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Mean field analysis of theSO„3… lattice gauge theory at finite temperature

Srinath Cheluvaraja*
Tata Institute of Fundamental Research, Mumbai 400 005, India

~Received 8 October 1998; published 2 May 2000!

We study the finite temperature properties of theSO(3) lattice gauge theory using mean field theory. The
main result is the calculation of the effective action at finite temperature. The form of the effective action is
used to explain the behavior of the adjoint Wilson line in numerical simulations. Numerical simulations of the
SO(3) lattice gauge theory show that the adjoint Wilson line has a very small value at low temperatures; at
high temperatures, metastable states are observed in which the adjoint Wilson line takes positive or negative
values. The effective action is able to explain the origin of these metastable states. A comparison of the
effective actions of theSU(2) and theSO(3) lattice gauge theories explains their different behavior at high
temperatures. Mean field theory also predicts a finite temperature phase transition in theSO(3) lattice gauge
theory.

PACS number~s!: 12.38.Gc, 05.70.Fh, 11.15.Ha
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Confining gauge theories are expected to pass over in
deconfining phase at high temperatures. The first exp
non-perturbative calculation@1# to show this was done in th
strong coupling limit of lattice gauge theories~LGTs!. Since
then, there have been many studies of the finite tempera
properties of LGTs. It is hoped that an understanding of th
properties will shed some light on the high temperat
phase of Yang-Mills theories. There have been numer
studies of the finite temperature properties ofSU(2) @2–4#
andSU(3) @5# LGTs. The basic observable that is studied
these systems is the Wilson-Polyakov line~henceforth called
the Wilson line! which is defined as

L f~x!5TrfexpS i E
0

b

A~x,x4!dx4D . ~1!

The subscriptf indicates that the trace is taken in the fund
mental representation of the group. The Wilson line has
physical interpretation of measuring the free energy@F(x)#
of a static quark in a heat bath at a temperatureb21. This is
made explicit by writing it in the form

^L f~x!&5exp@2bF~x!#; ~2!

a non-zero value of the Wilson line implies that a sta
quark has a finite free energy whereas a zero-value imp
that it has infinite free energy. The strong coupling analy
in @1# shows that the Wilson line remains zero at low te
peratures and becomes non-zero at high temperatures@1#,
signalling a finite temperature confinement to deconfinem
phase transition. This transition is also observed in numer
simulations. The action for theSU(2) LGT is usually taken
to be the Wilson action@6# and is given by

S5~b f /2! (
n mn

trf U~n mn!; ~3!
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the subscriptf indicates that the trace is taken in the fund
mental representation ofSU(2). ThevariablesU(n mn) are
the usual oriented plaquette variables:

U~n mn!5U~n m!U~n1m n!U†~n1nm!U†~n n!; ~4!

theU(n m)s are the link variables which are elements of t
groupSU(2). A finite temperature system~at a temperature
b21) is set up by imposing periodic boundary conditio
~with periodb) in the Euclidean time direction. This resul
in an additional globalZ(2) symmetry that acts on the tem
poral link variables as follows:

U~n n4!→ZU~n n4!. ~5!

Z is an element of the center of the groupSU(2) and takes
the values11 or 21. Under the action of this symmetr
transformation, the Wilson line transforms as

L~x!→ZL~x!. ~6!

It is evident that the high temperature phase~in which the
Wilson line has a non-zero average value! breaks this global
symmetry. As a result of this symmetry breaking, the hi
temperature phase of theSU(2) LGT is doubly degenerate
and the two states are related by aZ transformation. The two
degenerate states have the same free energy because o
global symmetry. Numerical simulations observe these st
as metastable states in which the Wilson line takes two
ferent values which are related by aZ transformation. The
role of the center symmetry was further emphasized in@3#
where it was argued that the order of the transition to
high temperature phase could be understood in terms of
universality classes present in 3D spin models having
symmetry. These expectations have been borne out for
SU(2) @4# and theSU(3) @5# LGTs in which one observes
second order Ising like and a first orderZ(3) like phase
transition respectively.

Another choice of an action, which is expected to lead
the same physics as the Wilson action, is the adjoint ac
that is given by
©2000 The American Physical Society04-1
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S5~ba/3! (
n mn

tra U~n mn!. ~7!

Here, the subscripta denotes that the trace is taken in t
adjoint representation ofSU(2). Thetrace in the adjoint rep-
resentation can be expressed in terms of the trace in
fundamental representation as

traU5trfU
221. ~8!

From its definition, the adjoint action describes anSO(3)
LGT since the link variablesU(n m) and2U(n m) have the
same weight in the action. Unlike theSU(2) LGT, the
SO(3) LGT has a bulk~zero temperature! transition atb
'2.5. This transition is understood in terms of the decond
sation ofZ(2) monopoles@7#. An interesting and importan
question is whether theSO(3) LGT has a deconfinemen
transition like theSU(2) LGT. The universality of lattice
gauge theory actions would requireSU(2) andSO(3) LGTs
to have the same continuum limit. We will show that o
mean field analysis does predict a deconfinement trans
in the SO(3) LGT. In theSO(3) LGT, the appropriate ob
servable~though it is not an order parameter in the str
sense! to study deconfinement is the Wilson line in the a
joint representation@8#; this observable is defined as

La~x!5TraexpS i E
0

b

A~x,x4!dx4D . ~9!

The subscripta denotes the trace in the adjoint represen
tion. The Wilson line in the fundamental representation
always zero in this model because of a localZ symmetry.
This will be explicitly shown later. The adjoint Wilson lin
can also be interpreted as measuring the free energy
static quark in the adjoint representation by writing it as

^La~x!&5exp@2Fa~x!#. ~10!

The Z symmetry acts trivially on this observable. A furth
generalization of the Wilson action is the mixed action LG
@9# that is defined as

S5~b f /2! (
n mn

trf U~n mn!1~ba/3! (
n mn

tra U~n mn!.

~11!

The finite temperature properties of this model have b
studied in@10#.

The two Wilson lines can be expressed as a function
the gauge invariant variableu as

L f~x!52 cos~u/2! La~x!5112 cos~u!; ~12!

u is the phase of the eigenvalues of

PexpS i E
0

b

A~x,x4!dx4D . ~13!

The variableu is gauge invariant and can be used to char
terize the various phases of the system.
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It is the purpose of the present paper to find the effect
action, Ve f f(u), for the SO(3) LGT at non-zero tempera
tures. The effective action is calculated in the mean fi
approximation. The effect of the fluctuations about the me
field solution is also considered and they are shown to
quite important at low temperatures. The effective action
also calculated for theSU(2) LGT and the differences ar
pointed out with theSO(3) LGT. We then make some com
ments on the mixed action LGT. Though a mean field ana
sis of theSO(3) LGT is of interest in itself, the main moti
vation for our present analysis is to qualitatively understa
some of the observations made in numerical simulations
the SO(3) LGT. Numerical studies of theSO(3) LGT @8#
show that the adjoint Wilson line~AWL ! remains close to
zero at low temperatures and jumps to a non-zero valu
high temperatures. Both the low and the high temperat
behaviors of the adjoint Wilson line are quite puzzling. T
small value of the AWL at low temperatures is surprisi
because a static source in the adjoint representation ca
ways combine with a gluon and form a state with a finite fr
energy. More surprising, however, is the observation of t
distinct metastable states for the AWL at high temperatu
@8#. We explain later why we call these states metasta
states. In numerical simulations, we find metastable st
with the AWL taking a positive or negative value dependi
on the initial configuration of the Monte Carlo run. A ho
start ~random initial configuration! usually settles to a nega
tive value whereas a cold start~ordered initial configuration!
always settles to a positive value. This metastability is s
even at very high temperatures. Figure 1 is a typical run ti
history of the AWL for hot and cold starts in the high tem
perature phase. The values of other observables like
plaquette square and theZ(2) monopole density~which is
almost equal to zero! are almost the same in both these me
stable states. All this appears very reminiscent of the m
stable states~of the fundamental Wilson line! observed in the
high temperature phase of theSU(2) LGT in which two
degenerate states related by aZ transformation are observed
Nonetheless, as there is no obvious symmetry in theSO(3)
LGT connecting the two observed metastable states,
presence of two exactly degenerate minima in the free

FIG. 1. The two metastable states forLa . La is plotted as a
function of ~Monte Carlo sweeps!/10. The positive value is reache
after a cold start and the negative value is reached after a hot s
4-2
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MEAN FIELD ANALYSIS OF THE SO~3! LATTICE . . . PHYSICAL REVIEW D 61 114504
ergy would be quite remarkable. A measurement of the c
relation function of the adjoint Wilson line indicated that th
correlation lengths were the same in theLa positive andLa

negative states@11#. The authors of@11# use this result to
argue that the two states are physically equivalent. We
show the existence of these metastable states at high
peratures using mean field theory. The mean field anal
shows that there are minima in the effective action at po
tive and negative values ofLa . The difference in free energ
density between these minima depends on two parame
Nt and ba ; Nt is the temporal extent of the lattice~or the
inverse temperature!, andba is the coupling constant of th
SO(3) LGT. For a range of values of the parameters,Nt and
ba , these minima are almost equal to each other. This m
explain why both states are observed in numerical sim
tions. The mean field theory analysis can be done for
SU(2) LGT as well, and the differences are pointed out w
the case of theSO(3) LGT. In particular, it is shown why
the state in which the AWL takes a negative value is abs
in the SU(2) theory. Finally, we extend the mean fie
theory to theSU(2) mixed action LGT. We conclude with
discussion of some theoretical issues connected with the
joint Wilson line.

The usual approach of doing a mean field theory at n
zero temperature requires a strong coupling approximatio
in @12#. There are other variants of this mean field theo
which are all basically based on the idea of ignoring
effect of the spatial plaquettes@13#. Spatial plaquettes tend t
deconfine the system; a deconfinement transition in the
sence of spatial plaquettes will necessarily imply such a tr
sition with them included. If one considers a reduced mo
with the spatial plaquettes discarded, the spatial links can
exactly integrated using a character expansion. This lead
an effective theory of Wilson lines in three dimensions. B
fore we present the details of this calculation, we would l
to say that there is no qualitative change in the finite te
perature properties of the system in this limit. The spa
degrees of freedom can be considered to be inert acros
deconfinement transition, and the only role they play is
possibly shift the transition temperature. Symmetry prop
ties are also not altered in anyway in this reduced model,
even the order of the phase transition, if there is any, sho
be unaffected by this simplification@this will be shown for
the SU(2) theory#. In this limit of the SO(3) LGT, theLa
positive andLa negative states are again observed in num
cal simulations, just as in the full model, and they ag
display the same features as in the full model. The appr
mation of discarding the spatial plaquettes does not introd
anything extraneous into the finite temperature propert
Even the bulk properties of the system should remain
changed in this approximation because ignoring the spa
plaquettes gives a zero weight to theZ(2) monopoles which
are known to drive the bulk transition@7# in theSO(3) LGT.
In theSO(3) LGT, theZ(2) monopoles anyway do not co
any energy because of the square term in the action.
main motivation for analyzing the reduced model is that
accurate mean field analysis can be made.

The reduced model is defined as
11450
r-

ill
m-
is
i-

rs,

y
-
e

nt

d-

-
as
y
e

b-
n-
l

be
to
-

-
l

the
o
r-
d

ld

i-

i-
ce
s.
-
al

he
n

S5(
pPt

x~U !; ~14!

the summation is only over the temporal plaquettes.x(U) is
a class function defined on the plaquette variables. We s
be concerned with three possible forms that this function
take. They are

x~U !5
b f

2
trf @U~p!#; ~15!

this is Wilson’s action for theSU(2) LGT. Then we will
consider

x~U !5
ba

3
tra @U~p!#; ~16!

this is the adjoint action and describes anSO(3) LGT. Fi-
nally, we will consider the mixed action,

x~U !5
b f

2
x f~U !1

ba

3
xa~U !. ~17!

The character expansion of the exponential gives

Z5E @DU#)
t

(
j

b̃ jx j„U~p!…. ~18!

The characters are given by the formula

x j~V!5
sin@~ j 11/2!u#

sin~u/2!
. ~19!

HereV denotes someSU(2) group element which is param
etrized in the usual way as

V5cos~u/2!1 isW •nW sin~u/2!. ~20!

The b̃ j can be calculated using the orthonormality prope
of the characters

E @dU#x r~U !xs* ~U !5d rs . ~21!

The character coefficients are given by

b̃ j5E @dU#exp@S~U !#x j* ~U !; ~22!

S(U) can be the action for theSU(2), SO(3) or the mixed
action LGT.

The spatial links can be integrated using the orthogona
relation

E @DU#Dm1 n1
j ~U !Dm2 n2

k ~U†!5
1

2 j 11
d j ,kdn1 m2

dm1 n2
.

~23!
4-3
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SRINATH CHELUVARAJA PHYSICAL REVIEW D 61 114504
This leads to the effective 3D spin model with the partiti
function @with x j„V(rW)… acting as the spin degree of fre
dom#

Z5E @dV~rW !#)
rW8rW

(
j

S b̃ j

2 j 11
D Nt

x j„V~rW !…x j„V~rW8!….

~24!

The effective action is

Se f f52(
rW8rW

log(
j

S b̃ j

2 j 11
D Nt

x j„V~rW !…x j„V~rW8!….

~25!

The partition function of this spin model can be written a

Z5E @dV~rW !#exp~2Se f f!. ~26!

The measure is theSU(2) Haar measure

dV5E
0

4pdu~rW !

4p
$12cos@u~rW !#%. ~27!

So far, the analysis does not distinguish between the gro
SU(2) or SO(3). Thedifference between them arises in th
coefficients in the character expansion. In theSU(2) LGT,
all the character coefficients are in general non-zero and
are given by the formula

b̃ j52~2 j 11!I 2 j 11~b f !/b f . ~28!

In the SO(3) LGT, the b̃ j are non-zero only for intege
values ofj and the coefficients are given by the formula

b̃ j5exp~ba/3!@ I j~2ba/3!2I j 11~2ba/3!#. ~29!

For the mixed action LGT, all the character coefficients
non-zero but an expression similar to the one forSU(2) and
SO(3) is not available, and the character coefficients hav
be determined numerically. The properties of the chara
coefficients lead to an important difference between the
fective spin models for theSU(2) and theSO(3) LGTs.
Since theSO(3) theory involves only the integer represe
tations of SU(2), the following relation is true for all the
spins:

x j„u~rW !12p…5x j„u~rW !…. ~30!

This means that the transformation

u~rW !→u~rW !12p ~31!

is true at any single site. The above transformation is a lo
symmetry of theSO(3) LGT. In theSU(2) LGT, the fol-
lowing relation is true for the half-integer representations

x j„u~rW !12p…52x j„u~rW !…. ~32!
11450
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In the SU(2) theory, the transformation in Eq.~31! is a
symmetry only if it is performed simultaneously at eve
site. Thus theSU(2) theory has only the following globa
symmetry:

u~rW !→u~rW !12p; ~33!

the SO(3) theory has this symmetry as a local symmet
Under these symmetry transformations, the fundamental
adjoint Wilson line transform as

L f~rW !→2L f~rW !La~rW !→La~rW !. ~34!

In the SO(3) theory, this local symmetry~we will call it a
local Z symmetry! ensures that the expectation value of t
fundamental Wilson line is always zero.

We now look for a translationally invariant solution th
minimizes the action in this model. This leads to the effe
tive action

1

N
Se f f~u!52 log@12cos~u!#23logS (

j

b̃ j

2 j 11
@x j~V!#2D .

~35!

The factor of 3 is present because we are dealing with a th
dimensional spin model. The measure term has also b
absorbed in the action. The partition function of the effect
model is

Z5E
0

4p

@du#exp@2Se f f~u!#. ~36!

To get the effective action we have to deal with the infin
summation overj. Since the higher order terms in the cha
acter expansion are much smaller, the summation can
terminated at some large value ofj. This approximation does
not alter the results in any way as we have checked. We
the effective action for theSU(2) and SO(3) LGTs as a
function ofu. In the plot, the range ofu is restricted to vary
from 0 to 2p since the other half gives no additional info
mation.u is the translationally invariant single site value
the phase of the Wilson line; it is a gauge invariant quant
The shape of the effective action depends on the two par
eters,Nt and ba or b f . Depending on their values, the e
fective action develops one or more minima. The effect
action for theSU(2) theory for different values ofb f is
shown in Fig. 2. At low temperatures,Ve f f(u) has the shape
of a bowl with a very broad minimum atu'p. As the tem-
perature increases, two minima start developing very clos
the u'p minimum and start receding away; at higher te
peratures, these minima approachu'0 andu'2p. The two
minima at high temperatures are the two states with a n
zeroL f which differ by aZ symmetry (u→2p1u) and they
are the two phases with spontaneously brokenZ symmetry.
Both these states have the same value ofLa . These two
minima in the effective action represent the deconfined ph
of the SU(2) LGT. The second order nature of the pha
transition is also manifest from the evolution of the effecti
potential. This second order transition is seen in simulati
4-4
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FIG. 2. The effective potential for theSU(2) theory as a function ofb f with Nt fixed to 3. The values ofb f for which the potential is
shown are 1.5,2.5,3.5,4.5,5.5,6.5. In the figure these correspond to parts a,b,c,d,e,f respectively.
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of the SU(2) LGT, and is also in accordance with the un
versality arguments in@3#. We have demonstrated this resu
for theSU(2) LGT, even though it is a well known one@12#,
simply because in our way of doing the mean field theory
use the phase of the eigenvalues of the Wilson line and
the trace of the Wilson line as is done in@12#. It also serves
to show that a truncation of the spatial plaquettes does
change the finite temperature properties of the system.
now turn to theSO(3) LGT theory which is our main inter
est. As we have mentioned before, theSO(3) theory has a
local Z symmetry and this is an important difference that
have to keep in mind. The effective action is shown in Fig
At low temperatures, the effective action again develops
shape of a bowl with a very broad minimum atu'p. As the
temperature is increased, the effective action evolves q
differently from the SU(2) theory. The major difference
11450
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from theSU(2) theory is that the minimum atu'p always
remains a minimum. The broad minimum atu'p gets
sharper, and minima atu'0,2p start developing. The mini-
mum atu'p would correspond to a value ofLa equal to
21 and the minima atu'0,2p would correspond to a value
of 13. The minima atu'0,2p have the same depth whil
the minimum atu'p has a slightly different depth. The
difference in the action between the two states depends
the values ofNt and ba . For the values of the paramete
shown in the plot, the difference in depth of the minima
u'0,2p and the minimum atu'p is small compared to the
absolute value of these minima. For much larger values
ba , the minima atu'0,2p sink below the minimum atu
'p. Nevertheless,u'p still remains a minimum, although
it is only a local minimum. This evolution of the effectiv
action signals a phase transition at largeba across which the
4-5
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FIG. 3. The effective potential for theSO(3) theory as a function ofba with Nt fixed to 3. The values ofba for which the potential is
shown are 1.5,2.5,3.0,3.5,4.5,5.5. In the figure these correspond to parts a,b,c,d,e,f respectively.
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global minimum of the effective action shifts fromu'p to
u'0,2p. Though there are two minima in the effective a
tion at the u'0,2p, the local symmetry ensures that th
average value of the fudamental Wilson line is always ze
The value ofLa is the same atu'0 andu'2p. Hence, the
value ofLa in the minima atu'0,2p is the same as its valu
in the high temperature phase of theSU(2) theory. We can
then conclude that the global minima at high temperature
the SO(3) theory correspond to a deconfining phase jus
in the SU(2) theory, the only difference being that the a
joint Wilson line should be used to label the deconfini
phase. As we have mentioned before, the average valu
the fundamental Wilson line is zero because of the lo
symmetry. The minimum atu'p is a new feature of the
SO(3) theory which is not present in theSU(2) theory. We
11450
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will now compare the results of our mean field calculati
with the observations made in numerical simulations.
make this comparison, it is instructive to compare the dis
butions of the fundamental and adjoint Wilson lines~at a
single site because the variableu is the phase variable at
single site! observed in numerical simulations with the sha
of the effective action. The distribution ofLa in the low and
the high temperature states that are seen in simulation
shown in Fig. 4. At low temperatures, there is a bowl shap
minimum with a very broad peak atu'p. Thus the mean
field solution predicts a value forLa that is21 at low tem-
peratures. However, in simulations the expectation value
La is very small~almost close to zero! at low temperatures
The way to reconcile these two statements is to note
there are large fluctuations about the mean field solution
4-6



,

MEAN FIELD ANALYSIS OF THE SO~3! LATTICE . . . PHYSICAL REVIEW D 61 114504
FIG. 4. The distribution ofLa

in ~a! the low temperature state
~b! the La positive state, and~c!
the La negative state.
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low temperatures. This is apparent from the flat shape of
effective potential at low temperatures. The second der
tive of the effective potential at the minimum is quite sm
and this results in large fluctuations about the mean fi
solution. This is also seen from the distribution ofLa at a
single lattice site, which is shown in Fig. 4a. This distrib
tion has a very broad peak atLa'21 (u'p) but there are
large fluctuations about this peak. A rough estimate of
fluctuations about the mean field solution can be made
follows. The effective potential can be approximated by
taining just the first two terms in the character expansi
This approximation is sufficient to reproduce the form of t
effective potential in Fig. 3. The effective potential becom

V„u~r !…52(
r

log$12cos@u~r !#%2c(
rr 8

$112 cos@u~r !#%

3$112 cos@u~r 8!#%. ~37!

The constantc is b̃1 /b̃0. We make the following expansio
about the mean field solution:

V@u~r !#5V~ ū !1~1/2!(
rr 8

]2V

]u~r !u~r 8!
U

ū

h~r !h~r 8!1•••.

~38!

For theū5p state we note that

]2V

]2u~r !u~r 8!
U

ū

50 ~39!

and

]2V

]2u~r !
U

ū

5~1/2!112c. ~40!

This leaves only the following term in the expansion:

V„u~r !…5V~ ū !1~V1/2!(
r

h2~r ! ~41!

whereV1 is given in Eq.~40!. The partition function is given
by
11450
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Z5E dūdh~r !exp@2V~ ū !#expS 2~V1/2!(
r

h2~r ! D .

~42!

The corrected value ofLa in the presence of these fluctua
tions is given by

^La&5~1/Z!E dūdh~r !exp@2V~ ū !#expS 21

2
V1(

r
h2~r ! D

3$112 cos@ ū1h~r !#%. ~43!

Writing

2 cos@ ū1h~r !#5@expi „ū1h~r !…1c.c.# ~44!

and doing a Gaussian integration we get the first correc
to La as

^La&5112~21!I , ~45!

whereI is the following integral:

I 5

E
22p

2p

dhcos~h!expS 21

2
V1h2D

E
22p

2p

dhexpS 21

2
V1h2D . ~46!

V1 is the second derivative of the effective potential at t
minimumu'p. These fluctuations are large at low tempe
tures ~which is the disordered phase! and are small at high
temperatures~which is the ordered phase!. Also, the above
calculation is only for the leading order correction. The
will be higher order corrections which will shift the value o
La from the saddle point value even further. We have cal
lated this integral for some typical values in the low tempe
ture phase and their effect is to shift the value ofLa ~from
the mean field value21) by a large amount. At high tem
peratures, the corrections are smaller as the minima are m
sharply peaked. This rough estimate of the fluctuatio
shows that fluctuations about the mean field solution~for the
u'p minimum! increase the value ofLa from the mean
field value.

The distribution ofLa in theLa positive state is peaked a
a positive value ofLa . This can be compared with the tw
minima of the effective action atu'0 and u'2p. Both
these minima have the same value~close to13) of La . In
4-7
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FIG. 5. The effective potential for theSO(3) theory as a function ofNt with a fixedba . The value ofba is 3.5 andNt takes the values
1,2,3,4,5,7. In the figure these correspond to parts a,b,c,d,e,f respectively.
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the La negative state, the effective action has a sharp m
mum atu'p and this can be compared with the distributi
in Fig. 4c, which shows a sharp peak atLa521 (u'p). As
the minima are more sharply peaked at high temperatu
the corrections to the mean field value will be small. The
observations show that the minima of the effective act
along with the shape of the effective action near the mini
~which represents the effect of fluctuations about
minima! can reproduce the structure of the high and l
temperature states that are seen in numerical simulation
notable aspect of the effective action is that the minima
u'0,2p are exactly degenerate whereas the minimum au
'p is slightly shifted from the other two. This is not ver
surprising because there is no symmetry between theu'p
and theu'0,2p states which requires these states to be
the same depth. The minima atu'0,2p are the same a
11450
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those observed in theSU(2) theory and correspond to th
deconfining phase. The minimum atu'p is at the same
location as the minimum at low temperatures and is o
more sharply peaked.

We have also studied the effective action at a fixed va
of ba and variedNt . Varying Nt is equivalent to varying
temperature at a fixed coupling. The purpose of this exer
is to see how the effective action evolves with temperature
the largeba region. This evolution is shown for two value
of ba , 3.5 and 5.5. The evolution at these two couplings
shown in Fig. 5 and Fig. 6 respectively. At smallNt ~high
temperatures!, there are two global minima atu'0 andu
'2p, and a local minimum atu'p; at largeNt ~low tem-
peratures!, there is only one bowl shaped minimum atu
'p. This shows that as the temperature is raised at a fi
coupling, the global minimum of the effective action shif
4-8
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FIG. 6. The effective potential for theSO(3) theory as a function ofNt with a fixedba . The value ofba is 5.5 andNt takes the values
1,2,3,4,5,7. In the figure these correspond to parts a,b,c,d,e,f respectively.
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from u'p to u'0,2p. This again suggests that there is
finite temperature phase transition at a large coupling.
two evolutions also show that the transition to the decon
ing phase takes place atNt53 for ba53.5 and atNt54 for
ba55.5. Though the actual numbers predicted by the m
field calculation cannot be very accurate, the analysis d
serve to demonstrate a definite trend as one increasesba . As
ba increases, the transition temperature becomes lo
~largerNt), and at least the direction in whichba andNt are
moving is not inconsistent with general expectations. Bel
we list some values of the critical coupling as a function
the lattice size:

Nt ba
cr
11450
e
-

n
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f

2 3.2

3 4.4

5 6.3

7 8.2

9 10.1

We now wish to point out some features of the mean fi
theory which appear to be at variance with observations
numerical simulations. The evolution of the effective pote
tial ~see Fig. 3! as a function of temperature for a fixed valu
of Nt shows that the minimum atu'p continues to remain
4-9



d

.

SRINATH CHELUVARAJA PHYSICAL REVIEW D 61 114504
FIG. 7. The distribution ofLa

as a function ofNt at ba53.5.
The spatial lattice size was fixe
at Ns57 and the temporal lattice
size is indicated in the figure key
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a minimum, although a sharpened one, even for reason
large values ofba . Though local minima start developing a
u'0,2p, the global minimum still remains atu'p. It is
only at much larger temperatures that the minima au
'0,2p move below the minimum atu'p. In numerical
simulations, a strong metastability in the value ofLa is ob-
served at high temperatures. An ordered start always goe
the La positive state whereas a random start usually goe
the La negative state. Though the mean field theory sho
that the free energy of these two states are never equal,
states are observed in simulations depending on the in
start of the Monte Carlo run. Another point is that even
large values ofba , u'p remains a local minimum; this ma
explain its appearance in simulations~with a hot start!. A
cold start, which begins atu'0,2p, never settles to theLa
negative state. It is only the hot start which ever settles to
La negative state. This strong metastability in the values
the adjoint Wilson line persists even at very high tempe
tures. The other more striking feature predicted by the m
field theory, a phase transition from theu'p state to theu
'0,2p state, has not been directly observed in simulatio
though there are strong indications that such a phase tra
tion may be taking place@8#. An argument presented in@8#
showed that the deconfinement transition in theSO(3) LGT
would require very large temporal lattices. Our studies
tunneling in@8# indicated a transition~as a function of tem-
perature! from a double peak atu'p,0,2p to a single peak
at u'0,2p. We present here one such plot of a tunneli
study in Fig. 7. This figure shows the density ofLa as a
function of Nt on a Ns57 lattice atb53.5. As Nt is de-
creased, there is passage from theLa negative region to the
La positive region. This indicates the multiple peak structu
in the effective action and also the passage from a dou
peak structure to a single peak structure at high temperatu
This should be compared with the evolution of the effect
action shown in Fig. 5. The comparison is only meant
11450
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show a qualitative similarity in the two, and finer deta
~such as, the location of the passage from single pea
double peak! will certainly differ.

Next, we wish to mention a straightforward extension
the mean field theory to theSU(2) mixed action LGT. The
analysis proceeds as before and only the coefficients of
character expansion are different in this case. They hav
be computed numerically using Eq.~22!. For a fixedba and
Nt , the local minimum atu'p disappears altogether fo
large b f (b f'1), and the effective potential has the sam
form as in theSU(2) LGT. This would imply that numerica
simulations of the mixed actionSU(2) LGT should not ob-
serve theLa negative state for large values ofb f . This fea-
ture is also confirmed in numerical simulations.

Finally, we would like to discuss some theoretical issu
pertaining to the adjoint Wilson line which are quite differe
from the fundamental Wilson line. An appreciation of the
differences is important for understanding the role of t
adjoint Wilson line in the deconfinement transition. First, t
adjoint Wilson line is not an order parameter in the str
sense and is always non-zero. Nevertheless, it can still s
critical behavior across a phase transition. Another import
difference between the fundamental and the adjoint Wils
line is that the average value of the adjoint Wilson line m
always be non-negative. In theSU(2) LGT, the average
value of the fundamental Wilson line is always zero in
finite system because tunneling between the twoZ related
states always restores the symmetry. The adjoint Wilson l
on the other hand, is not constrained to be zero by any s
metry and is always non-zero, even on finite lattices. Al
the free energy interpretation in Eq.~10! presupposes that th
average value of the adjoint Wilson line is a non-negat
quantity. However, we are observing states of negativeLa in
simulations. Though this negative value of the adjoint W
son line is surprising, we note that in the largeba region,
4-10
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MEAN FIELD ANALYSIS OF THE SO~3! LATTICE . . . PHYSICAL REVIEW D 61 114504
which is the region where we expect to make contact w
Yang-Mills theory, the adjoint Wilson line is always pos
tive.

From the above analysis it is evident that the mean fi
theory has had some success. For the first time we are ab
explain the appearance of theLa negative state and this sta
could not have been anticipateda priori from any consider-
ations. The structure of the high and low temperature st
observed in simulations is also explained. The mean fi
theory also predicts a phase transition in the largeba region.
In @8#, various scenarios were suggested to reconcile the
servations made in numerical simulations of theSO(3) LGT
with theoretical expectations. One of the scenarios sugge
in @8# envisioned a phase transition from a bulk phase t
deconfining phase. The mean field theory has provided
ther evidence for this transition.

The author would like to acknowledge useful discussio
with Rajiv Gavai and Saumen Datta. He would also like
thank J. Polonyi for an enlightening conversation, and
suggesting to him to perform a mean field analysis of
SO(3) LGT.

Note added.In this paper we have not said much abo
the bulk,Z(2) driven, transition in theSO(3) LGT, but we
u

.
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have concentrated more on the behavior of the adjoint W
son line. In our analysis, the effect of the bulk transiti
manifests itself in the sharpening of the minimum atu'p
and the appearance of minima atu'0,2p in the effective
action atba'3. In numerical simulations, the states withLa

negative andLa positive are also observed immediately aft
the bulk transition.

Note 1. Regarding theLa negative state we would like to
point out that this negative value forLa also implicitly ap-
pears in the mean field analysis of@12# for the SU(2) LGT
at low temperatures~sinceL f is zero at low temperatures,La

is negative!. However, as we have shown earlier, the fluctu
tions about the mean field solution are important at low te
peratures and produce a very small expectation value foLa

even in theSU(2) gauge theory.
Note 2.As explained in the text, the neglect of the spat

plaquettes is not expected to change the finite tempera
properties of the theory. It may be noted that the terms c
tributing to the effective potential of theSU(2) theory as
calculated in@12# do not include the spatial plaquettes, a
yet these terms are sufficient to predict the finite tempera
properties of theSU(2) theory.
,
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