PHYSICAL REVIEW D, VOLUME 61, 114011

Renormalization-scale-invariant PQCD predictions for R.+.- and the Bjorken sum rule
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We discuss the application of the physical QCD effective chakgedefined via the heavy-quark potential,
in perturbative calculations at next-to-leading order. When coupled with the Brodsky-Lepage-Mackenzie pre-
scription for fixing the renormalization scales, the resulting series are automatically and naturally scale and
scheme independent, and represent unambiguous predictions of perturbative QCD. We consider in detail such
commensurate scale relations for tiee™ annihilation ratioR,+.- and the Bjorken sum rule. In both cases the
improved predictions are in excellent agreement with experiment.

PACS numbes): 12.38.Bx, 12.38.Aw, 13.66:r, 13.65:+i

[. INTRODUCTION success in practical applications. From these perspectives, a
particularly successful method for choosing the renormaliza-
One of the most important problems in making reliabletion scale is that proposed by Brodsky, Lepage, and
predictions in perturbative QCD is dealing with the depen-MacKenzie(BLM) [1]. In the BLM procedure, the renormal-
dence of the truncated perturbative series on the choice gfation scales are chosen such that all vacuum polarization
renormalization scalg and scheme for the QCD coupling  effects from fermion loops are absorbed into the running
ag(p). Consider a physical quantit, computed in pertur-  couplings. A principal motivation for this choice is that it
bation theory and truncated at next-to-leading ordrO)  reduces to the correct prescription in the case of Abelian

in as: gauge theory. Furthermore, the BLM scales are physical in
(1) the sense that they typically reflect the mean virtuality of the
O=as(u) 1+(A1(,u)+|31(,u)nf)as m o , gluon propagators. Another important advantage of the

™ (1.1 method is that it “pre-sums” the large and strongly diver-

gent terms in the PQCD series which grow rd$ «.8,)",

wheren; is the effective number of quark flavors. The finite- .e., the infrared renormalons associated with coupling con-

order expression depends on bagth and the choice of stant renormalization. L
scheme used to define the coupling. In fact, Bgl) can be Dependence on the renormalization scheme can be
made to take on essentially any value by varyingnd the avoided by considering relat|0n_s between physical _obs_erv-
renormalization scheme, which aaepriori completely arbi- ables only. By the general principles of renormalization
trary. The scale or scheme problem is that of choogirapnd ~ theory, such a relation must be independent of any theoreti-
the schemes in an “0ptima|” way, S0 that an unambiguous cal conventions, in particular the choice of scheme in the
theoretical prediction, ideally including some plausible esti-definition of as. A relation between physical quantities in
mate of theoretical uncertainties, can be made. which the BLM method has been used to fix the renormal-
For any given observable there is no rigorously correctzation scales is known as a “commensurate scale relation”
way to make this choice in general. However, a particulaCSR [2]. An important example is the generalized
prescription may be supported to a greater or lesser degréegrewther relatiol2,3], in which the radiative corrections to
by general theoretical arguments ared posteriorj by its  the Bjorken sum rule for deep inelastic lepton-proton scatter-
ing at a given momentum transfé@rare predicted from mea-
surements of the*e™ annihilation cross section at a com-

The precise meaning of “optimal” in this context is connected to mensurate energy sca{é Q

the minimization of remainders for the truncated series. As is well A useful too',,m these analys.es is the concept of an “ef-
known, perturbation series in QCD are asymptotic, and thus there igecnve charge. Any perturba_tlvely calculaple obser\_/able
an optimum number of terms that should be computed for a giveﬁ:an_ be usgd _to define an eff_ectlv_e Char_ge_z _by |nC(_)rporat|ng the
observable. In general, very little is known about the remainders igntre rgd!atlve Correc,t'on into its definition. S',nce such ’?1
perturbative QCDIPQCD); however, if we assume that PQCD se- charge is |tse_lf a physical obseryaple, per_turbauon theory. in
ries are sign-alternating, then the remainder can be estimated by th@rms of it, with the BLM prescription setting the scales, is
first neglectedor last includediterm. This term can take on essen- automatically ~ renormalization  scale- and scheme-
tially any value, however, by simply varying the scale and schemeindependent.

and thus its minimization is meaningless without invoking addi- In this paper we shall use the heavy quark potential to
tional criteria. define an effective QCD coupling,,, and construct scale-
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commensurate expansions of various other QCD observablésiown. A natural prescription is to set this scale to be the
in terms of it. A recent calculation of the heavy quark poten-same as that in the next-to-highest-order term.
tial at next to next leading ordefiNNLO) [4] allows the A very important feature of this prescription is that is
relevant BLM scales to be determined through NLO. Theactually independent oft. [This follows from considering
resulting relations can be tested directly for agreement withhe . dependence d8;(w). For a detailed discussion of this
available data, and in addition may be used to study varioupoint, see Ref[1].] Thus pQCD predictions using the BLM
phenomenological forms for the heavy quark potential aprocedure are unambiguous.
moderate to lowQ?. The same basic idea can be extended to higher orders, by
We begin by outlining the BLM approach and the idea ofsystematically shiftingi; dependence into the renormaliza-
commensurate scale relations. We also introduce physicaion scales order by order. Full details of this procedure may
effective charges asociated with the heavy quark potentiabe found in Refs[5,6]. The result is that a general expansion
the e"e™ annihilation cross section and the Bjorken sum

rule. In Sec. lll we then construct the NLO scale- as(pm) ag(u))?
commensurate expansions of these observables in terms of T +(Ar+Banyg)
ay, and compare the results to the available data using a
simple parameterization fax, which is fit to a lattice cal- o [as(w))®
culation. In general the agreement is excellent. In Sec. IV we (At Bani+ Conp)| — — ] + 29
present some discussion of the results and our conclusions.
is replaced by a series of the form
Il. BLM SCALE FIXING o 1*) |~ () 2 a3
At lowest order the BLM approach is straightforward to T Aq T A I e
motivate. The term involvingy; in Eq. (1.1) arises solely (2.6)

from quark loops in vacuum polarization diagrams. In QED

these are the only contributions responsible for the runnindgn general a different scale appears at each order in pertur-
of the coupling, and thus it is natural to absorb them into thebation theory, and the BLM scales themselves are power
definition of the coupling. The BLM procedure is the analogseries in the couplings. In addition, the coefficienta,, are

of this approach in QCD. Specifically, we rewrite HE4.1)  independent ofi; (by constructiol, and so the form of the

in the form expansion is unchanged as momenta vary across quark mass
thresholds. All effects due to quark loops in vacuum polar-
O—a (M)[1—<3BOBI(M)) as(p) } ization diagrams are automatically incorporated into the ef-
s 2 T fective couplings.

As discussed above, one motivation for this prescription
(2.0 is that it reduces to the correct result in the case of QED. In
addition, when combined with the idea of commensurate
scale relations, the BLM method can be shown to be consis-
correct to orderaﬁ, where Bo=11-2n;/3 is the lowest- tent with the generalized renormalization group invariance of
order QCD beta function. The first term in square bracketsStickelberg and Petermdid], in which one considers “flow
can then be absorbed by a redefinition of the renormalizatioequations” both inw and in the parameters that define the

X| 1+

+ ...

338,(1) | ()
Ar(p)+ —;(“ ) ‘ ff‘

scale in the leading-order coupling, using schemd5]. This is not necessarily true of other methods for
determining the scales.
N Boas(n) . A very natural way of implementing the CSR idea is to
as(u*)=as(p)| 1= Tom In(u* /) +--- . introduce a physical effective charge, defined via some con-

(2.2)  Vvenient observable, for use as an expansion parameter. An
expansion of a physical quantity in terms of such a charge is
That is, the BLM procedure consists of defining the predic-a relation between observables and therefore must be inde-
tion for @ at this order to be pendent of theoretical conventions, such as the renormaliza-
tion scheme, to any fixed order of perturbation theory. A
33B(p) | ag(p*) particularly useful scheme is furnished by the heavy quark
A+ — ) Tl potentialV(Q?), which can be identified as the two-particle-
(2.3 irreducible amplitude for the scattering of an infinitely heavy
quark and antiquark at momentum transfer— Q2. The re-

where lation

1+

O=ag(u*)

o

4mCray(Q)

,LL* = ,U/eBBl(M) . (24) V(QZ) - _ Q — (27)

Note that knowledge of the NLO term in the expansion is
necessary to fix the scale at LO. Thus the scale occurring iwith C,:=(N§— 1)/2N.=4/3, then defines the effective
the highest term in the expansion will in general be un-chargeay(Q). This coupling provides a physically-based al-
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ternative to the usual modified minimal subtractiddS) 2
scheme. The other physical charges we shall consider here Av=-— §CA' (3.2
are ag, defined via the totak*e™ — X cross section:
133 11 1 1
s =|———l3+-m?— 774)C2
R(S)EBE eg 1+%\/—)), (28) v (144 4 3 4 64 A
‘ 385 11
and aq , defined by the radiative correction to the Bjorken N Ef 153 CaCr, 3.3
sum rule:
5
gA agl(Q) In(Q.\k//Q) = E! (34)
f dx[ g5, Q) ~ 65" (x,Q)]=5| °|| 1- ———|.
@9 orriqe 2T B, (195 0 G
IN(QV/Q)=~755* 165" | 128 8% C,’ @9

The perturbative expansions for these quantities through

NNLO may be found in Refd.8] and[9,10], respectively. andC,=N,. As discussed above, we taki** =Qy* at
Such physical couplings are of course renormalizationthis order.

group-invariant, i.e.,uday/du=0. However, the depen- It is also useful to invert this, and expreagys itself in

dence ofa,(Q) on Q is controlled by an equation which is terms ofa, . In this case we obtain

formally identical to the usual RG equation. Sinag is

dimensionless we must have aps(Q)  av(Qng) (aV(Q%)) 2
= Ms| T
ay=a 9 ag )) (2.10 "
Y VM1SM . . aV(Q%)s
[ +.- (3.6
Thenuday/du=0 implies
where
Qs 0= Bl 5 o =By, (21 )
Asis=3Ca. (37
where
5 11 1 1
d I - T 2, ~ _4le2
Bs=p o). (2.12 Bris ( 122" 2% 3™ Tea™ |Ca
- _ 385 11
This is formally a change of scheme, so that the first two TRRE CaCk, (3.9
coefficients 8{®)=11—2n,/3 and B{"'=102—38n,/3 in the
perturbative expansion ¢, are the standard ones.
In(Qfzs/ Q)= (3.9
Ill. QCD PERTURBATION THEORY AND  ay 03 21 105 9 \cC
F
In(Qus/Q)= 155" 16¢s* (128 8 ) Ca’
A. BLM scale fixing for ay, (3.10
The calculation of the heavy quark potential at NNLO in
Ref. [4] allows the BLM procedure to be applied through B. eTe™ annihilation cross section
NLO in commensurate scale relations involviag . As a We next present the NNLO scale-commensurate expan-

first step, we may apply the BLM procedure to fix the renor-gion of o, in terms ofa,. This is obtained by applying the
malization scales in the expression fay, in terms of the g \ procedure at NLO to the expansion of each of these

conventionaMS coupling. The result is observables in th#1S scheme, and then algebraically elimi-
ay(Q) _aM_s(Q’\}) A (aM_s(Qf/* ))2 nating as. The result is
m m oo ax(Q)  av(QR) [av(QF)\® _ [ev(QR)|°
= + AR + BR E——
aMS(Q*** ) ™ ™ m m
+By — +.onn, (3.1 b (3.1
where where(for N.=3)
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FIG. 1. The momentum dependencengtQ?).
25 on various theoretical groundd2], and it has also been
ArR=75, (3.12  successful in phenomenological analys&3].
12
The parameterd , and mg have been determined in Ref.
2 [13], by fitting to a lattice calculation o¥(Q?) [11] at rela-
97 9 9 10 (11 & (E q€q tively high Q2 and to a value ofvg advocated ifj14], using
Br=cz— -+ — 7ttt — | — = | ——, Eq.(3.1) at LO. They were found to b4, =0.16 GeV and
72 4 64 d(r)\144 6 > @ m2=0.19 Ge\?
e g~ Y- :
ava Note that in the beta functioB, we use a “smeared”
(313 function for the number of flavors, although this only affects
23 9 7 the low-energy regime where several quark flavor thresholds
* 1) — 7 occur. This function is
2,2 2
2 ][ av(Q) 2 fl 6Q*2%(1-2)
Z2l 2V n = dz———F, 3.1
+343 ( - | (3.14 (Q%) 2f 0o m’+Q%z(1-2) (317
s _ 233 and is motivated in Ref.15]. The integration over in Eq.
IN(QR™/Q) == 55+ 5o ¥3~ 2¢s- (319 (3,17 leads to the explicit representatfonf the function

that is identical to th&Q? logarithmic derivative of the one-

In Eq. (3.13, d(r) is the dimension of the quark representa-loop massives-function presented in Ref15]. In Fig. 1 we
tion, i.e., 3 forSU(3). This relation represents an unambigu- show n{(Q?) in the low-energy region. We have takem

ous, fundamental test of perturbative QCD which is indepen=0.15 GeV, m;=1.9 GeV, m,=

dent of renormalization scale or scheme.

4.5 GeV for the quark
masses. The resultingy, is shown in Fig. 2.

In order to make a comparison to experimental data, we Note also that for lowQ? the couplings, although frozen,

will introduce a parametrization af,, which is fit to lattice
data[11] in the moderate- to higp? regime. Specifically,
we take

ay(Q)= (3.16

Q%+4m?
Boln A—\z,

Asymptotically this reproduces the perturbative coupling,

while the effective “gluon mass’in, results inay, becoming

are large. Thus the NLO and higher-order terms in the CSRs
are large, and they do not give accurate results at low scales.
In addition, higher-twist contributions to the effective
charges, which are not reflected in CSRs relating them, may
be expected to be important for lo®@2. However, series
expansions in terms of physical charges are likely to be more
convergent than those cast in terms of unphysical couplings

’Note that [3dz(62%(1—2)%/[x+2z(1—2)])=1—6x+ (12x%/(1

essentially frozen foQ?< 4m ThIS form can be motivated  +4x)Y2)In([(1+4x)*2+ 1]/[ (1+ 4x)Y?—1]).
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FIG. 2. The effective chargey, as given by Eq(3.16.
such asays, which is singular at finite scalésThus it is Am?2 2

quite possible that expansions of the type we are considerings_: 1— —2

can be extended to lower physical scales than series writterf Q?
in terms of ays. In agy case, we will not be directly con-
cerned with the lon@“ regime here. e e

Before discussing thegresults, it is useful to understand +|r|2((CV)2+(CA)Z)((C9’)2
what improvements we can expect from the commensurate
scale relations. First of all, of course, we have a scale- m>2
independent result, so aesthetically we have an advantage +(c2)2(1——2q) ) 1 (3.18
over the conventional treatment. Moreover, because of this Q
we expect our result to be numerically more accurate than
previous results with the scale fixed to certain value. TheWhere
main applicability and usefulness of commensurate scale re-
lations is for the intermediate energy regime. Pertubation
theory is valid only above the characteristic QCD scale cd=15—2e, sir Oy,
Agcp, and since the commensurate scale analysis crucially
depends on the validity of perturbation theory, we don’t ex-
pect much improvement in the very low energy regime. Fur- e
thermore, in the high energy limit the residual scale depen- -
dent terms go to zero, so scale relations are meaningless. The
e’ e annihilation data, as well as the Bjorken sum rule data
presented in the next section, lies in the intermediate energy
regime where we expect improved predictions.

Two additional modifications of Eq(3.11) were per- ce=_ =
formed before comparing with data. First, we have included A 2’
the leading-order electroweak corrections to account for the
Z° current, which is particularly important above 30 GeV. In \/EG M% ( Qz)

2

€y

2m§
i

2m0I e q
1+? +2Rgr)eqcycy

2
Mg

1+ @

addition we have included the charm and bottom mass cor- r=
rections, which are important in the range 3—-15 GeV. The Q%?—M3+iM,I',
effect of these modifications is to replace the fad‘geg in
Eq. (2.8) by

e2
Q2

 Si20u(QP— M2+iM Ty @19

3For example, in the 't Hooft schemeys has a simple pole at Herel3 is the third component of the weak isospin of the
Q=Ays. quark coupled t&° and the weak mixing anglé,, is given
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FIG. 3. The scale-commensurate expansiomgfin terms ofay in the high energy regime. The solid line is given by E&11); the
dashed line is the prediction quoted by the PDG; the dotted line is the leading order(wetutnass and electroweak correctipns

by sirf 4,=0.22. The mass and the decay widthZf are

given byM,=91.2 GeV and’,=2.5 GeV, respectively.
In Fig. 3, we show the commensurate scale re&iltl)

along with a representative subset of the available Higa

2-7.5 GeV range. Again, we find very nice agreement with
the data, particularly considering that we have neglected cor-
rections from thel/¢(1S), #(2S), and other vector meson
resonances. Note that the data for 3.6 G&Y<7.5 GeV

in the energy range 8—60 GeV. We find our results to be irhas been subtracted by 0.&% —4m27/Q2(1+2m§/Q2) to
excellent agreement with the data, as well as the standamtcount for hadronic production that proceeds via tau lepton

QCD predictions quoted by the Particle Data Grdu]
with the scale fixed to a certain valud {/s=0.25 GeV). In

pairs, which the early experiments did not distinguish from
quark-hadron processes. The factor 6:84-(2/5)° is the

Fig. 4, we show our theoretical prediction and the data in therobability that either tau will decay to hadrons.

45 5
Egy(GeV)

55 6 6.5

7 75

FIG. 4. Scale-commensurate expansioragfin terms ofay, in the intermediate-energy regime.
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FIG. 5. The dotted line shows the leading-order prediction for the Bjorken sum rule while the solid line includes the scale-commensurate
corrections through NNLO. Also shown are data from R&8] (crossep from the E154 Collaboratiofil9] (circles, and from the SMC
Collaboration[20] (stars.

C. Bjorken sum rule gularities, they can obtain approximately scheme indepen-
gent results. Their plot of the correction to the Bjorken sum
rule, agllﬂ', is very similar to what we obtain using com-

mensurate scale relations.

Finally we present the scale-commensurate expansion
the Bjorken sum rule in terms af,, at NNLO. The result is

4,(Q) _ ay(Qg) +Ag< ay(Qg™) 2+Bg( arv(Qg” )>3

a T w T

IV. CONCLUSIONS

+.oen (3.20 . . . ;
In this paper, we have applied the physical QCD effective

where chargeay,, defined by the heavy quark potential, in calcula-
tions of thee* e~ annihilation cross section and the Bjorken
13 sum rule. Following the BLM procedure, we derived the

Ag=1—2, (329 NNLO scale-commensurate expansions agf and ag, in

terms ofay, and used these expansions to numerically com-
131 9 9 pute thee™e™ annihilation cross section and the Bjorken
By=— 72 a7 + 64" (3.22 sum rule. Using a phenomenological form for the effective
chargeay [Eq. (3.16] which is consistent with the lattice
2 ay(Q) determination of the heavy quark potential, we obtain excel-
In(QS/Q) =~ 5" m( 11— §nf) ( el F lent agreement between our results and the experimental data
(3.23 in both cases. Furthermore, because of the scale indepen-
' dence, we trust that our results are numerically more accurate
191 5 30 than preyiou§ results with the scale fixed to a cgrtain value.
In(Qg* /Q)=— o %gﬁ E§5_ (3.249 The apphcatl_on of scale_-commensurate expansions to other
observables is forthcoming.

In Fig. 5 we show the commensurate scale result to
NNLO and the leading order perturbative result with the five
currently available data points. This plot strongly suggests
that the higher order PQCD corrections do indeed give the We wish to thank S. Brodsky and N. Brambilla for helpful
correct convergence to the physical result. Our results magommunications. This work was supported in part by the
also be compared with an analysis of the Bjorken sum rule).S. Department of Energy under Grant No. DE-FG02-96ER
[10] using so-called analytic perturbation theg¢APT) [21]. 40947. The North Carolina Supercomputive Center and the
In Ref. [10], the authors show that by requiring the QCD National Energy Research Scientific Computer Center are
coupling e to be analytic, thereby removing unphysical sin- also acknowledged for the grant of supercomputer time.
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