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Effective field theory approach to pionium
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The various dynamical scales below the pion mass involved'im~ atoms are sequentially integrated out
using nonrelativistic effective field theory techniques. This allows us to systematically organize the corrections
to the energy levels and decay width. We present our results in terms of a single unknown constant which may
be obtained by matching to the chiral Lagrangian with electromagnetic interactions at two loops.

PACS numbdps): 12.39.Fe, 11.10.St, 13.75.Lb, 36.10.Gv

I. INTRODUCTION 0, with a widthI'~0.6 eV[7]. Clearly a QCD based analy-
) sis of this system should better start with thle. However,
Hadronic atoms have attracted much interest for a longne y| s a relativistic(manifestly Lorentz invarianttheory
time [1]. Typically there is an interesting interplay between,yhere electromagnetic bound state problems are difficult to
strong and electromagnetic interactions. Whereas the latt?fandle(see[&g] for direct approach@sMoreover, both the

are respons_ible for the bound state formation, the forme inding energy and the decay width are much smaller than
propiu_ce the'.r dec_ay. Although the treatment of electrom_ag_fhe pion mass-140 MeV, which suggests that a nonrelativ-
netic interactions is based on solid theoretical grounds, this IS tic approach should be appropriated.

not so for the strong interactions. Traditionally, the latter are It is the aim of this work to present a nonrelativistic ap-

modeled by various types of short range potentjals Al- S . :
though this is usually enough to fit the available data, itproach to pionium based on a series of EFTs which are ob-

would be desirable to have a more direct connection witfained from thexL coupled to electromagnetism after se-
what is believed to be the fundamental theory of strong induentially integrating out the various physical scales of the
teractions, namely QCD. This is becoming even more urgerr°1.’y5ter2n until we reach the scale of the binding energy
since the current DIRAC experiment at CERR], which ~ ~Ma“/4. The first scale to be mteg_rgtgd out is the pion mass
p|ans to measure the pionium decay width at 10% accuracm. This produces a local nonrelativistic EFT for pion pairs
[4], is meant to extract the pure hadronic pion-pion scatteringiear threshold coupled to electromagnetism, much in the
lengths, which may, in principle, be obtained from QCD. same way as NRQED is obtained from QE®10,11. The
It has become apparent during the past decade that theext relevant scale in the problem is the mass difference
most fruitful way to approach low energy strong interactionbetween charged and neutral pickih~5 MeV. Integrating
physics from QCD is not by direct calculations from this out this scale produces a local EFT with only charged non-
theory but going through intermediate effective field theorieselativistic pion fields coupled to electromagnetism. The next
(EFT), which are equivalent to QCD in a particular range ofrelevant scale is the typical relative momentum of pions in
energies. For instance the chiral Lagrangigh) [5] is an  the bound statena/2~0.5MeV (soft). Integrating out this
EFT for pions, which is equivalent to QCD for energies be-scale is, at lower orders af, equivalent to calculating the
low the rho mass. The EFTs typically depend on variouslectromagnetic potential between the two charged pions.
unknown constants, which in principle may be obtained fromThe calculations in the latter EFT reduce to quantum me-
the fundamental theory. In practice, this may sometimes behanical ones. The main advantage of this approach is that
achieved, such as for instance in the case of nonrelativistithere are well defined counting rules at any stage of the cal-
QED (NRQED) [6] where the constants can be determinedculation, so that the size of any neglected term is easy to
order by order ina, but many times is beyond our current estimate. This is particularly important in order to extract
technical abilities, like in the case of the chiral Lagrangian,more accurate values for the parameters of ¢thefrom the
which would require large lattice simulations with light dy- improved measurement of the pionium decay width in the
namical quarks or yet-to-be-discovered alternative nonperbIRAC experimen{3].
turbative techniques with a good control on the mechanism We distribute the paper as follows. In Sec. Il we present
of chiral symmetry breaking. In any case, if the number ofthe most general non-relativistic effective field theory for
constants is small enough, they can be phenomenologicallyion pairs near threshold. The constraints due to Lorentz
obtained from available data and used later on to predict newvariance are implemented and the Lagrangian is reduced to
results, as it is the case of the.. its minimal form by local field redefinitions. In Sec. Il the
Pionium is ar* 7~ electromagnetic bound state of bind- neutral pions are integrated out which gives rise to a nonrel-
ing energy~2 keV which decays strongly, basically to two ativistic theory of charged pions interacting with the electro-
magnetic field. In Sec. IV we integrate out soft photons,
which produce the electromagnetic potentials between the
*Email address: dolors@ecm.ub.es charged pions. In Sec. V we present the calculation of the
"Email address: soto@ecm.ub.es bound state energies and decay widths. Section VI is devoted
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to the discussion of our results. In Appendix A we discuss If w=0, d,, on this field can be introduced. The Lagrang-
the realization of Lorentz symmetry in nonrelativistic theo-ian must have all the Lorentz indices contracted in a formally
ries. In Appendix B we display the local field redefinitions Lorentz invariant way and must be considered Lorentz
and the various reshuffling of constants carried out along thewvariant itself.

paper. In Appendix C we present a new way to regulate the Having in mind the rules above, consider first the limit of
Coulomb propagator i space dimensions. exact isospin symmetry. We have

Il. NONRELATIVISTIC LAGRANGIAN FOR PION PAIRS L=Lo+Ly,
NEAR THRESHOLD
_ _ Ly=L@2+LM+---,
At relative momentum much smaller than the pion mass a
nonrelativistic description of pion pairs should be appropri-
ated. In order to implement it, we shall write down a La-
grangian organized in powers ofmi/in which any scale

_ (12 3/2
L=l 41325

smaller thanm is treated perturbatively. For the problem at L(zo)ZWTD @, 2.3

hand the next relevant energy and momentum scaleA e

and VymAm, its associated momentum, respectively. These LY =#'A D2,

scales are to be used to estimate (imeximum size of each

term. L&llz): B ( o w2+ Bo( am)(w @),
The symmetriedexact and approximateof the funda-

ment.al thepry, namely thelL, must b_e incorpo_rated. Let_ us L513’2)=A1(er @) (w'ah) +H.c.

consider first the internal symmetries. Th& is approxi-

mately invariant undernonlineaj chiral transformations, +Ay(7'Dm) (7w +H.c.

which are explicitly broken by the pion mass terms. Since  t

the pion mass is a large parameter in the nonrelativistic La- +Ag(m ) D(7rm)

grangian, no alge_braic cpnstraint_s from chiral_ symmetry are + A0, (7 ) ()

expected to survive. All information about chiral symmetry "

will be hidden in the parameters of the Lagrangian. The only +Ag(w 7 )D(@ ).

remaining approximate internal symmetry will be isospin,

which is explicitly broken bym,# my and the e.m. interac- Consider next the isospin breaking terms. These may be

tions both at the quark and at the level. The size of the due to e.m. interactions at the quark level, e.m. interactions
explicit breaking may be estimated fronmm—mwO in the relativisticyL andm,#my. The electromagnetic in-

~5 MeV which is much smaller than the pion mass. Hencéeractions at qual’k level have an iSOSpin invariant piece
isospin symmetry is a go(ﬁapproximatesymmetry for the which is absorbed in the Constar(@.?)). The e.m. ISOSpIn

nonrelativistic Lagrangian. In order to implement it we shallbreaking pieces, both at quark level and in e, are pro-
use the vectorr portional toT2, and so is the isospin breaking piece due to

m,#my. Hence, in order to incorporate isospin breaking
motw. mo—r, effects in the nonrelativistic Lagrangian, it is enough to con-
= , — 7o |, (2.2)  struct further invariants with the vecto@~(0,0g) andM
V2 V2i ~(0,0m,—my), taking into account tha® must always ap-
pear in pairs. Although there is no extra difficulty in taking
wherew, , 7 andm, annihilate positive, negative and neu- M into account, we shall ignore it here since, due to charge
tral pions, respectively. ) conjugation, it appears quadratically and turns out to be very
Concerning the space-time symmetries, Poindavari-  small[13]. If we wish to recover these contributions at some
ance(including the discrete symmetrjesiust also be imple-  point, we only have to remember that for any isospin break-
mented in the nonrelativistic L,agrangian. The translationaing term proportional tow, there is also an identical term
and rotational part of the Poincageoup as well as the dis- proportional to (n,—my)2. Then the e.m. isospin breaking
crete symmetries are implemented in the standard way. Th@grms read
Lorentz subgroup requires the introduction of a nonlinear

realization which is equivalent to impose the so called rep- AL=AL,+AL,,
arametrization invariancgl2]. This is discussed in Appen-
dix A. The outcome is relatively simple for spin zero fields. AL2=AL(2°)+AL(21)

Consider a composite spin zero field made out of tensor
products ofn « andm n-_T. Definew=n—m the weight of AL, = ALGE2
this field. If w0, all derivatives acting on this field must be 4 4

introduced through the combination . (2.4
ALY'=5,(7'Q)(Qm),

_ 1
D=ido— 5 dud*. (2.2 ALY =6,(7'Q)D(Qm),
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ALE?=Cy(wQ)(wQ)(w a") +H.c. derived from thexyL must not contain strong interactions.
Then the subscript=0,1,... coincides with the number of
+Cy(mQ) (7' Q) (w'm) loops at which the terma; receives contributions. We
+ ) stopped at the number of loops which have been calculated
+Ca((m X am)-Q)". so far [14]. b;,i=1,2,... stand for purely electromagnetic

gontributions andt; ;,i,j=1,2,... for mixed electromagnetic
nd strong contributions. We stop here at the orders which
compare to the two loop purely strong contributidn. may
receive contributions from tree level annihilation graphs,
from one loop graphEL5] andc, , from two loop graphs yet
3 to be calculated. For this discussion to apply to the constants
+.- C,; ands; of the isospin breaking tern@ must be counted as
a dimension one object. th,# my was taken into account,
additional series includingnf,—my)/f would appear in Eq.
(2.5.
The Lagrangian(2.3) and (2.4) contains higher time de-
(2.5  rivative terms. One can get rid of these terms by local field
redefinitions. We can séty= 6,=A;=A,=0 by using local
where f~93MeV is the pion decay constant. Tle,i= field redefinitions which maintain Lorentz symmetry explicit.
—1,0,1,... stand for pure strong interaction contributions inHowever, the new Lagrangian still contains time derivatives
chiral perturbation theorfyPT) [5]. It is interesting to notice  beyond the expecteid,. We can also get rid of the extra
that spontaneous chiral symmetry breaking imphes =0 time derivatives by using again local field redefinitions,
for Z#Ag,d;. Indeed in the limitf —o (keepingm con-  which cannot maintain Lorentz symmetry explicit anymore.
stany the pions in theyL become free particles as far as the The details of this are displayed in Appendix B. We finally
strong interactions is concerned. Hence, in this limit any EFTobtain the Lagrangian in the so-called minimal form

Before going on, let us discuss the general structure of th
constantdd;, B;, C; and; above. Let us calf to any such
a constant ana its dimension. Then the general form &f
will be

2 2 \2

+a,

m 2

47f? T

m
47rf?

m
4rf?

2
4.

Z= mz(al+ ag
2

47f?

m2

+Ciot| ——5
L2\ 44rf2

+b10{+ +Clla(

L:L2+L4,
V2 v4 V2 QiQJ) |
=] — = =
Lo=a"\|idg+ 2m+8 )5 +( 2mz)Am 2 T, (2.6
V2 V2 ( 2 V2 )
— 2 Tt T T T T T T
L,= (17 7)) +By(mm)(w'w')+ Dy 772m77+772m17>(17 7)+D, men) + @ 172m17>

+2A,( 7 md w ' m+ Cl(mQ)(mQ) (7 7' ) + H.ct CH(mQ) (7 Q) (' ) + Ca((m X m) - Q)2

A, v? Ag i vz J.
(mf)+—( ) o ().

The new constants above are defined in forniB®) of Appendix B. Lorentz symmetry guarantees that the bilinear terms have

the standard form including relativistic corrections. It also rel&gsndAg in the two last terms to the remaining constants

(see Appendix B Unfortunately, the latter relations have no practical consequences because the two last terms are propor-
tional to the center of mass momentum and hence irrelevant to our problem. The zero charge sector in terms of the pion field
reads

v v A A ? V2 V!

2m 8m? 2m 8m3

(2.7)

L,= R007T(1;7T$7T07T0+ Recmhalmym_+ (ROCﬂ'gﬂ'gﬂ'+ 7_+H.c.)+ Syl ’7T$’7T$’7T0V2’7T0+ H.c)+ See(mh 7! (7, V27 _
+7_V2r,)+H.0+ SOc(ﬂ'g'n'g( 7. V2r_+w Vim ) +2nt wl mgVimg+H.c)+ Pooﬂ'g&i 7T$7TO(9i )

+ Pcc(ﬂ'i&i 71{7T+r7i77,+ 7Tt(9i 771’77,(7i77+).

The new constants above are defined in forniB!@) of Appendix B. Notice that since the origin of energies appears to be at
the two charged pion threshold, the neutral pion shows a negative energy 4ap<0. Notice also that the terms in the
bilinear neutral pion Lagrangian can be combined into the standard form:
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v? vz v4 v? v4
'ﬁ0+Am+ﬁ+Amﬁ+8W)” idg+Am+ 2(m—Am) + s(m—am)?/’ (2.9

Nevertheless, in order to keep the expansion systematic wadiagrams in Fig. 1 in dimensional regularizati0bR) we
shall not use the expression above. obtain
The coupling to e.m. fields is done by promoting normal
derivatives to covariant derivatives. None of the possible
nonminimal couplings contributes at the order we are inter—R, ~Reo—|Rod?R ms
ested in and we will ignore them. ce™ Mec 170cl 100\ o 77
Before closing this section let us remark that we have

2 " 2ms(1 55’ 38
iR\ g g

assumed that the Lagrangi@®.3 and (2.4) is Hermitian. _(Rooms)z_ 2Spc(Roct Réc)sz) 32
This is correct at the order we are interesting in. However, in 2w [Roc|? ' '
general the Hermiticity constraint must be relaxed. This is
due to the fact that the* 7~ atom may decay into degrees
of freedom which do not appear in the nonrelativistic La- _, . 5 m?

P’'=i|Rg¢|“— 3.3

grangian, for instance to hard photons or hard electron-
positron pairs. The non-Hermitian pieces would be obtained
in the matching to thgL at the same time as the Hermitian
ones, as it happens in NRQHMO,11,18. wheres=y2mAm. R/, andP’ contain the leading correc-
tions in Am/m andma?/4Am, respectively.
The electromagnetic contributions td coming from the
lll. INTEGRATING OUT THE SCALE  Am energy scaleAm are negligible, as well as the relativistic
SinceAmsma?/4 it is appropriated to integrate out this corrections~V*/8m? to the charge pions and the terig,

scale before tackling the e.m. bound state problem. This repﬁ”d Sec in EQ. (2.7).
resents the main advantage of our approach with respect to
the nonrelativistic proposal®,17]. The integration of neu-
tral pions can be easily achieved by matching four point IV. INTEGRATING OUT THE SCALE  me
off-shell Green functions of the Lagrangian above t0 a non- Thg | agrangian in the previous section is almost identical
relativistic Lagrangian where the neutral pions have beeg, NRQED (for spin zero particlesplus small local interac-

47s’

removed: tions. In Refs[18] it was shown that we can integrate out
D2 D2 next dynamical scale, namelina/2 in NRQED obtaining a
L'=al|iDy+ om T + 7TT( iDg+ ﬁ) T further effective theory called potential NRQEPNRQED

which contains the usual potential terms and only the ultra-
+Réc7ﬂ alw o+ P’wﬂ 7TT_i(5’o7T+ 7. (3.1 soft degrees of freedom{mazl_4) remgin dynamical. We
shall do the same here. Tli@maximun) size of each term in
) 0 , , , ) - EQ.(3.1) is obtained by assigningha to any scale which is
Since ther energy gap Is negative, the integration will hot expicit. In fact, since we are only interested @ )
produce imaginary parts iR;. and P'. By calculating the  ¢rections, only the Coulomb potential seems to be impor-
tant, since the tranverse photons give riséiax?) correc-
tions. However, as pointed out in R¢1L9], below the pion
threshold there are further light degrees of freedom apart
from the photon. In particular, the electron masg~ma/2
and hence it must be integrated out here. This gives rise to a
potential term which is onl¥D(«) suppressed with respect to
the Coulomb one. By calculating the diagrams in Fig. 2 we

obtain
T T !
, e et
]
ot ! ot Tt : Tt
FIG. 1. Diagrams contributing to the matching betwéeand
L’ up to correction®d((Am/m)?). The bullet and triangle inser- FIG. 2. Diagrams contributing to the matching betwégnand
tions in the neutral pion propagator correspond to relativistic corL” up to correction®O(a?). Dashed lines are longitudinal photon
rections due tdv*/8m° and AmV?/2m?, respectively. propagators in the Coulomb gauge.
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2 V2 ma?
L"=m"(xt) ido+ 5 () + (x| 190+ ﬁ) op EM=0, 5P,r<n1):—|m(P’)|«1rn(0)|2(W),
(5.2)
X (1) +R.(mhal 7w )(x1)
11ma 97 12 6
+P'(wiw*_)(x,t)iaomm)(x,t)—fd3y<w1m> Sy, By =g (1—5 LT
X (%D Vo(|x=y) +Vi(Ix=yD)(mL 7 )(y.1), (4. 3(2—£2—4¢%)
- =~ “tan LWE2-1|, (5.3
11/82-1 an Ve ) 63
Vo(|x=yD)=~ —,
O(|X y|) |X—y| om
&= mae, sy I'P=0, (5.4)

d3k :
V1(|X—Y|)=f—3vac(k)e'(x_y)k, (4.2)
(27) where WV (x) is the Coulomb wave function.
o . The diagrams in the second line of Fig. 3 correspond to
where V, (k) is given in formula(10) of Ref.[19]. The  second order perturbation theory and are not so easily calcu-

Lagrangian above contains no further degree of freedom thapated. The second diagram gives a finite contribu@ogi“ff)

the _nonrelat|V|st|c charged pions and .hence It is tOtaIIyWhich for the ground state has been evaluated numerically in
equivalent to standard quantum mechanics. We prefer to st

within the Lagrangian formalism and use the 7+ wave "’[319]. The first diagram has also been considered bdforg

f ion field X h dx h lati d However, since it is UV divergent a suitable regularization
unction field ¢(x, 't)'.W erexandx are the re_at|ve and - and renormalization scheme must be specified. The subtrac-
center of mass coordinates, respectively, as introduced

18] 'flon point dependence of the result will eventually cancel
[18]: against the subtraction point dependences in the matching
v? coefficients. The matching coefficients are to be found by
9ot (I =V (Ix) £ R S(x matching theXL_ with e.m. interactions with Eq:{2..3) and
" 'm ol [XD) = Va([x]) +Recd(%) (2.4) at the desired order ofPT anda. The matching cal-
culation is most efficiently done at threshold using DR and
+ prg(x)iaC)) H(X,X,1). (4.3 MS (or MS) scheme for both UV anq IR'divergenc[éEl]. .
This requires to use the same regularization and renormaliza-
o tion scheme when calculating in the effective theory. We
The center of mass kinetic term has been dropped. have calculated in Appendix C the first diagram using DR
and MS scheme so that our results can be readily applied
V. QUANTUM MECHANICAL CALCULATION once the abqve mentioned matching calculation is carried
out. We obtain
In order to calculate the corrections to the energy levels

L"= T (x,X,t)

and decay width we shall consider the propagator of Eq. 2 Y 2aA,, 5
(4.3) and identify its pole. At the order we are interested in 5R(’:CEE1 =ReRe:") —;— [V,(0)]?,
only the diagrams in Fig. 3 contribute. 5
The diagrams in the first line of Fig. 3 correspond to first 2 5.9
o_rder_perturbation theory and can be easily evaluated. They P Fﬁf)= —21m( Récz) maAn 1P ,(0)|2,
give rise to cc A
Sr' EV=—ReR.)|¥,(0)|%, whereA,, is given in formula(C12) of Appendix C. Notice

that Eqs(5.1)—(5.5) hold at any order okPT, since we have
made no use of then?/47f2? expansion in order to derive
S I =2 Im(Ryo) | W4(0)|2, (51 them from Eq.(2.7).
Putting all this together, our final expressions for the en-
ergy and the decay width read

R, Vi P
2 2
% ¢ —i ma®  |V,(0)]
E,=— W_ T + 5V1E$.|l) , (5.6)
= =—d—= 2 2
Fn:mo) T 5Am Ma . m aAzn
FIG. 3. Diagrams contributing to the leading order corrections X 12m  16Amn 4wt

in Am/m, a and ma?/Am to the energy and decay width. The 5, T 5.7)
double line is the Coulomb propagator of thé 7~ pair. Vit n o '
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0 9m 2mAm , bound state energy. It also shows that, although it is techni-
n =W|\Ifn(0)| , (5.8 cally possible(trivial in fact) to make a resummation of

bubble diagrams in the manner of Lipmann-Schwinger, it
where we have substitute®lyy, R.c, Roc and Sy by their ~ does not make much sense doing it since there are higher
tree level values in the corrections derivative terms in the effective Lagrangian, which have
been neglected, which would give rise to contributions of the

Roo~ _12 same order. In a way, our approach implements the remark
16f of [16] related to the fact that neutral pion loops give rise to
3 important contributions in the nonrelativistic regime. We
Roc~ 82" have supplemented this remark with a full theoretical frame-
work and with relativistic corrections of the same order
Reo~ iz (5.9 which had been overlooked.
2f Let us next discuss how our results compare to the Deser
1 formula[1], and how they are related to the strong scattering
Soc™ — 32m2f2 lengths(SSL). In fact the concept of SSL itself requires some
qualifications. In order to be precise, let us define three kinds
and defined of SSL: (i) the QCD SSL(QCDSSL as those calculated
3\2 from QCD, (ii) the chiral Lagrangian SS(yLSSL) as those
|R0c|2:(W (1+A,p7). (5.10 calculated from theL [14], and(iii) the nonrelativistic SSL

(NRSSD as those calculated from nonrelativistic potential

We have also dropped terms proportionaRig in Eq. (3.2 models or effective theories of the strong interactions
because they are suppressed by extra factonsharf>. [2,16,17. At present the QCDSSL cannot be calculated reli-

A pr summarizes all the contributions IR0/ beyond the ably and hence they are not useful to compare Wit_h experi-
one at tree level in the isospin symmetric limit, in particular Mental results. TheL.SSL are useful to compare with par-
those from pion and photon loops in the. The structure of  tcle physics data at energies of the order of the pion mass.
A pr is then inherited fromRyc|2 and follows easily from However, even if elgctromagnensm is not !ncluded in the
Eq.(2.5. 6, Efﬂ) is given forn=1 in Eq.(5.3 and s, ng) xL, the yLSSL obtayned frpm 'those_ experlments cqntam
. L 1 some electromagnetic contributions since it is not possible to
is only known forn=1 [19]: switch off the electromagnetic interaction between quarks.
(5.11) Hence, strictly speaking thgLSSL are already not purely

' strong. The NRSSL should be useful to handle nuclear phys-
ics data of pion scattering at nonrelativistic energies near
threshold. It is within this framework that Deser type formu-
las, which relate the decay width of pionium to the pion SSL
are derived. However, such kind of scattering data is almost
nonexisting, and the NRSSL have a limited practical interest

Sy I'?~0.4298 (" .

Formulas(5.6) and(5.7) are exact up to next to leading order
in a, Am/m andma?/Am, except for the optional substitu-
tions mentioned above. Notice that orfRy. is needed be-

yond tree level §,p7). In A, pr there should be a contribu-

tion ~|og M/ which cancels the. dep_end(_ence ".A”' This unless one is able to relate them to JeSSL. Even if elec-
would arise from a two loop calculation involving photons S . ; .
tromagnetism is not included in our potential model or non-

Wh'c.h has not been carried out yet. It requires thg .e\{aluat'orr]elativistic effective theory, the NRSSL contain, in addition
of diagrams analogous to Fig. 4 but with relativistic pion

propagators to the unremovable electromagnetic contributions at the
) quark level, those due to photons(glativistic) scales of the
order of the pion mass. This is particularly transparent in our
VI. DISCUSSION formulation[see Eq.(2.5)]. Once the matching between the
We have presented an approach to pionium which conxL and the Lagrangiaf®.3), (2.4) is carried out, the relation
sists of separating the various dynamical scales involved iR€tween the NRSSL and th@ SSL will become available.
the problem by using effective field theory techniques. Thd OF the moment, the best we can do is to rewrite E§S),
main advantage of this approach is, apart from its simplicity (3-8 in terms of NRSSL and compare with Deser type for-
that error estimates can be carried out very easily. A fewnulas. _
remarks concerning other approaches are in order. First of From Eq.(2.7) we obtain
all, relativistic approachgs,9], apart from being technically Re(A(+ ——00))|ihres
more involved, have all the scales in the problem entangled

which makes very difficult to estimate errors or to gauge the — o RaR|1-R2 ms 2_ 2SS
size of a given diagram. We would like to emphasize that =2 ReRoc) 00\ 277 Re(Ry.)
Lorentz symmetry, even though it is not linearly realized, it

is implemented in our approach to the required order. Sev- — 2 Im(Ry)R ms
eral nonrelativistic approaches have appeared in the literature 00772002 77
addressing particular aspects of the prob[d®,17,19. Our

analysis shows that a coupled channel approach to pionium ~2 RdRy,)
[17] is unnecessary because then is much larger than the oc

Am)
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Recall that ImR,.) is proportional to an isospin breaking mulas(10) and (11) of [20], upon expanding the latter in
term ~Am/m, a [see Eq(B9)]. Hence we can neglect the Am/m andma?/4Am and keeping terms up to next to lead-
term proportional to IRy, above and InRy)? below. We  ing order. Upon completion of this work ReR21] also ap-
have also neglected the term proportionalR@ since it is ~ peared, where the relativistic corrections corresponding to
suppressed by an extra facton{/4mf2)2. This allows us to  the two last diagrams of Fig. 1 were calculated. The imagi-

solve|Rq|? in terms of the corresponding NRSSig, : nary part of formula3.2) agrees with the results 16,21
before any particular value is taken for the parameters in Eq.
8w 2.7).
Re(A(+——00) |thres):=aOcW! (6.2
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Fn:Ta0c|\Pn(0)| ~am” 1eAMIE knowledged.
-~ mzaAn L5, T®@ 6.4 APPENDIX A: LORENTZ SYMMETRY IN
A7rf2 Vit o 6.4 NONRELATIVISTIC EFFECTIVE THEORIES

where the Deser formula is recovered upon neglecting the Considerg(x) a relativistic spin zero field and its parti-
correctionsO(Am/m,ma2/4Am, @). Let us emphasize again tion function

that the NRSSLagy. above corresponds to the one used in

nonrelativistic potential model§2] or effective theories Z(J):f D¢ei(8<¢>+fd4xJ<x>¢<x>)_ (A1)
[16,17] but not the yLSSL to be used in thel. The

formula above holds up to correction®((Am/m)?,

(ma,zlAm)z’az’a(mzmﬂ_fz)z’ (m2/47rf2)2(Am/m),a(m2/ If Sis Lorentz invariant then

4’7Tf2)\Am/m,(m2/477f2)(Am/m)3/2) Z(J):Z(\],), J/(X):J(A—lx) (AZ)
On the technical side we have worked out a new method
to calculate the Coulomb propagatGi(0,0;E) in dimen-  |n the nonrelativistic regime we only need a subsetJsf

sional regularizationDR). The expressions fo6.(0,0;E)  which generate Green functions with the external legs almost
whenE—E, are easily obtained for any Using DR here it  on shell. These may be chosen as

is not just a matter of taste. Eventually a two loop matching

calculation is to be done in order to extract the parameters of J(x)= \/ﬁ(e_imxo‘]h(x)+eimXOJE(X))’ (A3)

the Chiral Lagrangian from the pionium width. These kind of

calculations are only efficiently done in the DR. Since thewherem is the mass ofp andJ,(x) is slowly varying(i.e.,
matching coefficients depend on the renormalization schem@gntains energy and momentum much smaller tharFrom

it is important to have our calculation in DR in order to be ggs_(A2) and (A3) one easily finds that for Lorentz trans-
able to use the outcome of such a matching calculatioformations close to the identity

straight away.

While this paper was being written up RE€20] appeared Jh(X)HJA(X):e—im(A’l—l)OMx”Jh(A—1X)_ (A4)
which deals with the same problem by similar techniques. If
we neglects, I'{? (vacuum polarization I'; obtained from |n the nonrelativistic regime(J) can be approximated to
Egs. (5.1), (5.2 and (5.5 coincides with that given in for- the desired order of accuracy by

Z(J)WZNR(Jhan):J' thhfei(sNR(h,hT)JrJd4x[hT(x)Jh(x)+J;(x)h(x)]). (A5)

ThenZyr(Jy ,J;:) must be invariant under the transformation HenceSyg(h,h") must be constructed in such a way that it is
(A4). Invariance of the terms coupled to the sources impliesnvariant under Eq(A6). In order to do so, notice first of all

the following transformations foln(x): thatd, h(x) does not transform in a way similar kfx). We
P would like to introduce a kind of covariant derivative. The
h(x)—h'(x)=e MA ~D%X*h(A~1x).  (A6)  following operator appears to be a successful candidate:
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_ d,0" (Am/m)®?2. In order to reduce our operator basis, we will
D=ido— om (A7) take advantage of the fact that local field redefinitions can
also be organized in powers &fm/m. The induced terms
We have under Lorentz transformations beyond the desired order as well as the terms which do not
contribute to the two particle sectésix pion terms and be-
Dh(x)_>e*im<A71*1>°MX“(D+i(A*l—l)O#a“)h(Aflx), yond) will be neglected.
(A8) Let us first consider local field redefinitions which keep
. Lorentz symmetry explicit. We can get rid of tidg and é,
which upon the change— Ax becomes terms in Egs(2.3) and(2.4) by
Dh(x)—e M1V Dh(x). (A9) . ( DAY\ . . [5AQQ 8,00 ) .
11‘»(1—— 5”1TJ+( - ) .
Analogously, if we haveC,,(x)=(h"(x))™(h(x))", w=n 2 2 2
—m, we may define fow#0 a generalization of EqA7) (B1)
9 gk The bilinear terms become
D=ido— chm. (A10) o .
LytAL,=7' Dot @ 6,Q Q1+ (5,A0— 52)Q2)7T(J )
B2

Then D*C,(x) has the same transformation properties as
Cy(x). We callw the weight of the composite field,,(X).  and the following constants of the four pion terms get modi-
If w=0 thend,Cy(x) transforms as a usual Lorentz vector. fie(:

From the discussion above the following rules can be in-

ferred in order to built a Lorentz invariant nonrelativistic A—A;=A;—AgB,,
effective theory for spin zero particle§;) Write down all
possible terms in the particle sector we are interested in with A,—AL=A,—A-B
. L ; . 27 AT A2 Acby
weight zero and no derivatives up to the desired order; '
for each term, which is not already of the higher relevant (B3)

order, insertDs or 4,s in all possible ways. Allu indices C1—C1=C1= (82~ 81A0)B2,

coming from thed,, must be contracted in a Lorentz invari- R
ant way. C—C3=Cy—2(6,— 61A0)B1.

Applying the rules above we obtain the Lagrangié) . , , )
and (2.4). Recall also that for the particular case we are in- W€ can also get rid of thé; and A, keeping Lorentz
terested in théminimal) suppression ob is Am/m whereas ~Invariance by making
the (minimal) suppression of,, is yAm/m.

Finally, let us mention that for practical purposes the rules
that we have obtained are identical to those derived from the hich ind
so called reparametrization invariangE?] (see alsd23]). which induces
Hence, it should be clear that reparametrization invariance is C'C"=C"—AlS
nothing but a way to implement Lorentz symmetry in a non- T Tt
relativistic theory. We believe that this point is important and " o , e (BS)
has not been sufficiently stressed in the literature. Co—Cr=Co= (At A7) 0;.

T a— AL ﬂ(ﬂTﬂ')—Ai* ' (mm), (B4)

The remaining time derivatives Id and in theA; andA,
terms can only be removed if we give up the explicit real-

The Lagrangian given in formula&.3) and(2.4) contains  ization of Lorentz symmetry which we have kept so far.
higher time derivative terms whereas the usual nonrelativishNotice that the time derivatives in th&, term are higher
tic Lagrangians contain only a time derivative in the bilinearorder and can be dropped. The following field redefinition
terms of each field. The latter is known as the minimal formgets rid of the higher order time derivatives in the bilinear
of the Lagrangian. In this Appendix we display the local field terms:
redefinitions which bring the Lagrangi@®.3) and(2.4) to its .
minimal form. Let us only mention that local field redefini- 11_iH(< 1— 190
tions exploit the freedom we have in field theory to choose 4m  8m
the interpolating field we wish, and refer the interested reader
to the literature on the subjef2,22,24,25,25 The price we  Finally the time derivatives induced by this redefinition in
pay for having the Lagrangian in its minimal form is that the four pion terms together with the remaining time deriva-
Lorentz symmetryreparametrization invariangeill not be  tives in Az andA, can be removed by
explicit anymore. The constraints given by Lorentz symme-

APPENDIX B: LOCAL FIELD REDEFINITIONS

o+

61QiQi) J.
am ™

3 (B6)

try will reduce to nontrivial relations between the parameters By + B, T
of the Lagrangian in its minimal form. mt 2m As | m(m )+ 2m Ag| ().
We are retaining corrections up to the relative order (B7)
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Putting it all together, we obtain for the constants in the
Lagrangian(2.6) the following expressions in terms of the
original constants:

Am= 6. Q2(1+ 851A0— 8 +i Q2)
1 R0 02T 50 '
B1
D1: H_A5+ 2mA4,
FIG. 4. Logarithmically divergent diagram which is calculated
B, with the two longitudinal photon propagatof€5) for the dashed
Do=——As, (B8) lines.
m
82 Poo: 2A4,
Ci: Cl_ 8252+ E_A3_Al+ 2AOBZ 61,
P.c=2A,.

2B
C§=C2—28152+(—1—A2—A’2‘ +4A,B,
m APPENDIX C: THE COULOMB PROPAGATOR IN D

SPACE DIMENSIONS

_ZAS) 01 We present here a generalization of the Coulomb propa-
gator to D space dimension which may prove useful in
Upon restricting the Lagrangiaf2.6) to the zero charge bound state calculations. For the actual Coulomb potential in
sector we obtain the Lagrangié®.7) the constants of which D dimensions
are related to the above ones according to

D
Rgo=B1+B,+e?(C;+Ci*)+eC), e 477F(§)
D
V rN=—-—-p5-—>. Ch= Cl
ROCZZBz‘f’ZGZCi*, C( ) rD 2 D (D—2)27TD2 ( )
R.c=2B;+4B,+2e?C,, we have not been able to find an explicit representation.
However, a slight modification of it
Dy Dy
S0~ 5 F om ach A
Ve(r)—=V(r)=—— cp=
(B9) r D-1 D112
D, r —— (47)P~D
%~ 2m’ (C2)
s — E+ E admits the following exact representation, which is a gener-
< 2m m’ alization of that presented {i27]:
. (it X} x{my Y
Go(xY.E)=2 Gi(x,y,E) > Y\"™| ~ Y[ ™| =], (c3
=0 {mi} X y
Zo LATP 2ok L2 D 2(2ky) I (s+ 1)
Gi(x,y,E)=—m(2k)P~2(2kx)(2ky)'e x**¥ > - - d , (C4)
&0 21+D-1 ma
S+T—WCD F(S+2|+D—1)

whereYl{mi} are the spherical harmonics i dimensions andE= —k?/m. The potentialV(r) corresponds to the following
modification of the longitudinal photon propagator in standard DR:

1\(@-1r2
) (CH

1
K22
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The change of regularization scheme necessary for translating the result (@3¢ those of standard DR can be obtained
by calculating the logarithmically divergent diagram of Fig. 4 with the two propagators iN@). Using the minimal
subtraction(MS) renormalization scheme for both regularizations we obtain

p'_ ye—1-log(4m)

Iog; 5 (Co)
The calculation 0fG.(0,0;E) can be easily done using the formula 114.of Ref.[28]
I(a+n)(b+n) mT'(c+d—a—b—1) c
. T(c+nmI'(d+n) sin(wa)sin(7b)I'(c—a)[(d—a)'(c—b)[(d—b)" €7
We obtain D=3+2¢")
r D—1)T D-1 ma
206 0,0- | - - amk 2T Zeé S S c8
(") c,—m——mFD ? s:or o D+1 ma,FZDl (C8
> (s+DI| s+ ——— 5 -cp | I(D—-1)

_mkl C9
=1 (C9
M L o log 2|4 29— 2 logam)—2 C10
T ok e t2log )t 2vem 2 logdm) (C10

mam
Ma 1 Ma 1 ™ Co 2k 2k 11
T A ) e _(maw) " ma (1Y

SN 2k

Equations(C9), (C10 and(C11) correspond to zero, one and more than one longitudinal photon exchange, respectively. For
E—E,=ma?/4n? we have

i ( 26,00, q’”(o)w:(o))— mza(l+ 2log | + ye—log(4m)— 1| +| 20(n) +2 3)
o (w') o 00~ = T E=E, )T Bx \n 7|29 1)t yeT log(4m) = YN +2ye— o
m?aA,,
- , (C12
4

where we have used the MS renormalization scheme and charigey « according to Eq(C6) so that the results above are

in standard DR with MS scheme. Clearly the singular part is local, independent of the principal quantum nuamaecan

be absorbed in a renormalization Rf.. This result is in agreement with a recent DR calculation of the same object carried
out in[29]. Finally formula(5.5) is obtained.
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