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Renormalization-scale-invariant PQCD predictions for Re¿eÀ and the Bjorken sum rule
at next-to-leading order
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~Received 8 September 1999; published 9 May 2000!

We discuss the application of the physical QCD effective chargeaV , defined via the heavy-quark potential,
in perturbative calculations at next-to-leading order. When coupled with the Brodsky-Lepage-Mackenzie pre-
scription for fixing the renormalization scales, the resulting series are automatically and naturally scale and
scheme independent, and represent unambiguous predictions of perturbative QCD. We consider in detail such
commensurate scale relations for thee1e2 annihilation ratioRe1e2 and the Bjorken sum rule. In both cases the
improved predictions are in excellent agreement with experiment.

PACS number~s!: 12.38.Bx, 12.38.Aw, 13.60.2r, 13.65.1i
le
n

e

e-

s
ti

ec
la
gr

s, a
za-
nd

l-
tion
ing
it
lian
l in
the
the
r-

on-

be
rv-

on
reti-
the
n
al-
n’’
d

ter-
-
-

ef-
le
the
a
in

is
e-

to
-

to
e

re
ve
s
e-
y
n-
m
di
I. INTRODUCTION

One of the most important problems in making reliab
predictions in perturbative QCD is dealing with the depe
dence of the truncated perturbative series on the choic
renormalization scalem and schemes for the QCD coupling
as(m). Consider a physical quantityO, computed in pertur-
bation theory and truncated at next-to-leading order~NLO!
in as :

O5as~m!F11„A1~m!1B1~m!nf…
as~m!

p
1•••G ,

~1.1!

wherenf is the effective number of quark flavors. The finit
order expression depends on bothm and the choice of
scheme used to define the coupling. In fact, Eq.~1.1! can be
made to take on essentially any value by varyingm and the
renormalization scheme, which area priori completely arbi-
trary. The scale or scheme problem is that of choosingm and
the schemes in an ‘‘optimal’’ way, so that an unambiguou
theoretical prediction, ideally including some plausible es
mate of theoretical uncertainties, can be made.1

For any given observable there is no rigorously corr
way to make this choice in general. However, a particu
prescription may be supported to a greater or lesser de
by general theoretical arguments and,a posteriori, by its

1The precise meaning of ‘‘optimal’’ in this context is connected
the minimization of remainders for the truncated series. As is w
known, perturbation series in QCD are asymptotic, and thus the
an optimum number of terms that should be computed for a gi
observable. In general, very little is known about the remainder
perturbative QCD~PQCD!; however, if we assume that PQCD s
ries are sign-alternating, then the remainder can be estimated b
first neglected~or last included! term. This term can take on esse
tially any value, however, by simply varying the scale and sche
and thus its minimization is meaningless without invoking ad
tional criteria.
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success in practical applications. From these perspective
particularly successful method for choosing the renormali
tion scale is that proposed by Brodsky, Lepage, a
MacKenzie~BLM ! @1#. In the BLM procedure, the renorma
ization scales are chosen such that all vacuum polariza
effects from fermion loops are absorbed into the runn
couplings. A principal motivation for this choice is that
reduces to the correct prescription in the case of Abe
gauge theory. Furthermore, the BLM scales are physica
the sense that they typically reflect the mean virtuality of
gluon propagators. Another important advantage of
method is that it ‘‘pre-sums’’ the large and strongly dive
gent terms in the PQCD series which grow asn!(asb0)n,
i.e., the infrared renormalons associated with coupling c
stant renormalization.

Dependence on the renormalization scheme can
avoided by considering relations between physical obse
ables only. By the general principles of renormalizati
theory, such a relation must be independent of any theo
cal conventions, in particular the choice of scheme in
definition of as . A relation between physical quantities i
which the BLM method has been used to fix the renorm
ization scales is known as a ‘‘commensurate scale relatio
~CSR! @2#. An important example is the generalize
Crewther relation@2,3#, in which the radiative corrections to
the Bjorken sum rule for deep inelastic lepton-proton scat
ing at a given momentum transferQ are predicted from mea
surements of thee1e2 annihilation cross section at a com
mensurate energy scaleAs}Q.

A useful tool in these analyses is the concept of an ‘‘
fective charge.’’ Any perturbatively calculable observab
can be used to define an effective charge by incorporating
entire radiative correction into its definition. Since such
charge is itself a physical observable, perturbation theory
terms of it, with the BLM prescription setting the scales,
automatically renormalization scale- and schem
independent.

In this paper we shall use the heavy quark potential
define an effective QCD couplingaV , and construct scale
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commensurate expansions of various other QCD observa
in terms of it. A recent calculation of the heavy quark pote
tial at next to next leading order~NNLO! @4# allows the
relevant BLM scales to be determined through NLO. T
resulting relations can be tested directly for agreement w
available data, and in addition may be used to study vari
phenomenological forms for the heavy quark potential
moderate to lowQ2.

We begin by outlining the BLM approach and the idea
commensurate scale relations. We also introduce phys
effective charges asociated with the heavy quark poten
the e1e2 annihilation cross section and the Bjorken su
rule. In Sec. III we then construct the NLO scal
commensurate expansions of these observables in term
aV , and compare the results to the available data usin
simple parameterization foraV which is fit to a lattice cal-
culation. In general the agreement is excellent. In Sec. IV
present some discussion of the results and our conclusio

II. BLM SCALE FIXING

At lowest order the BLM approach is straightforward
motivate. The term involvingnf in Eq. ~1.1! arises solely
from quark loops in vacuum polarization diagrams. In QE
these are the only contributions responsible for the runn
of the coupling, and thus it is natural to absorb them into
definition of the coupling. The BLM procedure is the anal
of this approach in QCD. Specifically, we rewrite Eq.~1.1!
in the form

O5as~m!F12S 3b0B1~m!

2 D as~m!

p
1•••G

3F11S A1~m!1
33B1~m!

2 D as~m!

p
1•••G , ~2.1!

correct to orderas
2 , where b051122nf /3 is the lowest-

order QCD beta function. The first term in square brack
can then be absorbed by a redefinition of the renormaliza
scale in the leading-order coupling, using

as~m* !5as~m!F12
b0as~m!

2p
ln~m* /m!1•••G .

~2.2!

That is, the BLM procedure consists of defining the pred
tion for O at this order to be

O5as~m* !F11S A1~m!1
33B1~m!

2 Das~m* !

p
1•••G ,

~2.3!

where

m* [me3B1(m). ~2.4!

Note that knowledge of the NLO term in the expansion
necessary to fix the scale at LO. Thus the scale occurrin
the highest term in the expansion will in general be u
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known. A natural prescription is to set this scale to be
same as that in the next-to-highest-order term.

A very important feature of this prescription is thatm* is
actually independent ofm. @This follows from considering
them dependence ofB1(m). For a detailed discussion of thi
point, see Ref.@1#.# Thus pQCD predictions using the BLM
procedure are unambiguous.

The same basic idea can be extended to higher orders
systematically shiftingnf dependence into the renormaliz
tion scales order by order. Full details of this procedure m
be found in Refs.@5,6#. The result is that a general expansio

as~m!

p
1~A11B1nf !S as~m!

p D 2

1~A21B2nf1C2nf
2!S as~m!

p D 3

1••• ~2.5!

is replaced by a series of the form

as~m* !

p
1Ã1S as~m** !

p D 2

1Ã2S as~m*** !

p D 3

1•••.

~2.6!

In general a different scale appears at each order in pe
bation theory, and the BLM scales themselves are po
series in the couplingas . In addition, the coefficientsÃn are
independent ofnf ~by construction!, and so the form of the
expansion is unchanged as momenta vary across quark
thresholds. All effects due to quark loops in vacuum pol
ization diagrams are automatically incorporated into the
fective couplings.

As discussed above, one motivation for this prescript
is that it reduces to the correct result in the case of QED
addition, when combined with the idea of commensur
scale relations, the BLM method can be shown to be con
tent with the generalized renormalization group invariance
Stückelberg and Peterman@7#, in which one considers ‘‘flow
equations’’ both inm and in the parameters that define t
scheme@5#. This is not necessarily true of other methods f
determining the scales.

A very natural way of implementing the CSR idea is
introduce a physical effective charge, defined via some c
venient observable, for use as an expansion parameter
expansion of a physical quantity in terms of such a charg
a relation between observables and therefore must be i
pendent of theoretical conventions, such as the renorma
tion scheme, to any fixed order of perturbation theory.
particularly useful scheme is furnished by the heavy qu
potentialV(Q2), which can be identified as the two-particle
irreducible amplitude for the scattering of an infinitely hea
quark and antiquark at momentum transfert52Q2. The re-
lation

V~Q2!52
4pCFaV~Q!

Q2 , ~2.7!

with CF5(Nc
221)/2Nc54/3, then defines the effectiv

chargeaV(Q). This coupling provides a physically-based a
1-2
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RENORMALIZATION-SCALE-INVARIANT PQCD . . . PHYSICAL REVIEW D61 114011
ternative to the usual modified minimal subtraction (MS)
scheme. The other physical charges we shall consider
areaR , defined via the totale1e2→X cross section:

R~s![3(
q

eq
2S 11

aR~As!

p D , ~2.8!

and ag1
, defined by the radiative correction to the Bjorke

sum rule:

E
0

1

dx@g1
ep~x,Q2!2g1

en~x,Q2!#[
1

6 UgA

gV
UF12

ag1
~Q!

p
G .

~2.9!

The perturbative expansions for these quantities thro
NNLO may be found in Refs.@8# and @9,10#, respectively.

Such physical couplings are of course renormalizati
group-invariant, i.e.,m]aV /]m50. However, the depen
dence ofaV(Q) on Q is controlled by an equation which i
formally identical to the usual RG equation. SinceaV is
dimensionless we must have

aV5aVS Q

m
,as~m! D . ~2.10!

Thenm]aV /]m50 implies

Q
]

]Q
aV~Q!5bs~as!

]aV

]as
[bV~aV!, ~2.11!

where

bs5m
]

]m
as~m!. ~2.12!

This is formally a change of scheme, so that the first t
coefficientsbV

(0)51122nf /3 andbV
(1)5102238nf /3 in the

perturbative expansion ofbV are the standard ones.

III. QCD PERTURBATION THEORY AND aV

A. BLM scale fixing for aV

The calculation of the heavy quark potential at NNLO
Ref. @4# allows the BLM procedure to be applied throug
NLO in commensurate scale relations involvingaV . As a
first step, we may apply the BLM procedure to fix the ren
malization scales in the expression foraV in terms of the
conventionalMS coupling. The result is

aV~Q!

p
5

aMS~QV* !

p
1AVS aMS~QV** !

p D 2

1BVS aMS~QV*** !

p D 3

1•••, ~3.1!

where
11401
re

h

-

o

-

AV52
2

3
CA , ~3.2!

BV5S 133

144
2

11

4
z31

1

4
p22

1

64
p4DCA

2

1S 2
385

192
1

11

4
z3DCACF , ~3.3!

ln~QV* /Q!52
5

6
, ~3.4!

ln~QV** /Q!52
217

192
1

21

16
z31S 105

128
2

9

8
z3D CF

CA
, ~3.5!

andCA5Nc . As discussed above, we takeQV*** 5QV** at
this order.

It is also useful to invert this, and expressaMS itself in
terms ofaV . In this case we obtain

aMS~Q!

p
5

aV~QMS
* !

p
1AMSS aV~QMS

** !

p
D 2

1BMSS aV~QMS
** !

p
D 3

1•••, ~3.6!

where

AMS5
2

3
CA , ~3.7!

BMS5S 2
5

144
1

11

4
z32

1

4
p21

1

64
p4DCA

2

1S 385

192
2

11

4
z3DCACF , ~3.8!

ln~QMS
* /Q!5

5

6
, ~3.9!

ln~QMS
** /Q!5

103

192
1

21

16
z31S 105

128
2

9

8
z3D CF

CA
.

~3.10!

B. e¿eÀ annihilation cross section

We next present the NNLO scale-commensurate exp
sion of aR in terms ofaV . This is obtained by applying the
BLM procedure at NLO to the expansion of each of the
observables in theMS scheme, and then algebraically elim
natingaMS. The result is

aR~Q!

p
5

aV~QR* !

p
1ARS aV~QR** !

p D 2

1BRS aV~QR** !

p D 3

1•••, ~3.11!

where~for Nc53!
1-3
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FIG. 1. The momentum dependence ofnf(Q
2).
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AR5
25

12
, ~3.12!

BR5
97

72
2

9

4
p21

9

64
p41

10

d~r ! S 11

144
2

z3

6 D S ( qeqD 2

( qeq
2

,

~3.13!

ln~QR* /Q!52
23

12
12z31~3322nf !F2

119

864
1

p2

72
2

7

9
z3

1
2

3
z3

2G S aV~Q!

p D , ~3.14!

ln~QR** /Q!52
157

60
1

233

50
z322z5 . ~3.15!

In Eq. ~3.13!, d(r ) is the dimension of the quark represen
tion, i.e., 3 forSU(3). This relation represents an unambig
ous, fundamental test of perturbative QCD which is indep
dent of renormalization scale or scheme.

In order to make a comparison to experimental data,
will introduce a parametrization ofaV which is fit to lattice
data @11# in the moderate- to high-Q2 regime. Specifically,
we take

aV~Q!5
4p

b0lnS Q214mg
2

LV
2 D . ~3.16!

Asymptotically this reproduces the perturbative couplin
while the effective ‘‘gluon mass’’mg results inaV becoming
essentially frozen forQ2<4mg

2 . This form can be motivated
11401
-

-

e

,

on various theoretical grounds@12#, and it has also been
successful in phenomenological analyses@13#.

The parametersLV andmg
2 have been determined in Re

@13#, by fitting to a lattice calculation ofV(Q2) @11# at rela-
tively high Q2 and to a value ofaR advocated in@14#, using
Eq. ~3.11! at LO. They were found to beLV50.16 GeV and
mg

250.19 GeV2.
Note that in the beta functionb0 we use a ‘‘smeared’’

function for the number of flavors, although this only affec
the low-energy regime where several quark flavor thresho
occur. This function is

nf~Q2!5(
f
E

0

1

dz
6Q2z2~12z!2

mf
21Q2z~12z!

, ~3.17!

and is motivated in Ref.@15#. The integration overz in Eq.
~3.17! leads to the explicit representation2 of the function
that is identical to theQ2 logarithmic derivative of the one
loop massiveb-function presented in Ref.@15#. In Fig. 1 we
show nf(Q

2) in the low-energy region. We have takenms
50.15 GeV, mc51.9 GeV, mb54.5 GeV for the quark
masses. The resultingaV is shown in Fig. 2.

Note also that for lowQ2 the couplings, although frozen
are large. Thus the NLO and higher-order terms in the CS
are large, and they do not give accurate results at low sca
In addition, higher-twist contributions to the effectiv
charges, which are not reflected in CSRs relating them, m
be expected to be important for lowQ2. However, series
expansions in terms of physical charges are likely to be m
convergent than those cast in terms of unphysical coupli

2Note that *0
1dz„6z2(12z)2/@x1z(12z)#…5126x1„12x2/(1

14x)1/2
…ln(@(114x)1/211#/@(114x)1/221#).
1-4
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FIG. 2. The effective chargeaV , as given by Eq.~3.16!.
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such asaMS, which is singular at finite scales.3 Thus it is
quite possible that expansions of the type we are conside
can be extended to lower physical scales than series wr
in terms ofaMS. In any case, we will not be directly con
cerned with the low-Q2 regime here.

Before discussing the results, it is useful to understa
what improvements we can expect from the commensu
scale relations. First of all, of course, we have a sca
independent result, so aesthetically we have an advan
over the conventional treatment. Moreover, because of
we expect our result to be numerically more accurate t
previous results with the scale fixed to certain value. T
main applicability and usefulness of commensurate scale
lations is for the intermediate energy regime. Pertubat
theory is valid only above the characteristic QCD sc
LQCD , and since the commensurate scale analysis cruc
depends on the validity of perturbation theory, we don’t e
pect much improvement in the very low energy regime. F
thermore, in the high energy limit the residual scale dep
dent terms go to zero, so scale relations are meaningless
e1e2 annihilation data, as well as the Bjorken sum rule d
presented in the next section, lies in the intermediate ene
regime where we expect improved predictions.

Two additional modifications of Eq.~3.11! were per-
formed before comparing with data. First, we have includ
the leading-order electroweak corrections to account for
Z0 current, which is particularly important above 30 GeV.
addition we have included the charm and bottom mass
rections, which are important in the range 3–15 GeV. T
effect of these modifications is to replace the factor(qeq

2 in
Eq. ~2.8! by

3For example, in the ’t Hooft schemeaMS has a simple pole a
Q5LMS .
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q
A12

4mq
2

Q2 Feq
2S 11

2mq
2

Q2 D 12Re~r!eqcV
ecV

qS 11
2mq

2

Q2 D
1ur u2„~cV

e !21~cA
e !2

…S ~cV
q !2S 11

2mq
2

Q2 D
1~cA

q !2S 12
4mq

2

Q2 D D G , ~3.18!

where

cV
q5I 322eq sin2uW ,

cV
e52 sin2uW2

1

2
,

cA
q5I 3 ,

cA
e52

1

2
,

r 5
A2GMZ

2

Q22MZ
21 iM ZGZ

S Q2

e2 D
5

Q2

sin22uW~Q22MZ
21 iM ZGZ!

. ~3.19!

Here I 3 is the third component of the weak isospin of th
quark coupled toZ0 and the weak mixing angleuW is given
1-5
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FIG. 3. The scale-commensurate expansion ofaR in terms ofaV in the high energy regime. The solid line is given by Eq.~3.11!; the
dashed line is the prediction quoted by the PDG; the dotted line is the leading order result~with mass and electroweak corrections!.
i
da

th

ith
cor-

ton
m

by sin2 uW50.22. The mass and the decay width ofZ0 are
given byMZ591.2 GeV andGZ52.5 GeV, respectively.

In Fig. 3, we show the commensurate scale result~3.11!
along with a representative subset of the available data@16#
in the energy range 8–60 GeV. We find our results to be
excellent agreement with the data, as well as the stan
QCD predictions quoted by the Particle Data Group@17#
with the scale fixed to a certain value (LMS50.25 GeV). In
Fig. 4, we show our theoretical prediction and the data in
11401
n
rd

e

2–7.5 GeV range. Again, we find very nice agreement w
the data, particularly considering that we have neglected
rections from theJ/c(1S), c(2S), and other vector meson
resonances. Note that the data for 3.6 GeV,Q,7.5 GeV
has been subtracted by 0.84A124mt

2/Q2(112mt
2/Q2) to

account for hadronic production that proceeds via tau lep
pairs, which the early experiments did not distinguish fro
quark-hadron processes. The factor 0.84512(2/5)2 is the
probability that either tau will decay to hadrons.
FIG. 4. Scale-commensurate expansion ofaR in terms ofaV in the intermediate-energy regime.
1-6
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FIG. 5. The dotted line shows the leading-order prediction for the Bjorken sum rule while the solid line includes the scale-comm
corrections through NNLO. Also shown are data from Ref.@18# ~crosses!, from the E154 Collaboration@19# ~circles!, and from the SMC
Collaboration@20# ~stars!.
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C. Bjorken sum rule

Finally we present the scale-commensurate expansio
the Bjorken sum rule in terms ofaV at NNLO. The result is

ag1
~Q!

p
5

aV~Qg* !

p
1AgS aV~Qg** !

p D 2

1BgS aV~Qg** !

p D 3

1•••, ~3.20!

where

Ag5
13

12
, ~3.21!

Bg52
131

72
2

9

4
p21

9

64
p4, ~3.22!

ln~Qg* /Q!52
1

6
2

43

144S 112
2

3
nf D S aV~Q!

p D ,

~3.23!

ln~Qg** /Q!52
191

117
2

5

78
z31

30

13
z5 . ~3.24!

In Fig. 5 we show the commensurate scale result
NNLO and the leading order perturbative result with the fi
currently available data points. This plot strongly sugge
that the higher order PQCD corrections do indeed give
correct convergence to the physical result. Our results m
also be compared with an analysis of the Bjorken sum r
@10# using so-called analytic perturbation theory~APT! @21#.
In Ref. @10#, the authors show that by requiring the QC
couplingas to be analytic, thereby removing unphysical si
11401
of

o

ts
e
y

le

gularities, they can obtain approximately scheme indep
dent results. Their plot of the correction to the Bjorken su
rule, ag1

/p, is very similar to what we obtain using com
mensurate scale relations.

IV. CONCLUSIONS

In this paper, we have applied the physical QCD effect
chargeaV , defined by the heavy quark potential, in calcu
tions of thee1e2 annihilation cross section and the Bjorke
sum rule. Following the BLM procedure, we derived th
NNLO scale-commensurate expansions ofaR and ag1

in

terms ofaV and used these expansions to numerically co
pute thee1e2 annihilation cross section and the Bjorke
sum rule. Using a phenomenological form for the effecti
chargeaV @Eq. ~3.16!# which is consistent with the lattice
determination of the heavy quark potential, we obtain exc
lent agreement between our results and the experimental
in both cases. Furthermore, because of the scale inde
dence, we trust that our results are numerically more accu
than previous results with the scale fixed to a certain va
The application of scale-commensurate expansions to o
observables is forthcoming.
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