PHYSICAL REVIEW D, VOLUME 61, 114503

Optimization of trial wave functions for Hamiltonian lattice models
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We propose a new Monte Carlo algorithm for the numerical study of general lattice models in Hamiltonian
form. The algorithm is based on an initial ansatz for the ground state wave function depending on a set of free
parameters which are dynamically optimized. The method is discussed in detail and the results are reported
from explicit simulations of a () N chain, a degenerate limit of (1)) lattice gauge theory in 21 dimen-
sions.

PACS numbdis): 12.38.Gc, 11.15.Ha

The lattice formulation of quantum field theory is a rigor- tive core of the algorithm is a GFMC algorithm with impor-
ous theoretical framework for the study of nonperturbativetance sampling and stochastic reconfigurafi@h
phenomena and its applications to phenomenologically rel- Let us consider a quantum mechanical point particle with
evant models, such as QCD, are expected to play a majddamiltonian
role in the near future. In most numerical studies, the lattice

version of a given model is built in the Lagrangian formula- _ 1,

tion [1]. However, for certain “static” problems, such as H=Ho+V(a), Ho=3p" @
hadron spectroscopy, the Hamiltonian approgthis more

suited because time is kept as continuous as possible and théiere g=(ds, ... dq) is the position in RY and p
spectrum is deformed in a minimal way. Actually, even the=(P1, - . . ,Pq) iS the associated momentum satisfying the

most accurate Lagrangian calculatidid§ evidence the ad- canonical commutation rule§q;,q;]=0=[p;,p;] and
vantages of using anisotropic lattices with smaller spacingédi ,p;1=i4;; . Let ¥(q,a)= expF(q,a) be a positive ap-
in the temporal direction, a typical feature of the Hamil- proximation of the ground state wave function depending on
tonian approach. some parametera=(aq, ...,ay). We perform a unitary
Another advantage of the Hamiltonian formulation is thetransformation o based onV' and build the new isospec-
possibility of easily exploiting any knowledge about the tral Hamiltonian
ground state wave functio¥fy in order to improve the per- 1
formance of numerical calculations. In particular, in this pa- &
per, we are concerned with the popular and all purpose H _\PTHO\IJ V(@ @
Green function Monte Carlo algoritht@FMC) [4] where an ~ 5
approximate version o¥, the trial wave functionV;, al-  The Feynman propagatdd =(q"|exp(—tH)|q’) associated
lows us to speed up the algorithm convergence by means @fith H can be written
importance sampling techniqugs).
In a realistic problemW¥'+ depends on several free param- D(q",9",a.¢)

etersa=(a,, . ..,ay\) that parametrize interaction terms re-

sponsible for correlations expected to show up in the ground 1 1

state. The development of methods for the optimization of = a2 o oorc

the free parametesis a key problem and an active field of (2me) 1+eVeF

r_esearcl"[6]. The_ simplest approach is to perform a varia- X exp{ — X[ 2&( 8, +s&i2jF)]’lxj—sV}+(9(82)
tional calculation of the mean energyEy(a)

=(W¥(a)|H|¥(a)) whereH is the Hamiltonian. The quan- ©)
tity Ey(a) is then minimized with respect ta. Since each .

evaluation ofE,/(a) requires a separate Monte Carlo calcu- Xi=0; —q; —&diF,

lation, this is an expensive procedure for which special tricks
have been devise@.g., correlated sampling]). A particu-  WNere
larly interesting approach is that of RéB] where the au- 1
thors propose an algorithm for the automatic dynamical op- V(g,a)=V(q)— —[VqF(q,a)] — —VZF(q a. (4
timization of the freevariational parameters. 2
In this paper, we abandon the variational approximation
and consider instead a full Monte Carlo calculation for whichBY standard arguments, we conclude titatmay be ex-
we propose a new strategy to optimiae We describe an Pressed in terms of a weighted average
adaptive algorithm which converges online to an optimal set
of parametgra* which minimizes t_he sta_tistical error of the 5(q”,q',a,t)=f Dy(t)e” JedrVIa(7), 4 (5)
full (not variationa) Monte Carlo simulation. The nonadap- q(0)=q",q(t)=q"

0556-2821/2000/61.1)/1145034)/$15.00 61 114503-1 ©2000 The American Physical Society



MATTEO BECCARIA PHYSICAL REVIEW D 61 114503

where D is the formal limiting measuréwhen ¢ —0) de- In the more general case of nonoptimiat# ¥, a simu-
fined on the stochastic paths generated according to tHation performed with a sufficiently smadl and a population
Langevin equation of K walkers will provide afteiS Monte Carlo steps only an

1 approximate estimatoEo(S,K,a) of Egp, that is a random
Gns ;= Cni+ £ F (G, a) + Je 21+ —8(%2,-':(% ,a)Zn,j), variable with the asymptotic properties

2
6
© (EO(S,K,a)>=EO+C1(a)

—+0(K™%), >0, (12

whereq,; denotes theth component ofy, andz, are un-
correlated Gaussian random pointsRf with unit variance.

The GFMC algorithm is expressed in a concise and formal R c,(K,a)
way by Eq.(5), but the actual calculation of the weighted Vargy(S,K,a)= ;
averages must keep under control the variance of the path- \/—

dependent weights efp fLd~[q(7),a]} which explodes as

t— +o0. An efficient technique to solve this problem is sto- £ ext lated aK — o i t and ind dent
chastic reconfiguratiorj9] which implements a kill and age ol extrapoiate — o IS exact and Independent on

branch selection on the paths with the desirable feature oghe trial parametera whereas;(K.,a) is in general strongly

dealing always with a fixed size population of walkers. To ependent on them and_ls expected to vanish wierpo.
this aim, a finite collection oK walkers, an ensemble, is _ T the family ¥+(q,a) includes the exact ground state at
the special pointa=a*, then we know thatc,(a*)

where averages are over Monte Carlo realizations. The aver-

introduced . . o ;
=c,(K,a*)=0; in a less optimal situation, motivated by Eq.
E={[adM(t), 0™ (t) ]} 1<n=k » (7)  [10], we seek a minimum of,.
To establish an adaptive algorithm, we &t-{a,} be a
where the weightso™ are defined by dynamical parameter of the simulation and propose to update

it together with the ensemble according to the equations

t
(”)t=ex—fdv(“) .al. 8
o= exp= | drVigT(7).al ®) Ons 1= 0n,i + £AF (0, a0)

The variance of the weights over the ensembis 1
g +\/; Zn,i+§8’9i2j|:(qn-an)zn,j )
K

K 1 2
kzl [w(k)(t)]2_<R Z w(k)(t)) ,
€)

x|~

W(t)=Varo(t)= 8+ 1= 83— 7V aFn(80), (13)

and the average of a functidifq) over € is Fn(8n) =VareV(dn, ),

1 K where 7 is a constant parameter aag is the value ofa at
(fle=— 2 f(q" ) w®, (10) th_e nt_h update. In pther wprds, we impl_e_ment a Ioca_l mini-
K =1 mization of the weight variance as a driving mechanism for

. . the free parameters.
WhenW(t) becomes too large is transformed into @ new e coupled set of equatiori$3) for the evolution ofa
ensemblet” with zero variance/V and the same averages, at 4nq the random walkers is nonlinear and discrete. The opti-

least in theK —cc limit. Simulations can be extended t0 ar- iz ation ofa and the GFMC are thus linked together. This
bitrarily large times with the drawback of a systematic erroryqcedure can be successfully checked in trivial quantum
vanishing withK and an extrapolation t&—c is required.  mechanical examples. Here we discuss a nontrivial applica-
More details on this procedure can be found in Ref. tion to test convergence and stability. We study the model
Statistical errors in suchNa Monte Carlo simulation ar€introduced in Ref[11], the U(1)N chain, a degenerate limit
related to the fluctuations of[q(7),a]. To see this, let us of U(1) gauge theory in 21 dimensions. Following the
consider for instance the calculation of the ground state emotation of Ref[11] (see also Ref.12] for other applications

ergy Eo. A simple algorithm estimates the limiE, of GFMC to lattice gauge theoyythe Hamiltonian of the
=lim,_ . .E(t,q',a) where, for arbitranyg’ anda, we define  model is

3 2

E(t,q’,a)=—ilogfw D(q".q',at)dg"=(V[q(t),al), s 10
dt 9], H—pzl 2~ 55 57| T A1 cosdy)

. a9
ap o 2,

[(-) is the average over the weighted Langevin trajectoriesvhereg is the coupling constant, is the spatial lattice size,
as in Eq.(5)]. If ¥ is an exact eigenstate &f with eigen- 6, p are link phases around theth plaquette andp,= 6, ,

value E, then we obtairV=E and the above formula gives +6,,.1— 635~ 0, is the plaquette gauge invariant angle.
E(t)=E with zero variance, namely, no statistical error.  An accurate variational estimate of the ground state energy
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FIG. 1. Monte Carlo time history of the free paramet&fer the

X FIG. 2. Monte Carlo time history of the energy measurements
run with 8=0.5 andK=30.

during the first steps of the run witg=0.5 andK = 30.

per plaquetteEy /L is obtained with the gauge invariant an- large extension in the temporal direction. The couplhis
satzVo(dq, ...,P)= exp()\E,;lcos(ﬁp) leading to varied through the values 0.5, 1.0, 1.5, 2.0, and 2.5. We
execute stochastic reconfiguration of the ensemble gg&h
ES(B) _ temporal steps with(8) ranging between a maximum 40 at
— AT Em;n B=0.5 and a minimum 20 g8= 2.5. The learning parameter
is »=0.0005 and all the free parameters are zero at the first
wherel , is thenth modified Bessel function. iteration. The number of Monte Carlo iterations is around 5

We choose a rather general gauge invariant trial wave< 10t d_Epending slightly org. ' '
function W= expF with interplaquette correlations of the !N Fig- 1 we show the Monte Carlo time history of the

11(2\)
lo(2N)

(N=8?) , (19

following form: free parametera for the run with3=0.5 andK =30. After
about 300 iterations, the parameters reach an optimum value
2 around which they oscillate with small fluctuations. If these
F=, [al COS¢,+a, CoS 2p,+ > [agxCOL p+ dpik) fluctuations were too noisy, they could be removed by sto-
p=1 k=1 chastic gradient approximation techniques, namely, by let-

ting » be a time-dependent positive sequefigg},~o van-
+ 8y COS b — ¢p+k)]J' (16)  ishing withn—cc under the constraints , 7= andEnnz .
< [8]. The corresponding energy time history is shown in
Fig. 2 where the fluctuations of the local measurements are
which depends on six free parameters, a,, a1, 832, shown to decrease very rapidly.
a1, 84,2. The particular casas ,=a, =0 with only on-site The optimal values of the six parameters as functions of
and nearest-neighbor terms is discussed in Riff where gt the largesk used are shown in Table I. The leading per-
the O(B*) perturbative optimal values are givem:™  tyrpative expansion ai can be checked to be correct only at
= 212, af*"= — %132, al%'= B*/24, andal'= — B*/40; the  the smallesi and overestimates* at larger3. The next-
ground state energy is measured by using @jlwhich is  to-nearest-neighbor terms are rather small beingat2.5
optimized by trials and errors. In this paper, we shall discusgoughly 1% of the nearest-neighbor ones. The qualitative
the nonperturbative behavior of the full six parameters at thicture discussed in Ref11] is confirmed with dominating
equilibrium point reached automatically by the algorithm. plaquette anticorrelation in the ground state and next-to-
We perform simulations with ensembles kif=10, 30, nearest neighbor effects below the percent level. Here, we
and 50 walkers on a system with spatial lattice $ize8 and  stress again, the determination of the optimal set of param-
time step e=0.015. In the Lagrangian formulation this etersa* is completely automatic.
would correspond to a simulation on a lattice with a very  About the ground state energy, we show in Table Il the

TABLE I. Optimal value of the six free parameteag,a,,a3 1,83 2,841,842 and corresponding minimum standard deviatignof the
ground state energy estimator. We show the numerical results obtained with 50 walkers.

B a a; LR az > g1 A4,.2 og
0.5 0.124527@) —0.0019590(2) 0.0024544) —0.0000374(3) —0.0015535(3) —0.0000609(3) 0.0002
1.0 0.46287) —0.022487(6) 0.02597) 0.000741) —0.015262(8) —0.00108(1) 0.003
15 0.83272) —0.05406(3) 0.06255) 0.003194) —0.02999(4) —0.00414(4) 0.009
2.0 1.15416) —0.07794(5) 0.0991) 0.006187) —0.03921(7) —0.00866(6) 0.008
2.5 1.44475) —0.09663(7) 0.137@) 0.01065%9) —0.0459(1) —0.0128(1) 0.008
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TABLE Il. Comparison among the different estimatéise proposed method, standard Monte Carlo and
variationa) of the ground state energy.

18 E?/Id(g’?éiielo E?/Idé’?gieBO E?/Idg,’?éiieso EMC, Barneset al. Evariational
0.5 0.46893(®) 0.4689321) 0.46893278) 0.4691) 0.4690
1.0 0.7703®) 0.770202) 0.770242) 0.76972) 0.7746
15 0.8822) 0.882095) 0.881884) 0.88238) 0.9005
2.0 0.9171®) 0.916945) 0.9170%4) 0.9141) 0.9435
2.5 0.93248) 0.932425) 0.9323@3) 0.9292) 0.9594
estimates computed with three valueskofo show the very To conclude, let us remark that the above method is rather

small systematic residual error associated with the finite sizgeneral and is applicable to dynamically optimize the free
walker population. We also show the Monte Carlo resultsparameters of a many body trial wave function for any model
from Ref.[11] with which we agree within errors as well as that can be studied by GFMC with stochastic reconfigura-

the variational bound. It is remarkable that a good estimatgion. This includes for instance pure gauge(3and SU3)
of the ground state energy is obtained with the very smallattice gauge theory in any dimension.

number of walker&K =10. This can be intepreted as a signal

that for this admittedly simple model the proposed six pa-

rameters wave function is rather accurate.
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