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Zero mode quantization of multi-Skyrmions
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A zero mode quantization of the minimal energy (81USkyrmions for nucleon numbers four to nine and
seventeen is described. This involves quantizing the rotational and isorotational modes of the configurations.
For nucleon numbers four, six and eight the ground states obtained are in agreement with the observed nuclear
states of helium, lithium and beryllium. However, for nucleon numbers five, seven, nine and seventeen the
spins obtained conflict with the observed isodoublet nuclear states.

PACS numbsefs): 12.39.Dc, 02.20.Rt, 14.80.Hv, 21.6t

I INTRODUCTION whereH is the double group dfi [H is a subgroup of S(2)

In this article a simple quantization of higher charge Skyr-With two elements_h anc_l _,h in. H for every _element. oH in
mions is described and the results are compared to expeéo(3)]' Elements inK distinguish a clockwise rotation by

mental nuclear data. The methods described may be used fgPOUt Some axis from an anticlockwise rotation by 26
Skyrmions of any nucleon numb&; once the minimal en- about the same axis. In the even nucleon sector@ations

ergy solution is known. The minimal energy solutions are®'® trivial, so it is sufficient to consider the grotip But for

now known forB<9 [1] and a conjectured solution exists ©dd B it is necessary to considé as opposed té1.

for B=17[2]. We use the moduli space approximatic@ Semiclassical quantization of the configuration is
which truncates the infinite dimensional configuration field@chieved by quantizing on this quotient space. There are a

space to a finite dimensional space consisting of classicAlUMPer of inequivalent ways to quantize on a quotient space

configurations which are relevant to the low energy dynamC!<; WhenG, which here is SU(2x SU(2), issimply con-
ics. The moduli space will necessarily include all minimal nected these are labeled by the irreducible representations of

energy configurations and to obtain accurate results onthe groupK. In general, the wave functions are defined on

should include all configurations correspondindt&kyrmi- EU(Z)X SU(2), butthey transform under some irreducible

. ) . o . . representation oK. The reason for working with the double
ons with arbitrary separations and relative isospin orienta-

. . , : . . cover, SU(2)X SU(2), isthat as is well known, Z rotations
tions. Obviously, the more configurations that are included iMave nontrivial consequences in the quantum theory, this en-
the moduli space, the more difficult their analysis become

) N . ) Sables single Skyrmions to be quantized as fermions. To de-
As a first approximation one may restrict the_moduh space tQgrmine which quantization is appropriate here, one must
be generated by the zero modes of the minimal energy solyspnsider the Finkelstein-Rubenste{fR) constraints|[5].

tion. Any Skyrrmon conflgurgtlon can be translated, rotated-rhey state that, in order for a single Skyrmion to be quan-
or isorotated without changing its energy and these are thg;eq a5 a fermion, wave functionals are sections of a line
only zero modes. We shall ignore the translational modegndie over the classical configuration space whose ho-
since their quantization only gives a total momentum to th§onomy around any noncontractible loop in the configuration
quantum sf[ate. The interesting physics arises when tr_\e rm@pace is(—1). In our case, quantizing of, wave functions
tional and isorotational degrees of freedom are quantized. 5re sections of a line bundle ovéwhose holonomy i$—1)

The minimal energy Skyrmions f@=1 andB=2 have ¢y, loops which remain noncontractible whéris extended
spherical and axial symmetry respectively. For higher the full Skyrmion field configuration space. This is
nycleon numbers the m|n|_mal energy solutions only have Rquivalent to defining wave functions on SURSU(2)
discrete symmetry1,4]. This means that the classical con-yhich are eigenstates of the operators which correspond to a
figuration Ug(x) is invariant under a discrete groudl, of  qation and isorotation by an elementfwith eigenvalues
combined rotations and isorotations. Thus the moduli SPacf_1) +1 depending on whether this operation(igncon-
of zero modes is given by a quotient spaCe(SOB)  {ractible in the full Skyrmion configuration space. The effect
X SQ(3))/H. This may be equivalently written as a quotient of 7 ;- rotations or isorotations is well known. A2rotation
of the covering grouf’=(SU(2)X SU(2))/K, whereK is a o isorotation of a configuration with nucleon numtgis
discrete subgroup of SU(XSU(2) related to the discrete conractible ifB is even and noncontractibleBis odd. Thus
subgroupH of SQO(3). Elements oK correspond to rotations - gtates with oddB are fermionic and states with ev@hare
and isorotations it combined with 27 rotations and isoro- - posonic. The states define a one dimensional representation
tations. In the cases where we need to be specﬂcally CObf the symmetry groug. If K has no nontrivial one dimen-
cerned withK, as opposed tdi, it has the formK=HX7Z,  sional representations then all the FR constraints must be

+1. If there are nontrivial one dimensional representations of
K then one needs to carefully examine the closed loop cor-
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this nontrivial one dimensional representation. It must be dethe possible scattering processes for the known cases of
termined whether these loops are contractible or not. monopoles and Skyrmion]. In the above paper it was
For this, it is often necessary to split the configuration intoseen that for well known cases of monopole scattering, an
individual or pairs of well separated Skyrmions, and thenequivalent Skyrmion scattering process could occur with the
analyze the closed loop. Th@oncontractibility of theB ~ same symmetry. In fact, all we really need to assume is that,
=1 andB=2 Skyrmions are known under such closed loopsif the Skyrmion can be vibrated remaining invariant under
and from this the(noncontractibility of the loop may be Some symmetry group element, then the continuation of this
determined. However, it is necessary that the configuratioRath in the Skyrmion configuration space, which will remain
retains the symmetry of the specific elemenkdbeing con- invariant under the symmetry, eventually becomes a configu-
sidered, as it is being split into a well separated configuratioriation of well separated Skyrmions. For the monopoles this
of Skyrmions, i.e. the loop is closed throughout the deformais always the case.
tion. This is not obvious from the Skyrme picture since there Assuming the results ip6] are true for general nucleon
is no analytical data. numbers, and that there is a 1-1 correspondence between
To proceed we can use the recently discovered rationdnonopole motion and Skyrmion motion for low vibrational
map ansatz for Skyrmior[€]. These authors describe how, energies then, if the monopole configuration can be de-
given an SW2) monopole which can be uniquely described formed keeping a symmetry, so can the Skyrmions. But
by a rational map, one may associate to it a Skyrmion. Usingnonopoles are in an exact 1-1 correspondence with rational
this method they were able to accurately approximate thénaps[9,10]. The set of monopoles which have a discrete
known minimal energy Skyrmion configurations for nucleonrotational symmetry is easily determined from the rational
numbers one to nine and the predicted solution for nucleomaps (because they have a simple action of the rotation
number seventeen. The minimal energy Skyrme configuradfoup. Also, it is easy to see how the rational map of a
tion obtained in this manner has the same symmetries as tmmetric multi-monopole changes when the multi-
monopole from which it is derived. This ansatz has the admonopole splits up into well separated monopoles. So, ratio-
vantage of clearly illustrating what combination of rotationshal maps can be used to determine whether a multi-
and isorotations leave the solution invariant. It is also usefumonopole can be split into a specific configuration of well
in that the reflection symmetries of the solution can easily b&eparated monopoles while respecting a certain symmetry
worked out which enables one to determine how the paritygroup element. Thus by our above assumption it can be de-
operator can be represented @n termined how a Skyrmion configuration can be split up while
As verified in [6] this ansatz also extends to describek€eping a certain symmetry. In the cases considered here we
some of the Skyrmions vibrational modes. There, the vibracan always separate into a configurationBsf 1 andB=2
tional spectra of the minimal energy=2 andB=4 Skyr-  solutions whose behavior under rotations and isorotations is
mions was calculated. The vibrations form representations dfnown. Using this method we shall determine the FR con-
the symmetry group of the minimal energy Skyrmion. Thestraints. Once these are found it is a simple exercise to find
vibrational modes of the Skyrmions come in two differentthe allowed quantum states.
types. The modes of lower frequency correspond to the Skyr- In [11] and[12], such an analysis was carried out for the
mion configuration breaking up into separated Skyrmionsaxially symmetric charge two solution and for the tetrahe-
The modes of higher frequencies correspond to the welfirally symmetric charge three solution. For fBe=2 case a
known “breather” and generalizations of it whereby the lo- ground state with the correct quantum numbers of the deu-
cal nucleon charge expands or contracts in pldge$7] a  teron was obtained. And foB=3 it was found that the
mechanism was given for describing these madeéss also ~ ground state had spif, isospin in agreement with the
possible to look at vibrations of the rational maps. This cor-observed isodoublet nucleufH, 3He). Here we will use the
responds to monopole motion on the monopole modulierminology for the sake of compactness that spin and isos-
space. Again, small variations from the symmetric configuin are the eigenvalues of the operators corresponding to
ration form representations of its symmetry group.[@), rotations and isorotations of the Skyrmions respectively.
they found that vibrations with frequency below that of the Then spin corresponds to the total angular momentum of the
“pbreather” type modes form the same representations of théuclear state which is the experimentally observed quantity.
symmetry group as do the monopole vibrations. The impli-In nuclear physics the total angular momentum is the sum of
cation of this is that, if a monopole configuration can beorbital and intrinsic spin angular momentum. Such a decom-
separated a small distance while respecting some discrep@sition of total angular momentum into orbital and intrinsic
symmetry, then the same process can occur for Skyrmionspin parts does not exist in the Skyrme model. We comment
We wish to extend this correspondence to arbitraryon this further in Sec. VI.
monopole-Skyrmion separations. However, the rational map In this paper we extend the zero mode analysis to the
ansatz breaks down as the monopole separates into indkinimal energy Skyrmions with nucleon numbers four to
vidual Skyrmions. Nonetheless we conjecture that the correrine and seventeen. We find that 84, 6, 8 the ground
spondence can be extended beyond this region, such that agiate has the correct spin, parity and isospin assignments as
monopole motion can be mapped to an equivalent path in thior ‘Z‘He+, gw and ﬁBe+. However for odd nucleon num-
Skyrmion configuration space. In effect, this amounts to arbersB=5, 7, 9 or 17 the ground states found by this method
embedding of the monopole moduli space into the Skyrmiordo not agree with the observed isodoublet states. For nucleon
configuration space. Evidence for this is seen by consideringumbers 5, 7 and 9 the experimentally observed ground
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states are isodoublets with sgirand forB=17 the observed zation discussed ifil1] paying special attention to the FR
ground state is an isodoublet with sginf13]. However the  constraints. Section Il describes the rational map ansatz for
zero mode quantization of Skyrmions results in the groundSkyrmions and how it may be used to determine the FR
state forB=5 andB=9 both to be isodoublets with spin constraints. Then in Sec. IV the quantization procedure is
for B=7 andB=17 the ground state are both found to betreated for each of the Skyrmior8=4 to B=9 andB
isodoublets with spir. As discussed below we do not try to =17. Section V describes how to include vibrational modes
predict the parity of the states with o@ The ground states and gives the predicted excited states fore4 sector by
we find here exist experimentally as excited states. The exconsidering the vibrations together with the zero modes. Fi-
perimentally observed ground state ®#5 appears here as naIIy in Sec. .V| we calculate the expectation value of the
an excited state. The experimentally observed ground statés!cleon density of the quantum ground states and compare to
for B=7, B=9 andB=17 can be obtained here by includ- the classical nucleon densities. A criticism raised about the

ing the vibrational modes but they will also appear here a§lassical solutions of the Skyrme model is that they bear no

excited states. resemblance to real nuclei. The classical nucleon densities
The vibrational modes form representations of the symhave the symmetry of some discrete group. To find the

metry group of the minimal energy solution. Knowing this it hucleon density in the quantum state, followirig] we in-

is possible to combine the rotational and vibrational modedegrate the classical nucleon density times the norm squared

resulting in an enlarged configuration space. The vibrationaf the wave function over the moduli space. We find that in

spectra has been worked out for the Skyrme model fopll cases considered, the nucleon density in the quantum state

nucleon numbers twf6,14] and four[6], it is also possible is almost spherically symmetric, being exactly so in a num-

to understand some aspects of the vibrational spectra fdter of cases. For example we find the ground stateBfor

other values oB using the rational map ansatz. The vibra- =4 to be spherically symmetric and f&=6 to be mainly

tional modes of the Skyrmions with frequencies below theS-wave with a small P-wave admixture. This agrees with the

breather modes can be described by monopole motion artcleon densities of helium 4 and lithium 6 respectively and

thus the representations they form of the symmetry groughows how the nucleon density of the classical solutions is

can be determined. The configuration space is now a fibegmeared by quantum effects to a more uniform angular de-

bundle over(SU(2)x SU(2))/K, the fiber being the vector Ppendence.

space corresponding to the vibrations. This space was de-

scribed in[15]. States are now given by the direct product of Il. SEMI-CLASSICAL QUANTIZATION

Wigner functions on SU(2% SU(2) and harmonic oscillator )

wave functions on the vibrational space. The states must sat- "€ Skyrme model has the Lagrangian

isfy aK invariance condition described below which restricts

2
the allowed set of states. Using this formalism further ex- L:f d3x[

- 1
. ; . . . — " 4+ n RV
cited states of the multi-Skyrmions may be described. It is 16 "(R'R.) 32e2Tr([R# R,IIR%RY])

possible that this approach may resolve the above problem of (2.2

the ground state foB=7. A spin 2 rotational state can be

combined with a vibrational state to give an allowed state. IfwhereR,= aMUU*, U is the SUW2) valued Skyrme field, and
the vibrational energy of this state is not too large it maye, f, are free parameters of the model whose values are
have lower energy than the state with spiand thus predict chosen to best fit experimental data. The above Lagrangian
the correct ground state. To check this, the energies of thkas soliton solutions of finite energy. Finite energy implies
vibrational states need to worked out directly from thethatU tends to a constant at spatial infinity. Space is then
Skyrme model as the rational map approach has no informazompactified taS® and thus each soliton solution has an as-
tion about the frequencies of the specific vibrations. The insociated integer, the degree, corresponding to the element of
clusion of vibrational modes may also fix the problem for m5(S®) to which U belongs. Solitons of degre® are inter-
B=17 but it will not work forB=5 andB=29. preted asB nucleong17].

Naturally, one would not expect that the quantization of The symmetry group of the Skyrme Lagrangian is
zero modes and vibrations would give accurate results 080(3)x PoincareGroupx P. P is the parity operator which
binding energies of the states, etc., and the inclusion of moracts as P U[x]—U[ —x]. For time-independent fields such
degrees of freedom are needed to accurately describe suab static solitons the symmetry group is reduced to
properties. Nonetheless it is not obvious that the inclusion of
other modesgallowing the Skyrmions to separate, calculating SO(3)x Euclidean Group oR3Xx P. (2.2
the zero point energies of the radiative pion modes|
resolve this difficulty. A possible resolution of this is that the The minimal energy solutions to the Skyrme modeg[ x],
solutions found irf1] are not well defined minima, i.e. there have forB=3 a discrete symmetry group. This means that
may be a number of local minima with approximately equalthe classical configuratio/g[x] is invariant under a dis-
energies and so an expansion about just one of these mininegete groupH, of combined rotations and isorotations. To
is not valid. This seems to occur for tHf@=10 case, to every elementSeH there will exist an element (S)
answer the question here requires further numerical investie SO(3) such that the rotatid® has the same effect on the
gation of the proposed minimal energy solutions. configuration as the isorotatiofi(S). Or alternatively, the

In the following section we review the zero mode quanti-combined rotatiorS and isorotatiol” ~1(S) leaves the con-
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figuration unchanged. The elemelt6S) form a representa- whereA, A’ are in the fundamental representation of(3)J
tion of the groupH. This is true because to each rotat@n ae R®, andD(A) is the S@3) element associated & given
I'(S) is unique. IfI’(S) was not unique then the Skyrmion by D(A);; =1Tr riArjAfl. So generally the minimal energy
would be invariant under an isorotation, without any com-solution will have nine zero modes. We will henceforth ig-
pensating rotation. Assuming this isorotation is aboutdthe nore the translationdk® symmetry. The above is an SO(3)
axis, a simple argument shows that the right curréjtare X SO(3) action sinceA has the same effect odg[ x] as
proportional tor; (with 7; the Pauli matrices But this im-  — A does, and similarly foA’. If we label an element in the
plies that the nucleon densit§ must vanish because it is moduli space by{A,A’} we have the identifications
given by
X {AA ={A-A'}l={-AA}={-A—-A"}. (25

B= 242 €k TTRIR Ry @3 the moduli space approximation to multi-Skyrmion dynam-
ics involves lettingA, A’ become time-dependent and sub-
ForB=3 andB=9 Ug has tetrahedral symmetr=4 and stituting Eq.(2.4) into the Skyrme Lagrangia2.1). The
B=7 have octahedral and icosahedral symmetry respectivelyeduced Lagrangian is quadratic in the time derivatiags
and theB=5, B=6 andB=8 solutions haveD,y, Dy, =—iTrr AT A" b,=—i Tr n, AAT, and is given by
andDgy symmetries respectively.

One can act on the classical solutions withx SO(3) 1 1

xSO(3_) in the following fashioq to give a family of solu- LBzzaiUijaj+ zbivijbj_aiwijbj_MB (2.6
tions with the same energy. This generates the zero mode
moduli space. The transformations correspond to transla-

tions, rotations and isospin rotations. Explicitly with Mg is the mass of the solution and the tensors
Uij,Vij,W;; are dependent on the classical solutidfix],
Ug[x]—A’Ug[D(A)(x—a)]A’T (2.4  given by[11]

_ 1 d3 T 1 T 1 T T . T T .
Uij—g XTr U zTi,U U ETJ',U + U 0"kU,U ETi’U U 0"kU,U ETJ',U
W—i— d3 T uTE ulut ><VU+UTUUTl Ull[uteU,uf(xxV).U
ij=g | dXTr 5T (XXV); U, U757, U [UT9U, U (xXV);U]
1 1
vij:—gj d3xTr{uT(xxV)iuuT(xxV)jU}—gf d3x Tr{[UT9U,UT(xxV);U]
x[UT9,U,UT(xxV);U]} 2.7

where we have sét2=8 ande?=1/2. 1 1
This Lagrangian may now be quantized in the manner (i A ]==57A (K AJ=5A"7 2.9

described if11]. The momenta conjugate & andb; be-

come the body-fixed spin and isospin angular momentum

operators calle&; andL; which satisfy the S(2) commu-  and all other commutators vanish. This means tiiat J2

tation relations,[K; ,K]=ie; Ky, and similarly forL;. ~ andI?=K? The Hamiltonian becomes that of a rigid body

There also exist space-fixed spin and isospin angular mdh space and isospace. However, the above derivation of the

mentum operators denoted Byand|; related to the body- rigid body Hamiltonian is not complete since we have not

fixed operators by considered the discrete symmetry gradi SO(3), of the
solution. This means that rotating the configuration by an
elementSe SO(3) has the same effect on the configuration

Ji==Dj(A)TL;, l;=-Djj(A)K;. (2.8)  as the isorotatiod’(S). The isorotations need not be the

same as the rotations, but they do form a three dimensional

representation oH. Labeling {R,R’} as the set of zero

modes corresponding to rotations and isorotations, SO(3)

X SO(3), wehave the following identification:

The commutation relations are

1 1
[Li,A]:_—TiA, [J, ,A]:EATi,

2 {R,R'}={SR R'T Y9S)}, SeH. (2.10
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Thus the moduli space {SO(3)X SO(3))/H with the above isorotations and the operators which generate such transfor-
quotient. But we really need to consider the covering spacenations ard_; andK; . If the symmetry group element is of
SU(2)x SU(2) because 2 rotations or isorotations can be the form

noncontractible. If we view the moduli space as a quotient of » »

SU(2)XSU(2) then each closed loop corresponding to th, h'l={e 7161.7' e‘TZF‘Z" , 2.12

{S, T'(S)} will correspond to four closed loops since b&h

andI'(S) can be lifted in two ways to S@2). We now have then using Eqs(2.9) and(2.11) the constraints on the quan-

the identifications tum states arising from the symmetries of the classical solu-
tion may be expressed as
{AA}={hA, A'h' "1}, heH, (2.11 eialﬁl'LeiHZﬁZ'KN’}:i|\lf>, (2.13

where h and h’ are in the fundamental representation ofthe = depending on whether the loop corresponding to
SU(2) andD(h)=SandD(h’)=T(S). So+h and+h’' are {h, h'} is contractible or not in the full configuration space.
lifts to SU(2) of S andT(S) respectively. The elements A 2 rotation or isorotation of a Skyrmion of nucleon num-

. . ber B is contractible ifB is even and noncontractible B is
form the double groupd of H. Equation(2.1]) includes Eq. X :
(2.5 and determines the moduli space as SU{3U(2)K odd. So, physical statds’) also satisfy
whereK is the subgroup of SU(2J SU(2) consisting of the 27in-K _ a2min-L _(_1\B
elements{=h,xh’'}. If the representatioh’ of H lifts to a € [V)=e ) =(=1). 2.19
representatiod’ of H i.e. such thaD(I'(h))=T'(D(h)) for  This means that for eveB, | andJ are integral and for odd
heH, with T'(hyh,) =T (h)T'(h,) andT(~1)=—1, then B 'Ra?dJ,afe tha";r:”teflra'- o Ed2e, | |
K has the formH X Z,, but it is not always possible that eturning o the Lagrangian in 42.6), In genera

. S Ui, Vi, W, are diagonal. The number of different eigen-

can be lifted in this way. ! J )

values ofU;;, V;;, W, depends on the symmetry of the
Each element of the groul corresponds to one of the ; { J ] ;
o solution. Tetrahedral, octahedral or icosahedral symmetry
four ways of lifting a symmetry group element kh to the

covering space. For each element Kofit is necessary to implies the matrices have a single eigenvalue if the fields

determine whether this transformation is a contractible Ioo&ransform according to a three dimensional irreducible rep-

in the Skyrmion configuration space or not. WHgiis even resentation of the group. For mstancg, Bre 4 solution has
. L ; : ; . octahedral symmetry whereby a rotation by an element of the
this task is simpler since 72 rotations and isorotations are

contractible so there is no need to distinguish a rotation fromOCtahedral group combined with an isorotation leaves the

the same rotation plus ar2rotation. But in the oddB case so[utlon invariant. The rotations form th.e deflnlng_ represen
e L tation of the octahedral group and ¥§ is proportional to
this distinction matters and so it is necessary to be mor . . A . .
. . o e identity matrix with one common moment of inertia. But
careful. We deal with this on a case by case basis in Sec. |

As discussed in the Introduction. to determine Whichthe corresponding isorotations are in a reducible representa-

quantization is appropriate here we need to consider thtéon’ comprising irreducible representations of dimensions

Finkelstein-RubensteifFR) constraints[5]. These authors O?een?/r;(ljuet\év?t er;g :S;isrgﬁ??ﬁatﬂlﬁgi c?c?sss ttv;/rc‘)M(.jl\s/gr:ft
showed that it is possible to quantize the solitons as fermion§ 9 ) ) . ; |

if one lifts the classical configuration space to its simplyIShes be_cause th(_a symmetry is realized differently between
connected covering space. A quantization scheme Whicwﬁfr?rfgtﬁg\:’riizg E;Jgtgﬂfnzﬁe eigenvalue the Hamiltonian
treats single Skyrmions as fermions is to multiply states by a . yC 9 )

phase+1 (—1) when acted on by operators which implementIS that_of a sphencal_tob’ZO] (in space and isospacef the
contractible(noncontractiblg loops in the classical configu- Skyrmion has an axis of symmetry above the second order

ration space. They also showed that the exchange of twg.Or B=6 andB=8) thenUy;, Vy;, Wj; have two distinct
identical Skyrmions and the72 rotation of one of the Skyr- e_lgenvalues and the Hamlltoman is that of a symmetrical top
mions are homotopic loops thus proving that the usual notiorg'n. .;,uc:]h cases (]\c/ve éa_kg trbe ax\l/s of ;Vymhmet{%/ to Zﬁ;@e

of spin-statistics holds in the Skyrme model. Also, as a resul i), otherwise(for B=5) U;;, Vi;, W; has three differ-
of the fact thatm,(SU(2))=Z, there are only two topologi- ent e|genvalue§ and the Hgmlltonlan is that of an asymmetrl-
cally distinct loops in the space. Willianj48] verified that r?BtOE. 2) lblals|stor the .';::Ibeit Js<pjtce I(_)f it?tes '3 glxeln by
theB=1 Skyrmion can be quantized as a fermion by show-'~'*3" 3)®|l13.Kg), wi =3, Lag=J an

ing that a 27 rotation of it is a noncontractible loop in the <ls, Kﬁj: In all tha; f0|||o;NnS{ tr?]e thlrdnc(ﬁmp?ne?r:it?féhe
Skyrmion configuration space. This was extended 1fl] space and isospace angular momenirandl ; are omitted.

whereby it was shown that them2rotation of a charged The value ofJ; corresponds to the angular momentum ei-

Skyrmion is contractible iB is even and noncontractible B genv_alue of the state about a f|x_ed axis in space and is not
is odd. physically relevant. States with differing valueslgfcorre-

Thus the operator which corresponds to implementing aspond to the different states in an isospin multiplet, &sg.

closed loop on the configuration space acts on states with
eigenvaluet+ 1 according to the contractibility of the loop. In
our case the closed loops always correspond to rotations or'l thank K. Baskerville for pointing this out to me.
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=2 means the state has two more protons than neutrons efthe value of the rational map corresponds to the unit vector
These states will be energy eigenstates in all cases except
possibly forB=5, where the energy eigenstates will not gen- - 1
erally have definite values df5, L. ”RZW[ZRQR)'ZW(R)J_|R|2]' 3.2

It is an easy numerical task to calculate the moments of
inertia from the rational map generated Skyrmions. As deSkyrmions are given by maps froR? to S°. The idea if2]
scribed in the next section the Skyrme field is approximateds to identify the domairg? of the rational map with concen-
by U[r,6,¢]=exp(f(r)ng- 7) whereng is derived from a tric spheres iii%, and the target of the rational m&3 with
rational function ofz=tan(6/2)e'¢, wherer, 6 and ¢ are  spheres of latitude i83. A point in R® can parametrized by
polar coordinates anf{r) is determined numerically. Insert- (r,z); r denotes radial distance aadpecifies the direction.
ing this into Eq.(2.7) the moments of inertia are obtained by The ansatz for the Skyrme field may then be written as
radial and angular integrations. It is found that the rotational .
moments of inertia ;) become much larger than the iso- Ulr,z]=exp(if(r)ng-7) (3.3
rotational moments of inertiallj;) asB increases. For ex- ) , ) L
ample, for B=1 the moment of inertia isU;=V,; where f(r)_ is a raQ|aI functlon_ satlsfyln_g‘(O)z a, f()
=106.45; in units of 1% _, the rotational and isorotational =0. f(r) is determined numerically to give the closest ap-

moments of inertia being equal due to spherical symmetryProximation to the actual Skyrme configuration. [B this
But already atB=4 we have U;;=U,,=254.0, Uss ansatz was used to accurately approximate the known mini-

=306.4 andV;;=V,,=V33=1162.9.U;; and W;; increase mal_ energy Skyrmion soluti_ons fd8=1 to B=9 and the
approximately likeB while V;; increases likeB? (of course co_njectured buckyball solution of charge 17 was shown to
in certain cases some symmetry can imply that some mo=XIst. ) ) )

The Jarvis rational maps have a natural action of30

ments of inertia are zefoThe energies of rotational states . o ,
are like 1J(3+1)/V, and isorotational states are ligd(1  9iven by SU2) Mobius transforms on the complex coordi-

+1)/U whereV and U indicate the rotational and isorota- natez,

tional moments of inertia and and| indicate the spin and n a B

isospin eigenvalues. We see that states with the lowest en- 7 L’B_ ( _ _) e SU(2). (3.4)
ergy will always havd as small as possiblghere is a con- —Bz+a -B

tribution from theW moments of inertia but since these are R

of orderU it does not change the outcomé&o states with  This corresponds to a rotation of and generates space ro-
high isospin are energetically unfavorable and will not exist tations of the Skyrme field. For example;> €'’z is an anti-
this is true of real nuclei whose nucleon number is small. Axlockwise rotation byy about thex; axis, andz—1/z is a7
the nucleon number increases, electromagnetic effects wilotation about thex;-axis. An SU2) Mobius transform on
favor neutrons over protons but for all small nuclé ( the targetS? of the rational map corresponds to a rotation of

=30) the ground state has the smallest possible value ¢, and thus to an global isospin rotation of the Skyrme
isospin. So to find the lowest energy states we will alwaySig|d. A rational mapF (z) is symmetric under a subgroutp

set the isospin to its lowest possible value. of SO@3) if there is a set of pairgh,h’} such thatF(z)
To obtain the correct quantum states we need to detekatisfies

mine the(non)contractibility of the closed loops, correspond-

ing to elements oK, in the configuration space. To do this F(hz)=h"F(z), (3.5
we use the rational map description of Skyrmions which we
now review. h andh’ are SU2) matrices withD(h) e H andh’ acts onF

in the same manner as E®.4). Note that—h has the same
action ash in Eq. (3.5 and similarly forh’ so these are
SQO3) actions.D(h’) forms a representatior;, of H. Here

To describe the symmetries of the Skyrmions, and thugve are concerned only with what the symmetry grokip,
evaluate the FR constraints, we shall use the rational ma@nd the representatidnare, we are not at this point discuss-
ansatz for Skyrmions which was introduced #. Jarvis has  ing the contractibility of any loops. So the double coveHof
shown that there is a 1-1 correspondence betwee(2)SU does not enter here. Given a rational map it is easy to deter-
monopoles of chargk and holomorphic rational maps from mine its symmetriesi and the representatidi The rational
S? to S? of degreek [9]. The rational map may be written as map ansatz accurately models the known minimal energy
F(2)=p(2)/q(2), p(z) andq(z) are degree polynomials  Skyrmion configurations and clearly shows how the symme-
in z wherek is the monopole charge armlis a complex try of the Skyrmion is realized, i.e. what combination of
coordinate on the two sphere which can be written in termgotations and isorotations leave the solution invariant.

of usual polar coordinates as=tan(6/2)e'?. The pointz As explained in the Introduction the rational map ap-
corresponds to the unit vector proach is also useful in determining the FR constraints in

cases where the Skyrme configuration needs to be split up

1 into well separated configurations. We will assume that
ﬁz=—2[2Re(z),2Im(z),1—|z|2]. (3.1  Whenever a monopole configuration can be split up, respect-
1+]z| ing some symmetry then the same can be done for Skyrmi-

Ill. RATIONAL MAP GENERATED SKYRMIONS

114024-6



ZERO MODE QUANTIZATION OF MULTI-SKYRMIONS PHYSICAL REVIEW D61 114024

ons. Generally we begin with the minimal energy polyhedralsubgroup of SC8). But to see how monopoles can be sepa-
shaped solution and end with some configuration of wellrated in space the Donaldson maps are better suited. The two
separated Skyrmions both having some discrete symmetrapproaches are completely equivalent as descriptions of the
From the correspondence between monopole and Skyrmiamonopole moduli spaceve will use the notatiori-(z) for
vibrations[6] we can see that the Skyrmion can be vibratedJarvis maps an&(w) for Donaldson maps
keeping the relevant symmetry group element. The configu- In the next section the FR constraints will be worked out
rations are now separated maintaining invariance of the relusing these methods. Once this is done it is easy to find the
evant symmetry group element until they are far apart. Whagllowed states using Eq&.13 and(2.14). This determines
is important is how the relative isospin orientation of thethe spin and isospin of the states. To determine the parities of
final configurations are aligned. This is determined by thethese states it is necessary to know how the classical solution
initial vibration. In the cases we consider the vibration cor-behaves under P. For Jarvis rational maps, inversion corre-
responds to a monopole motion and thus the vibration is 0§ponds toz— — 1/z (z denotes complex conjugate pf. If
low frequency, so the Skyrmions separate in an attractivgne rational map has a reflection symmetry, then on the re-
channel. Thus the asymptotic isospin orientations are alignegtricted configuration space of rotations and isorotations P
to give an attractive configuration. This will be unambiguousmay be represented by some combination of body fixed ro-
in the cases we consider. S tations and isorotations. So P may be represented by some
To determine whether a monopole configuration can beody fixed operator which can easily be evaluated on the

separated while keeping a certain symmetry, again, it is easjngular momentum eigenstates to give the parity eigenvalue.
est to use the rational map description of monopoles. The

previously described Jarvis rational maps are suited to the
description of monopoles which are symmetric under some

SUbgrOUp of S@) But there is no natural action on these The minimal energyB=4 solution has octahedral sym-
rational maps which corresponds to translations of the monometry [4]. The octahedral grouf®y,, is generated by three
poles in space. There is an equivalent rational map descriRslements, a /3 rotation cyclically permutating the Carte-
tion of monopoles due to Donaldson which allows one to segjan axes and a/2 rotation about the; axis, and also the

IV. THE B=4 TO B=9 AND B=17 GROUND STATES

how the monopole configuration can be separated. ~ jnversion element. Ii21], using the instanton ansatz, it was
In [9], the Jarvis rational map is defined by consideringdetermined how the octahedral symmetry is realized so we
solutions to the scattering equation for monopoles do not need to use the rational map in this céke rational
(D~ D)y =0 3.6 map approach gives the same resulthe SU2) Skyrme

field may be written at) ,[x]=o+i#' 7 and the cubic sym-

along all radial lines through some point &2. D; is the ~ Metry is realized as follows:

covariant derivatived is the Higgs field and v is a complex

doublet in the fundamental representation of(3UThe ra- Cy  (wha?,m)(—yx2)=(—7 7' = 7)(X.y,2)
tional maps have a natural action of &Dgiven by Eq.(3.4)

but not a simple action of translations, since the choice of a C5: (7!, 72

(Y, 2,%) = (7%, 7%, ) (XY, 2)

point in R® used to define the map breaks translational sym- (4.1
metry. There also exists the Donaldson rational map which is
defined by solutions to the scattering equatiidré) along all Inv: (7w, 73 (=x,—y,—2)= (74,72, 73)(x,y,2)

lines inR® that point in a particular directiofi.0] (which we
take here to be the&; axis). Donaldson rational maps for
charge k monopoles are defined as based maps frlom
—CUoe, i.e. F(w)=p(w)/q(w), we C with g(w) a monic
polynomial of degreek and p(w) a polynomial of degree

less thank with no factors in common witlg(w). Herew . . . O e .
L . there is no FR constraint associated with 8ince we are in

represents a point in the{,x,) plane. The choice of such a S .
.the even nucleon number sector a Potation in space or in

direction breaks rotational symmetry and in general there i% 05 . losed . . : .
. . . X : pace is a closed contractible loop and is associated with a

no simple action which generates rotations on the ratlonarc'hase off+1)

maps. But rotations about Fhe p_referred axis used to_defirj% The FR co.nstraint for th€; element is easy to determine.

thg map have a simple action since they preserve this aX'ﬁ‘hec element implies that a#/3 rotation combined with

This will be enough for our purposes. Also, it is easy to seea _2;/3 isorotation leaved) [x] invariant. Simply repeat

how translations act on the monopole. A rotation of angle 4 '

shout he preered s and a vandaon n spce, e SEL0 Ve e o el wataon s n S
(v1,v2,X), acts on the map as follows: ' :

the C; action repeated three times is contractible this implies
F(w)—eXe 2kE (e 10(w—yp)) (3.7  theCz element itself must be contractible so all permissible
states must be eigenstates of Goperator with eigenvalue
wherev =v,+iv, andk is the monopole charge. The Jarvis (+1). In the orientation of the Skyrme field given above the
rational maps are obviously suited to the construction ofcontractibility of theC, element is not obvious. It is helpful
monopoles and Skyrmions which are symmetric under somt do a global isorotation which makes this more transparent.

where 7'=1(7w*—27%—27% and cyclically permutating.
Next, we need to work out the FR constraints associated with
the C; and C, elements(the inversion element cannot be
represented as a closed loop in the configuration space and

114024-7
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FIG. 1. B=4 Skyrmion separating to twB=2 Skyrmions.

If U[x]=h'U[D(h)x]h’'" then a global isospin trans-
formed  field U[x]=AU[x]AT  satisfies U[x]
=h’'0U[D(h)x]h twith i’ = Ah’A". In the orientation of Eq.
(4.1) the /2 rotation in space about the axis is accompa-
nied by a7 rotation in isospace about the&,fx,) axis. We
chooseA so that for theC, element above, the/2 rotation
in space about the; axis is accompanied by & rotation in
isospace about the; axis,[as an S@B) rotationD(A) maps
the (x;-X,) axis to thex; axis]. By a simple homotopy argu-

PHYSICAL REVIEW D 61 114024

for all values of\. Thus the effect of th€, transformation
is a 27 isorotation about the; axis onM2 while leaving
M1 unchanged

U4[x]— U [x—se;]etM72AU,[ x+ se;]ATe 41N (73/2)

(4.5

using Aé M7=~ Since theB=2 doughnut is a
boson a 2r isorotation is contractible and thus tlig action

on the cube is a contractible loop and sd-+al) phase is
associated to the operator representing@eelement. For

the above argument to work it is crucial that g symme-

try is respected at all times as the configuration is separated.

So the allowed states|¥) are of the form|J,Ls)

®|1,K3), with the constraints

e(27'ri/3v‘§)(L1+ Lo+ L3)e(2ﬂ'i/3\s‘§)(K1+ Ko+ K3)|q,> _ |‘I’>
ei(wlz)L3ei(w/\si)(Kl—Kz)m,) =|w)
(4.6)

reverting to the generators used in E¢.1). To find the

ment it is clear that a constant isorotation at every point ony o ved states is just a matter of finding simultaneous eigen-

the closed loop will not affect it§noncontractibility. To
show the contractibility of the&C, loop we can continuously

deform the loop into one in which is obviously contractible. J=
Since the contractibility of a loop is invariant under homo-
topy, this will show that the original loop is contractible. The
charge four cube can be deformed into two well separated

charge two doughnuts along tkg axis. It is known from the
vibrational spectra of th&=4 Skyrmion[6] that it is pos-

sible to do this while keeping th€, symmetry. The dipole
moments of the twd=2 doughnuts will point in opposite

values of the operators in EQL.6). The ground state is given
by |¥)=]0,00®|0,0); the first excited state with=0 has
4 and is

|\If)=(|4,4)+ \/?|4,o>+|4,—4>

If =1, the lowest state hak=2 and is given by

®0,0. (4.7

W)= 6|2,09{(i—1)|1,— 1)+ (i+1)[1,1}+{]2,2

directions so they attract. This may be seen schematically in

Fig. 1 (for accurate pictures of thB=4 to B=9 andB
=17 solutions se¢l] or [2]).

+]2,- 20{2V2|1,00+ (1—1)|1,)— (1+1i)|1,~ 1)}.
4.8

A similar type of scattering process also occurs for mono-
poles and th&C, symmetry is respected at all separations ofTo compute the parities of these states we know that from

the two 2-monopole cluste®2]. The two doughnuts are
positioned at (0,8) and (0,0;-s) with s—«, and are de-

the Inv transform UT(—x)=WU(x)W', where W
=7/ B)(Ki+K2+K3) The parity operator P is defined as P:

notedM1 andM2 respectively. The field may be expressedU(x)—UT(—x). So, on the configuration space of zero

as

U4[x]=U,[x—se;]JAU,[ x+se; AT (4.2
with A=i(cos¢r+Sin¢m,) for somep=<2m. U,[X] is the
axially symmetric(aboutxs) charge two solution and is a
unit vector along the axis in space. The form oA implies
that the dipole moments d11 and M2 are in opposite
directions. TheC, symmetry implies that a simultaneoa#2
rotation about thex; axis with a7 isorotation about the,
axis leaves the configuration unchanged, i.e.

U [X]— 2732y, [D (e~ M) x]e =232 (4.3

with 0\ <=/2. Because it is axially symmetrld,[ x] sat-
isfies[11]

U [D (e M732)x]= e~ 2Ny [x]e2M 5D (4.4)

modes the parity operator P can be represented by
elim3)(K1+K2+Ks) We may act with P on the physical states
to determine their parity. The=J=0 andl =0, J=4 states
both have(+1) parity, and thel=1, J=2 state hag—1)
parity. Thus we find that the ground state 8+ 4 has spin
and isospin zero and positive parity in agreement with the
ground state‘z‘He+. The negative parity state with=1, J

=2 is observed as the lowest isospin triplet sta‘ltbl‘(,
3He™,3Li~) [13]. From nuclear tables there are a large num-
ber of states with =0 that have energies less than the
=4 state. Our scheme for quantization is obviously very
restrictive, the configuration is not allowed to vibrate in any
fashion. Including the vibrational modes and allowing the
Skyrmions to separate accounts for some of the missing
states. This we will do in Sec. V.

The B=4 case has been previously considered by Wal-
hout [23]. There, a perturbative analysis was considered
about the full one parameter family of tetrahedally symmet-
ric Skyrmions. The FR constraints corresponding to the ele-
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ments of the tetrahedal group and the Botations and iso-
rotations of the individual Skyrmions were implemented and
the ground state was found to have0, J=0 agreeing with

the present, more restrictive, analysis. We included this case
as it appears that the question of ttm@n)contractibility of

the C, symmetry element of the cubic configuration has not —_— q‘_‘/
been previously considerdth Walhout's case this transfor-

mation is not a symmetiy

C

-
B=6 j—

The minimal energyB=6 Skyrmion had,4 symmetry.

It can be described in terms of a Jarvis rational map given by FICG- 2. B=6 Skyrmion separating to thre=2 Skyrmions.

(2l need the configuration to remain invariant under jsel-
Aia ement. But in fact we can separate the configuration keeping
F(z2)= w——— a=0.14. (4.9  all oftheD, symmetry and it is convenient if we do this. The
Z#(az'+1) most general charge six monopole wilh,y symmetry is

: i given by the Donaldson map
The D, subgroup is generated by two elements; eotation

about thex; axis and as rotation about thex;+x,) axis itwi+1

(combining these two elements give€a rotation about the F(w)= s tek (4.12
Xz axig). The elements act on the rational map Byl/z) w
=1/F(z) andF(—i/z)=—1/F(z), i.e. a rotation in space
about thex; axis combined with ar isorotation about th&;
axis leaves the solution invariant; andrarotation about the
(x1+x,) axis combined with ar isorotation about the,
axis leaves the solution invariant. A closed loop correspond
ing to the first symmetry group element is

Some value oft corresponds to the minimal energy Skyr-
mion. Now let t=e?>>x; F(w) is given by ie®/w?
+ 18, Using the formula given ifi24], this corresponds to
three charge two monopoles lying on theaxis, one at the
origin and the other two at (0;0s). The charge two mono-
poles must approach axially symmetric monopoles-asc
iN(71/2 —iN(4/2 —iN(4/2 since the overall configuration h&s, symmetry about thg
Uolx]—emPUg[D (e )xje ) (4.10 axis. By our previousgargumentﬁss‘wg assun%e thatahé

with 0\ < 7. Skyrmion can be split up in the manner keepihg symme-
To determine how the FR constraints act we need to know: This is shown schematically in Fig. 2.
whether the closed loops generated by @eelements are e dipole moments of thB=2 Skyrmion at (0,&) and

contractible or not. To see that the loop in Eg.10 is  (0,0,—S) pointin the same direction and opposite to that of
noncontractible is not obvious by looking at the polyhedralthe B=2 Skyrmion at the origin, so the configuration is at-
solution. It is helpful to continuously deform the minimal fracting. If Ug[x] is of the following form it will be D,
energy solution into three well separated charge two doughSyMmetric as— o:

nuts, one at the origin and the other two equidistant along the _ B

X3 axis with their separation2very large. We now show Uelx]=Ualx=ses]msUlx] mUa[ x ¥ 58] (4.13
that it is possible to do this for monopoles keeping @  Again U,[x] is axially symmetric about the; axis. Acting
symmetry about the; axis at all times, therefore by our jith the C, element has the effect of rotating and isorotating
earlier assumption the same can be done for Skyrmions. It isach of the charge two doughnuts about an axis in the plane

easiest to see this using Donaldson rational maps x¢ths  of the doughnuts and also exchanging the Skyrmion at
the preferred direction. Rotations about theaxis have a (0 0s) with the one at (0,0; s), this is

simple action on the rational map, given by K8.7). Also,

reflections can be defined on the m§@g|, so a= rotation Ugl x]— U3 x]US x]US[X] (4.149
about thex; axis can be defined by combining a reflection in

the (x;,Xs) plane and a reflection in thex{,x,) plane. A Where

rational map of degre&, F(w)=p(w)/g(w) has m rota- NE —in(r —in(r
tional symmpetry abgut thEl(ax)is i?( yat) Ug[x]=e'“ AU D (e M) (x—s(n))Jem M

— Ug[X] — ei)\(71/2)TlU2[ D(efi)\(T:L/Z))X] Tlefi)\(rll2)
w: [(p(w)) .19 (4.15

A US[x]=e N2y, [D (e M) (x+ (1)) ]e M7/

Herel (p) is the unique polynomial of degree less thaiat ~ s(\)=sD(e'*("1?)e;, and 0<\ <. The interchange of two
satisfies| (p)p=1 modg. Since we are determining the identical doughnuts is contractible since they are bosons but
contractibility of theC, rotation about thex; axis we only  rotating and isorotating each of the doughnuts about an axis
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in their plane is a noncontractible logpl] and thus doing it =1 one chooses a lift o to the double cover of thB=1
As mentioned earlier, it is the noncontractibility of the abovepe Jifted for all otherB. But it is not obvious to us how to do

C, element for the charge two torus which ensures thens is practice. The role of parity in the Skyrme model has

ground state obtained by zero mode quantizing B2  5i50 pbeen discussed recently[RB].

solution gives the correct quantum numbers of the deuteron 1o symmarize, foB=6 the states found are in agreement

ie.1=0, J=1 [11]. If the loop was contractible then the ith the lowest energy states for nucleon number six,

ground state obtained by zero mode quantization would havgodulo our assumption about the parity. The ground state
I=J=0. has spin 1 and positive paritglLi*. The first excited state

The otherC, loop may be treated in a similar manner 10 a5 gpin 3 and positive parity. The lowest statel triplet
see that it is also noncontractible. It is easiest to transfornegHe+’ gw, ﬁBe+), is observed to have spin 0 and positive

the f!eld by a global isorotation so that the rotation a_nd 's_o'garity in agreement with that found above.
rotation act about the same axis, then the analysis is identical
to that above. We thus find

B=8
e Lt K| w) = —|w) The B=8 case is similar to thB=6 case treated above.
The minimal energyB=8 Skyrmion hasDgy symmetry. It
el 2Lt Lol oy = — | ) (4.16  can be described in terms of a Jarvis rational map given by

(2]

This gives the ground state g50)®|0,0). The first excited 6

state withl =0 is |3,00®|0,0). The lowest state with=1 is F(z)= (z’~ia) a=0.14 (4.17)

given by|0,00®|1,0). To determine the parity of the states Z(iaz®-1)’ o '

we use the reflection symmetry of the rational map

—iF(\iz)=F(z). This implies that on the zero modes the TheDg subgroup is generated by two element§,,aotation
parity operator can be representedrase'("2Ksel("4Ls  apout thex,; axis and aCg rotation about thet; axes. These
However there is an ambiguity here since the parity operatoact as F(1/z)=1/F(z) and F(e'™3z)=e 2"3F(z). This
can also be represented by the above operator times any gheans that ar rotation in space about thg axis combined
ement ofD,, since this has the same effect on the classicalith a 7 isorotation about the, axis leaves the classical
solution, i.e. we could also write P as solution invariant; and ar/3 rotation about the; axis com-
e | (MAKsgl(ml)Lsgim(L1K1) Byt the C, elements oD, i bined with a 2r/3 isorotation about the; axis leaves the
the (x,,X,) plane are noncontractible so the operators corresolution invariant. Again, for th&, loop it is necessary to
sponding to them act on the states with eigenvatug). So  continuously deform the minimal energy solution into three
different choices oP can give different results. The above well separated charge two doughnuts, one of charge four at
two choices ofP give opposite parity eigenvalues for all the origin and one each of charge two equidistant along the
states. We see no theoretical reason to choose one above theaxis with their separation2very large. Then, the charge
other. The three states found above have the correct spins ffur doughnut at the origin can be separated into two charge
the corresponding ground and first excited state§lofand  two doughnuts along the, axis. This process can be seen to
the ground state of the isospin triplt-gll-(e, oL, iBe). If we  occur for monopoles in the following way.
chooseP ase™(™2Ksei(74Ls then this gives the three states  The most general charge eight monopole viitgy sym-
each having positive parity in agreement with experiment. Sanetry is given by the Donaldson map
we can choosé so as to give the correct parities of the
states but theoretically there is an ambiguity in its definition. itwh+ 1
A similar problem happens in the odicase. TheB=1 F(w)=
Skyrmion is spherically symmetric 98 can be represented
as the identity operator, or alternatively, as & Potation.
SinceB is odd the two choices differ on the quantum statesAgain, some value of corresponds to the minimal energy
Using the convention that the nucleon have positive paritySkyrmion. Lett=e?S—oc; the formula given irf24] implies
for B=1 we can takeP to be the identity operator. For all that this corresponds to two charge two monopoles lying on
odd B, 27 rotations are noncontractible so again there arehe x; axis at (0,6:s), and a charge four monopole at the
two choices ofP acting on the states?, and e>™"-P,  origin. The monopoles must approach axially symmetric
where P, is the operator which corresponds classically tomonopoles as—o since the overall configuration h&3;
inversion. As in theB=6 situation we see no way of decid- symmetry about the; axis. Next, the charge four torus can
ing which choice is correct. Thus, in these cases we wilbe separated into two charge two doughnuts well separated
make no prediction for the parities of the states. This ambialong thex,; axis keeping th&€, symmetry about th&,; axis.
guity may be cured by lifting to the full configuration space. The charge four doughnut has a Donaldson rational map
This space is doubly connected for Blland in the quantum F(w)=1/M*. This can be deformed tB(w)=1/(w?—v?)?
theory states are defined on this double cover. We need to lifor v € R with C, symmetry about the, axis preserved, cf.
the operatoP:U[x]—U'[—x] to the double cover. FoB Eq.(4.11). Asv— o this becomes two charge two doughnuts

s ek (4.18
w
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5 is necessary to be careful when considering ¢hencon-
- - = tractibility of the closed loops since? rotations are non-
~ contractible. For instance if a configuration is invariant under
T e et — = a 7 rotation about some axis then the clockwise rotation has
B2 L a different FR constraint to the anticlockwise rotation since
&) b= oy B2 they differ by a 27 rotation.
To determine thénon)contractibility of the closed loops
FIG. 3. B=8 Skyrmion separating to foul8=2 Skyrmions. first deformF(z) until b=0. F(z) now hasD, symmetry

including aC, rotation and isorotation about the axis.
separated along the -axis. Again, a similar process is pos- Explicitly, F(z)=—iF(iz). Or the path
sible for the charge eight Skyrmions. This is indicated in Fig. _ _
3. z—etz, Foe M, 0sA=<#/2 (4.21

The dipole moments of the Skyrmions at (8)0and _ _ )

(0,0,—s) point in the same direction and opposite to that ofiS @ closed loop on the configuration corresponding+c0.
the charge four Skyrmion at the origin, so that the configu-This path corresponds to an anti-clockwise rotation7g
ration is attracting. Acting with the symmetry group element,about thexs axis combined with a clockwise isorotation by
which is a= rotation and isorotation about thg axis, has ~ 7/2 about thex; axis. The path traversed twice is a contract-
the effect of rotating and isorotating each of the four chargdble loop since it is the product of two closed loops. This
2 doughnuts about an axis in the plane of the doughnuts arl@0P must also be contractible for the minimal energy solu-
also exchanging the Skyrmion at (0, 6) with the one at tion. The path is now given by E¢4.21) with O<A<. So
(0, 0, —s). The interchange of two doughnuts is contract-an anti-clockwise rotation c_omblned with a clockwise isoro-
ible since they are bosons; rotating and isorotating each dgtion by 7 about thex; axis is a contractible loop. From
the doughnuts about an axis in their plane is a noncontracEds. (2.12 and (2.13, this implies that the operator
ible loop, so doing it for four doughnuts the total loop is € " -2"*3) acting on the allowed states givés1).
contractible. TheCg element can be written as a product of ~ Just to be clear about this suppose instead that for the
the aboveC, element with aC, element in the %;, X») solution withb=0, we rotated it byw/2 anticlockwise and
p|ane at an ang|eT/6 to thexl axis_ Th|SC2 |00p may be iSOI’Otfited it by 3r/2 anti-clOCkWise, again this is a closed
seen to be contractible in a similar manner to that above. Sdo0Pp, i.e.

hysical states must satis - :
physi u isfy z—ez, F—el'F, 0=s\=u/2. (4.22

im(Ly+Kyq) —
€ ) =I¥) Repeated this loop twice gives a contractible loop which can

el T3(La=2K) ) = ), 4.19 be written as

iN —iNpdiN
This gives the ground state #,0)®|0,0). The first excited z-e’z, Foe RelF, Oshsm. (423
state is given by|2,00®(0,0). Their parity may be deter- This is the product of the loop in Eq4.21) (with 0<\
mined from the reflection symmetry of the rational map < ) with a 4+ isorotation which is contractible so we reach
emRE(eli"0)7)=F(z). This implies that on the zero the same conclusion. Note that the operaghf(tz—Ks),
modes the parity operator can be represented Pas which acts on states with eigenvaltel), does not corre-
=eli70)(L3=2K3) There is no parity ambiguity here sinBds ~ spond to a closed loop traversed twice when acting on the
even and all the FR constraints atel. Thus, both states configuration withb=0 i.e. whenb=0, F(z) #iF(iz).
have positive parity. Again, this is in agreement with the spin  Next consider th&C, symmetry group element. It is pos-
0 positive parity ground state of Beryllium §Be", and the  sible to deform the minimal energy charge five Skyrmion

first excited state has spin 2 and positive pafit$]. into a configuration of éB=3 tetrahedron and tw&=1
Skyrmions on opposite sides of the tetrahedron. This is indi-
B=5 cated in Fig. 4.

o ] The B=3 looks like an anti-Skyrmion at large distances
The minimal energyB=>5 Skyrmion hasD,q symmetry.  from jts center so the total configuration is attracting. The
It can be described in terms of a Jarvis rational map given by — 5 so|ution was originally found by relaxing such a con-
figuration[1]. The B=1 Skyrmions will be on thex; axis
. a=3.07, b=3.94. (4.20 equidistant from the ori_gin v_vith the same i§ospin orientation.
The B=3 tetrahedron is oriented so that its axes of second
order are the;, X, andxs axes. It is easily seen that such a
The rational map has the symmetrie§—z)=—F(z) and configuration of monopoles can be separated keepin@€the
F(1/z)=1/F(z) (for all a, b). This is a simultaneous rotation symmetry about the; axis at all times since the set &f
and isorotation byr about thex; axis and a simultaneous =5 monopoles withC, symmetry about the&, axis is con-
rotation and isorotation byr about thex; axis. nected. We take th€, element to act by an anticlockwise
The spin and isospin of the states must be half-integratotation combined with a clockwise isorotation. The effect of
since the nucleon number is odd. In the odd nucleon sector this is to rotate anti-clockwise and isorotate clockwise the

_ 2(2*~ibz’~a)

F(z)=
(2 az*+ibz%—1
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FIG. 4. B=5 Skyrmion separating to twB=1 Skyrmions and
a B=3 Skyrmion.

\

tetrahedron and thB=1 Skyrmions by about thex; axis
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isodoublet the first excited state is a spistate at excitation
energy approximately 5 MeV. So the ground state we obtain
is the first experimentally observed excited state grﬁe(,
SLi).
3

The inclusion of the vibrational modes will give new
states but the lowest energy state will still be thel, J
=3 state. It is possible that a more careful quantization
which allows the Skyrmions to separate will raise the energy
of the spin} state above that of the spinstate but this is not
at all obvious and would be a very challenging project.

B=7

The minimal energ =7 Skyrmion has icosahedral sym-
metryY. It can be described in terms of a Jarvis rational map
given by

and interchange the twB=1 Skyrmions. The zero mode
analysis for theB=3 tetrahedron was considered [ih2].
The loop corresponding to the anti-clockwise rotation and

T glockw@se isorotation turns ou.t to be contractible. We will The icosahedral group is generated by two element; a
review this for theB=9 case which has tetrahedral symme-

bA—72*-bA-1
F(2)=

= , b==7/5. (4.2
2(Z8+bZ*+72°—Db) V715, (427

try, the analysis is the same as for tBe=3 case. For the F,

rotation and aCj; rotation. The rotations form the defining
representation o¥ (using the notation of26]) and one

B=1 Skyrmions a rotation combined with the opposite iS0-¢an check that the accompanying isospin transformations are
rotation about the same axis leaves the configuration uny, the other three dimensional irreducible representafiign

changed due to their hedgehog nature. The interchange

hich only differs fromF, in that, elements which ik, are

two identical B=1 Skyrmions is a .noncontractiblle loop. represented by a/5 rotation are represented , by a
Thus the overall loop is noncontractible. So, physical stateg /5 rotation. Again we are in the odd nucleon number

satisfy
ei m(Lg+ K3)|\I,> _ |\P>

e LK)y = — | Py, (4.24

sector and so the spin and isospin of the states must be half-
integral.

To determine the FR constraints is more complicated in
this case. We want to use the representation theory of the
icosahedral group to determine the allowed states. But as

Since the rotations and isorotations act in the same way w@iscussed in Sec. |l we need to lift the @Delements to

can rewrite Eq(4.24) as

e' ™3| W) =[ )

SU(2). Generally it is not possible to embed a group into its
double group while maintaining the group structure, i.e. to
choose a subgroup isomorphic b in the groupH. This
means we cannot immediately use the representation theory

(4.25
whereM;=L;+K;. The ground state itM,M3)=|1,0). In

e ™1 W)= —| W) of the icosahedral grouy. We need to consider the grop
consisting of the elementsth,*=h’'} where the elements
" D(h) form the F; representation ofY and the elements
terms ofl, J this is D(h’) form theF, representation of. The element form
11 11 1 1 11 the fundamental or defining representation, dendtgd of
|W) = ’—,—> ® ‘—,— —> —|=,- —> ® —,—> . (4.2  the double groupy. The element$’ form the other irreduc-
2'2 2" 2 2" 2 2'2 . . . ey
ible two dimensional representation 6f denoted;, as can
As discussed earlier we will ignore the question of parity inbe seen from examining the character tablerofsee Table
the oddB sector. We recall that this is the only case wherel). The character table of the double grovips given above,
the stategl,K3)®|J,L3) are not necessarily eigenstates of with 7= (1+ \/5)/2. Both the representatioly andI'; are

the Hamiltonian since the symmetry group does not have anpresentations of the double groMpand are not represen-
axis of order higher than the second. But it is easy to see th%tions ofY, i.e.[,(—y)=—T;(y) fori=6, 7, whereyis an
y I 1 1 il il

states withl =3, J=3 are eigenstates of the Hamiltonian, — .
2 : g abstract group element &f. This means that the elements in
K are of the following form:

since the Hamiltonian only causes transitions fram to
Ls+2, L, andLs—2, and similarly forK;. So thel =3,
J=1 state is an energy eigenstate. This is inconsistent with
the observed isodoublet ground stajél€, 3Li) which has
spin 3 [13]. This state can be obtained frofM,Mj)

K={ITs(y).T7(9)).(Ne(y), ~T2(y)y e Y}. (4.28
Or as a groupK=HXZ,. We now restrict to the group

=12,2—|2,—2), which satisfies Eq(4.25 but this has
higher energy thafM,M3)=|1,0). For the helium-lithium

elements(I'g(y),I'7(y)), these form a subgroup & which
is isomorphic toY [note that elementél’g(y),—I'7(y)) do
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TABLE I. Character table fol. Since the vibrational frequencies are as yet unknown it is not
clear whether in our analysis these states will have lower

E E 12Cs 12C, 12C3 12C2 20C; 20c, 30C,  energy than thé=3, J=7 state. The ground state may be
written as
r,(A) 11 1 1 1 1 1 1 1
IyF) 33 7 7 17 17 0 0 -1 \F? 3 \F? 7 1 1
Io(F) 3 3 14 17 7+ + 0 0 - V>=1V193"3/ " V152°3/(®3 " 3
T(G) 4 4 -1 -1 -1 -1 1 1 0
I's(H) 5 5 0 0 0 0 -1 -1 1 7|7 3 3|7 7 11
"1 V192'2/ " V102’ 2/[®2°2/)
I's 2 2 7 -7 -l+7 17 1 -1 0
r, 2 2 14 -1+7 -7 T 1 -1 0 (4.29
Iy 4 -4 1 | 1 -1 1 0
Ty 6 -6 -1 1 1 -1 0 0 0 B=9

The minimal energy=9 Skyrmion has tetrahedral sym-
not form a subgroup oK]. Each element in this group cor- Metry. It can be described in terms of a rational map given in
responds to a symmetry of tH®=7 Skyrmion and there [2]. The rotational subgroup is generated by two elements, a
exists a corresponding operator which acts on the allowe&2 rotation about thex; axis and aCj rotation about the

states with eigenvalue: 1. BecauseY forms a subgroup of (X1+X;+X3) axis. The rotations form the definirfg repre-

K, this implies that the states transform by a representation entation of thg tetrahedrql grodpand one can check that.
the groupV Since the states acquire onlytal phase under the accompanying isorotations are also in the representation

; ) . . F. Here we are in the odd nucleon number sector and again
each operation the representation must be one dimensiongj, spin and isospin of the states must be half-integral. To
The only such representation is the trivial one. This mean

that the allowed states have eigenvaii corresponding to Yetermine the FR constraints here is similar to that for the
9 b 9. %:7 case. The fundamental representatio pthe double

FR constraints without any need of separating the configuragroulo of the tetrahedral group is denoteds. By analogy

tion into individual Skyrmions. This is because there are noWith Eq. (4.28 the groupK is of the form

nontrivial one dimensional representations of the grgujn K={((y),d(y)),(d(y),— ¢(y)),yeﬁ. (4.30
the previous cases @&=4,6,8 the symmetry group of the

minimal energy configuration had, D, andDg symmetries g againK is of the formK=TXZ,, and sinceT is a sub-
respectively. Each of these groups have nontrivial one di- roup of K =T 7,, states transform by a representatioﬁ_'of

mensional representations. Thus in these cases, grou thedhy. . . -
pre . group Which must be one dimensional. There are no nontrivial rep-
alone cannot give the answer and it was necessary to exam-

ine a configuration of well separated Skyrmions in order tof€Seéntations off [20]. Since the rotations act in the same
determine the contractibility of the loops. way as the isorotations the constraints can be expressed in

Returning to theB="7 case, to find physical states of spin rms of the operatorlsl; =L; +K; just as for theB=5 case,
J, isospinl we need to decompose the sgimepresentation @dain using Eqsi2.12 and(2.13. Since all constraints are

of SU(2) into representations of and the spifl representa- trivial we get

tion of SU(2) into representations of. We then take tensor e' ™3| W) =| )
products of these representations and look for valugs af ' N
that give singlets ofY. We need to take into account here e (TREI M Mot Ma) | ) = | ), (4.31

that the isorotations are in the, representation oY, recall . .
Egs.(2.12 and(2.13. We keepl = 1, because states of high This analysis is the same as that presented by CargdZjn

isospin are energetically unfavorable, this means that th r the tetrahedrally symmetri®=3 solution, where he

. . = ound the ground state to He=J=3. The state igM,M
isospin states transform by tH& representation o¥. The =[0,0). In ?erms ofl J this is z 3 3)
lowest allowed] is that which its decomposition into repre- " '

sentations ofY contains thel’; representation, sincé’; 11 1 1 1 1 1
®1I'; contains the trivial representation. We find that the low- W)= §'§> @5~ §> N ‘5’ N §> ® ‘§’§> - (432
estJ is £ [26], in contradiction with the observed isodoublet
of spin 2. The spin} state we found appears as the secondAgain this is not in agreement with the isodoublet of beryl-
excited state of the lithium-beryllium doublet at 4.6 MeV. lium and boron of spir§ (3Be, £B). The state obtained is the
The first excited state has spjnat 0.5 MeV. first excited state with excitation energy 1.6 M¢V3]. The
As noted earlier, it is possible to combine the vibrationalobserved ground state can be obtained here by including the
modes with the rotational modes. This will give an enlargedvibrational modes but it will have higher energy than the
set of states. The experimentally observed ground state witkpin 3 state. This is a similar situation to above Br=5
I=% and J=3 can be obtained in this manner. The first with no obvious way around this difficulty even if the vibra-
observed excited state with spi can also be obtained. tional modes are included.
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B=17 SeH, (RR)eSO3)xSO3), veV. (5.1

For B=9 the minimal energy Skyrmion configurations
are not yet known. Fromil] it is expected that the minimal
energy solution will look like a polygon with 12 pentagons
and 2B—7) hexagons. But aB increases there are many

I'(S) is as before ang(S) is the action oH on the space of
vibrations. As an example to see that this gives the correct
configuration space consider tBe=4 Skyrmion which has a

vibrating cube alternately separates into four Skyrmions on
the vertices of one of the tetrahedf@ositive modg¢, then
Tontracts to the cube and then separates into four Skyrmions
on the vertices of the dual tetrahedr@regative mode Act-
ing with the /2 rotation andmr isorotation about th&; axis
17715 187404 11951 (which_ is a symmetry of the cybés equivalent to inter-
= i (4.33  changing the positive and negative modes. So as not to over-
22255+ 1191+ 1872°+ 17) count the configuration space we must identify rotating and
isorotating the configuration about thg axis with inter-
This case is similar to that fd=7 which also has icosahe- changing positive and negative vibrating modes.
dral symmetry. It can be checked from Edg.33 that the Quantum states are given by the direct product of Wigner
rotations form the defining representatibn and the isoro- functions on SU(2X SU(2) with harmonic oscillator wave
tations form the representatidf,. This is exactly the same functions onV with the proviso that the states arkinvari-
as forB=7. So we find the ground state has 3, J=1. ant. Again, in a manner similar to that treated for the zero
However, from[13] this state is the eighth excited state of modes the FR constraints determine hdwnvariance is to
the isodoublet{’O, §’F) whose ground state has sgin be implemented. The FR constraints for the closed loops
corresponding to the above actiontdfare identical to those
when just considering zero modes. This is because the loops
are closed for all vibrational amplitudes, so the loop can be
To go beyond the first approximation of just consideringdeformed to the case of amplitude zero, i.e. the zero mode
the zero modes it is appropriate to include the vibrations ofase. When the classical solution has a reflection symmetry
the Skyrmions. These have been calculated for the minimahe vibrations corresponding to the vector spagehave a
energyB=2 andB=4 solutions[6]. The approximation of definite parityp;==*1. It is possible to check that the parity
treating the interaction potential of the Skyrme configura-operator for the rotational and vibrational states is given by
tions as a harmonic oscillator potential is not very accuratePIl;p{' where P is the parity operator acting on the zero
since, as the minimal energy configuration separates into inmodes and theth vibrational state is in thexth excited
dividual Skyrmions the potential flattens out. A more accu-mode.
rate treatment will involve estimating the inter-Skyrmion po- Here we will concentrate on thB=4 case since the vi-
tential at intermediate and large separations. Thus it shouldrational spectra has been calculafédl The spectra was
not be expected that the inclusion of vibrational modes willcalculated at finite pion mass, whereas we are working with
yield accurate results for masses, binding energies of stategro pion mass. But the vibrational frequencies founfbin
etc. do not appear to vary greatly with the value of the pion mass
Including the vibrational modes involves the coupling of used, so we will use their values. Anyway we are not inter-
harmonic oscillator wave functions to the rotational and isoested in obtaining accurate numbers here, we just want to
rotational wave functions. However, they do not combine inindicate how to couple the rotational and vibrational modes.
an arbitrary way; the interaction of the rotations and vibra- To find the allowed states is quite easy. If one is only
tions is described if15] for general soliton models. The interested in what states are allowed and not their depen-
space of rotations and isorotations (SO(3)x SO(3))/H; dence in terms of 3,K; etc., then this can be determined by
againH is the symmetry group of the minimal energy solu- the representation theory of the cubic symmetry gr@yp
tion. The vibrations fall into representations Hf and the alone. The configuration space is SOX330(3)XV quo-
space of vibrations is a vector space denotedvby is a  tiented byO as described above. Since all the FR constraints
direct sum of vector spacég with H acting irreducibly on  all + 1, the allowed states a@ singlets of SO(3X SO(3)
eachV;. X V. From Eq.(4.1) we know that the rotational S@) trans-
The total configuration spac& say, is now a vector forms as the definind-; representation oD and that the
bundle over(SO(3)xSO(3))/H. For ease of notation we isorotational SC8) transforms as th&€® A, representation
will restrict here to the case of evdhso we do not need to of O, using the notation of20]. From this we can work out
worry about the double covering. It can be included withouthow a spinJ, isospinl state decomposes und@r The rep-
much difficulty. 7 can be defined by taking the product resentations 0O that the vibrations form were computed in
space SO(3% SO(3)xV with the following equivalence: [6] and so we can determine how the product SO(3)
X SO(3)XV transforms unde© and so we can easily read
(R,R",v)=(SRR'T%S),p X(S), off which combinations of, J, and vibrations are allowed

symmetric configuration arises, the buckyball solution with

icosahedral symmetry. Due to its enhanced symmetry, it i

believed that this is the minimal energy solution ®+17.
This solution is described by the rational miaj

F(2)

V. VIBRATIONAL MODES
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as states. FoB=4 the rotational moments of inertia are all 2 | .
equal,V;;=&; (18 MeV) %, the isorotational moments of Y|m(X):; D A)*Y(x) (nosumor) (6.2
inertia  are U;;=U,,=(82.2 MeV) !, Uz=(68.2
MeV) %, and the cross term between rotations and isorotagng the fact thaf¥|2 can be written as a sum of terms
tions vanishesyV;; =0. These values are obt_aingd using theD;b(A)Dib(A)*, whereD;b(A) are Wigner functions. The
values off ., e from [27]. Thus the Hamiltonian is direct product and orthogonality properties of the Wigner
functions are then used to compuyig(x). We choose the
space fixed angular momentum in tkg direction, b, equal
. . . N to J, i.e. “spin up.” Considering only rotational and isorota-
in units of MeV. The energies of the vibrational staté&), jona| wave functionspy (x) will have the same radial de-
and their representations of the cubic group ake" @4 pengence as the classical solution. But the angular depen-
MeV), (A;,104MeV), (F;,107 Me\AJ,r (F2,132 MeV),(A1,  dence will be changed by quantum effects. In the Skyrme
155 MeV), (F;, 168 MeV), and F;, , 189 MeV), the = model there is no decomposition of angular momentum into
denotes parity. Restricting =0, i.e. 3He, the first few  orbital and intrinsic spin angular momentum. However, cal-
excited states aré=2" at 147 MeV,J=0" at 155 MeV, culating the spatial probability distribution can give some
J=2" at 160 MeV, and then the first excited zero modeinsight into what the intrinsic spin and orbital contributions
state,J=4" at 178 MeV. The observed excited states ofof the nuclear state are. If the nuclear state is mostly in a
‘sze+ differ considerably from thig13]. The first few ex- orbital S-state its nucleon density will also be almost spheri-
cited states areDat 20.1 MeV, 0 at21.1 MeV, and 2 at  cally symmetric. For all the examples treated below the
22.1 MeV. The most obvious discrepancy is the overestimaguantum nucleon density is more spherically symmetric than
tion of the excitation energies, this is partly due to treatmenthe classical nucleon density, it being exactly S-wave in a
of the potential as of harmonic oscillator type. Nonethelessiumber of cases.
this shows that the vibrational states are important and are of For B=4 we found the ground state to haivve J=0, the
the same order of energy as the pure rotational states. first excited state witH=0 hasJ=4 and the lowest state
The experimentally observed ground state fi{ jBe)  with =1 hasJ=2. Inserting the above states into F6.1)
hasJ=3. For B=7 the lowest state with isospin=3 was we trivially find the probability distribution of thé=0, J
found to havel=%. By the same methods as above, using=0 state to be spherically symmetric. This is also true of the
the monopole vibrations as a prediction for the low lying ground state foB=8. For thel =0, J=4 state ofB=4 we
Skyrmion vibration frequencies, a state b3 can be ob- find the angular dependence to be mostly S-wave itd
tained. If the vibrational frequency of this state is not toocontributions and some very smah-6 andl=8 contribu-
high it may have lower energy than tde= 2 and thus give tions,
the correct ground state.

H=41.1K?—7.0K3+9.0L2, (5.2)

Py (0,d)x{Y o= 0.045Y 45— 0.027Y 44+ Y,4_4)+0.000 ¢,
VI. NUCLEON DENSITIES OF THE STATES +0.0000% g} . (6.3

Giyen the express_ions for the: states in terms of WigneEere (6, ¢) are the angular coordinates on physical space, as
functions, other physical properties may be calculated suc pposed to the coordinates @(A). And for thel=1, J

as the nucleon density of the quantum state. The nucleogz state we again find the nucleon density to be mostly

dens_|ty_ of th_e classical configurations are quite Symmetr'caépherically symmetric with a small=4 contribution
and it is of interest to know how quantum effects change

thI_S_. le_en_a s_tatelf, we want an expression f_or the_prob- Pw( 0, )<{Yoo—0.01Y 40— 0.04Yst Ys_o)}. (6.4
ability distribution py(Xx) on physical space which is inter-
preted as the nucleon density. This is done by averaging thEhus when quantum effects are included the nucleon density
classical nucleon density over the space of zero modesecomes spherical or near spherical. It is known that the
weighted with |W|? [16] (we restrict here to zero mode ground state ofHe is completely S-wave. In real nuclei the
state$. Denoting the classical nucleon density Byx), the  nucleon density is large up to a certain radius and then falls
spatial probability distribution for the quantum state is de-off quickly. Our quantum states have the same radial depen-
fined as dence as the classical solutions which is somewhat hollow,
this becomes very noticeable for larger nucleon numbers.
For thel =0, J=1 ground state oB=6 it is found that

(6.1 Pw(6,h){Yoo—0.03Y5}. (6.9

This result is slightly different than for the@=2 deuteron. In
both cases the ground state is givenlby0 andJ=1 with

A - the samel; dependence but for the deuteron the quantum
spherical harmonic¥ ,,(x), with x=D(A)x, then using the probability distribution is of a dumbbell shap&6]. Here, for
transformation properties of spherical harmonics under rotatheB=6 solution the quantum probability distribution is of a
tions toroidal shape. The difference arises because the classical

p\p(x)=%f B(D(A)X)|W(A, A’)|?sinddodgpdiy

whereD(A) is parametrized by the Euler angles, &,).
pw(X) is evaluated by expanding(D(A)x) in terms of
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nucleon densities of the two solutions are different. NonetheSkyrmions. This was necessary in order to determine the FR
less, the wave function is predominately S-wave and this igonstraints. The vibrational spectra of the minimal energy

also in agreement with experiment. B=2 andB=4 Skyrmions for low frequencies is in corre-
The ground state foB=7 may be written as spondence with monopole vibrations about the correspond-
ing monopoles. We assumed that this correspondence holds
717 3 307 7 1 1 true for higherB. We considgr this very likely, but the vibra_—
|\p>=[ \/1:0’5,— E> - \/1:0‘5, E> ®|5~ §> tional spectra for the Skyrmions needs to be found to confirm
this. It was also assumed that if the solution could be vi-

+[ \/ZIZ §> + \/\EO‘Z - Z> the continuation of the symmetric path in the configuration
10272 102" 2 space results in a configuration of well separated Skyrmions.
(6.6) We have seen that this is true for monopoles in the cases

considered and presumed it also holds for Skyrmions. Again,

. T ._this does not seem to be a particularly strong assumption. In
From this we can see that the probability distribution of thls.any case, the outcome f@&=7, B=9 andB=17 is inde-

state must be Sphe”ga"y symmetrlc. .Th'.s IS SO becagse IBendent of these assumptions, since the FR constraints can
Eq. (6.1 we t'ake|\1f| and. integrate it with _the cIa§S|caI be determined from the group theory alone, and the ground
nucleon density. The classical nucleon density has icosah@iates obtained are not in agreement with experiment.
dral symmetry and foi<7 the only spherical harmonics  T¢ obtain the experimentally observed ground states it
which are icosahedrally symmetric dre0 and arl=6 har- |l be necessary to include modes whereby the Skyrmions
monic[26]. But|¥|? expanded in terms of Wigner functions separate. It is not difficult to see that a quadratic approxima-
has nd =6 term and s@(x) is spherically symmetric. The tion (by just considering the vibrational modesill not cure
same analysis applies to the ground stat®efl7. this problem for theB=5 andB=9 cases. If the Skyrme
For the B=9 ground state it is easy to show that the model is to correctly predict the ground states of these nuclei
nucleon density is spherically symmetric. Since the spih is it will be necessary to include configurations of Skyrmions
the nucleon density could only have-0 andl=1 compo-  With intermediate or long range separations which is a highly
nents. But thd =1 component is associated with a vector in hontrivial problem.

space and this is incompatible with tetrahedral symmetry so _Another possible resolution is that the solutions found in
the wave function is completely S-wave. It can also bel1] are not well defined minima, i.e. there may be a number

checked that th&=>5 ground state is completely S-wave. ©f solutions with approximately equal energies and so an
So we see that when one includes quantum effects thXPansion about just one of these minima is not valid. How-
classical picture of the nucleon density having a discret&Ver We view that the more likely answer is that the zero

point symmetry group is changed so that in the quantunWOde configuration space is too restrictive. The zero mode
state it is smeared forming a spherical or near s herica”apprOXImatlon allows only for a collective motion of the

; i . 9 P P %kyrmions with nine parameters, while the space that ap-
symmetric configuration.

proximates the low energy behavior BfSkyrmions should
be 6B dimensional. ASB increases the validity of the zero
VII. OUTLOOK mode approximation should break down.
Our final comment concerns the question of renormaliza-

We have described the ground states of Be4 to B tjon. Casimir energies arise from the renormalization of the
=9 andB=17 Skyrmions obtained by quantizing the zero yiprational modes around any classical Skyrmion solution.
modes of the classical solutions. We did not attempt to calThe energy corrections that arises from this will be depen-
culate the masses, binding energies and other observablggnt on the particular classical solution that one expands
since a zero mode quantization is too restrictive to get acclabout. They will however be independent of the collective
rate results. Nonetheless we expected to obtain the corregbordinates and thus be identical for each quantum state that
quantum numbers of the ground states. However our resultgrises from quantizing the zero modes of a given classical
are not promising; foB=4, B=6 andB=8 the correct solution, see e.d28]. Thus the energy shift will be the same
ground states are obtained. But in the odd nucleon sector wgr each Skyrmion state. Further corrections to the soliton
have obtained the incorrect ground states. For nucleon nuninass arise from the renormalization of the interaction terms
bers 5, 7 and 9 the experimentally observed ground states agghich couple the vibrational modes to the collective coordi-
isodoublets with spirs and for nucleon number 17 the ob- nates of the Skyrmion. These give corrections which depend
served ground state is an isodoublet with spintHowever  on the specific quantum state of the Skyrmion, i.e. the energy
we obtained isodoublets with spinfor B=5 andB=9, and  corrections are different for states of differiig J. This
an isodoublet with spir for B=7 andB=17. The symme- |eaves the possibility that the ground states which were
try of the classical solutions which can give sgirstates is  found here may in fact be exotic, excited states after renor-
C,4 symmetry, andCs Ssymmetry can give a spip state. But  malization. Whether this approach can reconcile the Skyr-
the classical solutions in these cases do not f@yer Cq mion ground states with observed nucleii is unclear, it is not
symmetry. obvious to us how the magnitude of these corrections will

The main assumption we made was that certain closedepend on the quantum numbers of the Skyrmion state. Of
loops in the configuration space remain closed as the minieourse, this is a difficult matter to test explicitly and we will
mal energy configuration is separated ilde=1 or B=2 not expand on it here.

11 brated, remaining invariant under a certain symmetry, then
® >
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