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Mean field analysis of theSQO(3) lattice gauge theory at finite temperature
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We study the finite temperature properties of 8@(3) lattice gauge theory using mean field theory. The
main result is the calculation of the effective action at finite temperature. The form of the effective action is
used to explain the behavior of the adjoint Wilson line in numerical simulations. Numerical simulations of the
SO(3) lattice gauge theory show that the adjoint Wilson line has a very small value at low temperatures; at
high temperatures, metastable states are observed in which the adjoint Wilson line takes positive or negative
values. The effective action is able to explain the origin of these metastable states. A comparison of the
effective actions of th&U(2) and theSO(3) lattice gauge theories explains their different behavior at high
temperatures. Mean field theory also predicts a finite temperature phase transitiorSiQ(8)elattice gauge
theory.

PACS numbds): 12.38.Gc, 05.70.Fh, 11.15.Ha

Confining gauge theories are expected to pass over intothe subscripf indicates that the trace is taken in the funda-
deconfining phase at high temperatures. The first explicimental representation &U(2). ThevariablesU(n wv) are
non-perturbative calculatiori] to show this was done in the the usual oriented plaquette variables:
strong coupling limit of lattice gauge theoridsGTs). Since
then, there have been many studies of the finite temperature U(n pv)=U(n xw)U(n+u UT(n+vu)UT(nv); 4
properties of LGTs. It is hoped that an understanding of their
properties will shed some light on the high temperaturethe U(n w)s are the link variables which are elements of the
phase of Yang-Mills theories. There have been numerougroupSU(2). A finite temperature systefat a temperature
studies of the finite temperature propertiessdfi(2) [2—4] B~1) is set up by imposing periodic boundary conditions
andSU(3) [5] LGTs. The basic observable that is studied in(with period 8) in the Euclidean time direction. This results
these systems is the Wilson-Polyakov liienceforth called in an additional globaZ(2) symmetry that acts on the tem-
the Wilson ling which is defined as poral link variables as follows:

U(nn,)—ZU(Nny). (5)
: 1)

Lf(x)=Trfex;{ifﬂA(x,x4)dx4
0 Z is an element of the center of the groBjJ(2) and takes
the values+1 or —1. Under the action of this symmetry
The subscripf indicates that the trace is taken in the funda-transformation, the Wilson line transforms as

mental representation of the group. The Wilson line has the

physical interpretation of measuring the free endrgyx) ] L(X)—ZL(x). (6)
of a static quark in a heat bath at a temperaj@iré. This is
made explicit by writing it in the form It is evident that the high temperature phdsewhich the
Wilson line has a non-zero average valbeeaks this global
(Li(x))=exd — BF(x)]; (20 symmetry. As a result of this symmetry breaking, the high

temperature phase of tf®U(2) LGT is doubly degenerate
a non-zero value of the Wilson line implies that a static2Nd the two states are related by gansformation. The two
quark has a finite free energy whereas a zero-value impligd€generate states have the same free energy because of this
that it has infinite free energy. The strong coupling analysi@lobal symmetry. Numerical simulations observe these states
in [1] shows that the Wilson line remains zero at low tem-2S metastable states in which the Wilson line takes two dif-

peratures and becomes non-zero at high temperafaies ferent values which are related byZatransformation. The

signalling a finite temperature confinement to deconfinemerf@!® Of the center symmetry was further emphasize@3in
here it was argued that the order of the transition to the

phase transition. This transition is also observed in numerical’ .
simulations. The action for th8U(2) LGT is usually taken |g_h temperature phase COU'Q be undgrstood In te””f!s of the
universality classes present in 3D spin models having this

to be the Wilson actiofi6] and is given by ;
symmetry. These expectations have been borne out for the
SU(2) [4] and theSU(3) [5] LGTs in which one observes a
S=(,3f/2)z tre U(n wo); (3) seconq order Ising like and a first ordg(3) like phase
n ey transition respectively.
Another choice of an action, which is expected to lead to
the same physics as the Wilson action, is the adjoint action
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S=(Ba/3) 2 traU(npv). 7
nuv

Here, the subscripa denotes that the trace is taken in the
adjoint representation &U(2). Thetrace in the adjoint rep-
resentation can be expressed in terms of the trace in th1g

fundamental representation as 05 L i
tr,U=trU%—1. (8) o} .

From its definition, the adjoint action describes &0(3) 05

LGT since the link variablesl (n ) and—U(n u) have the p L

same weight in the action. Unlike th8U(2) LGT, the 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

SO(3) LGT has a bulk(zero temperatupetransition atg3 NS/10

~2.5. This transition is understood in terms of the deconden-
sation ofZ(2) monopoled7]. An interesting and important
qguestion is whether th&0O(3) LGT has a deconfinement
transition like theSU(2) LGT. The universality of lattice

gauge theory actions would requisd)(2) andSO(3) LGTs It is the purpose of the present paper to find the effective
to have the same continuum limit. We will show that Ouraction,veff(g), for the Sq3) LGT at non-zero tempera_
mean field analysis does predict a deconfinement transitiofyres. The effective action is calculated in the mean field
in the SQ(3) LGT. In theSQ(3) LGT, the appropriate ob- approximation. The effect of the fluctuations about the mean
servable(though it is not an order parameter in the strictfield solution is also considered and they are shown to be
sensg to study deconfinement is the Wilson line in the ad-quite important at low temperatures. The effective action is
joint representatiof8]; this observable is defined as also calculated for th&U(2) LGT and the differences are
pointed out with thesQ(3) LGT. We then make some com-
. (99  ments on the mixed action LGT. Though a mean field analy-
sis of theSO(3) LGT is of interest in itself, the main moti-
] ) o vation for our present analysis is to qualitatively understand
The subscrip denotes the trace in the adjoint representasome of the observations made in numerical simulations of
tion. The Wilson line in the fundamental representation iStheSO(S) LGT. Numerical studies of th6O(3) LGT [8]
always zero in this model because of a loZasymmetry.  ghow that the adjoint Wilson linéAWL) remains close to
This will be explicitly shown later. The adjoint Wilson line ,¢rg at low temperatures and jumps to a non-zero value at
can also be interpreted as measuring the free energy of ggh temperatures. Both the low and the high temperature
static quark in the adjoint representation by writing it as  pehaviors of the adjoint Wilson line are quite puzzling. The
-~ small value of the AWL at low temperatures is surprising
(La(x))=exd —Fa(x)]. (10 because a static source in the adjoint representation can al-

The Z symmetry acts trivially on this observable. A further Ways combine with a gluon and form a state with a finite free

generalization of the Wilson action is the mixed action LGT €nergy. More surprising, however, is the observation of two
[9] that is defined as distinct metastable states for the AWL at high temperatures

[8]. We explain later why we call these states metastable
states. In numerical simulations, we find metastable states
S=(B:2) 2, tryU(n uv)+(Bal3) X traU(n uv). with the AWL taking a positive or negative value depending
nupv nuv P . .
on the initial configuration of the Monte Carlo run. A hot
(11 Co ) .
start(random initial configurationusually settles to a nega-

The finite temperature properties of this model have beefive value whereas a cold stddrdered initial configuration
studied in[10]. always settles to a positive value. This metastability is seen

The two Wilson lines can be expressed as a function ofVen at very high temperatures. Figure 1 is a typical run time
the gauge invariant variable as history of the AWL for hot and cold starts in the high tem-
perature phase. The values of other observables like the
Li(X)=2c0g80/2) Lyu(x)=1+2cog6); (120  plaquette square and tt¥2) monopole densitywhich is
almost equal to zejare almost the same in both these meta-

FIG. 1. The two metastable states fog. L, is plotted as a
function of (Monte Carlo sweepAlLO. The positive value is reached
after a cold start and the negative value is reached after a hot start.

B
La(x)=Traexp< i fo A(X,X4)dX,

0 is the phase of the eigenvalues of stable states. All this appears very reminiscent of the meta-
5 stable stateof the fundamental Wilson lineobserved in the
; high temperature phase of ttf®U(2) LGT in which two
P A . 1 .
exp( I f 0 (X:Xa) dx4) a3 degenerate states related by transformation are observed.

Nonetheless, as there is no obvious symmetry inSk¢3)
The variabled is gauge invariant and can be used to characLGT connecting the two observed metastable states, the
terize the various phases of the system. presence of two exactly degenerate minima in the free en-
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ergy would be quite remarkable. A measurement of the cor-
relation function of the adjoint Wilson line indicated that the S= gt x(U); (14)
correlation lengths were the same in thg positive andL,

negative state§l1]. The authors of11] use this result to he symmation is only over the temporal plaguetigs)) is
argue that the two states are physically equivalent. We wilh ¢|ass function defined on the plaquette variables. We shall

show the existence of these metastable states at high terge concerned with three possible forms that this function can
peratures using mean field theory. The mean field analysigike. They are

shows that there are minima in the effective action at posi-
tive and negative values &f, . The difference in free energy f
density between these minima depends on two parameters, x(U)=Ztr [U(P)]; (19
N, and B,; N, is the temporal extent of the lattider the
inverse temperatuyeand 3, is the coupling constant of the this is Wilson’s action for theSU(2) LGT. Then we will
SQO(3) LGT. For a range of values of the paramet&sand  consider
Ba, these minima are almost equal to each other. This may
explain why both states are observed in numerical simula- _ Ba )
tions. The mean field theory analysis can be done for the x(U)= ?tra[U(p)], (16)
SU(2) LGT as well, and the differences are pointed out with
the case of th&sQ(3) LGT. In particular, it is shown why this is the adjoint action and describes &@(3) LGT. Fi-
the state in which the AWL takes a negative value is absentally, we will consider the mixed action,
in the SU(2) theory. Finally, we extend the mean field
theory to theSU(2) mixed action LGT. We conclude with a
discussion of some theoretical issues connected with the ad-
joint Wilson line.

The usual approach of doing a mean field theory at nonThe character expansion of the exponential gives
zero temperature requires a strong coupling approximation as
in [12]. There are other variants of this mean field theory _ -
which are all basically based on the idea of ignoring the z J[DU]H 2 Aixi(U(P)). (18
effect of the spatial plaquett§$3]. Spatial plaguettes tend to
deconfine the system; a deconfinement transition in the abFhe characters are given by the formula
sence of spatial plaquettes will necessarily imply such a tran-
sition with them included. If one considers a reduced model sin (j+1/2) 9]
with the spatial plaquettes discarded, the spatial links can be xi(Q)= W (19
exactly integrated using a character expansion. This leads to
an effective theory of Wi_Ison Iings in thre(_e dimensions. Be‘HereQ denotes som8U(2) group element which is param-
fore we present th_e details o_f thls calculatlo_n, we V\_/oluld likeetrized in the usual way as
to say that there is no qualitative change in the finite tem-
perature properties of the system in this limit. The spatial
degrees of freedom can be considered to be inert across the
deconfinement transition, and the only role they play is to_  ~ , ,
possibly shift the transition temperature. Symmetry proper- N€ Bj can be calculated using the orthonormality property
ties are also not altered in anyway in this reduced model, an@f the characters
even the order of the phase transition, if there is any, should
be unaffected by this ;implificatio[nhis will be shown for J' [dU]x (U)x* (U)= 6. (22)
the SU(2) theoryl. In this limit of the SO(3) LGT, thel,
positive and_, negative states are again observed in numeri- o ]
cal simulations, just as in the full model, and they again®he character coefficients are given by
display the same features as in the full model. The approxi-
mation of discarding the spatial plaquettes does not introduce 5 * .
anything extraneous into the finite temperature properties. A f[dU]exr[S(U)]Xl (L 22
Even the bulk properties of the system should remain un-
changed in this approximation because ignoring the spatidh(U) can be the action for th8U(2), SO(3) or the mixed
plaquettes gives a zero weight to tA€2) monopoles which action LGT.
are known to drive the bulk transitidif] in the SO(3) LGT. The spatial links can be integrated using the orthogonality
In the SO(3) LGT, theZ(2) monopoles anyway do not cost relation
any energy because of the square term in the action. The L
main motivation for analyzing the reduced model is that an - K o
accurate mean field analysis can be made. f [DUIDm, 1(U)Bm, (U = 2j+1 91 kOny my Oy n,

The reduced model is defined as (23

X(U):%Xf(u)+%Xa(U)- 17

QO =cog 6/2)+ic-nsin(6/2). (20)
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This leads to the effective 3D spin model with the partitionIn the SU(2) theory, the transformation in Eq31) is a
function [with x;(€(r)) acting as the spin degree of free- Symmetry only if it is performed simultaneously at every

dom] site. Thus theSU(2) theory has only the following global
symmetry:
B\
Z=f (eIl 2 | 5757) 0@Mx@E). 6(r)— 6(r)+ 2, (33
r'r
24 the SO(3) theory has this symmetry as a local symmetry.
The effective action is Un_der thgse sy_mmetry transformations, the fundamental and
adjoint Wilson line transform as
~ Nr R R R .
Seff:_z Iog; 5 —|J—]_ Xj(Q(F))XJ(Q(F,)) Li(r)——Lg(r)La(r)—La(r). (39
r'r

(25 In the SQ(3) theory, this local symmetrgwe will call it a
- _ . _ local Z symmetry ensures that the expectation value of the
The partition function of this spin model can be written as fundamental Wilson line is always zero.
We now look for a translationally invariant solution that
Z:J' [dQ(F)]exp( = Seir). (26) ~ Minimizes the action in this model. This leads to the effec-
tive action

1 _
—Seff(0)=—Iog[l—cosw)]—Slog(Z P [x;(Q)]Z)-
ado(i) ) N ~ 2j+1
szfO ?{1—c05{0(r)]}. (27) (35

The factor of 3 is present because we are dealing with a three
So far, the analysis does not distinguish between the groupimensional spin model. The measure term has also been
SU(2) or SQ(3). Thedifference between them arises in the absorbed in the action. The partition function of the effective
coefficients in the character expansion. In 86(2) LGT, model is
all the character coefficients are in general non-zero and they
are given by the formula

The measure is th8U(2) Haar measure

A
Z= o [dé]exH —Serr(0)]. (36)

Bi=2(2] + L)l 3+ 1(Br) Bs - (28)
To get the effective action we have to deal with the infinite
In the SO(3) LGT, the ]3'] are non-zero only for integer summation ovej. Since the higher order terms in the char-
values ofj and the coefficients are given by the formula  acter expansion are much smaller, the summation can be
terminated at some large valuejofThis approximation does
731 =exp( Ba/3)[1(2B4/3) — 1+ 1(2Ba/3)]. (29 not alter the results in any way as we have checked. We plot
the effective action for the&sU(2) andSQ(3) LGTs as a
For the mixed action LGT, all the character coefficients arefunction of 6. In the plot, the range of is restricted to vary
non-zero but an expression similar to the oneSaf(2) and from 0 to 27 since the other half gives no additional infor-
SQ(3) is not available, and the character coefficients have tonation. 6 is the translationally invariant single site value of
be determined numerically. The properties of the charactethe phase of the Wilson line; it is a gauge invariant quantity.
coefficients lead to an important difference between the efThe shape of the effective action depends on the two param-
fective spin models for th&U(2) and theSQ(3) LGTs. eters,N, and B, or B;. Depending on their values, the ef-
Since theSQ(3) theory involves only the integer represen- fective action develops one or more minima. The effective
tations of SU(2), the following relation is true for all the action for theSU(2) theory for different values op; is
spins: shown in Fig. 2. At low temperature¥¢¢(#) has the shape
of a bowl with a very broad minimum a~ 7. As the tem-
x;(6( r+ 2)= x;(6( ). (30)  perature increases, two minima start developing very close to
the #~ 7 minimum and start receding away; at higher tem-
This means that the transformation peratures, these minima approatk 0 andf~2. The two
minima at high temperatures are the two states with a non-
6(r)— 6(r)+ 2 (31  zeroL; which differ by aZ symmetry @— 27+ 6) and they
are the two phases with spontaneously brokesymmetry.
is true at any single site. The above transformation is a locaBoth these states have the same valud of These two
symmetry of theSQ(3) LGT. In theSU(2) LGT, the fol-  minima in the effective action represent the deconfined phase
lowing relation is true for the half-integer representations: of the SU(2) LGT. The second order nature of the phase
R R transition is also manifest from the evolution of the effective
X;(0(r)+2m)=—x;(6(r)). (32 potential. This second order transition is seen in simulations
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FIG. 2. The effective potential for th8U(2) theory as a function gB; with N fixed to 3. The values oB; for which the potential is
shown are 1.5,2.5,3.5,4.5,5.5,6.5. In the figure these correspond to parts a,b,c,d,e,f respectively.

of the SU(2) LGT, and is also in accordance with the uni- from theSU(2) theory is that the minimum &t~ 7 always
versality arguments if3]. We have demonstrated this result remains a minimum. The broad minimum &ts7 gets

for theSU(2) LGT, even though it is a well known of@2],  sharper, and minima &~ 0,27 start developing. The mini-
simply because in our way of doing the mean field theory wemum at #~ 7 would correspond to a value &f, equal to
use the phase of the eigenvalues of the Wilson line and not 1 and the minima af~ 0,27 would correspond to a value
the trace of the Wilson line as is done[it2]. It also serves of +3. The minima atd~0,27 have the same depth while
to show that a truncation of the spatial plaquettes does nahe minimum até~ = has a slightly different depth. The
change the finite temperature properties of the system. Wdifference in the action between the two states depends on
now turn to theSQ(3) LGT theory which is our main inter- the values ofN,. and 8,. For the values of the parameters
est. As we have mentioned before, tB€X(3) theory has a shown in the plot, the difference in depth of the minima at
local Z symmetry and this is an important difference that we#~0,27 and the minimum at~ 7 is small compared to the
have to keep in mind. The effective action is shown in Fig. 3.absolute value of these minima. For much larger values of
At low temperatures, the effective action again develops th@,, the minima atf~0,27 sink below the minimum at
shape of a bowl with a very broad minimumet . As the =~ 7. Neverthelessg~ = still remains a minimum, although
temperature is increased, the effective action evolves quiti is only a local minimum. This evolution of the effective
differently from the SU(2) theory. The major difference action signals a phase transition at laggacross which the
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FIG. 3. The effective potential for th8O(3) theory as a function g8, with N fixed to 3. The values 0B, for which the potential is
shown are 1.5,2.5,3.0,3.5,4.5,5.5. In the figure these correspond to parts a,b,c,d,e,f respectively.

global minimum of the effective action shifts frofr=7 to  will now compare the results of our mean field calculation
0~0,27. Though there are two minima in the effective ac- with the observations made in numerical simulations. To
tion at the #~0,27, the local symmetry ensures that the make this comparison, it is instructive to compare the distri-
average value of the fudamental Wilson line is always zerobutions of the fundamental and adjoint Wilson lingg a
The value ofL, is the same a#~0 and~ 2. Hence, the single site because the varialdeis the phase variable at a
value ofL , in the minima at9~ 0,27 is the same as its value single sit¢ observed in numerical simulations with the shape
in the high temperature phase of t8&J(2) theory. We can of the effective action. The distribution &f, in the low and
then conclude that the global minima at high temperatures ithe high temperature states that are seen in simulations is
the SQ(3) theory correspond to a deconfining phase just ashown in Fig. 4. At low temperatures, there is a bowl shaped
in the SU(2) theory, the only difference being that the ad- minimum with a very broad peak &~ 7. Thus the mean
joint Wilson line should be used to label the deconfiningfield solution predicts a value fdr, that is—1 at low tem-
phase. As we have mentioned before, the average value ptratures. However, in simulations the expectation value of
the fundamental Wilson line is zero because of the local, is very small(almost close to zejaat low temperatures.
symmetry. The minimum at~ 7 is a new feature of the The way to reconcile these two statements is to note that
SQ(3) theory which is not present in tf&U(2) theory. We there are large fluctuations about the mean field solution at
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low temperatures. This is apparent from the flat shape of the _ _

effective potential at low temperatures. The second deriva- Z=f dodn(r)exd —V( 0)]exp{ — (Va2 X nz(f))-
tive of the effective potential at the minimum is quite small ' (42)
and this results in large fluctuations about the mean field
solution. This is also seen from the distribution |.0J at a The corrected value dta in the presence of these fluctua-
single lattice site, which is shown in Fig. 4a. This distribu- tions is given by

tion has a very broad peak B~ —1 (6~ ) but there are

large fluctuations about this peak. A rough estimate of the _ — -1 ,
fluctuations about the mean field solution can be made a@-a)z(l/z)f dedn(r)exr[—V(a)]exp(Tvlg n (r))
follows. The effective potential can be approximated by re-

taining just the first two terms in the character expansion. X {142 co$ 6+ 5(r)]}. (43)
This approximation is sufficient to reproduce the form of the

effective potential in Fig. 3. The effective potential becomeswriting

V(B(n)= 3 logfL~cog o(r)}} -~ {1+2 cof o(r) 1} 2cog 6+ n(n]=[exp(0+y(r))+ec] (44

and doing a Gaussian integration we get the first correction

x{1+2cogo(r')]}. (37) tol,as
The constant is B;/B,. We make the following expansion (Lay=1+2(=DI, (45)
about the mean field solution: wherel is the following integral:
o 2 2 -1 )
VIO ]=V(0) + (12 ——————| n()n(r')+---. fﬁz dycos 7)exp —-Vi7
w d6(r)er’) N |= i (46)
38 2 -1 ’
(38) f dﬂeX[{Tvlnz)
27

For the 6= state we note that
V, is the second derivative of the effective potential at the

2V minimum 6~ r. These fluctuations are large at low tempera-
- | = (39)  tures(which is the disordered phgsand are small at high
Fo(r)e’) | temperaturegwhich is the ordered phageAlso, the above
calculation is only for the leading order correction. There
and will be higher order corrections which will shift the value of

L, from the saddle point value even further. We have calcu-
lated this integral for some typical values in the low tempera-
=(1/2)+12c. (40) ture phase and their effect is to shift the valuelLgf(from
the mean field value-1) by a large amount. At high tem-
peratures, the corrections are smaller as the minima are more
sharply peaked. This rough estimate of the fluctuations
shows that fluctuations about the mean field solutfonthe
0~ minimum) increase the value of, from the mean
V(O(1)=V(6)+(V1/2) >, 7(r) (47)  field value.
r The distribution ofL, in the L, positive state is peaked at
a positive value ol ,. This can be compared with the two
whereV, is given in Eq.(40). The partition function is given minima of the effective action a#~0 and 6~2«. Both
by these minima have the same valigdose to+3) of L,. In

PV

(?ZH(I’) n

This leaves only the following term in the expansion:
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FIG. 5. The effective potential for th#O(3) theory as a function dfl . with a fixed 8,. The value of3, is 3.5 and\,, takes the values
1,2,3,4,5,7. In the figure these correspond to parts a,b,c,d,e,f respectively.

the L, negative state, the effective action has a sharp minithose observed in th8U(2) theory and correspond to the
mum até~ 7 and this can be compared with the distribution deconfining phase. The minimum &t=x is at the same

in Fig. 4c, which shows a sharp peaklat=—1 (#~). As location as the minimum at low temperatures and is only
the minima are more sharply peaked at high temperaturespore sharply peaked.

the corrections to the mean field value will be small. These We have also studied the effective action at a fixed value
observations show that the minima of the effective actiorof 8, and variedN,. Varying N, is equivalent to varying
along with the shape of the effective action near the minimdaemperature at a fixed coupling. The purpose of this exercise
(which represents the effect of fluctuations about thes to see how the effective action evolves with temperature in
minima) can reproduce the structure of the high and lowthe largeB, region. This evolution is shown for two values
temperature states that are seen in numerical simulations. & 8,, 3.5 and 5.5. The evolution at these two couplings is
notable aspect of the effective action is that the minima ashown in Fig. 5 and Fig. 6 respectively. At small (high
0~0,27 are exactly degenerate whereas the minimumd at temperatures there are two global minima at~0 and ¢

~ 1 is slightly shifted from the other two. This is not very ~2, and a local minimum a#~ 7; at largeN . (low tem-
surprising because there is no symmetry betweengther peratures there is only one bowl shaped minimum éat
and thed~0,27 states which requires these states to be of= . This shows that as the temperature is raised at a fixed
the same depth. The minima &&0,27 are the same as coupling, the global minimum of the effective action shifts
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FIG. 6. The effective potential for th#O(3) theory as a function dfl . with a fixed 8,. The value of3, is 5.5 and\,, takes the values

1,2,3,4,5,7. In the figure these correspond to parts a,b,c,d,e,f respectively.

from 6~ to 6~0,27. This again suggests that there is a
finite temperature phase transition at a large coupling. The
two evolutions also show that the transition to the deconfin-
ing phase takes place Ht.=3 for 8,=3.5 and alN =4 for
B.=5.5. Though the actual numbers predicted by the mean
field calculation cannot be very accurate, the analysis does
serve to demonstrate a definite trend as one incrgasess

Ba increases, the transition temperature becomes lower
(largerN,), and at least the direction in whigd, andN . are
moving is not inconsistent with general expectations. Below

2 32
3 44
5 6.3
7 82
9 101

y
J

we list some values of the critical coupling as a function of We now wish to point out some features of the mean field

the lattice size:

N cr

T a

theory which appear to be at variance with observations in
numerical simulations. The evolution of the effective poten-
tial (see Fig. 3as a function of temperature for a fixed value

of N, shows that the minimum at~ 7r continues to remain
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a minimum, although a sharpened one, even for reasonabshow a qualitative similarity in the two, and finer details
large values of3, . Though local minima start developing at (such as, the location of the passage from single peak to
0~0,27, the global minimum still remains a~. It is  double peakwill certainly differ.

only at much larger temperatures that the minimaéat Next, we wish to mention a straightforward extension of
~0,2m move below the minimum at~m. In numerical  the mean field theory to th8U(2) mixed action LGT. The
simulations, a strong metastability in the valuelgfis ob-  analysis proceeds as before and only the coefficients of the
served at high temperatures. An ordered start always goes iharacter expansion are different in this case. They have to
the L, positive state whereas a random start usually goes tge computed numerically using EQ2). For a fixeds, and

the L, negative state. Though the mean field theory showNT' the local minimum at9~ = disappears altogether for
that the free energy of these two states are never equal, bo ge B; (B;~1), and the effective potential has the same
states are observed in simulations depending on the initiq rm as in theSU(2) LGT. This would imply that numerical
start of the Monte Carlo run. Another point is that even alginulations of the mixed actioBU(2) LGT should not ob-
large values 0B, , 0~ remains a local minimum; this may serve thel, negative state for large values gf. This fea-
explain its appearance in simulationsith a hot stait A ture is aIS(;i confirmed in numerical simulation.s

cold start, which begins ai~0,27, never settles to the, Finall Id like 1o d h tical |
negative state. It is only the hot start which ever settles to the inafly, we would fike 1o diScuss some theoretical ISSUes

L, negative state. This strong metastability in the values 0]oertaining to the adjoint Wilson line which are quite different

the adjoint Wilson line persists even at very high tempera—from the fundamental Wilson line. An appreciation of these

tures. The other more striking feature predicted by the meafifférences is important for understanding the role of the
field theory, a phase transition from tife- 7 state to theg ~ @djoint Wilson line in the deconfinement transition. First, the
~0,27 state, has not been directly observed in simulationsdjoint Wilson line is not an order parameter in the strict
though there are strong indications that such a phase trangiense and is always non-zero. Nevertheless, it can still show
tion may be taking placg8]. An argument presented [i8] critical behavior across a phase transition. Another important
showed that the deconfinement transition in §@&(3) LGT difference between the fundamental and the adjoint Wilson
would require very large temporal lattices. Our studies ofline is that the average value of the adjoint Wilson line must
tunneling in[8] indicated a transitioifas a function of tem- always be non-negative. In th8U(2) LGT, the average
perature from a double peak af~ ,0,27 to a single peak value of the fundamental Wilson line is always zero in a
at 6~0,27r. We present here one such plot of a tunnelingfinite system because tunneling between the Eveelated
study in Fig. 7. This figure shows the density lof as a states always restores the symmetry. The adjoint Wilson line,
function of N, on aN,=7 lattice at3=3.5. AsN, is de- on the other hand, is not constrained to be zero by any sym-
creased, there is passage from thenegative region to the metry and is always non-zero, even on finite lattices. Also,
L, positive region. This indicates the multiple peak structurethe free energy interpretation in E4.0) presupposes that the

in the effective action and also the passage from a doublaverage value of the adjoint Wilson line is a non-negative
peak structure to a single peak structure at high temperatureguantity. However, we are observing states of negdtiye

This should be compared with the evolution of the effectivesimulations. Though this negative value of the adjoint Wil-
action shown in Fig. 5. The comparison is only meant toson line is surprising, we note that in the largg region,
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which is the region where we expect to make contact witthave concentrated more on the behavior of the adjoint Wil-
Yang-Mills theory, the adjoint Wilson line is always posi- son line. In our analysis, the effect of the bulk transition
tive. manifests itself in the sharpening of the minimuméat =
From the above analysis it is evident that the mean fielthnd the appearance of minima @#0,27 in the effective
theory has had some success. For the first time we are able g+tion atB,~3. In numerical simulations, the states witQ

explain the appearance of the negative state and this state pegative and., positive are also observed immediately after
could not have been anticipatedpriori from any consider-  ihe pulk transition.

ations. The structure of the high and low temperature states e 1 Regarding the_, negative state we would like to
. . . . . . a
observed in simulations is also explained. The mean f'el(f)oint out that this negative value far, also implicitly ap-
theory alsp predicts a phase transition in the Iaﬁfgee_glon. ears in the mean field analysis[df2] for the SU(2) LGT
In [8], various scenarios were suggested to reconcile the op . .
at low temperaturegsincel ; is zero at low temperaturek,

servations made in numerical simulations of 8©(3) LGT . negativé. However we have shown earlier. the fluctua-
with theoretical expectations. One of the scenarios suggestéﬁ €gative. FIOWEVEr, as We have shown earlier, the fluctua
Jions about the mean field solution are important at low tem-

in [8] envisioned a phase transition from a bulk phase to ,
deconfining phase. The mean field theory has provided fufPeratures and produce a very small expectation value for

ther evidence for this transition. even in theSU(2) gauge theory. _

The author would like to acknowledge useful discussions Note 2.As explained in the text, the neglect of the spatial
with Rajiv Gavai and Saumen Datta. He would also like toPlaquettes is not expected to change the finite temperature
thank J. Polonyi for an enlightening conversation, and forProperties of the theory. It may be noted that the terms con-
suggesting to him to perform a mean field analysis of thdributing to the effective potential of th8U(2) theory as
SQ(3) LGT. calculated in[12] do not include the spatial plaquettes, and

Note addedIn this paper we have not said much aboutyet these terms are sufficient to predict the finite temperature
the bulk,Z(2) driven, transition in th&eQ(3) LGT, but we  properties of thesU(2) theory.
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