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Optimization of trial wave functions for Hamiltonian lattice models

Matteo Beccaria
Dipartimento di Fisica, Universita` di Lecce, Via Arnesano, 73100 Lecce, Italy

and Istituto Nazionale di Fisica Nucleare, Lecce, Italy
~Received 21 December 1999; published 1 May 2000!

We propose a new Monte Carlo algorithm for the numerical study of general lattice models in Hamiltonian
form. The algorithm is based on an initial ansatz for the ground state wave function depending on a set of free
parameters which are dynamically optimized. The method is discussed in detail and the results are reported
from explicit simulations of a U~1! N chain, a degenerate limit of U~1! lattice gauge theory in 211 dimen-
sions.

PACS number~s!: 12.38.Gc, 11.15.Ha
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The lattice formulation of quantum field theory is a rigo
ous theoretical framework for the study of nonperturbat
phenomena and its applications to phenomenologically
evant models, such as QCD, are expected to play a m
role in the near future. In most numerical studies, the lat
version of a given model is built in the Lagrangian formu
tion @1#. However, for certain ‘‘static’’ problems, such a
hadron spectroscopy, the Hamiltonian approach@2# is more
suited because time is kept as continuous as possible an
spectrum is deformed in a minimal way. Actually, even t
most accurate Lagrangian calculations@3# evidence the ad-
vantages of using anisotropic lattices with smaller spaci
in the temporal direction, a typical feature of the Ham
tonian approach.

Another advantage of the Hamiltonian formulation is t
possibility of easily exploiting any knowledge about th
ground state wave functionC0 in order to improve the per
formance of numerical calculations. In particular, in this p
per, we are concerned with the popular and all purp
Green function Monte Carlo algorithm~GFMC! @4# where an
approximate version ofC0, the trial wave functionCT , al-
lows us to speed up the algorithm convergence by mean
importance sampling techniques@5#.

In a realistic problem,CT depends on several free param
etersa5(a1 , . . . ,aN) that parametrize interaction terms r
sponsible for correlations expected to show up in the gro
state. The development of methods for the optimization
the free parametersa is a key problem and an active field o
research@6#. The simplest approach is to perform a var
tional calculation of the mean energyEV(a)
5^CT(a)uHuCT(a)& whereH is the Hamiltonian. The quan
tity EV(a) is then minimized with respect toa. Since each
evaluation ofEV(a) requires a separate Monte Carlo calc
lation, this is an expensive procedure for which special tri
have been devised~e.g., correlated sampling@7#!. A particu-
larly interesting approach is that of Ref.@8# where the au-
thors propose an algorithm for the automatic dynamical
timization of the freevariational parametersa.

In this paper, we abandon the variational approximat
and consider instead a full Monte Carlo calculation for wh
we propose a new strategy to optimizea. We describe an
adaptive algorithm which converges online to an optimal
of parametersa* which minimizes the statistical error of th
full ~not variational! Monte Carlo simulation. The nonadap
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tive core of the algorithm is a GFMC algorithm with impo
tance sampling and stochastic reconfiguration@9#.

Let us consider a quantum mechanical point particle w
Hamiltonian

H5H01V~q!, H05
1

2
p2, ~1!

where q5(q1 , . . . ,qd) is the position in Rd and p
5(p1 , . . . ,pd) is the associated momentum satisfying t
canonical commutation rules@qi ,qj #505@pi ,pj # and
@qi ,pj #5 id i j . Let CT(q,a)5 expF(q,a) be a positive ap-
proximation of the ground state wave function depending
some parametersa5(a1 , . . . ,aN). We perform a unitary
transformation onH based onCT and build the new isospec
tral Hamiltonian

H̃5CTH0

1

CT
1V~q!. ~2!

The Feynman propagatorD̃5^q9uexp(2tH̃)uq8& associated
with H̃ can be written

D̃~q9,q8,a,«!

5
1

~2p«!d/2

1

A11«¹2F

3exp$2xi@2«~d i j 1«] i j
2 F !#21xj2«Ṽ%1O~«2!,

~3!

xi5qi92qi82«] iF,

where

Ṽ~q,a!5V~q!2
1

2
@¹qF~q,a!#22

1

2
¹q

2F~q,a!. ~4!

By standard arguments, we conclude thatD̃ may be ex-
pressed in terms of a weighted average

D̃~q9,q8,a,t !5E
q(0)5q8,q(t)5q9

D̃q~ t !e2*0
t dtṼ[q(t),a] , ~5!
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where D̃ is the formal limiting measure~when «→0) de-
fined on the stochastic paths generated according to
Langevin equation

qn11,i5qn,i1«] iF~qn ,a!1A«S zn,i1
1

2
«] i j

2 F~qn ,a!zn, j D ,

~6!

whereqn,i denotes thei th component ofqn and zn are un-
correlated Gaussian random points inRd with unit variance.
The GFMC algorithm is expressed in a concise and form
way by Eq. ~5!, but the actual calculation of the weighte
averages must keep under control the variance of the p
dependent weights exp$2*0

t dtṼ@q(t),a#% which explodes as
t→1`. An efficient technique to solve this problem is st
chastic reconfiguration@9# which implements a kill and
branch selection on the paths with the desirable feature
dealing always with a fixed size population of walkers.
this aim, a finite collection ofK walkers, an ensemble, i
introduced

E5$@q(n)~ t !,v (n)~ t !#%1<n<K , ~7!

where the weightsv (n) are defined by

v (n)~ t !5 exp2E
0

t

dtṼ@q(n)~t!,a#. ~8!

The variance of the weights over the ensembleE is

W~ t !5Varv~ t !5
1

K (
k51

K

@v (k)~ t !#22S 1

K (
k51

K

v (k)~ t !D 2

,

~9!

and the average of a functionf (q) over E is

^ f &E5
1

K (
k51

K

f ~q(k)!v (k). ~10!

WhenW(t) becomes too large,E is transformed into a new
ensembleE8 with zero varianceW and the same averages,
least in theK→` limit. Simulations can be extended to a
bitrarily large times with the drawback of a systematic er
vanishing withK and an extrapolation toK→` is required.
More details on this procedure can be found in Ref.@9#.

Statistical errors in such a Monte Carlo simulation a
related to the fluctuations ofṼ@q(t),a#. To see this, let us
consider for instance the calculation of the ground state
ergy E0. A simple algorithm estimates the limitE0
5 limt→1`E(t,q8,a) where, for arbitraryq8 anda, we define

E~ t,q8,a!52
d

dt
logE

2`

`

D̃~q9,q8,a,t !dq95^Ṽ@q~ t !,a#&,

~11!

@^•& is the average over the weighted Langevin trajecto
as in Eq.~5!#. If CT is an exact eigenstate ofH with eigen-

valueE, then we obtainṼ[E and the above formula give
E(t)5E with zero variance, namely, no statistical error.
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In the more general case of nonoptimalCTÞC0 a simu-
lation performed with a sufficiently small« and a population
of K walkers will provide afterS Monte Carlo steps only an
approximate estimatorÊ0(S,K,a) of E0, that is a random
variable with the asymptotic properties

^Ê0~S,K,a!&5E01
c1~a!

Ka
1o~K2a!, a.0, ~12!

VarÊ0~S,K,a!5
c2~K,a!

AS
,

where averages are over Monte Carlo realizations. The a
age ofÊ0 extrapolated atK→` is exact and independent o
the trial parametersa whereasc2(K,a) is in general strongly
dependent on them and is expected to vanish whenK→`.

If the family CT(q,a) includes the exact ground state
the special point a5a* , then we know that c1(a* )
5c2(K,a* )50; in a less optimal situation, motivated by E
@10#, we seek a minimum ofc2.

To establish an adaptive algorithm, we leta→$an% be a
dynamical parameter of the simulation and propose to upd
it together with the ensemble according to the equations

qn11,i5qn,i1«] iF~qn ,an!

1A«S zn,i1
1

2
«] i j

2 F~qn ,an!zn, j D ,

an115an2h¹aFn~an!, ~13!

Fn~an!5VarEṼ~qn ,an!,

whereh is a constant parameter andan is the value ofa at
the nth update. In other words, we implement a local min
mization of the weight variance as a driving mechanism
the free parameters.

The coupled set of equations~13! for the evolution ofa
and the random walkers is nonlinear and discrete. The o
mization ofa and the GFMC are thus linked together. Th
procedure can be successfully checked in trivial quant
mechanical examples. Here we discuss a nontrivial appl
tion to test convergence and stability. We study the mo
introduced in Ref.@11#, the U(1)N chain, a degenerate limi
of U~1! gauge theory in 211 dimensions. Following the
notation of Ref.@11# ~see also Ref.@12# for other applications
of GFMC to lattice gauge theory!, the Hamiltonian of the
model is

H5 (
p51

L F S (
l p51

3

2
1

2b

]2

]u l p

2 D 1b~12 cosfp!G , ~14!

whereb is the coupling constant,L is the spatial lattice size
u l i ,p are link phases around thepth plaquette andfp5u1,p

1u2,p112u3,p2u2,p is the plaquette gauge invariant angl
An accurate variational estimate of the ground state ene
3-2
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per plaquetteE0 /L is obtained with the gauge invariant a
satzC0(f1 , . . . ,fL)5 exp(l(p51

L cosfp) leading to

E0
(var)~b!

L
5b1

1

b
min

l
F ~l2b2!

I 1~2l!

I 0~2l!G , ~15!

whereI n is thenth modified Bessel function.
We choose a rather general gauge invariant trial w

function CT5 expF with interplaquette correlations of th
following form:

F5 (
p51

L H a1 cosfp1a2 cos 2fp1 (
k51

2

@a3,k cos~fp1fp1k!

1a4,k cos~fp2fp1k!#J , ~16!

which depends on six free parametersa1 , a2 , a3,1, a3,2,
a4,1, a4,2. The particular casea3,25a4,250 with only on-site
and nearest-neighbor terms is discussed in Ref.@11# where
the O(b4) perturbative optimal values are given:a1

pert

5b2/2, a2
pert52b4/32, a3,1

pert5b4/24, anda4,1
pert52b4/40; the

ground state energy is measured by using onlya1 which is
optimized by trials and errors. In this paper, we shall disc
the nonperturbative behavior of the full six parameters at
equilibrium point reached automatically by the algorithm.

We perform simulations with ensembles ofK510, 30,
and 50 walkers on a system with spatial lattice sizeL58 and
time step «50.015. In the Lagrangian formulation th
would correspond to a simulation on a lattice with a ve

FIG. 1. Monte Carlo time history of the free parametersa for the
run with b50.5 andK530.
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large extension in the temporal direction. The couplingb is
varied through the values 0.5, 1.0, 1.5, 2.0, and 2.5.
execute stochastic reconfiguration of the ensemble eachr (b)
temporal steps withr (b) ranging between a maximum 40 a
b50.5 and a minimum 20 atb52.5. The learning paramete
is h50.0005 and all the free parameters are zero at the
iteration. The number of Monte Carlo iterations is around
3104 depending slightly onb.

In Fig. 1 we show the Monte Carlo time history of th
free parametersa for the run withb50.5 andK530. After
about 300 iterations, the parameters reach an optimum v
around which they oscillate with small fluctuations. If the
fluctuations were too noisy, they could be removed by s
chastic gradient approximation techniques, namely, by
ting h be a time-dependent positive sequence$hn%n>0 van-
ishing with n→` under the constraints(nh5` and (nh2

,` @8#. The corresponding energy time history is shown
Fig. 2 where the fluctuations of the local measurements
shown to decrease very rapidly.

The optimal values of the six parameters as functions ob
at the largestK used are shown in Table I. The leading pe
turbative expansion ofa can be checked to be correct only
the smallestb and overestimatesa* at largerb. The next-
to-nearest-neighbor terms are rather small being atb52.5
roughly 1% of the nearest-neighbor ones. The qualitat
picture discussed in Ref.@11# is confirmed with dominating
plaquette anticorrelation in the ground state and next
nearest neighbor effects below the percent level. Here,
stress again, the determination of the optimal set of par
etersa* is completely automatic.

About the ground state energy, we show in Table II t

FIG. 2. Monte Carlo time history of the energy measureme
during the first steps of the run withb50.5 andK530.
TABLE I. Optimal value of the six free parametersa1 ,a2 ,a3,1,a3,2,a4,1,a4,2 and corresponding minimum standard deviationsE of the
ground state energy estimator. We show the numerical results obtained with 50 walkers.

b a1 a2 a3,1 a3,2 a4,1 a4,2 sE

0.5 0.1245271~7! 20.0019590(2) 0.0024544~4! 20.0000374(3) 20.0015535(3) 20.0000609(3) 0.0002
1.0 0.46287~4! 20.022487(6) 0.02597~1! 0.00074~1! 20.015262(8) 20.00108(1) 0.003
1.5 0.8327~2! 20.05406(3) 0.06255~5! 0.00319~4! 20.02999(4) 20.00414(4) 0.009
2.0 1.1541~6! 20.07794(5) 0.0997~1! 0.00618~7! 20.03921(7) 20.00866(6) 0.008
2.5 1.4447~5! 20.09663(7) 0.1370~1! 0.01065~9! 20.0459(1) 20.0128(1) 0.008
3-3
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TABLE II. Comparison among the different estimates~the proposed method, standard Monte Carlo a
variational! of the ground state energy.

b EMC,K510
adaptive EMC,K530

adaptive EMC,K550
adaptive EMC, Barnes et al. Evariational

0.5 0.468930~2! 0.468932~1! 0.4689327~8! 0.4690~1! 0.4690
1.0 0.77032~3! 0.77020~2! 0.77024~2! 0.7697~2! 0.7746
1.5 0.88226~8! 0.88209~5! 0.88188~4! 0.8823~8! 0.9005
2.0 0.91718~9! 0.91694~5! 0.91705~4! 0.916~1! 0.9435
2.5 0.93245~8! 0.93242~5! 0.93230~3! 0.929~2! 0.9594
siz
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estimates computed with three values ofK to show the very
small systematic residual error associated with the finite
walker population. We also show the Monte Carlo resu
from Ref. @11# with which we agree within errors as well a
the variational bound. It is remarkable that a good estim
of the ground state energy is obtained with the very sm
number of walkersK510. This can be intepreted as a sign
that for this admittedly simple model the proposed six p
rameters wave function is rather accurate.
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To conclude, let us remark that the above method is ra
general and is applicable to dynamically optimize the fr
parameters of a many body trial wave function for any mo
that can be studied by GFMC with stochastic reconfigu
tion. This includes for instance pure gauge SU~2! and SU~3!
lattice gauge theory in any dimension.
v.
.
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