small~sinceNs'Nt). When the spatial volume is
small, the tunneling probability between metastable sta
will increase@since it goes as exp(2aV) wherea is some
positive constant andV is the volume#. The simulations on a
symmetric lattice are more likely to see tunnelings betwe
FIG. 6. The distribution ofL f

and La in the high temperature
phase of theSU(2) theory. b f

54.5.
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FIG. 7. The distribution of
l(p) ~calledZ in the figure! in the
~a! low and ~b! high temperature
phases.
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metastable states and this is indeed the case. For largba
~3.5!, the state withLa negative also appears whenever t
simulation is begun from a hot start. The state with a c
start rarely settles down to a steady value and oscillate
shown in Fig. 10. This behavior occurs for many couplin
~and seeds of the random number generator! and is not a
feature of any particular run or updating algorithm. Also
occurs only for large symmetric lattices and is never o
served on, for instance, anNt53 lattice. It is natural to
interpret this oscillation as tunneling between degenerat
almost degenerate metastable states. If this is indeed
case, we can study the tunneling probability between th
states. This suggests a small experiment. So far, the temp
extent of the lattice was kept fixed atNt53 and the tempera
ture was varied by varyingba . We now fixba and varyNt .
This has the effect of varying the temperature at a fix
coupling ~which can be chosen to be large!. The reason for
doing this is as follows: fixingba and varyingNt not only
has the effect of varying temperature, but ifNs is kept fixed,
it also has the effect of achieving a simulation in a sm
volume. This will aid tunnelings between metastable sta
which are degenerate or almost degenerate. We choose
values of ba ; they are 3.5 and 8.5. The purpose of th
exercise is to see how the tunneling probabilities are affec
as one increases the temperature. We find it convenien
plot the distribution function ofLa ~now this refers to the
value of the adjoint Wilson line averaged over all latti
sites! as a function ofNt (b21). This evolution is shown in
Fig. 11. On lattices of large temporal extent, one sees
peaks in the distribution ofLa and these are centered o
positive and negative values. One notices a gradual mo
ment of density from theLa negative region to theLa posi-
tive region asNt is decreased. ForNt54, the two peaks
have disappeared and there is only a single peak over thLa
positive state. This same experiment is repeated in Fig
for a higher coupling (8.5) and one again observes a mo
11450
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ment of density from theLa negative region to theLa posi-
tive region, but this time the transition to a single peak o
curs at a larger value ofNt (Nt55). This suggests that th
La positive state appears at higher values ofNt for larger
values of ba . The above distributions were plotted aft
gathering data from 50000 iterations. We have also stud
the densities ofL f at a single site as the temperature is
creased and we again observe the shape changing fro
single peak centered on zero to a double peak symmetric
distributed about zero@15,20#.

Finally we wish to make a few remarks about the shift
the critical value ofba as a function ofNt . The bulk tran-
sition moves toba'2.4 on anNt52 lattice and is atba
'2.52 on aNt53 lattice. We have not observed any signi
cant shift on anNt54 lattice.

This concludes our numerical studies of theSO(3) LGT.
Before we interpret our numerical results, we would like
point out an important relation between the couplings of
SU(2) and theSO(3) LGT at weak coupling. The relation
betweenb f andba when both are large is

b f5
8

3
ba . ~21!

This relation is true in the naive classical limit and does n
represent the effects of all the quantum corrections but i
still a good guide to the weak coupling behavior of t
SU(2) and theSO(3) LGTs. If there is a deconfinemen
transition in theSO(3) LGT at a large coupling, which is
separated from the bulk transition, it must occur atba.2.6.
This means that the corresponding transition in theSU(2)
LGT must occur atb f.5.6 ~assuming that the weak cou
pling relation is approximately valid at these coupling!.
Simulations in @17# have shown thatb f

cr52.76 on aNt

516 lattice. This would mean that deconfinement transitio
FIG. 8. Plaquette square
evolving with Monte Carlo
sweeps. The values ofba are ~a!
8.5 and~b! 10.5.
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FIG. 9. The tiled Wilson line
correlation function in the~a! La

negative phase,~b! La positive
phase, and the~c! low temperature
phase.ba53.5 in ~a! and ~b! and
ba52.0 in ~c!.
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in theSO(3) LGT require very large temporal lattices. Su
large temporal lattices correspond to very low temperatu
~in lattice units!.

We will now gather together all our numerical observ
tions and try to tie them up to arrive at a consistent phys
picture. We will find that this presents several difficulties a
that we are faced with many possibilities. The discontinuo
behavior of the plaquette square and theZ(2) monopole den-
sity atba'2.5 appears to be a replica of the transition in t
bulk sysytem. It looks as if finite temperature effects har
shift theZ(2) transition. As this transition is so similar to th
bulk transition, we expect that only theZ(2) degrees of free-
dom are changing across it. Hence we expect the confin
properties of the gauge theory to be unchanged across
transition. That the two phases differ by a distribution of t
Z(2) degrees of freedom is also clear from Fig. 13. Th
observations are also in line with the studies made in@8#.

We now come to the behavior of the adjoint Wilson lin
which is the most striking aspect of our numerical results.
low temperatures, the adjoint Wilson line has a very sm
numerical value~in fact it is very close to zero all the wa
until the transition!. This small value at low temperatures
quite unexpected because a static quark in the adjoint re
sentation can always bind with a gluon and form a state
finite energy. Though we expect the adjoint Wilson line to
always non-zero, there is no reason why it should take s
a small value at low temperatures. Nonetheless, in the st
coupling approximation,

^La&'~ba/3!4Nt, ~22!

and is quite small on the lattices that we are using. T
explains the small value ofLa in the strong coupling region
though it does not provide a reason whyLa should be small
all the way until the phase transition. The adjoint Wilson li
taking two distinct values at high temperatures is the m
unexpected feature of our results. Equally puzzling is
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observation that observables such as the plaquette squar
pear to take almost the same values in these two states.
behavior is very reminiscent of the high temperature phas
the SU(2) LGT in which one observes metastable sta
which are related by aZ(2) transformation. In theSU(2)
LGT, the globalZ(2) symmetry ensures that the two stat
have the same free energy. In theSO(3) LGT, there is no
obvious symmetry relating theLa positive andLa negative
states; the presence of two degenerate minima in the
energy in the absence of any such symmetry would be q
a remarkable instance. Moreover, although the physical
terpretation of theLa positive state is quite clear—it is simi
lar to the deconfined phase of theSU(2) LGT—theLa nega-
tive state does not easily admit a physical interpretati
However, as both these states seem to appear immedi
after the bulk transition, we are led to the different possib
ties considered by@10# in their studies of the mixed action
SU(2) lattice gauge theory. These include~i! only bulk tran-
sition and no deconfinement transition,~ii ! only deconfine-
ment transition and no bulk transition, and~iii ! two transi-
tions with a separation which we are unable to resolve w
our numerical methods. Possibility~i! goes against many the
oretical and numerical arguments favoring a deconfinem
transition at high temperatures. Possibility~ii ! requires the
transition to be of second order according to the argume
in @5#. It also requires the transition point to shift as th
temporal lattice size is increased. We have not noticed
significant shift in the critical coupling fromNt53 –4.
Though we do not have a proof for any of these possibiliti
the third possibility seems to be the least dramatic of
three. Before proceeding further to interpret our numeri
results, we take the point of view that the presence of theLa
negative state is quite significant and has to be properly
comodated in any scheme. Though the physical interpr
tion of the La positive state is quite clear, theLa negative
state still needs to be explained.
FIG. 10. La on a 74 lattice as a
function of Monte Carlo sweeps
for ~a! hot start and~b! cold start.
ba53.5.
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FIG. 11. The distribution ofLa

as a function ofNt at ba53.5.
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Let us examine two possible interpretations. One poss
interpretation is that we have only the bulk transition driv
by theZ(2) monopoles. As we have observed only one tr
sition, and the states withLa positive andLa negative appea
immediately after this transition, this may seem quite
promising explanation. One may also think that these t
states are physically equivalent. A recent measuremen
@18# of the correlation length of the adjoint Wilson line cam
up with the result that it was the same in the two states. T
seems to support the picture of two distinct but physica
equivalent states. Nevertheless, this interpretation does
its problems. Our studies of the plaquette square observ
and the tiled Wilson line correlation function show that the
two observables behave differently in the two states. Ap
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from the slightly different numerical values of the plaque
square operator in these two states~which measures the en
ergy density in the bulk system!, the tiled Wilson line corre-
lation function differs drastically in theLa positive state and
the La negative state. Morover, the exact physical equi
lence of these states, in the absence of a symmetry rela
the two, would be quite a remarkable instance. We have
been able to discover any symmetry that maps theLa posi-
tive state to theLa negative state and which leaves the acti
invariant. In the absence of such an explicit symmetry tra
formation, we cannot be sure that there does indeed e
such a transformation. The phase diagram of theSO(3) LGT
at non-zero temperature in this scenario, where there is o
a single bulk transition, would be as in Fig. 13 without t
FIG. 12. The distribution ofLa

as a function ofNt at ba58.5.
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dotted line. There is only the bulk phase transition which
driven by theZ(2) monopoles.

The other interpretation is that the states withLa positive
and La negative are physically quite different. From a n
merical standpoint, this seems to be supported by our ob
vations of the plaquette square observable and the tiled
son line correlation function, both of which behav
differently in these two states. Also, a comparison of
distributions ofLa at high and low temperatures sugge
that theLa negative state and theLa'0 ~which is the low
temperature confining phase! state are structurally similar
apart from the width of their distribution functions~of La and
L f). Our observations on symmetric lattices also suggest
this state can be associated with the bulk system. A stud
the tunneling probabilities indicated that there was a pass
from theLa negative region to theLa positive region as we
increased the temperature. This would suggest that theLa
negative state is associated with the bulk~confining! phase
which passes into a deconfining phase at high temperatu
The tiled Wilson line correlation function also has the sa
behavior in the low temperature phase and theLa negative
state. An important consequence of this interpretation is
existence of a phase transition between the bulk phase
the deconfined phase at large couplings, which is quite
ferent from theZ(2) transition. Let us mention some of th
questions raised by this picture. If the two states are ph
cally very different, why is it that they always seem to appe
together? Within our present analysis we cannot answer
question satisfactorily but it is possible that there are t
minima in the effective potential at high temperatures wh
are closely spaced, and this causes the configurations to
trapped in one of the two, almost degenerate, minima. A
we should emphasize that it is only the cold start that alw
ends up in theLa positive state; a hot start usually ends up

FIG. 13. Possible phase diagram of theSO(3) LGT at finite
temperature. The solid line is the bulk transition. The dotted line
the deconfinement transition.
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the La negative state. A cold start~in which the initialLa is
13) is already close to theLa positive state and alway
reaches that state. A hot start, on the other hand, corresp
to L f'0 and usually settles to theLa negative state. If the
effective potential has two minima of different depths, th
even a local minimum can appear as a very long lived me
stable state. Such examples are known to occur in spin g
systems. Since our updating algorithm is a local algorithm
will find it difficult to move the system away from a loca
minimum. Morover, if there is no symmetry connectin
these two minima, it is difficult to make global updates~such
as flipping of all the spins! which move the system from on
minimum to the other. A mean field analysis@19# by one of
the authors~S.C.! shows that theLa negative state persists a
a local minimum, even at high temperatures, and this m
explain its appearance in simulations even at large couplin
Though we have not been able to directly detect a ph
transition at large coupling, our observations of tunneli
probabilities on lattices of largeNt show that there is a pas
sage from a double peak structure to a single peak struc
at high temperatures. The argument after Eq.~21! also tells
us that the search for this transition has to be carried ou
very low temperatures~large temporal lattices!. In this pic-
ture, the phase diagram of theSO(3) LGT would be as in
Fig. 13. The solid line is theZ(2) driven transition which, at
least on anNt53 lattice, is a first order transition. At zer
temperature, both sides of the transition are confining pha
and at a non-zero temperature both phases undergo tr
tions to a common high temperature phase. The dotted lin
the location of the phase transition from the bulk phase to
deconfined phase. This line lies very close to theba axis as
the transition temperature is quite low. At largeba , the line
will be similar to the line in theSU(2) LGT as is expected
from the universality of lattice actions. We consider this sc
nario to be more plausible, taking into consideration our n
merical results and theoretical expectations.

We now wish to discuss some theoretical issues wh
have an important bearing on the interpretation of our
sults. It can be shown that the expectation value of the
joint Wilson line is always a non-negative quantity. Th
basically follows from the fact that a static source in t
adjoint representation can always form a bound state wi
gluon and give a positive contribution to the partition fun
tion. In fact, the free energy interpretation of the avera
value of the adjoint Wilson line in Eq.~16! presupposes tha
it is always a non-negative quantity. However, we seem to
getting negative values in simulations. The fundamental W
son line in theSU(2) LGT also takes positive and negativ
values. For the fundamental Wilson line, one gets around
contradiction by saying that it is the correlation function
two Wilson lines which can be given the physical interpr
tation of measuring the free energy of a quark-antiquark p
@21#. This correlation function is always positive and there
no problem with the free energy interpretation. The avera
value of an isolated fundamental Wilson line on a finite l
tice is in principle always zero, because tunneling betwe
the two metastable states always restores the symmetry
dividual Wilson lines are measured in simulations for pure
operational reasons. The same avenue is not open for

s
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FINITE TEMPERATURE PROPERTIES OF THESO(3) . . . PHYSICAL REVIEW D 61 114505
adjoint Wilson line. Even an isolated adjoint Wilson line c
be non-zero, and it is always a non-negative quantity. T
seems to contradict the observations made in simulation
which we have observed negative values for the adjoint W
son line. The way out is that in finite systems, there w
always be tunnelings~though one may have to wait a ver
long time! between the metastable states~which in this case
are not connected by any symmetry!. In theSO(3) LGT, the
tunnelings are between theLa positive and theLa negative
states, and since these states are non-uniformly distrib
about zero, they can give a net positive value for the aver
of La . This is clearly seen in Fig. 11 and Fig. 12 where t
distributions ofLa ensure that the mean value ofLa is al-
ways in the positive region. The reason why we have ca
the states observed in numerical simulations as metas
states is that their thermodynamic significance is not ob
ous. Though we observe states having a positive and a n
tive value ofLa in numerical simulations, the average val
of La is got by averaging over these two metastable state
the thermodynamic limit, the value of^La& in any phase is
always a non-negative quantity. If there is a phase transi
at high temperatures, the observable that detects the tr
tion is La . Figure 11 shows that average ofLa need not
change discontinuously even though there is a multiple p
structure forLa across the phase transition. This is beca
the mean value ofLa ~which is always a positive quantity!
gradually increases as the temperature is increased. We
make a few remarks about the continuum limit. Apart fro
the thermodynamic limit, one also has to take the continu
limit so that the lattice system goes over to some phys
system~in this case, Yang-Mills theory!. This requires taking
the simultaneous limits,Nt→` and a→0, and the passag
to this limit can also affect the physical properties of t
lattice system; the order of the phase transition can a
change as we approach the continuum limit and may e
become second order. The possibility of a second or
phase transition in the continuum limit is also indicated
the fact that the absolute value of the adjoint Wilson li
decreases as the temporal lattice size is increased. Thus
multiple peaks seen in the adjoint Wilson line will mov
et
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closer to each other on very large temporal lattices. We c
jecture that in this limit, these distributions will resemble t
corresponding distributions in theSU(2) LGT.

In this paper we have mainly emphasized the numer
results of our studies of theSO(3) LGT. We have observed
a deconfining phase at high temperatures which is just
the deconfining phase of theSU(2) LGT. As there is no
global Z(2) symmetry operating in this model, this is a d
confining phase without any symmetry breaking as in
SU(2) LGT. We have also observed the bulk transiti
which is driven by theZ(2) degrees of freedom. In th
course of our studies, we have stumbled into a new m
stable state which would have beena priori very difficult to
guess. The incorporation of this new state in the model p
sents us with several difficulties, and a reconciliation of t
numerical observations with our physical intuition leads
to consider different scenarios. We have pointed out t
possible scenarios for the phase diagram of theSO(3) LGT.
Both of them are able to explain some of the observati
made in simulations, but they also pose problems for a co
plete reconciliation between numerical observations a
physical expectations. Our analysis does show, however,
the SO(3) LGT has a much richer behavior than theSU(2)
LGT. It is quite likely that these features persist in syste
which have bulk transitions and which are also expected
have finite temperature deconfinement transitions.

One of the authors~S.C.! has tried to make some analyt
cal calculations in order to explain the puzzling features
the SO(3) LGT @19#. A mean field analysis of theSO(3)
LGT reveals the presence of theLa negative andLa positive
states at high temperatures. The structure of the metas
states in simulations, at high and low temperatures, can
be explained by the mean field theory. The mean field the
analysis also predicts the existence of a phase transitio
largeba for the SO(3) LGT @19#.
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