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Effective field theory approach to pionium

D. Eiras* and J. Soto†
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~Received 11 June 1999; published 11 May 2000!

The various dynamical scales below the pion mass involved inp1p2 atoms are sequentially integrated out
using nonrelativistic effective field theory techniques. This allows us to systematically organize the corrections
to the energy levels and decay width. We present our results in terms of a single unknown constant which may
be obtained by matching to the chiral Lagrangian with electromagnetic interactions at two loops.

PACS number~s!: 12.39.Fe, 11.10.St, 13.75.Lb, 36.10.Gv
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I. INTRODUCTION

Hadronic atoms have attracted much interest for a lo
time @1#. Typically there is an interesting interplay betwe
strong and electromagnetic interactions. Whereas the la
are responsible for the bound state formation, the form
produce their decay. Although the treatment of electrom
netic interactions is based on solid theoretical grounds, th
not so for the strong interactions. Traditionally, the latter
modeled by various types of short range potentials@2#. Al-
though this is usually enough to fit the available data
would be desirable to have a more direct connection w
what is believed to be the fundamental theory of strong
teractions, namely QCD. This is becoming even more urg
since the current DIRAC experiment at CERN@3#, which
plans to measure the pionium decay width at 10% accur
@4#, is meant to extract the pure hadronic pion-pion scatter
lengths, which may, in principle, be obtained from QCD.

It has become apparent during the past decade tha
most fruitful way to approach low energy strong interacti
physics from QCD is not by direct calculations from th
theory but going through intermediate effective field theor
~EFT!, which are equivalent to QCD in a particular range
energies. For instance the chiral Lagrangian (xL) @5# is an
EFT for pions, which is equivalent to QCD for energies b
low the rho mass. The EFTs typically depend on vario
unknown constants, which in principle may be obtained fr
the fundamental theory. In practice, this may sometimes
achieved, such as for instance in the case of nonrelativ
QED ~NRQED! @6# where the constants can be determin
order by order ina, but many times is beyond our curre
technical abilities, like in the case of the chiral Lagrangia
which would require large lattice simulations with light d
namical quarks or yet-to-be-discovered alternative nonp
turbative techniques with a good control on the mechan
of chiral symmetry breaking. In any case, if the number
constants is small enough, they can be phenomenologic
obtained from available data and used later on to predict
results, as it is the case of thexL.

Pionium is ap1p2 electromagnetic bound state of bin
ing energy;2 keV which decays strongly, basically to tw
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p0, with a widthG;0.6 eV@7#. Clearly a QCD based analy
sis of this system should better start with thexL. However,
the xL is a relativistic~manifestly Lorentz invariant! theory
where electromagnetic bound state problems are difficul
handle~see@8,9# for direct approaches!. Moreover, both the
binding energy and the decay width are much smaller t
the pion mass;140 MeV, which suggests that a nonrelati
istic approach should be appropriated.

It is the aim of this work to present a nonrelativistic a
proach to pionium based on a series of EFTs which are
tained from thexL coupled to electromagnetism after s
quentially integrating out the various physical scales of
system until we reach the scale of the binding ene
;ma2/4. The first scale to be integrated out is the pion m
m. This produces a local nonrelativistic EFT for pion pa
near threshold coupled to electromagnetism, much in
same way as NRQED is obtained from QED@6,10,11#. The
next relevant scale in the problem is the mass differe
between charged and neutral pionsDm;5 MeV. Integrating
out this scale produces a local EFT with only charged n
relativistic pion fields coupled to electromagnetism. The n
relevant scale is the typical relative momentum of pions
the bound statema/2;0.5 MeV ~soft!. Integrating out this
scale is, at lower orders ofa, equivalent to calculating the
electromagnetic potential between the two charged pio
The calculations in the latter EFT reduce to quantum m
chanical ones. The main advantage of this approach is
there are well defined counting rules at any stage of the
culation, so that the size of any neglected term is easy
estimate. This is particularly important in order to extra
more accurate values for the parameters of thexL from the
improved measurement of the pionium decay width in
DIRAC experiment@3#.

We distribute the paper as follows. In Sec. II we pres
the most general non-relativistic effective field theory f
pion pairs near threshold. The constraints due to Lore
invariance are implemented and the Lagrangian is reduce
its minimal form by local field redefinitions. In Sec. III th
neutral pions are integrated out which gives rise to a non
ativistic theory of charged pions interacting with the elect
magnetic field. In Sec. IV we integrate out soft photon
which produce the electromagnetic potentials between
charged pions. In Sec. V we present the calculation of
bound state energies and decay widths. Section VI is dev
©2000 The American Physical Society27-1
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D. EIRAS AND J. SOTO PHYSICAL REVIEW D61 114027
to the discussion of our results. In Appendix A we discu
the realization of Lorentz symmetry in nonrelativistic the
ries. In Appendix B we display the local field redefinition
and the various reshuffling of constants carried out along
paper. In Appendix C we present a new way to regulate
Coulomb propagator inD space dimensions.

II. NONRELATIVISTIC LAGRANGIAN FOR PION PAIRS
NEAR THRESHOLD

At relative momentum much smaller than the pion mas
nonrelativistic description of pion pairs should be approp
ated. In order to implement it, we shall write down a L
grangian organized in powers of 1/m in which any scale
smaller thanm is treated perturbatively. For the problem
hand the next relevant energy and momentum scales areDm
and AmDm, its associated momentum, respectively. The
scales are to be used to estimate the~maximum! size of each
term.

The symmetries~exact and approximate! of the funda-
mental theory, namely thexL, must be incorporated. Let u
consider first the internal symmetries. ThexL is approxi-
mately invariant under~nonlinear! chiral transformations,
which are explicitly broken by the pion mass terms. Sin
the pion mass is a large parameter in the nonrelativistic
grangian, no algebraic constraints from chiral symmetry
expected to survive. All information about chiral symmet
will be hidden in the parameters of the Lagrangian. The o
remaining approximate internal symmetry will be isosp
which is explicitly broken bymuÞmd and the e.m. interac
tions both at the quark and at thexL level. The size of the
explicit breaking may be estimated frommp1

2mp0

;5 MeV which is much smaller than the pion mass. Hen
isospin symmetry is a good~approximate! symmetry for the
nonrelativistic Lagrangian. In order to implement it we sh
use the vectorp

p5S p11p2

&
,
p22p1

& i
,p0D , ~2.1!

wherep1 , p2 andp0 annihilate positive, negative and ne
tral pions, respectively.

Concerning the space-time symmetries, Poincare´ invari-
ance~including the discrete symmetries! must also be imple-
mented in the nonrelativistic Lagrangian. The translatio
and rotational part of the Poincare´ group as well as the dis
crete symmetries are implemented in the standard way.
Lorentz subgroup requires the introduction of a nonlin
realization which is equivalent to impose the so called r
arametrization invariance@12#. This is discussed in Appen
dix A. The outcome is relatively simple for spin zero field
Consider a composite spin zero field made out of ten
products ofn p and m p†. Definew5n2m the weight of
this field. If wÞ0, all derivatives acting on this field must b
introduced through the combination

D5 i ]02
1

2wm
]m]m. ~2.2!
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If w50, ]m on this field can be introduced. The Lagran
ian must have all the Lorentz indices contracted in a forma
Lorentz invariant way andD must be considered Lorent
invariant itself.

Having in mind the rules above, consider first the limit
exact isospin symmetry. We have

L5L21L4 ,

L25L2
~0!1L2

~1!1¯ ,

L45L4
~1/2!1L4

~3/2!1¯ ,

L2
~0!5p†Dp, ~2.3!

L2
~1!5p†A0D2p,

L4
~1/2!5B1~p†p!21B2~pp!~p†p†!,

L4
~3/2!5A1~pDp!~p†p†!1H.c.

1A2~p†Dp!~p†p!1H.c.

1A3~p†p†!D~pp!

1A4]m~p†p!]m~p†p!

1A5~p†ip† j !D~pipj !.

Consider next the isospin breaking terms. These may
due to e.m. interactions at the quark level, e.m. interacti
in the relativisticxL andmuÞmd . The electromagnetic in-
teractions at quark level have an isospin invariant pie
which is absorbed in the constants~2.3!. The e.m. isospin
breaking pieces, both at quark level and in thexL, are pro-
portional toT3, and so is the isospin breaking piece due
muÞmd . Hence, in order to incorporate isospin breaki
effects in the nonrelativistic Lagrangian, it is enough to co
struct further invariants with the vectorsQ;(0,0,e) andM
;(0,0,mu2md), taking into account thatQ must always ap-
pear in pairs. Although there is no extra difficulty in takin
M into account, we shall ignore it here since, due to cha
conjugation, it appears quadratically and turns out to be v
small @13#. If we wish to recover these contributions at som
point, we only have to remember that for any isospin bre
ing term proportional toa, there is also an identical term
proportional to (mu2md)2. Then the e.m. isospin breakin
terms read

DL5DL21DL4 ,

DL25DL2
~0!1DL2

~1! ,

DL45DL4
~3/2! ,

~2.4!
DL2

~0!5d1~p†Q!~Qp!,

DL2
~1!5d2~p†Q!D~Qp!,
7-2
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EFFECTIVE FIELD THEORY APPROACH TO PIONIUM PHYSICAL REVIEW D61 114027
DL4
~3/2!5C1~pQ!~pQ!~p†p†!1H.c.

1C2~pQ!~p†Q!~p†p!

1C3„~p†3p!•Q…

2.

Before going on, let us discuss the general structure of
constantsAi , Bi , Ci andd i above. Let us callZ to any such
a constant andz its dimension. Then the general form ofZ
will be

Z5mzXa211a0S m2

4p f 2D1a1S m2

4p f 2D 2

1a2S m2

4p f 2D 3

1¯

1b1a1¯1c1,1aS m2

4p f 2D1c1,2aS m2

4p f 2D 2

1¯C,
~2.5!

where f ;93 MeV is the pion decay constant. Theai ,i 5
21,0,1,... stand for pure strong interaction contributions
chiral perturbation theory~xPT! @5#. It is interesting to notice
that spontaneous chiral symmetry breaking impliesa2150
for ZÞA0 ,d i . Indeed in the limit f→` ~keepingm con-
stant! the pions in thexL become free particles as far as t
strong interactions is concerned. Hence, in this limit any E
11402
e

n

T

derived from thexL must not contain strong interaction
Then the subscripti 50,1,... coincides with the number o
loops at which the termai receives contributions. We
stopped at the number of loops which have been calcula
so far @14#. bi ,i 51,2,... stand for purely electromagnet
contributions andci , j ,i , j 51,2,... for mixed electromagneti
and strong contributions. We stop here at the orders wh
compare to the two loop purely strong contribution.b1 may
receive contributions from tree level annihilation graphs,c1,1
from one loop graphs@15# andc1,2 from two loop graphs yet
to be calculated. For this discussion to apply to the consta
Ci andd i of the isospin breaking termsQ must be counted as
a dimension one object. IfmuÞmd was taken into account
additional series including (mu2md)/ f would appear in Eq.
~2.5!.

The Lagrangian~2.3! and ~2.4! contains higher time de
rivative terms. One can get rid of these terms by local fi
redefinitions. We can setA05d25A15A250 by using local
field redefinitions which maintain Lorentz symmetry explic
However, the new Lagrangian still contains time derivativ
beyond the expectedi ]0 . We can also get rid of the extr
time derivatives by using again local field redefinition
which cannot maintain Lorentz symmetry explicit anymo
The details of this are displayed in Appendix B. We fina
obtain the Lagrangian in the so-called minimal form
ave
ts
propor-

pion field

e at
e

L5L21L4 ,

L25p† jXS i ]01
“

2

2m
1

“

4

8m3D d i j 1S 11
“

2

2m2DDm
QiQj

Q2 Cpi , ~2.6!

L45B1~p†p!21B2~pp!~p†p†!1D1S p†
“

2

2m
p1p

“

2

2m
p†D ~p†p!1D2XS p

“

2

2m
pDp†p†1ppS p†

“

2

2m
p†D C

12A4~p†p!] ip†] ip1C18~pQ!~pQ!~p†p†!1H.c.1C28~pQ!~p†Q!~p†p!1C3„~p†3p!•Q…

2

1
A3

2
~p†p†!

“

2

2m
~pp!1

A5

2
~p†ip† j !

“

2

2m
~pipj !.

The new constants above are defined in formula~B8! of Appendix B. Lorentz symmetry guarantees that the bilinear terms h
the standard form including relativistic corrections. It also relatesA3 andA5 in the two last terms to the remaining constan
~see Appendix B!. Unfortunately, the latter relations have no practical consequences because the two last terms are
tional to the center of mass momentum and hence irrelevant to our problem. The zero charge sector in terms of the
reads

L25p1
† S i ]01

“

2

2m
1

“

4

8m3Dp11p2
† S i ]01

“

2

2m
1

“

4

8m3Dp21p0
†S i ]01Dm1

“

2

2m
1Dm

“

2

2m2 1
“

4

8m3Dp0 ,

~2.7!
L45R00p0

†p0
†p0p01Rccp1

† p2
† p1p21~R0cp0

†p0
†p1p21H.c.!1S00~p0

†p0
†p0“

2p01H.c.!1Scc„p1
† p2

† ~p1“
2p2

1p2“
2p1!1H.c…1S0c„p0

†p0
†~p1“

2p21p2“
2p1!12p1

† p2
† p0“

2p01H.c.…1P00p0
†] ip0

†p0] ip0

1Pcc~p1
† ] ip2

† p1] ip21p2
† ] ip1

† p2] ip1!.

The new constants above are defined in formula~B9! of Appendix B. Notice that since the origin of energies appears to b
the two charged pion threshold, the neutral pion shows a negative energy gap2Dm,0. Notice also that the terms in th
bilinear neutral pion Lagrangian can be combined into the standard form:
7-3
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S i ]01Dm1
“

2

2m
1Dm

“

2

2m2 1
“

4

8m3D;S i ]01Dm1
“

2

2~m2Dm!
1

“

4

8~m2Dm!3D . ~2.8!
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Nevertheless, in order to keep the expansion systematic
shall not use the expression above.

The coupling to e.m. fields is done by promoting norm
derivatives to covariant derivatives. None of the possi
nonminimal couplings contributes at the order we are in
ested in and we will ignore them.

Before closing this section let us remark that we ha
assumed that the Lagrangian~2.3! and ~2.4! is Hermitian.
This is correct at the order we are interesting in. However
general the Hermiticity constraint must be relaxed. This
due to the fact that thep1p2 atom may decay into degree
of freedom which do not appear in the nonrelativistic L
grangian, for instance to hard photons or hard electr
positron pairs. The non-Hermitian pieces would be obtain
in the matching to thexL at the same time as the Hermitia
ones, as it happens in NRQED@10,11,18#.

III. INTEGRATING OUT THE SCALE Dm

SinceDm@ma2/4 it is appropriated to integrate out th
scale before tackling the e.m. bound state problem. This
resents the main advantage of our approach with respe
the nonrelativistic proposals@2,17#. The integration of neu-
tral pions can be easily achieved by matching four po
off-shell Green functions of the Lagrangian above to a n
relativistic Lagrangian where the neutral pions have b
removed:

L85p1
† S iD 01

D2

2mDp11p2
† S iD 01

D2

2mDp2

1Rcc8 p1
† p2

† p1p21P8p1
† p2

† i ]0p1p2 . ~3.1!

Since thep0 energy gap is negative, the integration w
produce imaginary parts inRcc8 and P8. By calculating the

FIG. 1. Diagrams contributing to the matching betweenL and
L8 up to correctionsO„(Dm/m)2

…. The bullet and triangle inser
tions in the neutral pion propagator correspond to relativistic c
rections due to“4/8m3 andDm“

2/2m2, respectively.
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diagrams in Fig. 1 in dimensional regularization~DR! we
obtain

Rcc8 5Rcc2uR0cu2R00S ms

2p D 2

1 i uR0cu2
ms

2p
X11

5

8

s2

m22
3

4

s2

m2

2S R00ms

2p D 2

2
2S0c~R0c1R0c* !s2

uR0cu2
C, ~3.2!

P85 i uR0cu2
m2

4ps
, ~3.3!

wheres5A2mDm. Rcc8 and P8 contain the leading correc
tions in Dm/m andma2/4Dm, respectively.

The electromagnetic contributions toL8 coming from the
energy scaleDm are negligible, as well as the relativisti
corrections;“

4/8m3 to the charge pions and the termsPcc
andScc in Eq. ~2.7!.

IV. INTEGRATING OUT THE SCALE ma

The Lagrangian in the previous section is almost identi
to NRQED ~for spin zero particles! plus small local interac-
tions. In Refs.@18# it was shown that we can integrate o
next dynamical scale, namely,ma/2 in NRQED obtaining a
further effective theory called potential NRQED~pNRQED!
which contains the usual potential terms and only the ul
soft degrees of freedom (;ma2/4) remain dynamical. We
shall do the same here. The~maximum! size of each term in
Eq. ~3.1! is obtained by assigningma to any scale which is
not explicit. In fact, since we are only interested inO(a)
corrections, only the Coulomb potential seems to be imp
tant, since the tranverse photons give rise toO(a2) correc-
tions. However, as pointed out in Ref.@19#, below the pion
threshold there are further light degrees of freedom ap
from the photon. In particular, the electron massme;ma/2
and hence it must be integrated out here. This gives rise
potential term which is onlyO(a) suppressed with respect t
the Coulomb one. By calculating the diagrams in Fig. 2
obtain

r-
FIG. 2. Diagrams contributing to the matching betweenL8 and

L9 up to correctionsO(a2). Dashed lines are longitudinal photo
propagators in the Coulomb gauge.
7-4
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EFFECTIVE FIELD THEORY APPROACH TO PIONIUM PHYSICAL REVIEW D61 114027
L95p1
† ~x,t !S i ]01

“

2

2mDp1~x,t !1p2
† ~x,t !S i ]01

“

2

2mD
3p2~x,t !1Rcc8 ~p1

† p2
† p1p2!~x,t !

1P8~p1
† p2

† !~x,t !i ]0~p1p2!~x,t !2E d3y~p1
† p1!

3~x,t !„V0~ ux2yu!1V1~ ux2yu!…~p2
† p2!~y,t !, ~4.1!

V0~ ux2yu!52
a

ux2yu
,

V1~ ux2yu!5E d3k

~2p!3 Vvpc~k!ei ~x2y!k, ~4.2!

where Vvpc(k) is given in formula~10! of Ref. @19#. The
Lagrangian above contains no further degree of freedom
the nonrelativistic charged pions and hence it is tota
equivalent to standard quantum mechanics. We prefer to
within the Lagrangian formalism and use thep2p1 wave
function fieldf(x,X,t), wherex andX are the relative and
center of mass coordinates, respectively, as introduce
@18#:

L95f†~x,X,t !S i ]01
“

2

m
2V0~ uxu!2V1~ uxu!1Rcc8 d~x!

1P8d~x!i ]0Df~x,X,t !. ~4.3!

The center of mass kinetic term has been dropped.

V. QUANTUM MECHANICAL CALCULATION

In order to calculate the corrections to the energy lev
and decay width we shall consider the propagator of
~4.3! and identify its pole. At the order we are interested
only the diagrams in Fig. 3 contribute.

The diagrams in the first line of Fig. 3 correspond to fi
order perturbation theory and can be easily evaluated. T
give rise to

dR
cc8

En
~1!52Re~Rcc8 !uCn~0!u2,

dR
cc8

Gn
~1!52 Im~Rcc8 !uCn~0!u2, ~5.1!

FIG. 3. Diagrams contributing to the leading order correctio
in Dm/m, a and ma2/Dm to the energy and decay width. Th
double line is the Coulomb propagator of thep1p2 pair.
11402
an
y
ay

in

ls
.

t
ey

dP8En
~1!50, dP8Gn

~1!52Im~P8!uCn~0!u2S ma2

2n2 D ,

~5.2!

dV1
E1

~1!5
11ma3

18p S 12
9p

22
j1

12

11
j22

6p

11
j3

2
3~22j224j4!

11Aj221
tan21Aj221D , ~5.3!

jª
2me

ma
, dV1

Gn
~1!50, ~5.4!

whereCn(x) is the Coulomb wave function.
The diagrams in the second line of Fig. 3 correspond

second order perturbation theory and are not so easily ca
lated. The second diagram gives a finite contributiondV1

Gn
(2)

which for the ground state has been evaluated numericall
@19#. The first diagram has also been considered before@17#.
However, since it is UV divergent a suitable regularizati
and renormalization scheme must be specified. The sub
tion point dependence of the result will eventually can
against the subtraction point dependences in the matc
coefficients. The matching coefficients are to be found
matching thexL with e.m. interactions with Eqs.~2.3! and
~2.4! at the desired order ofxPT anda. The matching cal-
culation is most efficiently done at threshold using DR a
MS ~or MS! scheme for both UV and IR divergences@11#.
This requires to use the same regularization and renorma
tion scheme when calculating in the effective theory. W
have calculated in Appendix C the first diagram using D
and MS scheme so that our results can be readily app
once the above mentioned matching calculation is car
out. We obtain

dR
cc8

En
~2!5Re~Rcc8

2!
m2aDn

4p
uCn~0!u2,

~5.5!

dR
cc8

Gn
~2!522 Im~Rcc8

2!
m2aDn

4p
uCn~0!u2,

whereDn is given in formula~C12! of Appendix C. Notice
that Eqs.~5.1!–~5.5! hold at any order ofxPT, since we have
made no use of them2/4p f 2 expansion in order to derive
them from Eq.~2.7!.

Putting all this together, our final expressions for the e
ergy and the decay width read

En52
ma2

4n2 2
uCn~0!u2

2 f 2 1dV1
En

~1! , ~5.6!

Gn5Gn
~0!S 11DxPT1

5Dm

12m
2

ma2

16Dmn22
m2aDn

4p f 2 D
1dV1

Gn
~2! , ~5.7!

s

7-5
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Gn
~0!5

9mA2mDm

64p f 4 uCn~0!u2, ~5.8!

where we have substitutedR00, Rcc , R0c and S0c by their
tree level values in the corrections

R00;
1

16f 2 ,

R0c;
3

8 f 2 ,

~5.9!
Rcc;

1

2 f 2 ,

S0c;2
1

32m2f 2

and defined

uR0cu25S 3

8 f 2D 2

~11DxPT!. ~5.10!

We have also dropped terms proportional toR00 in Eq. ~3.2!
because they are suppressed by extra factors ofm2/4p f 2.
DxPT summarizes all the contributions touR0cu2 beyond the
one at tree level in the isospin symmetric limit, in particu
those from pion and photon loops in thexL. The structure of
DxPT is then inherited fromuR0cu2 and follows easily from
Eq. ~2.5!. dV1

En
(1) is given forn51 in Eq. ~5.3! anddV1

Gn
(2)

is only known forn51 @19#:

dV1
G1

~2!;0.4298aG1
~0! . ~5.11!

Formulas~5.6! and~5.7! are exact up to next to leading ord
in a, Dm/m andma2/Dm, except for the optional substitu
tions mentioned above. Notice that onlyR0c is needed be-
yond tree level (DxPT). In DxPT there should be a contribu
tion ; logm/m which cancels them dependence inDn . This
would arise from a two loop calculation involving photon
which has not been carried out yet. It requires the evalua
of diagrams analogous to Fig. 4 but with relativistic pio
propagators.

VI. DISCUSSION

We have presented an approach to pionium which c
sists of separating the various dynamical scales involve
the problem by using effective field theory techniques. T
main advantage of this approach is, apart from its simplic
that error estimates can be carried out very easily. A f
remarks concerning other approaches are in order. Firs
all, relativistic approaches@8,9#, apart from being technically
more involved, have all the scales in the problem entang
which makes very difficult to estimate errors or to gauge
size of a given diagram. We would like to emphasize t
Lorentz symmetry, even though it is not linearly realized
is implemented in our approach to the required order. S
eral nonrelativistic approaches have appeared in the litera
addressing particular aspects of the problem@16,17,19#. Our
analysis shows that a coupled channel approach to pion
@17# is unnecessary because theDm is much larger than the
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bound state energy. It also shows that, although it is tec
cally possible~trivial in fact! to make a resummation o
bubble diagrams in the manner of Lipmann-Schwinger
does not make much sense doing it since there are hi
derivative terms in the effective Lagrangian, which ha
been neglected, which would give rise to contributions of
same order. In a way, our approach implements the rem
of @16# related to the fact that neutral pion loops give rise
important contributions in the nonrelativistic regime. W
have supplemented this remark with a full theoretical fram
work and with relativistic corrections of the same ord
which had been overlooked.

Let us next discuss how our results compare to the De
formula @1#, and how they are related to the strong scatter
lengths~SSL!. In fact the concept of SSL itself requires som
qualifications. In order to be precise, let us define three ki
of SSL: ~i! the QCD SSL~QCDSSL! as those calculated
from QCD, ~ii ! the chiral Lagrangian SSL~xLSSL! as those
calculated from thexL @14#, and~iii ! the nonrelativistic SSL
~NRSSL! as those calculated from nonrelativistic potent
models or effective theories of the strong interactio
@2,16,17#. At present the QCDSSL cannot be calculated re
ably and hence they are not useful to compare with exp
mental results. ThexLSSL are useful to compare with pa
ticle physics data at energies of the order of the pion ma
However, even if electromagnetism is not included in t
xL, the xLSSL obtained from those experiments conta
some electromagnetic contributions since it is not possibl
switch off the electromagnetic interaction between quar
Hence, strictly speaking thexLSSL are already not purely
strong. The NRSSL should be useful to handle nuclear ph
ics data of pion scattering at nonrelativistic energies n
threshold. It is within this framework that Deser type form
las, which relate the decay width of pionium to the pion S
are derived. However, such kind of scattering data is alm
nonexisting, and the NRSSL have a limited practical inter
unless one is able to relate them to thexLSSL. Even if elec-
tromagnetism is not included in our potential model or no
relativistic effective theory, the NRSSL contain, in additio
to the unremovable electromagnetic contributions at
quark level, those due to photons at~relativistic! scales of the
order of the pion mass. This is particularly transparent in
formulation @see Eq.~2.5!#. Once the matching between th
xL and the Lagrangian~2.3!, ~2.4! is carried out, the relation
between the NRSSL and thexLSSL will become available.
For the moment, the best we can do is to rewrite Eqs.~5.7!,
~5.8! in terms of NRSSL and compare with Deser type fo
mulas.

From Eq.~2.7! we obtain

Re„A~12→00!…u thres

52 Re~R0c!X12R00
2 S ms

2p D 2

2
2S0cs

2

Re~R0c!
C

22 Im~R0c!R00

ms

2p

;2 Re~R0c!S 11
Dm

3mD . ~6.1!
7-6
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Recall that Im(R0c) is proportional to an isospin breakin
term ;Dm/m, a @see Eq.~B9!#. Hence we can neglect th
term proportional to Im(R0c) above and Im(R0c)

2 below. We
have also neglected the term proportional toR00

2 since it is
suppressed by an extra factor (m2/4p f 2)2. This allows us to
solve uR0cu2 in terms of the corresponding NRSSLa0c :

Re„A~12→00!u thres…ªa0c

8p

m2 , ~6.2!

uR0cu2;a0c
2 16p2

m4 S 12
2Dm

3m D . ~6.3!

Then we can rewrite Eq.~5.7! as

Gn5
16pA2mDm

m3 a0c
2 uCn~0!u2S 12

Dm

4m
2

ma2

16Dmn2

2
m2aDn

4p f 2 D1dV1
Gn

~2! , ~6.4!

where the Deser formula is recovered upon neglecting
correctionsO(Dm/m,ma2/4Dm,a). Let us emphasize agai
that the NRSSLa0c above corresponds to the one used
nonrelativistic potential models@2# or effective theories
@16,17# but not the xLSSL to be used in thexL. The
formula above holds up to correctionsO„(Dm/m)2,
(ma2/Dm)2,a2,a(m2/4p f 2)2, (m2/4p f 2)2(Dm/m),a(m2/
4p f 2)ADm/m,(m2/4p f 2)(Dm/m)3/2

….
On the technical side we have worked out a new met

to calculate the Coulomb propagatorGc(0,0;E) in dimen-
sional regularization~DR!. The expressions forGc(0,0;E)
whenE→En are easily obtained for anyn. Using DR here it
is not just a matter of taste. Eventually a two loop match
calculation is to be done in order to extract the parameter
the Chiral Lagrangian from the pionium width. These kind
calculations are only efficiently done in the DR. Since t
matching coefficients depend on the renormalization sche
it is important to have our calculation in DR in order to b
able to use the outcome of such a matching calcula
straight away.

While this paper was being written up Ref.@20# appeared
which deals with the same problem by similar techniques
we neglectdV1

G1
(2) ~vacuum polarization!, G1 obtained from

Eqs. ~5.1!, ~5.2! and ~5.5! coincides with that given in for-
n
lie
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mulas ~10! and ~11! of @20#, upon expanding the latter in
Dm/m andma2/4Dm and keeping terms up to next to lea
ing order. Upon completion of this work Ref.@21# also ap-
peared, where the relativistic corrections corresponding
the two last diagrams of Fig. 1 were calculated. The ima
nary part of formula~3.2! agrees with the results of@16,21#
before any particular value is taken for the parameters in
~2.7!.

ACKNOWLEDGMENTS

J.S. acknowledges discussions with A. Gall, J. Gasser
E. Lyubovitskij, and A. Rusetsky. D.E. has benefited fro
financial support of the Spanish MEC FPI. Financial supp
from the CICYT ~Spain!, contract AEN98-0431, and th
CIRIT ~Catalonia!, contract 1998SGR 00026 is also a
knowledged.

APPENDIX A: LORENTZ SYMMETRY IN
NONRELATIVISTIC EFFECTIVE THEORIES

Considerf(x) a relativistic spin zero field and its part
tion function

Z~J!5E Dfei „S~f!1*d4xJ~x!f~x!…. ~A1!

If S is Lorentz invariant then

Z~J!5Z~J8!, J8~x!5J~L21x!. ~A2!

In the nonrelativistic regime we only need a subset ofJs
which generate Green functions with the external legs alm
on shell. These may be chosen as

J~x!5A2m„e2 imx0
Jh~x!1eimx0

Jh
†~x!…, ~A3!

wherem is the mass off andJh(x) is slowly varying~i.e.,
contains energy and momentum much smaller thanm!. From
Eqs. ~A2! and ~A3! one easily finds that for Lorentz trans
formations close to the identity

Jh~x!→Jh8~x!5e2 im~L2121!0
mxm

Jh~L21x!. ~A4!

In the nonrelativistic regimeZ(J) can be approximated to
the desired order of accuracy by
Z~J!;ZNR~Jh ,Jh
†!5E Dhdh†ei „SNR~h,h†!1E d4x@h†~x!Jh~x!1Jh

†
~x!h~x!#…. ~A5!
is
l

e

ThenZNR(Jh ,Jh
†) must be invariant under the transformatio

~A4!. Invariance of the terms coupled to the sources imp
the following transformations forh(x):

h~x!→h8~x!5e2 im~L2121!0
mxm

h~L21x!. ~A6!
s
HenceSNR(h,h†) must be constructed in such a way that it
invariant under Eq.~A6!. In order to do so, notice first of al
that]mh(x) does not transform in a way similar toh(x). We
would like to introduce a kind of covariant derivative. Th
following operator appears to be a successful candidate:
7-7
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D5 i ]02
]m]m

2m
. ~A7!

We have under Lorentz transformations

Dh~x!→e2 im~L2121!0
mxm

„D1 i ~L2121!0
m]m

…h~L21x!,
~A8!

which upon the changex→Lx becomes

Dh~x!→e2 im~12L!0
mxm

Dh~x!. ~A9!

Analogously, if we haveCw(x)5„h†(x)…m„h(x)…n, w5n
2m, we may define forwÞ0 a generalization of Eq.~A7!

D5 i ]02
]m]m

2wm
. ~A10!

Then DkCw(x) has the same transformation properties
Cw(x). We callw the weight of the composite fieldCw(x).
If w50 then]mC0(x) transforms as a usual Lorentz vecto

From the discussion above the following rules can be
ferred in order to built a Lorentz invariant nonrelativist
effective theory for spin zero particles:~i! Write down all
possible terms in the particle sector we are interested in w
weight zero and no derivatives up to the desired order;~ii !
for each term, which is not already of the higher releva
order, insertDs or ]ms in all possible ways. Allm indices
coming from the]m must be contracted in a Lorentz invar
ant way.

Applying the rules above we obtain the Lagrangians~2.3!
and ~2.4!. Recall also that for the particular case we are
terested in the~minimal! suppression ofD is Dm/m whereas
the ~minimal! suppression of]m is ADm/m.

Finally, let us mention that for practical purposes the ru
that we have obtained are identical to those derived from
so called reparametrization invariance@12# ~see also@23#!.
Hence, it should be clear that reparametrization invarianc
nothing but a way to implement Lorentz symmetry in a no
relativistic theory. We believe that this point is important a
has not been sufficiently stressed in the literature.

APPENDIX B: LOCAL FIELD REDEFINITIONS

The Lagrangian given in formulas~2.3! and~2.4! contains
higher time derivative terms whereas the usual nonrelati
tic Lagrangians contain only a time derivative in the biline
terms of each field. The latter is known as the minimal fo
of the Lagrangian. In this Appendix we display the local fie
redefinitions which bring the Lagrangian~2.3! and~2.4! to its
minimal form. Let us only mention that local field redefin
tions exploit the freedom we have in field theory to choo
the interpolating field we wish, and refer the interested rea
to the literature on the subject@12,22,24,25,26#. The price we
pay for having the Lagrangian in its minimal form is th
Lorentz symmetry~reparametrization invariance! will not be
explicit anymore. The constraints given by Lorentz symm
try will reduce to nontrivial relations between the paramet
of the Lagrangian in its minimal form.

We are retaining corrections up to the relative ord
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(Dm/m)3/2. In order to reduce our operator basis, we w
take advantage of the fact that local field redefinitions c
also be organized in powers ofDm/m. The induced terms
beyond the desired order as well as the terms which do
contribute to the two particle sector~six pion terms and be-
yond! will be neglected.

Let us first consider local field redefinitions which kee
Lorentz symmetry explicit. We can get rid of theA0 andd2
terms in Eqs.~2.3! and ~2.4! by

pi°XS 12
DA0

2 D d i j pj1S d1A0QiQj

2
2

d2QiQj

2 D Cpj .

~B1!

The bilinear terms become

L21DL25p†Dp1p†id1QiQj
„11~d1A02d2!Q2

…p j

~B2!

and the following constants of the four pion terms get mo
fied:

A1→A185A12A0B2 ,

A2→A285A22A0B
1,

~B3!
C1→C195C12~d22d1A0!B2 ,

C2→C295C222~d22d1A0!B1 .

We can also get rid of theA18 and A28 keeping Lorentz
invariance by making

p°p2A28* p~p†p!2A18* p†~pp!, ~B4!

which induces

C19→C1-5C192A18d1 ,
~B5!

C29→C2-5C292~A281A28* !d1 .

The remaining time derivatives inD and in theA3 andA4
terms can only be removed if we give up the explicit re
ization of Lorentz symmetry which we have kept so fa
Notice that the time derivatives in theA4 term are higher
order and can be dropped. The following field redefiniti
gets rid of the higher order time derivatives in the biline
terms:

pi°XS 12
i ]0

4m
1

“

2

8m2D d i j 1
d1QiQj

4m
Cpj . ~B6!

Finally the time derivatives induced by this redefinition
the four pion terms together with the remaining time deriv
tives in A3 andA4 can be removed by

p°p1S B1

2m
2A5Dp~p†p!1S B2

2m
2A3Dp†~pp!.

~B7!
7-8
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Putting it all together, we obtain for the constants in t
Lagrangian~2.6! the following expressions in terms of th
original constants:

Dm5d1Q2X11S d1A02d21
d1

2mDQ2C,
D15

B1

m
2A512mA4 ,

D25
B2

m
2A3 , ~B8!

C185C12B2d21S B2

m
2A32A112A0B2D d1 ,

C285C222B1d21S 2B1

m
2A22A2* 14A0B1

22A5D d1 .

Upon restricting the Lagrangian~2.6! to the zero charge
sector we obtain the Lagrangian~2.7! the constants of which
are related to the above ones according to

R005B11B21e2~C181C18* !1e2C28 ,

R0c52B212e2C18* ,

Rcc52B114B212e2C3 ,

S005
D1

2m
1

D2

2m
,

~B9!

S0c5
D2

2m
,

Scc5
D1

2m
1

D2

m
,

11402
P0052A4 ,

Pcc52A4 .

APPENDIX C: THE COULOMB PROPAGATOR IN D
SPACE DIMENSIONS

We present here a generalization of the Coulomb pro
gator to D space dimension which may prove useful
bound state calculations. For the actual Coulomb potentia
D dimensions

Vc~r !52
acD

r D22 ; cD5

4pGS D

2 D
~D22!2pD/2 ~C1!

we have not been able to find an explicit representati
However, a slight modification of it

Vc~r !→Vc8~r !52
acD8

r
; cD8 5

4p

GS D21

2 D ~4p!~D21!/2

~C2!

admits the following exact representation, which is a gen
alization of that presented in@27#:

FIG. 4. Logarithmically divergent diagram which is calculate
with the two longitudinal photon propagators~C5! for the dashed
lines.
Gc~x,y,E!5(
l 50

`

Gl~x,y,E!(
$mi %

Yl
$mi %S x

xDYl
* $mi %S y

yD , ~C3!

Gl~x,y,E!52m~2k!D22~2kx! l~2ky! le2k~x1y!(
s50

` Ls
2l 1D22~2kx!Ls

2l 1D22~2ky!G~s11!

S s1
2l 1D21

2
2

ma

2k
cD8 DG~s12l 1D21!

, ~C4!

whereYl
$mi % are the spherical harmonics inD dimensions andE52k2/m. The potentialVc8(r ) corresponds to the following

modification of the longitudinal photon propagator in standard DR:

1

k2 →S 1

k2D ~D21!/2

. ~C5!
7-9



ed

ly. For

e

rried

D. EIRAS AND J. SOTO PHYSICAL REVIEW D61 114027
The change of regularization scheme necessary for translating the result of Eq.~C3! to those of standard DR can be obtain
by calculating the logarithmically divergent diagram of Fig. 4 with the two propagators in Eq.~C5!. Using the minimal
subtraction~MS! renormalization scheme for both regularizations we obtain

log
m8

m
5

gE212 log~4p!

2
. ~C6!

The calculation ofGc(0,0;E) can be easily done using the formula 1.4.~1! of Ref. @28#

(
n52`

`
G~a1n!G~b1n!

G~c1n!G~d1n!
5

p2G~c1d2a2b21!

sin~pa!sin~pb!G~c2a!G~d2a!G~c2b!G~d2b!
. ~C7!

We obtain (D5312e8)

~m8!22e8GcS 0,02
k2

mD522mk
2pD/2

GS D

2 D S 2k

m8D
2e8

(
s50

` G~s1D21!GS s1
D21

2
2

ma

2k
cD8 D

G~s11!GS s1
D11

2
2

ma

2k
cD8 DG2~D21!

~C8!

5
mk

4p S 1 ~C9!

1
ma

2k F 1

e8
12 logS 2k

m8D12gE22 log~4p!22G ~C10!

1
ma

k F cS 11
ma

2k D2c~1!1

p cosS map

2k D
sinS map

2k D 2
2k

maG D . ~C11!

Equations~C9!, ~C10! and~C11! correspond to zero, one and more than one longitudinal photon exchange, respective
E→En5ma2/4n2 we have

lim
E→En

X~m8!22e8GcS 0,0,2
k2

mD2
Cn~0!Cn* ~0!

E2En
C5 m2a

8p
X1
n

1F2 logS ma

nm D1gE2 log~4p!21G1S 2c~n!12gE2
3

nD C
ª

m2aDn

4p
, ~C12!

where we have used the MS renormalization scheme and changedm8 by m according to Eq.~C6! so that the results above ar
in standard DR with MS scheme. Clearly the singular part is local, independent of the principal quantum numbern, and can
be absorbed in a renormalization ofRcc8 . This result is in agreement with a recent DR calculation of the same object ca
out in @29#. Finally formula~5.5! is obtained.
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