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Zero mode quantization of multi-Skyrmions
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A zero mode quantization of the minimal energy SU~2! Skyrmions for nucleon numbers four to nine and
seventeen is described. This involves quantizing the rotational and isorotational modes of the configurations.
For nucleon numbers four, six and eight the ground states obtained are in agreement with the observed nuclear
states of helium, lithium and beryllium. However, for nucleon numbers five, seven, nine and seventeen the
spins obtained conflict with the observed isodoublet nuclear states.
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I. INTRODUCTION

In this article a simple quantization of higher charge Sk
mions is described and the results are compared to ex
mental nuclear data. The methods described may be use
Skyrmions of any nucleon numberB, once the minimal en-
ergy solution is known. The minimal energy solutions a
now known forB<9 @1# and a conjectured solution exis
for B517 @2#. We use the moduli space approximation@3#,
which truncates the infinite dimensional configuration fie
space to a finite dimensional space consisting of class
configurations which are relevant to the low energy dyna
ics. The moduli space will necessarily include all minim
energy configurations and to obtain accurate results
should include all configurations corresponding toB Skyrmi-
ons with arbitrary separations and relative isospin orien
tions. Obviously, the more configurations that are included
the moduli space, the more difficult their analysis becom
As a first approximation one may restrict the moduli space
be generated by the zero modes of the minimal energy s
tion. Any Skyrmion configuration can be translated, rota
or isorotated without changing its energy and these are
only zero modes. We shall ignore the translational mo
since their quantization only gives a total momentum to
quantum state. The interesting physics arises when the
tional and isorotational degrees of freedom are quantize

The minimal energy Skyrmions forB51 andB52 have
spherical and axial symmetry respectively. For high
nucleon numbers the minimal energy solutions only hav
discrete symmetry@1,4#. This means that the classical co
figuration UB(x) is invariant under a discrete group,H, of
combined rotations and isorotations. Thus the moduli sp
of zero modes is given by a quotient spaceC5„SO~3!
3SO~3!…/H. This may be equivalently written as a quotie
of the covering groupC5(SU~2!3SU~2!)/K, whereK is a
discrete subgroup of SU(2)3SU(2) related to the discret
subgroupH of SO~3!. Elements ofK correspond to rotations
and isorotations inH combined with 2p rotations and isoro-
tations. In the cases where we need to be specifically c
cerned withK, as opposed toH, it has the formK5H̄3Z2
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whereH̄ is the double group ofH @H̄ is a subgroup of SU~2!

with two elements,h and2h in H̄ for every element ofH in
SO~3!#. Elements inK distinguish a clockwise rotation byu
about some axis from an anticlockwise rotation by 2p2u
about the same axis. In the even nucleon sector 2p rotations
are trivial, so it is sufficient to consider the groupH. But for
odd B it is necessary to considerK as opposed toH.

Semiclassical quantization of the configuration
achieved by quantizing on this quotient space. There a
number of inequivalent ways to quantize on a quotient sp
G/K; whenG, which here is SU(2)3SU(2), issimply con-
nected these are labeled by the irreducible representation
the groupK. In general, the wave functions are defined
SU(2)3SU(2), but they transform under some irreducib
representation ofK. The reason for working with the doubl
cover, SU(2)3SU(2), isthat as is well known, 2p rotations
have nontrivial consequences in the quantum theory, this
ables single Skyrmions to be quantized as fermions. To
termine which quantization is appropriate here, one m
consider the Finkelstein-Rubenstein~FR! constraints @5#.
They state that, in order for a single Skyrmion to be qua
tized as a fermion, wave functionals are sections of a l
bundle over the classical configuration space whose
lonomy around any noncontractible loop in the configurat
space is~21!. In our case, quantizing onC, wave functions
are sections of a line bundle overC whose holonomy is~21!
for loops which remain noncontractible whenC is extended
to the full Skyrmion field configuration space. This
equivalent to defining wave functions on SU(2)3SU(2)
which are eigenstates of the operators which correspond
rotation and isorotation by an element ofK, with eigenvalues
~21! 11 depending on whether this operation is~non!con-
tractible in the full Skyrmion configuration space. The effe
of 2p rotations or isorotations is well known. A 2p rotation
or isorotation of a configuration with nucleon numberB is
contractible ifB is even and noncontractible ifB is odd. Thus
states with oddB are fermionic and states with evenB are
bosonic. The states define a one dimensional represent
of the symmetry groupK. If K has no nontrivial one dimen
sional representations then all the FR constraints mus
11. If there are nontrivial one dimensional representations
K then one needs to carefully examine the closed loop c
responding to elements ofK which have character~21! of
©2000 The American Physical Society24-1
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PATRICK IRWIN PHYSICAL REVIEW D 61 114024
this nontrivial one dimensional representation. It must be
termined whether these loops are contractible or not.

For this, it is often necessary to split the configuration in
individual or pairs of well separated Skyrmions, and th
analyze the closed loop. The~non!contractibility of theB
51 andB52 Skyrmions are known under such closed loo
and from this the~non!contractibility of the loop may be
determined. However, it is necessary that the configura
retains the symmetry of the specific element ofK being con-
sidered, as it is being split into a well separated configura
of Skyrmions, i.e. the loop is closed throughout the deform
tion. This is not obvious from the Skyrme picture since the
is no analytical data.

To proceed we can use the recently discovered ratio
map ansatz for Skyrmions@2#. These authors describe how
given an SU~2! monopole which can be uniquely describ
by a rational map, one may associate to it a Skyrmion. Us
this method they were able to accurately approximate
known minimal energy Skyrmion configurations for nucle
numbers one to nine and the predicted solution for nucl
number seventeen. The minimal energy Skyrme configu
tion obtained in this manner has the same symmetries as
monopole from which it is derived. This ansatz has the
vantage of clearly illustrating what combination of rotatio
and isorotations leave the solution invariant. It is also use
in that the reflection symmetries of the solution can easily
worked out which enables one to determine how the pa
operator can be represented onC.

As verified in @6# this ansatz also extends to descri
some of the Skyrmions vibrational modes. There, the vib
tional spectra of the minimal energyB52 andB54 Skyr-
mions was calculated. The vibrations form representation
the symmetry group of the minimal energy Skyrmion. T
vibrational modes of the Skyrmions come in two differe
types. The modes of lower frequency correspond to the S
mion configuration breaking up into separated Skyrmio
The modes of higher frequencies correspond to the w
known ‘‘breather’’ and generalizations of it whereby the l
cal nucleon charge expands or contracts in places~in @7# a
mechanism was given for describing these modes!. It is also
possible to look at vibrations of the rational maps. This c
responds to monopole motion on the monopole mod
space. Again, small variations from the symmetric config
ration form representations of its symmetry group. In@6#,
they found that vibrations with frequency below that of t
‘‘breather’’ type modes form the same representations of
symmetry group as do the monopole vibrations. The im
cation of this is that, if a monopole configuration can
separated a small distance while respecting some disc
symmetry, then the same process can occur for Skyrmi
We wish to extend this correspondence to arbitr
monopole-Skyrmion separations. However, the rational m
ansatz breaks down as the monopole separates into
vidual Skyrmions. Nonetheless we conjecture that the co
spondence can be extended beyond this region, such tha
monopole motion can be mapped to an equivalent path in
Skyrmion configuration space. In effect, this amounts to
embedding of the monopole moduli space into the Skyrm
configuration space. Evidence for this is seen by conside
11402
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the possible scattering processes for the known case
monopoles and Skyrmions@8#. In the above paper it was
seen that for well known cases of monopole scattering,
equivalent Skyrmion scattering process could occur with
same symmetry. In fact, all we really need to assume is t
if the Skyrmion can be vibrated remaining invariant und
some symmetry group element, then the continuation of
path in the Skyrmion configuration space, which will rema
invariant under the symmetry, eventually becomes a confi
ration of well separated Skyrmions. For the monopoles t
is always the case.

Assuming the results in@6# are true for general nucleo
numbers, and that there is a 1-1 correspondence betw
monopole motion and Skyrmion motion for low vibration
energies then, if the monopole configuration can be
formed keeping a symmetry, so can the Skyrmions. B
monopoles are in an exact 1-1 correspondence with ratio
maps @9,10#. The set of monopoles which have a discre
rotational symmetry is easily determined from the ration
maps ~because they have a simple action of the rotat
group!. Also, it is easy to see how the rational map of
symmetric multi-monopole changes when the mu
monopole splits up into well separated monopoles. So, ra
nal maps can be used to determine whether a mu
monopole can be split into a specific configuration of w
separated monopoles while respecting a certain symm
group element. Thus by our above assumption it can be
termined how a Skyrmion configuration can be split up wh
keeping a certain symmetry. In the cases considered her
can always separate into a configuration ofB51 andB52
solutions whose behavior under rotations and isorotation
known. Using this method we shall determine the FR co
straints. Once these are found it is a simple exercise to
the allowed quantum states.

In @11# and@12#, such an analysis was carried out for th
axially symmetric charge two solution and for the tetrah
drally symmetric charge three solution. For theB52 case a
ground state with the correct quantum numbers of the d
teron was obtained. And forB53 it was found that the
ground state had spin12 , isospin 1

2 in agreement with the
observed isodoublet nucleus (1

3H, 2
3He). Here we will use the

terminology for the sake of compactness that spin and is
pin are the eigenvalues of the operators corresponding
rotations and isorotations of the Skyrmions respective
Then spin corresponds to the total angular momentum of
nuclear state which is the experimentally observed quan
In nuclear physics the total angular momentum is the sum
orbital and intrinsic spin angular momentum. Such a deco
position of total angular momentum into orbital and intrins
spin parts does not exist in the Skyrme model. We comm
on this further in Sec. VI.

In this paper we extend the zero mode analysis to
minimal energy Skyrmions with nucleon numbers four
nine and seventeen. We find that forB54, 6, 8 the ground
state has the correct spin, parity and isospin assignmen
for 2

4He1, 3
6Li1 and 4

8Be1. However for odd nucleon num
bersB55, 7, 9 or 17 the ground states found by this meth
do not agree with the observed isodoublet states. For nuc
numbers 5, 7 and 9 the experimentally observed gro
4-2
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ZERO MODE QUANTIZATION OF MULTI-SKYRMIONS PHYSICAL REVIEW D61 114024
states are isodoublets with spin3
2 and forB517 the observed

ground state is an isodoublet with spin5
2 @13#. However the

zero mode quantization of Skyrmions results in the grou
state forB55 andB59 both to be isodoublets with spin12 ,
for B57 andB517 the ground state are both found to
isodoublets with spin72 . As discussed below we do not try t
predict the parity of the states with oddB. The ground states
we find here exist experimentally as excited states. The
perimentally observed ground state forB55 appears here a
an excited state. The experimentally observed ground st
for B57, B59 andB517 can be obtained here by includ
ing the vibrational modes but they will also appear here
excited states.

The vibrational modes form representations of the sy
metry group of the minimal energy solution. Knowing this
is possible to combine the rotational and vibrational mo
resulting in an enlarged configuration space. The vibratio
spectra has been worked out for the Skyrme model
nucleon numbers two@6,14# and four@6#, it is also possible
to understand some aspects of the vibrational spectra
other values ofB using the rational map ansatz. The vibr
tional modes of the Skyrmions with frequencies below
breather modes can be described by monopole motion
thus the representations they form of the symmetry gr
can be determined. The configuration space is now a fi
bundle over„SU(2)3SU(2)…/K, the fiber being the vecto
space corresponding to the vibrations. This space was
scribed in@15#. States are now given by the direct product
Wigner functions on SU(2)3SU(2) and harmonic oscillato
wave functions on the vibrational space. The states must
isfy a K invariance condition described below which restric
the allowed set of states. Using this formalism further e
cited states of the multi-Skyrmions may be described. I
possible that this approach may resolve the above proble
the ground state forB57. A spin 3

2 rotational state can be
combined with a vibrational state to give an allowed state
the vibrational energy of this state is not too large it m
have lower energy than the state with spin7

2 and thus predict
the correct ground state. To check this, the energies of
vibrational states need to worked out directly from t
Skyrme model as the rational map approach has no infor
tion about the frequencies of the specific vibrations. The
clusion of vibrational modes may also fix the problem f
B517 but it will not work for B55 andB59.

Naturally, one would not expect that the quantization
zero modes and vibrations would give accurate results
binding energies of the states, etc., and the inclusion of m
degrees of freedom are needed to accurately describe
properties. Nonetheless it is not obvious that the inclusion
other modes~allowing the Skyrmions to separate, calculati
the zero point energies of the radiative pion modes! will
resolve this difficulty. A possible resolution of this is that th
solutions found in@1# are not well defined minima, i.e. ther
may be a number of local minima with approximately equ
energies and so an expansion about just one of these mi
is not valid. This seems to occur for theB510 case, to
answer the question here requires further numerical inve
gation of the proposed minimal energy solutions.

In the following section we review the zero mode quan
11402
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zation discussed in@11# paying special attention to the FR
constraints. Section III describes the rational map ansatz
Skyrmions and how it may be used to determine the
constraints. Then in Sec. IV the quantization procedure
treated for each of the SkyrmionsB54 to B59 and B
517. Section V describes how to include vibrational mod
and gives the predicted excited states for theB54 sector by
considering the vibrations together with the zero modes.
nally in Sec. VI we calculate the expectation value of t
nucleon density of the quantum ground states and compa
the classical nucleon densities. A criticism raised about
classical solutions of the Skyrme model is that they bear
resemblance to real nuclei. The classical nucleon dens
have the symmetry of some discrete group. To find
nucleon density in the quantum state, following@16# we in-
tegrate the classical nucleon density times the norm squ
of the wave function over the moduli space. We find that
all cases considered, the nucleon density in the quantum
is almost spherically symmetric, being exactly so in a nu
ber of cases. For example we find the ground state foB
54 to be spherically symmetric and forB56 to be mainly
S-wave with a small P-wave admixture. This agrees with
nucleon densities of helium 4 and lithium 6 respectively a
shows how the nucleon density of the classical solution
smeared by quantum effects to a more uniform angular
pendence.

II. SEMI-CLASSICAL QUANTIZATION

The Skyrme model has the Lagrangian

L5E d3xH 2
f p

2

16
Tr~RmRm!1

1

32e2
Tr~@Rm ,Rn#@Rm,Rn#!J

~2.1!

whereRm5]mUU†, U is the SU~2! valued Skyrme field, and
e, f p are free parameters of the model whose values
chosen to best fit experimental data. The above Lagran
has soliton solutions of finite energy. Finite energy impli
that U tends to a constant at spatial infinity. Space is th
compactified toS3 and thus each soliton solution has an a
sociated integer, the degree, corresponding to the eleme
p3(S3) to which U belongs. Solitons of degreeB are inter-
preted asB nucleons@17#.

The symmetry group of the Skyrme Lagrangian
SO(3)3Poincare´ Group3P. P is the parity operator which
acts as P :U@x#→U†@2x#. For time-independent fields suc
as static solitons the symmetry group is reduced to

SO~3!3Euclidean Group ofR33P. ~2.2!

The minimal energy solutions to the Skyrme model,UB@x#,
have forB>3 a discrete symmetry group. This means th
the classical configurationUB@x# is invariant under a dis-
crete groupH, of combined rotations and isorotations. T
every elementSPH there will exist an elementG(S)
PSO(3) such that the rotationS, has the same effect on th
configuration as the isorotationG(S). Or alternatively, the
combined rotationS and isorotationG21(S) leaves the con-
4-3
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PATRICK IRWIN PHYSICAL REVIEW D 61 114024
figuration unchanged. The elementsG(S) form a representa
tion of the groupH. This is true because to each rotationS,
G(S) is unique. IfG(S) was not unique then the Skyrmio
would be invariant under an isorotation, without any co
pensating rotation. Assuming this isorotation is about thex3
axis, a simple argument shows that the right currentsRi are
proportional tot3 ~with t i the Pauli matrices!. But this im-
plies that the nucleon densityB must vanish because it i
given by

B5
1

24p2
e i jkTr RiRjRk . ~2.3!

For B53 andB59 UB has tetrahedral symmetry,B54 and
B57 have octahedral and icosahedral symmetry respecti
and theB55, B56 and B58 solutions haveD2d , D4d ,
andD6d symmetries respectively.

One can act on the classical solutions withR33SO(3)
3SO(3) in the following fashion to give a family of solu
tions with the same energy. This generates the zero m
moduli space. The transformations correspond to tran
tions, rotations and isospin rotations. Explicitly

UB@x#→A8UB@D~A!~x2a!#A8† ~2.4!
ne

tu

m

11402
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de
a-

whereA, A8 are in the fundamental representation of SU~2!,
aPR3, andD(A) is the SO~3! element associated toA, given
by D(A) i j 5

1
2 Tr t iAt jA

21. So generally the minimal energ
solution will have nine zero modes. We will henceforth i
nore the translationalR3 symmetry. The above is an SO(3
3SO(3) action sinceA has the same effect onUB@x# as
2A does, and similarly forA8. If we label an element in the
moduli space by$A,A8% we have the identifications

$A,A8%>$A,2A8%>$2A,A8%>$2A,2A8%. ~2.5!

The moduli space approximation to multi-Skyrmion dyna
ics involves lettingA, A8 become time-dependent and su
stituting Eq. ~2.4! into the Skyrme Lagrangian~2.1!. The
reduced Lagrangian is quadratic in the time derivativesak

52 i Tr tkA8† Ȧ8,bk52 i Tr tkAȦ†, and is given by

LB5
1

2
aiUi j aj1

1

2
biVi j bj2aiWi j bj2MB ~2.6!

with MB is the mass of the solution and the tenso
Ui j ,Vi j ,Wi j are dependent on the classical solutionU@x#,
given by @11#
Ui j 5
1

8E d3x TrH U†F1

2
t i ,UGU†F1

2
t j ,UG1FU†]kU,U†F1

2
t i ,UG GFU†]kU,U†F1

2
t j ,UG GJ

Wi j 5
i

8E d3x TrH U†F1

2
t i ,UGU†~x3¹! jU1FU†]kU,U†F1

2
t i ,UG G@U†]kU,U†~x3¹! jU#J

Vi j 52
1

8E d3x Tr$U†~x3¹! iUU†~x3¹! jU%2
1

8E d3x Tr$@U†]kU,U†~x3¹! iU#

3@U†]kU,U†~x3¹! jU#% ~2.7!
y
the
ot

an
ion
e
nal

(3)
where we have setf p
2 58 ande251/2.

This Lagrangian may now be quantized in the man
described in@11#. The momenta conjugate toai and bi be-
come the body-fixed spin and isospin angular momen
operators calledKi andLi which satisfy the SU~2! commu-
tation relations,@Ki ,K j #5 i e i jkKk , and similarly for Li .
There also exist space-fixed spin and isospin angular
mentum operators denoted byJi and I i related to the body-
fixed operators by

Ji52Di j ~A!TL j , I i52Di j ~A8!K j . ~2.8!

The commutation relations are

@Li ,A#52
1

2
t iA, @Ji ,A#5

1

2
At i ,
r

m

o-

@ I i ,A8#52
1

2
t iA8, @Ki ,A8#5

1

2
A8t i ~2.9!

and all other commutators vanish. This means thatL25J2

and I25K2. The Hamiltonian becomes that of a rigid bod
in space and isospace. However, the above derivation of
rigid body Hamiltonian is not complete since we have n
considered the discrete symmetry groupH,SO(3), of the
solution. This means that rotating the configuration by
elementSPSO(3) has the same effect on the configurat
as the isorotationG(S). The isorotations need not be th
same as the rotations, but they do form a three dimensio
representation ofH. Labeling $R,R8% as the set of zero
modes corresponding to rotations and isorotations, SO
3SO(3), wehave the following identification:

$R,R8%>$SR, R8G21~S!%, SPH. ~2.10!
4-4
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ZERO MODE QUANTIZATION OF MULTI-SKYRMIONS PHYSICAL REVIEW D61 114024
Thus the moduli space is„SO(3)3SO(3)…/H with the above
quotient. But we really need to consider the covering sp
SU(2)3SU(2) because 2p rotations or isorotations can b
noncontractible. If we view the moduli space as a quotien
SU(2)3SU(2) then each closed loop corresponding
$S, G(S)% will correspond to four closed loops since bothS
andG(S) can be lifted in two ways to SU~2!. We now have
the identifications

$A,A8%>$hA, A8h821%, hPH̄, ~2.11!

where h and h8 are in the fundamental representation
SU~2! andD(h)5S andD(h8)5G(S). So6h and6h8 are
lifts to SU~2! of S and G(S) respectively. The elementsh
form the double groupH̄ of H. Equation~2.11! includes Eq.
~2.5! and determines the moduli space as SU(2)3SU(2)/K
whereK is the subgroup of SU(2)3SU(2) consisting of the
elements$6h,6h8%. If the representationG of H lifts to a

representationG̃ of H̄ i.e. such thatD(G̃(h))5G(D(h)) for

hPH̄, with G̃(h1h2)5G̃(h1)G̃(h2) and G̃(21)521, then
K has the formH̄3Z2, but it is not always possible thatG
can be lifted in this way.

Each element of the groupK corresponds to one of th
four ways of lifting a symmetry group element inH to the
covering space. For each element ofK it is necessary to
determine whether this transformation is a contractible lo
in the Skyrmion configuration space or not. WhenB is even
this task is simpler since 2p rotations and isorotations ar
contractible so there is no need to distinguish a rotation fr
the same rotation plus a 2p rotation. But in the oddB case
this distinction matters and so it is necessary to be m
careful. We deal with this on a case by case basis in Sec

As discussed in the Introduction, to determine whi
quantization is appropriate here we need to consider
Finkelstein-Rubenstein~FR! constraints@5#. These authors
showed that it is possible to quantize the solitons as ferm
if one lifts the classical configuration space to its simp
connected covering space. A quantization scheme wh
treats single Skyrmions as fermions is to multiply states b
phase11 ~21! when acted on by operators which impleme
contractible~noncontractible! loops in the classical configu
ration space. They also showed that the exchange of
identical Skyrmions and the 2p rotation of one of the Skyr-
mions are homotopic loops thus proving that the usual no
of spin-statistics holds in the Skyrme model. Also, as a re
of the fact thatp4(SU(2))5Z2 there are only two topologi-
cally distinct loops in the space. Williams@18# verified that
the B51 Skyrmion can be quantized as a fermion by sho
ing that a 2p rotation of it is a noncontractible loop in th
Skyrmion configuration space. This was extended in@19#
whereby it was shown that the 2p rotation of a chargeB
Skyrmion is contractible ifB is even and noncontractible isB
is odd.

Thus the operator which corresponds to implementin
closed loop on the configuration space acts on states
eigenvalue61 according to the contractibility of the loop. I
our case the closed loops always correspond to rotation
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mations areL i andK i . If the symmetry group element is o
the form

$h, h8%5 He2
iu1

2 n̂1•t, e2
iu2

2 n̂2•tJ , ~2.12!

then using Eqs.~2.9! and~2.11! the constraints on the quan
tum states arising from the symmetries of the classical s
tion may be expressed as

eiu1n̂1•Leiu2n̂2•KuC&56uC&, ~2.13!

the 6 depending on whether the loop corresponding
$h, h8% is contractible or not in the full configuration spac
A 2p rotation or isorotation of a Skyrmion of nucleon num
ber B is contractible ifB is even and noncontractible ifB is
odd. So, physical statesuC& also satisfy

e2p i n̂•KuC&5e2p i n̂•LuC&5~21!BuC&. ~2.14!

This means that for evenB, I andJ are integral and for odd
B, I andJ are half integral.

Returning to the Lagrangian in Eq.~2.6!, in general
Ui j , Vi j , Wi j are diagonal. The number of different eige
values ofUi j , Vi j , Wi j depends on the symmetry of th
solution. Tetrahedral, octahedral or icosahedral symm
implies the matrices have a single eigenvalue if the fie
transform according to a three dimensional irreducible r
resentation of the group. For instance, theB54 solution has
octahedral symmetry whereby a rotation by an element of
octahedral group combined with an isorotation leaves
solution invariant. The rotations form the defining represe
tation of the octahedral group and soVi j is proportional to
the identity matrix with one common moment of inertia. B
the corresponding isorotations are in a reducible represe
tion, comprising irreducible representations of dimensio
one and two and this means thatUi j has two distinct
eigenvalues.1 It also turns out that the cross termWi j van-
ishes because the symmetry is realized differently betw
the rotations and isorotations.

If the matrices have only one eigenvalue the Hamilton
is that of a spherical top@20# ~in space and isospace!. If the
Skyrmion has an axis of symmetry above the second o
~for B56 andB58) thenUi j , Vi j , Wi j have two distinct
eigenvalues and the Hamiltonian is that of a symmetrical
~in such cases we take the axis of symmetry to be thex3
axis!, otherwise~for B55) Ui j , Vi j , Wi j has three differ-
ent eigenvalues and the Hamiltonian is that of an asymme
cal top. A basis for the Hilbert space of states is given
uJ,J3 ,L3& ^ uI ,I 3 ,K3&, with 2J<J3 , L3<J and 2I
<I 3 , K3<I . In all that follows, the third component of th
space and isospace angular momentumJ3 andI 3 are omitted.
The value ofJ3 corresponds to the angular momentum
genvalue of the state about a fixed axis in space and is
physically relevant. States with differing values ofI 3 corre-
spond to the different states in an isospin multiplet, e.g.I 3

1I thank K. Baskerville for pointing this out to me.
4-5
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PATRICK IRWIN PHYSICAL REVIEW D 61 114024
52 means the state has two more protons than neutrons
These states will be energy eigenstates in all cases ex
possibly forB55, where the energy eigenstates will not ge
erally have definite values ofK3 , L3.

It is an easy numerical task to calculate the moments
inertia from the rational map generated Skyrmions. As
scribed in the next section the Skyrme field is approxima
by U@r ,u,f#5exp(if (r)n̂R•t) where n̂R is derived from a
rational function ofz5tan(u/2)eif, where r, u and f are
polar coordinates andf (r ) is determined numerically. Insert
ing this into Eq.~2.7! the moments of inertia are obtained b
radial and angular integrations. It is found that the rotatio
moments of inertia (Vi j ) become much larger than the is
rotational moments of inertia (Ui j ) as B increases. For ex
ample, for B51 the moment of inertia isUi j 5Vi j
5106.4d i j in units of 1/e3f p , the rotational and isorotationa
moments of inertia being equal due to spherical symme
But already at B54 we have U115U225254.0, U33
5306.4 andV115V225V3351162.9. Ui j and Wi j increase
approximately likeB while Vi j increases likeB2 ~of course
in certain cases some symmetry can imply that some
ments of inertia are zero!. The energies of rotational state
are like 1

2 J(J11)/V, and isorotational states are like12 I (I
11)/U whereV and U indicate the rotational and isorota
tional moments of inertia andJ and I indicate the spin and
isospin eigenvalues. We see that states with the lowest
ergy will always haveI as small as possible~there is a con-
tribution from theW moments of inertia but since these a
of order U it does not change the outcome!. So states with
high isospin are energetically unfavorable and will not ex
this is true of real nuclei whose nucleon number is small.
the nucleon number increases, electromagnetic effects
favor neutrons over protons but for all small nuclei (B
<30) the ground state has the smallest possible value
isospin. So to find the lowest energy states we will alwa
set the isospin to its lowest possible value.

To obtain the correct quantum states we need to de
mine the~non!contractibility of the closed loops, correspon
ing to elements ofK, in the configuration space. To do th
we use the rational map description of Skyrmions which
now review.

III. RATIONAL MAP GENERATED SKYRMIONS

To describe the symmetries of the Skyrmions, and t
evaluate the FR constraints, we shall use the rational m
ansatz for Skyrmions which was introduced in@2#. Jarvis has
shown that there is a 1-1 correspondence between S~2!
monopoles of chargek and holomorphic rational maps from
S2 to S2 of degreek @9#. The rational map may be written a
F(z)5p(z)/q(z), p(z) and q(z) are degreek polynomials
in z where k is the monopole charge andz is a complex
coordinate on the two sphere which can be written in ter
of usual polar coordinates asz5tan(u/2)eif. The point z
corresponds to the unit vector

n̂z5
1

11uzu2
@2Re~z!,2Im~z!,12uzu2#. ~3.1!
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The value of the rational map corresponds to the unit vec

n̂R5
1

11uRu2
@2Re~R!,2Im~R!,12uRu2#. ~3.2!

Skyrmions are given by maps fromR3 to S3. The idea in@2#
is to identify the domainS2 of the rational map with concen
tric spheres inR3, and the target of the rational mapS2 with
spheres of latitude inS3. A point in R3 can parametrized by
(r ,z); r denotes radial distance andz specifies the direction
The ansatz for the Skyrme field may then be written as

U@r ,z#5exp~ i f ~r !n̂R•t! ~3.3!

where f (r ) is a radial function satisfyingf (0)5p, f (`)
50. f (r ) is determined numerically to give the closest a
proximation to the actual Skyrme configuration. In@2# this
ansatz was used to accurately approximate the known m
mal energy Skyrmion solutions forB51 to B59 and the
conjectured buckyball solution of charge 17 was shown
exist.

The Jarvis rational maps have a natural action of SO~3!
given by SU~2! Möbius transforms on the complex coord
natez,

z→ az1b

2b̄z1ā
, S a b

2b̄ ā
D PSU~2!. ~3.4!

This corresponds to a rotation ofn̂z and generates space ro
tations of the Skyrme field. For example,z→eiuz is an anti-
clockwise rotation byu about thex3 axis, andz→1/z is ap
rotation about thex1-axis. An SU~2! Möbius transform on
the targetS2 of the rational map corresponds to a rotation
n̂R , and thus to an global isospin rotation of the Skyrm
field. A rational mapF(z) is symmetric under a subgroupH
of SO~3! if there is a set of pairs$h,h8% such thatF(z)
satisfies

F~hz!5h8F~z!, ~3.5!

h andh8 are SU~2! matrices withD(h)PH andh8 acts onF
in the same manner as Eq.~3.4!. Note that2h has the same
action ash in Eq. ~3.5! and similarly for h8 so these are
SO~3! actions.D(h8) forms a representation,G, of H. Here
we are concerned only with what the symmetry group,H,
and the representationG are, we are not at this point discus
ing the contractibility of any loops. So the double cover ofH
does not enter here. Given a rational map it is easy to de
mine its symmetriesH and the representationG. The rational
map ansatz accurately models the known minimal ene
Skyrmion configurations and clearly shows how the symm
try of the Skyrmion is realized, i.e. what combination
rotations and isorotations leave the solution invariant.

As explained in the Introduction the rational map a
proach is also useful in determining the FR constraints
cases where the Skyrme configuration needs to be spli
into well separated configurations. We will assume th
whenever a monopole configuration can be split up, resp
ing some symmetry then the same can be done for Sky
4-6
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ZERO MODE QUANTIZATION OF MULTI-SKYRMIONS PHYSICAL REVIEW D61 114024
ons. Generally we begin with the minimal energy polyhed
shaped solution and end with some configuration of w
separated Skyrmions both having some discrete symm
From the correspondence between monopole and Skyrm
vibrations@6# we can see that the Skyrmion can be vibra
keeping the relevant symmetry group element. The confi
rations are now separated maintaining invariance of the
evant symmetry group element until they are far apart. W
is important is how the relative isospin orientation of t
final configurations are aligned. This is determined by
initial vibration. In the cases we consider the vibration c
responds to a monopole motion and thus the vibration is
low frequency, so the Skyrmions separate in an attrac
channel. Thus the asymptotic isospin orientations are alig
to give an attractive configuration. This will be unambiguo
in the cases we consider.

To determine whether a monopole configuration can
separated while keeping a certain symmetry, again, it is e
est to use the rational map description of monopoles.
previously described Jarvis rational maps are suited to
description of monopoles which are symmetric under so
subgroup of SO~3!. But there is no natural action on thes
rational maps which corresponds to translations of the mo
poles in space. There is an equivalent rational map desc
tion of monopoles due to Donaldson which allows one to
how the monopole configuration can be separated.

In @9#, the Jarvis rational map is defined by consideri
solutions to the scattering equation for monopoles

~Di2 iF!v50 ~3.6!

along all radial lines through some point inR3. Di is the
covariant derivative,F is the Higgs field and v is a comple
doublet in the fundamental representation of SU~2!. The ra-
tional maps have a natural action of SO~3! given by Eq.~3.4!
but not a simple action of translations, since the choice o
point in R3 used to define the map breaks translational sy
metry. There also exists the Donaldson rational map whic
defined by solutions to the scattering equation~3.6! along all
lines inR3 that point in a particular direction@10# ~which we
take here to be thex3 axis!. Donaldson rational maps fo
charge k monopoles are defined as based maps fromC
→Cø`, i.e. F(w)5p(w)/q(w), wPC with q(w) a monic
polynomial of degreek and p(w) a polynomial of degree
less thank with no factors in common withq(w). Here w
represents a point in the (x1 ,x2) plane. The choice of such
direction breaks rotational symmetry and in general ther
no simple action which generates rotations on the ratio
maps. But rotations about the preferred axis used to de
the map have a simple action since they preserve this a
This will be enough for our purposes. Also, it is easy to s
how translations act on the monopole. A rotation of angleu
about the preferred axis (x3) and a translation in space
(v1 ,v2 ,x), acts on the map as follows:

F~w!→e2xe22ikuF„e2 iu~w2v !… ~3.7!

wherev5v11 iv2 andk is the monopole charge. The Jarv
rational maps are obviously suited to the construction
monopoles and Skyrmions which are symmetric under so
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subgroup of SO~3!. But to see how monopoles can be sep
rated in space the Donaldson maps are better suited. The
approaches are completely equivalent as descriptions of
monopole moduli space@we will use the notationF(z) for
Jarvis maps andF(w) for Donaldson maps#.

In the next section the FR constraints will be worked o
using these methods. Once this is done it is easy to find
allowed states using Eqs.~2.13! and ~2.14!. This determines
the spin and isospin of the states. To determine the paritie
these states it is necessary to know how the classical solu
behaves under P. For Jarvis rational maps, inversion co
sponds toz→21/z̄ ( z̄ denotes complex conjugate ofz). If
the rational map has a reflection symmetry, then on the
stricted configuration space of rotations and isorotation
may be represented by some combination of body fixed
tations and isorotations. So P may be represented by s
body fixed operator which can easily be evaluated on
angular momentum eigenstates to give the parity eigenva

IV. THE BÄ4 TO BÄ9 AND BÄ17 GROUND STATES

The minimal energyB54 solution has octahedral sym
metry @4#. The octahedral group,Oh , is generated by three
elements, a 2p/3 rotation cyclically permutating the Carte
sian axes and ap/2 rotation about thex3 axis, and also the
inversion element. In@21#, using the instanton ansatz, it wa
determined how the octahedral symmetry is realized so
do not need to use the rational map in this case~the rational
map approach gives the same result!. The SU~2! Skyrme
field may be written asU4@x#5s1 ip it i and the cubic sym-
metry is realized as follows:

C4: ~p1,p2,p3!~2y,x,z!5~2p2,2p1,2p3!~x,y,z!

C3: ~p1,p2,p3!~y,z,x!5~p2,p3,p1!~x,y,z!
~4.1!

Inv: ~p1,p2,p3!~2x,2y,2z!5~p̃1,p̃2,p̃3!~x,y,z!

where p̃15 1
3 (p122p222p3) and cyclically permutating.

Next, we need to work out the FR constraints associated w
the C3 and C4 elements~the inversion element cannot b
represented as a closed loop in the configuration space
there is no FR constraint associated with it!. Since we are in
the even nucleon number sector a 2p rotation in space or in
isospace is a closed contractible loop and is associated w
phase of~11!.

The FR constraint for theC3 element is easy to determine
The C3 element implies that a 2p/3 rotation combined with
a 22p/3 isorotation leavesU4@x# invariant. Simply repeat
the action three times to get a 2p rotation and a22p iso-
rotation. 2p rotations or isorotations are contractible. Sin
theC3 action repeated three times is contractible this impl
the C3 element itself must be contractible so all permissib
states must be eigenstates of theC3 operator with eigenvalue
~11!. In the orientation of the Skyrme field given above t
contractibility of theC4 element is not obvious. It is helpfu
to do a global isorotation which makes this more transpar
4-7
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PATRICK IRWIN PHYSICAL REVIEW D 61 114024
If U@x#5h8U@D(h)x#h8† then a global isospin trans
formed field Ũ@x#5AU@x#A† satisfies Ũ@x#

5h̃8Ũ@D(h)x#h̃8†with h̃85Ah8A†. In the orientation of Eq.
~4.1! thep/2 rotation in space about thex3 axis is accompa-
nied by ap rotation in isospace about the (x1-x2) axis. We
chooseA so that for theC4 element above, thep/2 rotation
in space about thex3 axis is accompanied by ap rotation in
isospace about thex3 axis,@as an SO~3! rotationD(A) maps
the (x1-x2) axis to thex3 axis#. By a simple homotopy argu
ment it is clear that a constant isorotation at every point
the closed loop will not affect its~non!contractibility. To
show the contractibility of theC4 loop we can continuously
deform the loop into one in which is obviously contractib
Since the contractibility of a loop is invariant under hom
topy, this will show that the original loop is contractible. Th
charge four cube can be deformed into two well separa
charge two doughnuts along thex3 axis. It is known from the
vibrational spectra of theB54 Skyrmion@6# that it is pos-
sible to do this while keeping theC4 symmetry. The dipole
moments of the twoB52 doughnuts will point in opposite
directions so they attract. This may be seen schematical
Fig. 1 ~for accurate pictures of theB54 to B59 and B
517 solutions see@1# or @2#!.

A similar type of scattering process also occurs for mo
poles and theC4 symmetry is respected at all separations
the two 2-monopole clusters@22#. The two doughnuts are
positioned at (0,0,s) and (0,0,2s) with s→`, and are de-
notedM1 andM2 respectively. The field may be express
as

U4@x#5U2@x2se3#AU2@x1se3#A† ~4.2!

with A5 i (cosft11sinft2) for somef<2p. U2@x# is the
axially symmetric~aboutx3) charge two solution andei is a
unit vector along thei axis in space. The form ofA implies
that the dipole moments ofM1 and M2 are in opposite
directions. TheC4 symmetry implies that a simultaneousp/2
rotation about thex3 axis with ap isorotation about thex3
axis leaves the configuration unchanged, i.e.

U4@x#→e2il(t3/2)U4@D~e2 il(t3/2)!x#e22il(t3/2) ~4.3!

with 0<l<p/2. Because it is axially symmetricU2@x# sat-
isfies @11#

U2@D~e2 il(t3/2)!x#5e22il(t3/2)U2@x#e2il(t3/2) ~4.4!

FIG. 1. B54 Skyrmion separating to twoB52 Skyrmions.
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for all values ofl. Thus the effect of theC4 transformation
is a 2p isorotation about thex3 axis onM2 while leaving
M1 unchanged

U4@x#→U2@x2se3#e4il(t3/2)AU2@x1se3#A†e24il(t3/2)

~4.5!

using Aeil(t3/2)5e2 il(t3/2)A. Since theB52 doughnut is a
boson a 2p isorotation is contractible and thus theC4 action
on the cube is a contractible loop and so a~11! phase is
associated to the operator representing theC4 element. For
the above argument to work it is crucial that theC4 symme-
try is respected at all times as the configuration is separa

So the allowed states,uC& are of the form uJ,L3&
^ uI ,K3&, with the constraints

e(2p i /3A3)(L11L21L3)e(2p i /3A3)(K11K21K3)uC&5uC&

ei (p/2)L3ei (p/A2)(K12K2)uC&5uC&
~4.6!

reverting to the generators used in Eq.~4.1!. To find the
allowed states is just a matter of finding simultaneous eig
values of the operators in Eq.~4.6!. The ground state is given
by uC&5u0,0& ^ u0,0&; the first excited state withI 50 has
J54 and is

uC&5S u4,4&1A14

5
u4,0&1u4,24& D ^ u0,0&. ~4.7!

If I 51, the lowest state hasJ52 and is given by

uC&5A6u2,0& ^ $~ i 21!u1,21&1~ i 11!u1,1&%1$u2,2&

1u2,22&%^ $2A2u1,0&1~12 i !u1,1&2~11 i !u1,21&%.

~4.8!

To compute the parities of these states we know that fr
the Inv transform U†(2x)5WU(x)W†, where W
5e( ip/A3)(K11K21K3). The parity operator P is defined as
U(x)→U†(2x). So, on the configuration space of ze
modes the parity operator P can be represented
e( ip/A3)(K11K21K3). We may act with P on the physical state
to determine their parity. TheI 5J50 andI 50, J54 states
both have~11! parity, and theI 51, J52 state has~21!
parity. Thus we find that the ground state forB54 has spin
and isospin zero and positive parity in agreement with
ground state2

4He1. The negative parity state withI 51, J
52 is observed as the lowest isospin triplet state (1

4H2,

2
4He2, 3

4Li2) @13#. From nuclear tables there are a large nu
ber of states withI 50 that have energies less than theJ
54 state. Our scheme for quantization is obviously ve
restrictive, the configuration is not allowed to vibrate in a
fashion. Including the vibrational modes and allowing t
Skyrmions to separate accounts for some of the miss
states. This we will do in Sec. V.

The B54 case has been previously considered by W
hout @23#. There, a perturbative analysis was conside
about the full one parameter family of tetrahedally symm
ric Skyrmions. The FR constraints corresponding to the e
4-8
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ZERO MODE QUANTIZATION OF MULTI-SKYRMIONS PHYSICAL REVIEW D61 114024
ments of the tetrahedal group and the 2p rotations and iso-
rotations of the individual Skyrmions were implemented a
the ground state was found to haveI 50, J50 agreeing with
the present, more restrictive, analysis. We included this c
as it appears that the question of the~non!contractibility of
the C4 symmetry element of the cubic configuration has n
been previously considered~in Walhout’s case this transfor
mation is not a symmetry!.

BÄ6

The minimal energyB56 Skyrmion hasD4d symmetry.
It can be described in terms of a Jarvis rational map given
@2#

F~z!5
z41a

z2~az411!
, a50.16i . ~4.9!

TheD4 subgroup is generated by two elements, ap rotation
about thex1 axis and ap rotation about the (x11x2) axis
~combining these two elements gives aC4 rotation about the
x3 axis!. The elements act on the rational map byF(1/z)
51/F(z) andF(2 i /z)521/F(z), i.e. ap rotation in space
about thex1 axis combined with ap isorotation about thex1
axis leaves the solution invariant; and ap rotation about the
(x11x2) axis combined with ap isorotation about thex2
axis leaves the solution invariant. A closed loop correspo
ing to the first symmetry group element is

U6@x#→eil(t1/2)U6@D~e2 il(t1/2)!x#e2 il(t1/2) ~4.10!

with 0<l<p.
To determine how the FR constraints act we need to kn

whether the closed loops generated by theC2 elements are
contractible or not. To see that the loop in Eq.~4.10! is
noncontractible is not obvious by looking at the polyhed
solution. It is helpful to continuously deform the minim
energy solution into three well separated charge two dou
nuts, one at the origin and the other two equidistant along
x3 axis with their separation 2s very large. We now show
that it is possible to do this for monopoles keeping theC2
symmetry about thex1 axis at all times, therefore by ou
earlier assumption the same can be done for Skyrmions.
easiest to see this using Donaldson rational maps withx3 as
the preferred direction. Rotations about thex3 axis have a
simple action on the rational map, given by Eq.~3.7!. Also,
reflections can be defined on the maps@22#, so ap rotation
about thex1 axis can be defined by combining a reflection
the (x1 ,x3) plane and a reflection in the (x1 ,x2) plane. A
rational map of degreek, F(w)5p(w)/q(w) has p rota-
tional symmetry about thex1 axis if

p~w!

q~w!
5

I ~p~w̄!!

q~w̄!

. ~4.11!

HereI (p) is the unique polynomial of degree less thank that
satisfies I (p)p51 modq. Since we are determining th
contractibility of theC2 rotation about thex1 axis we only
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need the configuration to remain invariant under thisC2 el-
ement. But in fact we can separate the configuration keep
all of theD4 symmetry and it is convenient if we do this. Th
most general charge six monopole withD4d symmetry is
given by the Donaldson map

F~w!5
i tw411

w6
, tPR. ~4.12!

Some value oft corresponds to the minimal energy Sky
mion. Now let t5e2s→`; F(w) is given by ie2s/w2

11/w6. Using the formula given in@24#, this corresponds to
three charge two monopoles lying on thex3 axis, one at the
origin and the other two at (0,06s). The charge two mono-
poles must approach axially symmetric monopoles ass→`
since the overall configuration hasC4 symmetry about thex3
axis. By our previous arguments we assume that theB56
Skyrmion can be split up in the manner keepingD4 symme-
try. This is shown schematically in Fig. 2.

The dipole moments of theB52 Skyrmion at (0,0,s) and
(0,0,2s) point in the same direction and opposite to that
the B52 Skyrmion at the origin, so the configuration is a
tracting. If U6@x# is of the following form it will be D4
symmetric ass→`:

U6@x#5U2@x2se3#t1U2@x#t1U2@x1se3#. ~4.13!

Again U2@x# is axially symmetric about thex3 axis. Acting
with theC2 element has the effect of rotating and isorotati
each of the charge two doughnuts about an axis in the p
of the doughnuts and also exchanging the Skyrmion
(0,0,s) with the one at (0,0,2s), this is

U6@x#→U2
a@x#U2

b@x#U2
c@x# ~4.14!

where

U2
a@x#5eil(t1/2)U2@D~e2 il(t1/2)!„x2s~l!…#e2 il(t1/2)

U2
b@x#5eil(t1/2)t1U2@D~e2 il(t1/2)!x#t1e2 il(t1/2)

~4.15!

U2
c@x#5eil(t1/2)U2@D~e2 il(t1/2)!„x1s~l!…#e2 il(t1/2)

s(l)5sD(eil(t1/2))e3, and 0<l<p. The interchange of two
identical doughnuts is contractible since they are bosons
rotating and isorotating each of the doughnuts about an

FIG. 2. B56 Skyrmion separating to threeB52 Skyrmions.
4-9
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PATRICK IRWIN PHYSICAL REVIEW D 61 114024
in their plane is a noncontractible loop@11# and thus doing it
for three doughnuts the total loop must be noncontracti
As mentioned earlier, it is the noncontractibility of the abo
C2 element for the charge two torus which ensures
ground state obtained by zero mode quantizing theB52
solution gives the correct quantum numbers of the deute
i.e. I 50, J51 @11#. If the loop was contractible then th
ground state obtained by zero mode quantization would h
I 5J50.

The otherC2 loop may be treated in a similar manner
see that it is also noncontractible. It is easiest to transfo
the field by a global isorotation so that the rotation and i
rotation act about the same axis, then the analysis is iden
to that above. We thus find

eip(L11K1)uC&52uC&

eip/A2(L11L2)eipK2uC&52uC& ~4.16!

This gives the ground state asu1,0& ^ u0,0&. The first excited
state withI 50 is u3,0& ^ u0,0&. The lowest state withI 51 is
given by u0,0& ^ u1,0&. To determine the parity of the state
we use the reflection symmetry of the rational ma

2 iF (Aiz)5F( z̄). This implies that on the zero modes th
parity operator can be represented asP5e2 i (p/2)K3ei (p/4)L3.
However there is an ambiguity here since the parity oper
can also be represented by the above operator times an
ement ofD4, since this has the same effect on the class
solution, i.e. we could also write P as
e2 i (p/2)K3ei (p/4)L3eip(L11K1). But the C2 elements ofD4 in
the (x1 ,x2) plane are noncontractible so the operators co
sponding to them act on the states with eigenvalue~21!. So
different choices ofP can give different results. The abov
two choices ofP give opposite parity eigenvalues for a
states. We see no theoretical reason to choose one abov
other. The three states found above have the correct spin
the corresponding ground and first excited states of3

6Li and
the ground state of the isospin triplet (2

6He, 3
6Li, 4

6Be). If we
chooseP ase2 i (p/2)K3ei (p/4)L3 then this gives the three state
each having positive parity in agreement with experiment.
we can chooseP so as to give the correct parities of th
states but theoretically there is an ambiguity in its definitio

A similar problem happens in the oddB case. TheB51
Skyrmion is spherically symmetric soP can be represente
as the identity operator, or alternatively, as a 2p rotation.
SinceB is odd the two choices differ on the quantum stat
Using the convention that the nucleon have positive par
for B51 we can takeP to be the identity operator. For a
odd B, 2p rotations are noncontractible so again there
two choices ofP acting on the states,P0 and e2p i n̂•LP0
where P0 is the operator which corresponds classically
inversion. As in theB56 situation we see no way of decid
ing which choice is correct. Thus, in these cases we
make no prediction for the parities of the states. This am
guity may be cured by lifting to the full configuration spac
This space is doubly connected for allB and in the quantum
theory states are defined on this double cover. We need t
the operatorP:U@x#→U†@2x# to the double cover. ForB
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51 one chooses a lift ofP to the double cover of theB51
configuration space and this should determine howP should
be lifted for all otherB. But it is not obvious to us how to do
this is practice. The role of parity in the Skyrme model h
also been discussed recently in@25#.

To summarize, forB56 the states found are in agreeme
with the lowest energy states for nucleon number s
modulo our assumption about the parity. The ground s
has spin 1 and positive parity,3

6Li1. The first excited state
has spin 3 and positive parity. The lowest stateI 51 triplet
(2

6He1, 3
6Li1, 4

6Be1), is observed to have spin 0 and positiv
parity in agreement with that found above.

BÄ8

The B58 case is similar to theB56 case treated above
The minimal energyB58 Skyrmion hasD6d symmetry. It
can be described in terms of a Jarvis rational map given
@2#

F~z!5
~z62 ia !

z2~ iaz621!
, a50.14. ~4.17!

TheD6 subgroup is generated by two elements, aC2 rotation
about thex1 axis and aC6 rotation about thex3 axes. These
act as F(1/z)51/F(z) and F(eip/3z)5e22p i /3F(z). This
means that ap rotation in space about thex1 axis combined
with a p isorotation about thex1 axis leaves the classica
solution invariant; and ap/3 rotation about thex3 axis com-
bined with a 2p/3 isorotation about thex3 axis leaves the
solution invariant. Again, for theC2 loop it is necessary to
continuously deform the minimal energy solution into thr
well separated charge two doughnuts, one of charge fou
the origin and one each of charge two equidistant along
x3 axis with their separation 2s very large. Then, the charg
four doughnut at the origin can be separated into two cha
two doughnuts along thex1 axis. This process can be seen
occur for monopoles in the following way.

The most general charge eight monopole withD6d sym-
metry is given by the Donaldson map

F~w!5
i tw611

w8
, tPR. ~4.18!

Again, some value oft corresponds to the minimal energ
Skyrmion. Lett5e2s→`; the formula given in@24# implies
that this corresponds to two charge two monopoles lying
the x3 axis at (0,06s), and a charge four monopole at th
origin. The monopoles must approach axially symmet
monopoles ast→` since the overall configuration hasC6
symmetry about thex3 axis. Next, the charge four torus ca
be separated into two charge two doughnuts well separ
along thex1 axis keeping theC2 symmetry about thex1 axis.
The charge four doughnut has a Donaldson rational m
F(w)51/w4. This can be deformed toF(w)51/(w22v2)2

for vPR with C2 symmetry about thex1 axis preserved, cf.
Eq. ~4.11!. As v→` this becomes two charge two doughnu
4-10
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ZERO MODE QUANTIZATION OF MULTI-SKYRMIONS PHYSICAL REVIEW D61 114024
separated along thex1-axis. Again, a similar process is po
sible for the charge eight Skyrmions. This is indicated in F
3.

The dipole moments of the Skyrmions at (0,0,s) and
(0,0,2s) point in the same direction and opposite to that
the charge four Skyrmion at the origin, so that the config
ration is attracting. Acting with the symmetry group eleme
which is ap rotation and isorotation about thex1 axis, has
the effect of rotating and isorotating each of the four cha
2 doughnuts about an axis in the plane of the doughnuts
also exchanging the Skyrmion at (0, 0,s) with the one at
(0, 0, 2s). The interchange of two doughnuts is contra
ible since they are bosons; rotating and isorotating eac
the doughnuts about an axis in their plane is a noncontr
ible loop, so doing it for four doughnuts the total loop
contractible. TheC6 element can be written as a product
the aboveC2 element with aC2 element in the (x1 , x2)
plane at an anglep/6 to thex1 axis. ThisC2 loop may be
seen to be contractible in a similar manner to that above.
physical states must satisfy

eip(L11K1)uC&5uC&

eip/3(L322K3)uC&5uC&. ~4.19!

This gives the ground state asu0,0& ^ u0,0&. The first excited
state is given byu2,0& ^ u0,0&. Their parity may be deter
mined from the reflection symmetry of the rational m

e(4p i /3)F(e( ip/6)z)5F( z̄). This implies that on the zero
modes the parity operator can be represented asP
5e( ip/6)(L322K3). There is no parity ambiguity here sinceB is
even and all the FR constraints are11. Thus, both states
have positive parity. Again, this is in agreement with the s
0 positive parity ground state of Beryllium 8,4

8Be1, and the
first excited state has spin 2 and positive parity@13#.

BÄ5

The minimal energyB55 Skyrmion hasD2d symmetry.
It can be described in terms of a Jarvis rational map given

F~z!5
z~z42 ibz22a!

az41 ibz221
, a53.07, b53.94. ~4.20!

The rational map has the symmetriesF(2z)52F(z) and
F(1/z)51/F(z) ~for all a, b). This is a simultaneous rotatio
and isorotation byp about thex3 axis and a simultaneou
rotation and isorotation byp about thex1 axis.

The spin and isospin of the states must be half-integ
since the nucleon number is odd. In the odd nucleon sect

FIG. 3. B58 Skyrmion separating to fourB52 Skyrmions.
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is necessary to be careful when considering the~non!con-
tractibility of the closed loops since 2p rotations are non-
contractible. For instance if a configuration is invariant und
a p rotation about some axis then the clockwise rotation
a different FR constraint to the anticlockwise rotation sin
they differ by a 2p rotation.

To determine the~non!contractibility of the closed loops
first deformF(z) until b50. F(z) now hasD4 symmetry
including a C4 rotation and isorotation about thex3 axis.
Explicitly, F(z)52 iF ( iz). Or the path

z→eilz, F→e2 ilF, 0<l<p/2 ~4.21!

is a closed loop on the configuration corresponding tob50.
This path corresponds to an anti-clockwise rotation byp/2
about thex3 axis combined with a clockwise isorotation b
p/2 about thex3 axis. The path traversed twice is a contra
ible loop since it is the product of two closed loops. Th
loop must also be contractible for the minimal energy so
tion. The path is now given by Eq.~4.21! with 0<l<p. So
an anti-clockwise rotation combined with a clockwise isor
tation by p about thex3 axis is a contractible loop. From
Eqs. ~2.12! and ~2.13!, this implies that the operato
eip(L31K3) acting on the allowed states gives~11!.

Just to be clear about this suppose instead that for
solution with b50, we rotated it byp/2 anticlockwise and
isorotated it by 3p/2 anti-clockwise, again this is a close
loop, i.e.

z→eilz, F→e3ilF, 0<l<p/2. ~4.22!

Repeated this loop twice gives a contractible loop which c
be written as

z→eilz, F→e2 ile4ilF, 0<l<p. ~4.23!

This is the product of the loop in Eq.~4.21! ~with 0<l
<p) with a 4p isorotation which is contractible so we reac
the same conclusion. Note that the operatoreip(L32K3),
which acts on states with eigenvalue~21!, does not corre-
spond to a closed loop traversed twice when acting on
configuration withb50 i.e. whenb50, F(z)Þ iF ( iz).

Next consider theC2 symmetry group element. It is pos
sible to deform the minimal energy charge five Skyrmi
into a configuration of aB53 tetrahedron and twoB51
Skyrmions on opposite sides of the tetrahedron. This is in
cated in Fig. 4.

The B53 looks like an anti-Skyrmion at large distanc
from its center so the total configuration is attracting. T
B55 solution was originally found by relaxing such a co
figuration @1#. The B51 Skyrmions will be on thex3 axis
equidistant from the origin with the same isospin orientatio
The B53 tetrahedron is oriented so that its axes of seco
order are thex1 , x2 andx3 axes. It is easily seen that such
configuration of monopoles can be separated keeping theC2
symmetry about thex1 axis at all times since the set ofk
55 monopoles withC2 symmetry about thex1 axis is con-
nected. We take theC2 element to act by an anticlockwis
rotation combined with a clockwise isorotation. The effect
this is to rotate anti-clockwise and isorotate clockwise
4-11
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PATRICK IRWIN PHYSICAL REVIEW D 61 114024
tetrahedron and theB51 Skyrmions byp about thex1 axis
and interchange the twoB51 Skyrmions. The zero mod
analysis for theB53 tetrahedron was considered in@12#.
The loop corresponding to thep anti-clockwise rotation and
p clockwise isorotation turns out to be contractible. We w
review this for theB59 case which has tetrahedral symm
try, the analysis is the same as for theB53 case. For the
B51 Skyrmions a rotation combined with the opposite is
rotation about the same axis leaves the configuration
changed due to their hedgehog nature. The interchang
two identical B51 Skyrmions is a noncontractible loop
Thus the overall loop is noncontractible. So, physical sta
satisfy

eip(L31K3)uC&5uC&

eip(L11K1)uC&52uC&. ~4.24!

Since the rotations and isorotations act in the same way
can rewrite Eq.~4.24! as

eipM3uC&5uC&

eipM1uC&52uC& ~4.25!

whereMi5Li1Ki . The ground state isuM ,M3&5u1,0&. In
terms ofI, J this is

uC&5U12 ,
1

2L ^U12 ,2
1

2L 2U12 ,2
1

2L ^U12 ,
1

2L . ~4.26!

As discussed earlier we will ignore the question of parity
the oddB sector. We recall that this is the only case whe
the statesuI ,K3& ^ uJ,L3& are not necessarily eigenstates
the Hamiltonian since the symmetry group does not have
axis of order higher than the second. But it is easy to see
states withI 5 1

2 , J5 1
2 are eigenstates of the Hamiltonia

since the Hamiltonian only causes transitions fromL3 to
L312, L3, and L322, and similarly forK3. So theI 5 1

2 ,
J5 1

2 state is an energy eigenstate. This is inconsistent w
the observed isodoublet ground state (2

5He, 3
5Li) which has

spin 3
2 @13#. This state can be obtained fromuM ,M3&

5u2,2&2u2,22&, which satisfies Eq.~4.25! but this has
higher energy thanuM ,M3&5u1,0&. For the helium-lithium

FIG. 4. B55 Skyrmion separating to twoB51 Skyrmions and
a B53 Skyrmion.
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isodoublet the first excited state is a spin1
2 state at excitation

energy approximately 5 MeV. So the ground state we obt
is the first experimentally observed excited state of (2

5He,

3
5Li).

The inclusion of the vibrational modes will give ne
states but the lowest energy state will still be theI 5 1

2 , J
5 1

2 state. It is possible that a more careful quantizat
which allows the Skyrmions to separate will raise the ene
of the spin1

2 state above that of the spin32 state but this is not
at all obvious and would be a very challenging project.

BÄ7

The minimal energyB57 Skyrmion has icosahedral sym
metryY. It can be described in terms of a Jarvis rational m
given by

F~z!5
bz627z42bz221

z~z61bz417z22b!
, b56A7/5. ~4.27!

The icosahedral group is generated by two elements, aC5
rotation and aC3 rotation. The rotations form the definin
F1 representation ofY ~using the notation of@26#! and one
can check that the accompanying isospin transformations
in the other three dimensional irreducible representationF2
~which only differs fromF1 in that, elements which inF1 are
represented by a 2p/5 rotation are represented inF2 by a
4p/5 rotation!. Again we are in the odd nucleon numb
sector and so the spin and isospin of the states must be
integral.

To determine the FR constraints is more complicated
this case. We want to use the representation theory of
icosahedral group to determine the allowed states. Bu
discussed in Sec. II we need to lift the SO~3! elements to
SU~2!. Generally it is not possible to embed a group into
double group while maintaining the group structure, i.e.
choose a subgroup isomorphic toH in the groupH̄. This
means we cannot immediately use the representation th
of the icosahedral groupY. We need to consider the groupK
consisting of the elements$6h,6h8% where the elements
D(h) form the F1 representation ofY and the elements
D(h8) form theF2 representation ofY. The elementsh form
the fundamental or defining representation, denotedG6, of
the double groupȲ. The elementsh8 form the other irreduc-
ible two dimensional representation ofȲ, denotedG7, as can
be seen from examining the character table ofȲ ~see Table
I!. The character table of the double groupȲ is given above,
with t5(11A5)/2. Both the representationsG6 andG7 are
representations of the double groupȲ and are not represen
tations ofY, i.e.G i(2y)52G i(y) for i 56, 7, wherey is an
abstract group element ofȲ. This means that the elements
K are of the following form:

K5$„G6~y!,G7~y!…,„G6~y!,2G7~y!…,yPȲ%. ~4.28!

Or as a group,K5H̄3Z2. We now restrict to the group
elements„G6(y),G7(y)…, these form a subgroup ofK which
is isomorphic toȲ @note that elements„G6(y),2G7(y)… do
4-12
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ZERO MODE QUANTIZATION OF MULTI-SKYRMIONS PHYSICAL REVIEW D61 114024
not form a subgroup ofK#. Each element in this group cor
responds to a symmetry of theB57 Skyrmion and there
exists a corresponding operator which acts on the allow
states with eigenvalue61. BecauseȲ forms a subgroup of
K, this implies that the states transform by a representatio
the groupȲ. Since the states acquire only a61 phase under
each operation the representation must be one dimensi
The only such representation is the trivial one. This me
that the allowed states have eigenvalue11 corresponding to
each of the above transforms. So here we can determine
FR constraints without any need of separating the config
tion into individual Skyrmions. This is because there are
nontrivial one dimensional representations of the groupȲ. In
the previous cases ofB54,6,8 the symmetry group of th
minimal energy configuration hadO, D4 andD6 symmetries
respectively. Each of these groups have nontrivial one
mensional representations. Thus in these cases, group th
alone cannot give the answer and it was necessary to ex
ine a configuration of well separated Skyrmions in order
determine the contractibility of the loops.

Returning to theB57 case, to find physical states of sp
J, isospinI we need to decompose the spinJ representation
of SU~2! into representations ofȲ and the spinI representa-
tion of SU~2! into representations ofȲ. We then take tenso
products of these representations and look for values ofI , J

that give singlets ofȲ. We need to take into account he
that the isorotations are in theF2 representation ofY, recall
Eqs.~2.12! and~2.13!. We keepI 5 1

2 , because states of hig
isospin are energetically unfavorable, this means that
isospin states transform by theG7 representation ofȲ. The
lowest allowedJ is that which its decomposition into repre
sentations ofȲ contains theG7 representation, sinceG7
^ G7 contains the trivial representation. We find that the lo
estJ is 7

2 @26#, in contradiction with the observed isodoubl
of spin 3

2 . The spin7
2 state we found appears as the seco

excited state of the lithium-beryllium doublet at 4.6 Me
The first excited state has spin1

2 at 0.5 MeV.
As noted earlier, it is possible to combine the vibration

modes with the rotational modes. This will give an enlarg
set of states. The experimentally observed ground state
I 5 1

2 and J5 3
2 can be obtained in this manner. The fir

observed excited state with spin12 can also be obtained

TABLE I. Character table forȲ.

E Ē 12C5 12C̄5 12C5
2

12C̄5
2 20C3 20C̄3

30C2

G1(A) 1 1 1 1 1 1 1 1 1
G2(F1) 3 3 t t 1-t 1-t 0 0 -1
G3(F2) 3 3 1-t 1-t t t 0 0 -1
G4(G) 4 4 -1 -1 -1 -1 1 1 0
G5(H) 5 5 0 0 0 0 -1 -1 1

G6 2 -2 t -t -11t 1-t 1 -1 0
G7 2 -2 1-t -11t -t t 1 -1 0
G8 4 -4 1 -1 -1 1 -1 1 0
G9 6 -6 -1 1 1 -1 0 0 0
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Since the vibrational frequencies are as yet unknown it is
clear whether in our analysis these states will have low
energy than theI 5 1

2 , J5 7
2 state. The ground state may b

written as

uC.5HA 7

10U72 ,2
3

2L 2A 3

10U72 ,
7

2L J ^U12 ,2
1

2L
1HA 7

10U72 ,
3

2L 1A 3

10U72 ,2
7

2L J ^U12 ,
1

2L .

~4.29!

BÄ9

The minimal energyB59 Skyrmion has tetrahedral sym
metry. It can be described in terms of a rational map given
@2#. The rotational subgroup is generated by two element
C2 rotation about thex3 axis and aC3 rotation about the
(x11x21x3) axis. The rotations form the definingF repre-
sentation of the tetrahedral groupT and one can check tha
the accompanying isorotations are also in the representa
F. Here we are in the odd nucleon number sector and ag
the spin and isospin of the states must be half-integral.
determine the FR constraints here is similar to that for
B57 case. The fundamental representation ofT̄, the double
group of the tetrahedral groupT, is denotedf. By analogy
with Eq. ~4.28! the groupK is of the form

K5$„f~y!,f~y!…,„f~y!,2f~y!…,yPT̄%. ~4.30!

So againK is of the formK5T̄3Z2, and sinceT̄ is a sub-
group ofK5T̄3Z2, states transform by a representation ofT̄
which must be one dimensional. There are no nontrivial r
resentations ofT̄ @20#. Since the rotations act in the sam
way as the isorotations the constraints can be expresse
terms of the operatorsMi5Li1Ki just as for theB55 case,
again using Eqs.~2.12! and ~2.13!. Since all constraints are
trivial we get

eipM3uC&5uC&

ei (2p/3A3)(M11M21M3)uC&5uC&. ~4.31!

This analysis is the same as that presented by Carson in@12#
for the tetrahedrally symmetricB53 solution, where he
found the ground state to beI 5J5 1

2 . The state isuM ,M3&
5u0,0&. In terms ofI , J this is

uC&5U12 ,
1

2L ^U12 ,2
1

2L 2U12 ,2
1

2L ^U12 ,
1

2L . ~4.32!

Again this is not in agreement with the isodoublet of ber
lium and boron of spin3

2 (4
9Be, 5

9B). The state obtained is th
first excited state with excitation energy 1.6 MeV@13#. The
observed ground state can be obtained here by including
vibrational modes but it will have higher energy than t
spin 1

2 state. This is a similar situation to above forB55
with no obvious way around this difficulty even if the vibra
tional modes are included.
4-13
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BÄ17

For B>9 the minimal energy Skyrmion configuration
are not yet known. From@1# it is expected that the minima
energy solution will look like a polygon with 12 pentagon
and 2(B27) hexagons. But asB increases there are man
such polygons and it turns out that the energy differe
between these solutions is very small, so it is hard to iden
the minimal energy solution. But forB517 a particularly
symmetric configuration arises, the buckyball solution w
icosahedral symmetry. Due to its enhanced symmetry,
believed that this is the minimal energy solution forB517.

This solution is described by the rational map@2#

F~z!5
17z152187z101119z521

z2~z151119z101187z5117!
. ~4.33!

This case is similar to that forB57 which also has icosahe
dral symmetry. It can be checked from Eq.~4.33! that the
rotations form the defining representationF1 and the isoro-
tations form the representationF2. This is exactly the same
as for B57. So we find the ground state hasI 5 1

2 , J5 7
2 .

However, from@13# this state is the eighth excited state
the isodoublet (8

17O, 9
17F) whose ground state has spin5

2 .

V. VIBRATIONAL MODES

To go beyond the first approximation of just consideri
the zero modes it is appropriate to include the vibrations
the Skyrmions. These have been calculated for the mini
energyB52 andB54 solutions@6#. The approximation of
treating the interaction potential of the Skyrme configu
tions as a harmonic oscillator potential is not very accura
since, as the minimal energy configuration separates into
dividual Skyrmions the potential flattens out. A more acc
rate treatment will involve estimating the inter-Skyrmion p
tential at intermediate and large separations. Thus it sho
not be expected that the inclusion of vibrational modes w
yield accurate results for masses, binding energies of st
etc.

Including the vibrational modes involves the coupling
harmonic oscillator wave functions to the rotational and i
rotational wave functions. However, they do not combine
an arbitrary way; the interaction of the rotations and vib
tions is described in@15# for general soliton models. Th
space of rotations and isorotations is„SO(3)3SO(3)…/H;
againH is the symmetry group of the minimal energy sol
tion. The vibrations fall into representations ofH and the
space of vibrations is a vector space denoted byV. V is a
direct sum of vector spacesVi with H acting irreducibly on
eachVi .

The total configuration spaceF say, is now a vector
bundle over„SO(3)3SO(3)…/H. For ease of notation we
will restrict here to the case of evenB so we do not need to
worry about the double covering. It can be included witho
much difficulty. F can be defined by taking the produ
space SO(3)3SO(3)3V with the following equivalence:

~R,R8,v !>„SR,R8G21~S!,r21~S!v…,
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SPH, ~R,R8!PSO~3!3SO~3!, vPV. ~5.1!

G(S) is as before andr(S) is the action ofH on the space of
vibrations. As an example to see that this gives the cor
configuration space consider theB54 Skyrmion which has a
cubic shape. One of the vibrational modes is the so ca
tetrahedral mode which can be imagined as follows. T
vertices of the cube form two interlocking tetrahedra. T
vibrating cube alternately separates into four Skyrmions
the vertices of one of the tetrahedra~positive mode!, then
contracts to the cube and then separates into four Skyrm
on the vertices of the dual tetrahedron~negative mode!. Act-
ing with thep/2 rotation andp isorotation about thex3 axis
~which is a symmetry of the cube! is equivalent to inter-
changing the positive and negative modes. So as not to o
count the configuration space we must identify rotating a
isorotating the configuration about thex3 axis with inter-
changing positive and negative vibrating modes.

Quantum states are given by the direct product of Wig
functions on SU(2)3SU(2) with harmonic oscillator wave
functions onV with the proviso that the states areH invari-
ant. Again, in a manner similar to that treated for the ze
modes the FR constraints determine howH invariance is to
be implemented. The FR constraints for the closed lo
corresponding to the above action ofH are identical to those
when just considering zero modes. This is because the lo
are closed for all vibrational amplitudes, so the loop can
deformed to the case of amplitude zero, i.e. the zero m
case. When the classical solution has a reflection symm
the vibrations corresponding to the vector spaceVi have a
definite parityr i561. It is possible to check that the parit
operator for the rotational and vibrational states is given
P) ir i

n where P is the parity operator acting on the ze
modes and thei th vibrational state is in thenth excited
mode.

Here we will concentrate on theB54 case since the vi-
brational spectra has been calculated@6#. The spectra was
calculated at finite pion mass, whereas we are working w
zero pion mass. But the vibrational frequencies found in@6#
do not appear to vary greatly with the value of the pion m
used, so we will use their values. Anyway we are not int
ested in obtaining accurate numbers here, we just wan
indicate how to couple the rotational and vibrational mod

To find the allowed states is quite easy. If one is on
interested in what states are allowed and not their dep
dence in terms ofL3 ,K3 etc., then this can be determined b
the representation theory of the cubic symmetry groupO,
alone. The configuration space is SO(3)3SO(3)3V quo-
tiented byO as described above. Since all the FR constra
all 11, the allowed states areO singlets of SO(3)3SO(3)
3V. From Eq.~4.1! we know that the rotational SO~3! trans-
forms as the definingF1 representation ofO and that the
isorotational SO~3! transforms as theE% A2 representation
of O, using the notation of@20#. From this we can work out
how a spinJ, isospinI state decomposes underO. The rep-
resentations ofO that the vibrations form were computed
@6# and so we can determine how the product SO(
3SO(3)3V transforms underO and so we can easily rea
off which combinations ofI , J, and vibrations are allowed
4-14
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as states. ForB54 the rotational moments of inertia are a
equal,Vi j 5d i j (18 MeV)21, the isorotational moments o
inertia are U115U225(82.2 MeV)21, U335(68.2
MeV)21, and the cross term between rotations and isoro
tions vanishes,Wi j 50. These values are obtained using t
values off p , e from @27#. Thus the Hamiltonian is

H541.1K227.0K3
219.0L2, ~5.2!

in units of MeV. The energies of the vibrational states,\v,
and their representations of the cubic group are (E1,94
MeV!, (A2

2,104MeV!, (F2
1,107 MeV!, (F2

2,132 MeV!,(A1
1,

155 MeV!, (F2
2 , 168 MeV!, and (F2

1 , 189 MeV!, the 6

denotes parity. Restricting toK50, i.e. 2
4He, the first few

excited states areJ521 at 147 MeV,J501 at 155 MeV,
J521 at 160 MeV, and then the first excited zero mo
state,J541 at 178 MeV. The observed excited states

2
4He1 differ considerably from this@13#. The first few ex-
cited states are 01 at 20.1 MeV, 02 at 21.1 MeV, and 22 at
22.1 MeV. The most obvious discrepancy is the overestim
tion of the excitation energies, this is partly due to treatm
of the potential as of harmonic oscillator type. Nonethel
this shows that the vibrational states are important and ar
the same order of energy as the pure rotational states.

The experimentally observed ground state of (3
7Li, 4

7Be)
hasJ5 3

2 . For B57 the lowest state with isospinI 5 1
2 was

found to haveJ5 7
2 . By the same methods as above, us

the monopole vibrations as a prediction for the low lyi
Skyrmion vibration frequencies, a state ofJ5 3

2 can be ob-
tained. If the vibrational frequency of this state is not t
high it may have lower energy than theJ5 7

2 and thus give
the correct ground state.

VI. NUCLEON DENSITIES OF THE STATES

Given the expressions for the states in terms of Wig
functions, other physical properties may be calculated s
as the nucleon density of the quantum state. The nuc
density of the classical configurations are quite symmetr
and it is of interest to know how quantum effects chan
this. Given a stateC, we want an expression for the prob
ability distribution pC(x) on physical space which is inter
preted as the nucleon density. This is done by averaging
classical nucleon density over the space of zero mo
weighted with uCu2 @16# ~we restrict here to zero mod
states!. Denoting the classical nucleon density byB(x), the
spatial probability distribution for the quantum state is d
fined as

pC~x!5
1

2E B„D~A!x…uC~A, A8!u2sinũdũdf̃dc̃

~6.1!

whereD(A) is parametrized by the Euler angles (ũ,f̃,c̃).
pC(x) is evaluated by expandingB„D(A)x… in terms of

spherical harmonicsYmn( x̂̃), with x̃5D(A)x, then using the
transformation properties of spherical harmonics under r
tions
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Ylm~ x̂̃!5(
k

Dmk
l ~A!* Ylk~ x̂! ~no sum onl ! ~6.2!

and the fact thatuCu2 can be written as a sum of term
Dab

J (A)Dcb
J (A)* , whereDab

J (A) are Wigner functions. The
direct product and orthogonality properties of the Wign
functions are then used to computepC(x). We choose the
space fixed angular momentum in thex3 direction,b, equal
to J, i.e. ‘‘spin up.’’ Considering only rotational and isorota
tional wave functions,pC(x) will have the same radial de
pendence as the classical solution. But the angular de
dence will be changed by quantum effects. In the Skyr
model there is no decomposition of angular momentum i
orbital and intrinsic spin angular momentum. However, c
culating the spatial probability distribution can give som
insight into what the intrinsic spin and orbital contribution
of the nuclear state are. If the nuclear state is mostly i
orbital S-state its nucleon density will also be almost sph
cally symmetric. For all the examples treated below t
quantum nucleon density is more spherically symmetric th
the classical nucleon density, it being exactly S-wave in
number of cases.

For B54 we found the ground state to haveI 5J50, the
first excited state withI 50 hasJ54 and the lowest state
with I 51 hasJ52. Inserting the above states into Eq.~6.1!
we trivially find the probability distribution of theI 50, J
50 state to be spherically symmetric. This is also true of
ground state forB58. For theI 50, J54 state ofB54 we
find the angular dependence to be mostly S-wave withl 54
contributions and some very smalll 56 and l 58 contribu-
tions,

pC~u,f!}$Y0020.045Y4020.027~Y441Y424!10.0002Y60

10.00003Y80%. ~6.3!

Here (u,f) are the angular coordinates on physical space
opposed to the coordinates onD(A). And for the I 51, J
52 state we again find the nucleon density to be mos
spherically symmetric with a smalll 54 contribution

pC~u, c!}$Y0020.01Y4020.01~Y441Y424!%. ~6.4!

Thus when quantum effects are included the nucleon den
becomes spherical or near spherical. It is known that
ground state of2

4He is completely S-wave. In real nuclei th
nucleon density is large up to a certain radius and then f
off quickly. Our quantum states have the same radial dep
dence as the classical solutions which is somewhat holl
this becomes very noticeable for larger nucleon numbers

For theI 50, J51 ground state ofB56 it is found that

pC~u,f!}$Y0020.03Y20%. ~6.5!

This result is slightly different than for theB52 deuteron. In
both cases the ground state is given byI 50 andJ51 with
the sameL3 dependence but for the deuteron the quant
probability distribution is of a dumbbell shape@16#. Here, for
theB56 solution the quantum probability distribution is of
toroidal shape. The difference arises because the clas
4-15
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PATRICK IRWIN PHYSICAL REVIEW D 61 114024
nucleon densities of the two solutions are different. Nonet
less, the wave function is predominately S-wave and thi
also in agreement with experiment.

The ground state forB57 may be written as

uC&5HA 7

10U72 ,2
3

2L 2A 3

10U72 ,
7

2L J ^U12 ,2
1

2L
1HA 7

10U72 ,
3

2L 1A 3

10U72 ,2
7

2L J ^U12 ,
1

2L .

~6.6!

From this we can see that the probability distribution of t
state must be spherically symmetric. This is so becaus
Eq. ~6.1! we take uCu2 and integrate it with the classica
nucleon density. The classical nucleon density has icos
dral symmetry and forl<7 the only spherical harmonic
which are icosahedrally symmetric arel 50 and anl 56 har-
monic @26#. But uCu2 expanded in terms of Wigner function
has nol 56 term and sopC(x) is spherically symmetric. The
same analysis applies to the ground state ofB517.

For the B59 ground state it is easy to show that t
nucleon density is spherically symmetric. Since the spin i1

2

the nucleon density could only havel 50 and l 51 compo-
nents. But thel 51 component is associated with a vector
space and this is incompatible with tetrahedral symmetry
the wave function is completely S-wave. It can also
checked that theB55 ground state is completely S-wave.

So we see that when one includes quantum effects
classical picture of the nucleon density having a discr
point symmetry group is changed so that in the quant
state it is smeared forming a spherical or near spheric
symmetric configuration.

VII. OUTLOOK

We have described the ground states of theB54 to B
59 andB517 Skyrmions obtained by quantizing the ze
modes of the classical solutions. We did not attempt to c
culate the masses, binding energies and other observa
since a zero mode quantization is too restrictive to get ac
rate results. Nonetheless we expected to obtain the co
quantum numbers of the ground states. However our res
are not promising; forB54, B56 and B58 the correct
ground states are obtained. But in the odd nucleon secto
have obtained the incorrect ground states. For nucleon n
bers 5, 7 and 9 the experimentally observed ground state
isodoublets with spin3

2 and for nucleon number 17 the ob
served ground state is an isodoublet with spin5

2 . However
we obtained isodoublets with spin12 for B55 andB59, and
an isodoublet with spin72 for B57 andB517. The symme-
try of the classical solutions which can give spin3

2 states is
C4 symmetry, andC6 symmetry can give a spin52 state. But
the classical solutions in these cases do not haveC4 or C6
symmetry.

The main assumption we made was that certain clo
loops in the configuration space remain closed as the m
mal energy configuration is separated intoB51 or B52
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Skyrmions. This was necessary in order to determine the
constraints. The vibrational spectra of the minimal ene
B52 andB54 Skyrmions for low frequencies is in corre
spondence with monopole vibrations about the correspo
ing monopoles. We assumed that this correspondence h
true for higherB. We consider this very likely, but the vibra
tional spectra for the Skyrmions needs to be found to confi
this. It was also assumed that if the solution could be
brated, remaining invariant under a certain symmetry, th
the continuation of the symmetric path in the configurati
space results in a configuration of well separated Skyrmio
We have seen that this is true for monopoles in the ca
considered and presumed it also holds for Skyrmions. Ag
this does not seem to be a particularly strong assumption
any case, the outcome forB57, B59 andB517 is inde-
pendent of these assumptions, since the FR constraints
be determined from the group theory alone, and the gro
states obtained are not in agreement with experiment.

To obtain the experimentally observed ground state
will be necessary to include modes whereby the Skyrmi
separate. It is not difficult to see that a quadratic approxim
tion ~by just considering the vibrational modes! will not cure
this problem for theB55 and B59 cases. If the Skyrme
model is to correctly predict the ground states of these nu
it will be necessary to include configurations of Skyrmio
with intermediate or long range separations which is a hig
nontrivial problem.

Another possible resolution is that the solutions found
@1# are not well defined minima, i.e. there may be a num
of solutions with approximately equal energies and so
expansion about just one of these minima is not valid. Ho
ever we view that the more likely answer is that the ze
mode configuration space is too restrictive. The zero m
approximation allows only for a collective motion of th
Skyrmions with nine parameters, while the space that
proximates the low energy behavior ofB Skyrmions should
be 6B dimensional. AsB increases the validity of the zer
mode approximation should break down.

Our final comment concerns the question of renormali
tion. Casimir energies arise from the renormalization of
vibrational modes around any classical Skyrmion soluti
The energy corrections that arises from this will be dep
dent on the particular classical solution that one expa
about. They will however be independent of the collecti
coordinates and thus be identical for each quantum state
arises from quantizing the zero modes of a given class
solution, see e.g.@28#. Thus the energy shift will be the sam
for each Skyrmion state. Further corrections to the soli
mass arise from the renormalization of the interaction ter
which couple the vibrational modes to the collective coor
nates of the Skyrmion. These give corrections which dep
on the specific quantum state of the Skyrmion, i.e. the ene
corrections are different for states of differingI, J. This
leaves the possibility that the ground states which w
found here may in fact be exotic, excited states after ren
malization. Whether this approach can reconcile the Sk
mion ground states with observed nucleii is unclear, it is
obvious to us how the magnitude of these corrections w
depend on the quantum numbers of the Skyrmion state
course, this is a difficult matter to test explicitly and we w
not expand on it here.
4-16
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