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We consider QCD av~ 7 with two, one and zero light flavorls, using the Di Vecchia—Veneziano—
Witten effective Lagrangian. Fd¥;=2, we show thaCP is spontaneously broken &t= = for finite quark
mass splittingsz=mg/my#1. In thez— @ plane, there is a line of first order transitionsét = with two
critical end pointsz; <z<z; . We compute the tension of the domain walls that relate the@Roviolating
vacua. Fom,=my, the tension of the family of equivalent domain walls agrees with the expression derived
by Smilga from chiral perturbation theory at next-to-leading order. Zorz<z5 , z#1, there is only one
domain wall and a wall-some sphaleronéat 7. At the critical pointsz=zJ ,, the domain wall fades away,
CP is restored and the transition becomes of second ordeMNFef, CP is spontaneously broken only if the
number of colors\. is large and/or if the quark is sufficiently heavy. Taking the heavy quark limiN{
=0) provides a simple derivation of the multibranéhdependence of the vacuum energy of laNjepure
Yang-Mills theory. In the largé\, limit, there are many quasistable vacua with a decay Fatexp(— Nf:‘ .

PACS numbds): 12.38~-t, 11.30.Rd, 12.39.Fe

[. INTRODUCTION have shown that there are two degenerate vacué=atr,
provided the following constraint is satisfied:
In the limit of Ny massless quarks, QCD has a global
SU(N¢) X SU(N;¢) chiral symmetry. In vacuum, this symme- m,my
try is spontaneously broken to the diago®l(N;), with i >[mg—my|. 1D
Nf— 1 massless Goldstone bosons. Introducing quark masses

lifts the degeneracy of the vacuum and gives mass to thgo our knowledge, the equivalent of E..1) for two light
Goldstone bosons. In addition to the quark masses, there fiavors has never been published, presumably because this
another parameter in QCD, known as thet.(In nature, question isa priori academic, as the inequalitg.1) is not
6~0 modulo 27. A nonzero value off would introduce satisfied for realistic quark massém nature,m,~4 MeV,
explicit CP violation in the strong interactions, with decay my=~7 MeV and m;=150 MeV,) The two flavor case is
processes such ag’— ma, or large contributions to the however quite interesting. On one hand, taking the limjt
electric dipole moment of the neutron—phenomena which—« in Eq. (1.1) seems to imply thaC P can only be broken
are not observefll]. Although large values of are excluded for my=mg, which is in agreement with the result found by
experimentally, it is fruitful to investigate how strong inter- Di Vecchia and Veneziany]. On the other hand Creuf8]
actions Change for6#0. A beautiful examp|e is the and Evanset al. [10] found evidences o€ P violation also
Veneziano-Witten formula which relates, in the limit of large for finite mass splittingsz=my/m,# 1. The latter possibil-
number of colorsN,, the mass of they’ meson to the sec- Ity is more natural. In the— ¢ plane, we would expect a line
ond derivative with respect t@ of the vacuum energy of of first ordgr phase transitions ét , termmg@ed with criti-
pure Yang-Mills theory[2,3]. cal endpointsz=z*, where the phase transition becomes of
We will focus here on the fascinating, but unfortunately Sécond order. A related issue, recently addressed by Smilga
academic possibility of spontaneoG# violation at = 1, [11], is that to Ie_adlng order in chiral perturbation theory
also known as Dashen’s phenometiéh Strong interactions ~ (xPT) the potential term in
area priori invariant undeiCP at 6= 7. This is becausé®
= 7— — 7 under aCP transformation but physics should be
unchanged for6— 6+ 2, so that7=— 7. However, as
shown by Dashen some time before the advent of QCP,

can be spontaneously broken &, with the appearance \yhereU is anSU(2) unitary matrix and with
of two CP violating degenerate vacua separated by a poten-

f2 i
L=—(3,UT9*U)+ I Rir(Me??UN], (1.2

tial energy barrief4]. According to the Vafa-Witten theo- m. 0
rem, this possibility is excluded #&=0 [5,6]. In the vicinity /\/l:( . ) , (1.3
of =, one of the vacua has lower energy andgasries, 0 my

there is a first order transition &= 7. This phenomenon

and related issues has been investigated by Di Vecchia andnishes a®y=m for my=my. This would imply that pion

Veneziand 7] and Witten[8] in the largeN,, limit, and more  excitations are massless @&t 7, with a second order phase

recently by Creut£9], Evanset al.[10] and Smilga[11]. transition while it is expected to be of first order. Within
The realistic case of three light flavors has been the mostPT, the paradox is resolved by taking into account next-to-

discussed. Di Vecchia and Veneziafig] and Witten[8]  leading order corrections in the quark ma8ém?), which
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lift the vacuum degeneracy &t 7 [11]. However, it is not  If m,=my, the choice(2.2) for the vacuum expectation
manifest how precisely this is related to the phenomenon ofalue of the unitary matrixJ is one among a whole manifold
spontaneou€ P violation. [with topology SU(2)/U(1)~S?] of equivalent ones. This

Our contribution will be to draw a self-consistent picture degeneracy is lifted for any,# my. We further decompose
of Dashen’s phenomenon &t= 7 for the case of two, one the phasesp, 4 as
and zero light quark flavors. Incidentally, mdsut not al)
of the results we will discuss can be found scattered in the
litterature cited above, either explicitly or implicitly. We will d,=d+a,
work within the framework of the larg&l; Di Vecchia—
Veneziano—Witten effective Lagrangi@n,8,12.

ForN¢=1, CP is spontaneously broken &t= 7 only in bg=b—a
the very largeN, limit or, alternatively, if the quark is suf- d
ficiently heavy. Increasing further the quark mass provides a
simple derivation, within field theory, of the peculi@rde-
pendence of pure Yang-Mills theory at larbk. Recently,
Witten [13] has used the correspondence between lakge ,
Yang-Mills theories and string theories on some particular ¢=(n")fxz,
compactified spacetimes tierivethe qualitative form of the
vacuum energy14]. (See alsd15—17.) Turning toN;=2,  While « is the vacuum expectation value of the, field.
we will show thatCP is spontaneously broken with a first Also, in the chiral limitm,=my=0,
order transition atd= 7 for a finite range of quark mass
splittings, zZ; <my/m,<z5 , and will determine the critical f2m®,=4r, (2.9
valuesz} , in the limit m2< mf], . We will compute the ten-
sion of the domain walls relating the twiP violating vacua  which is the celebrated Veneziano-Witten relation for two
and, in the degenerate limi#=1, will recover the result flavors[2,3].
derived by Smilga from chiral perturbation theory at next-to-  In this basis, the potential energy term of Eg.1) reads
leading order. At the critical points=2zj ,, the degenerate
vacua merge and the domain wall disappe@rB,is restored
and the phase transition becomes of second order. ChiralE(6)=—2m,cog ¢+ a)—Xmycos ¢— a)+—(9 2¢)?
perturbation theory at leading order simply corresponds to
the particular limit in whichz} =25 =1. =—(my+my)2 cos¢ cosa

so that log det) =2i¢. The phasep is then related to the
vacuum expectation value of th¢ field

(2.3

. . 7-
1. DOMAIN WALLS AND SPONTANEOUS CP +(my—mg)2 sing sina+ 5(9— 2¢)2. (2.5
VIOLATION AT =1

In the largeN, limit, the effects of theU(1), anomaly  Minimizing E(6) with respect to¢ and « gives the two
fade away and they’ meson becomes light. In particular, at equations
infinite N; and in the chiral limit, thez’ is massless and
there areNf2 Goldstone bosons. The phenomenological La-m,+ my)cosg¢ sina+ (m,—my)sin¢ cosa=0, (2.6
grangian that incorporate both quark mass and leading large
N, effects is[7,8,12 27
(my+my)sin ¢ cosa + (my—my)CoS¢ Sina= f( 0—2¢).
2
L= ;—Wtr(a#UTa”U)vLE Retr(MU")] 2.7

; For generic quark masses afie- 0,77, the solutions of Egs.
- 5( 0+i log detU)?, 2.1 (2.6-(2.7) areCP violating.

. . . . A. General remarks
where, specializing to two light flavors\1 is the diagonal

quark mass matrix1.3), 2 =[(qq)| and 7 is the topological
susceptibility of pure Yang-Mills theoryIn the real world,
(200 MeV)*.] Because the mass matrix is diagonal, we
can write the vacuum expectation value of thé€2) matrix

U in the form

If my goes to zero, Eq2.6) gives ¢+ a=0 modulor,
while Eq. (2.7) imposes¢=60/2. (If my—0 instead,p—
=0. In the sequel, we will keem, fixed and varymgy.) In
essenced has been absorbed in the redefinition of the phase
¢4 (Which is unconstrained by the potentialnify=0), and,
as expected, there is P violation. Another way to phrase
this is that

e% 0
u:( ei¢d)' (2.2

114009-2

9=(6—2¢) modulo 7 (2.9



QCD AT 6~ 7 REEXAMINED: DOMAIN WALLS AND . ..

give the measure dE P violation in strong interactions.

In the opposite limit of a decoupling heavy quarkg
—o0, EQ. (2.6) imposesa= ¢. Substituting Eq(2.6) in Eq.
(2.7) with a= ¢, and redefiningh=24, gives

23msin(¢)=27(6—¢). (2.11)

This minimizes

E(6)=—m,3 cos¢+ %(0—?&)2, (2.12

which is the potential energy fa¥;=1, as expected. These
limits, my—0 andmy— oo, illustrate that the dependence in
0 (i.e., CP violation) is controlled by the lightest quark fla-
vor.

B. One and zero flavor

We begin with the analysis of the one flavor c&2el2),
which is analogous to thébosonizedl massive Schwinger
model in two dimension$18]. At =0, Eq. (2.11) gives
(dropping the tilde

T

m.2 ¢

sing=—

(2.13

which is trivially satisfied for¢=0. This solution is the true
ground state and i€P conserving, in agreement with the
Vafa-Witten theoreni5]. Other solutions are possible if
7Im2 < 2/3m. (2.19
These areC P violating, but metastablésee Fig. 1 At fixed
m,, the condition(2.14) can be satisfied in the very largg,
limit, becauses =O(N,), if m, increases or ifr= (’)(NS)
diminishes(dramatically with respect to its phenomenologi-
cal value. The first case has been discussed by Wiggn
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FIG. 1. Potential energy foN;=1 as function of the VEV of
n', ¢. FormX =7, there are two metastab®P violating solutions
at 6=0. At 6=, there are two degenerate vacG#® violating
vacua. Atf= 2, the potential is the same as @&t 0, but shifted
by 27. (See Fig. 2.

in which case the&CP conserving solution becomes a maxi-
mum (see Fig. 1 The inequality(2.15 is the equivalent of
Eqg. (1.1 for Ny=1. At 6=2, things are the same as @t
=0, but with ¢ shifted by 27. Thus, despite the presence of
the term quadratic ird in the potential energy2.12), the
ground state energy is72 periodic, simply because a shift
like 6— 60+k27 is reabsorbed iRh— ¢+ k2.

It may actually be worthwhile to emphasise that the Di
Vecchia—Veneziano—Witten effective Lagrangian is consis-
tent not only with thef dependence of QCD buaiso of pure
Yang-Mills theory. If we formally increasen,, the system
indeed shares some resemblance with the limit of zero quark
flavor. In particular, this limit provides a very simple deriva-
tion of the peculiard dependence of larghl. pure Yang-
Mills theory. Recently, Witted13] has derived the vacuum
energy using the correspondence between I&geYang-

The latter possibility has been raised in the context of theéMills theory and string theory on a certain space-time back-
deconfining phase transition in QCD at finite temperatureground[14]. (See also Shifmafl5] and GabadadZze 7] for
[19]. Finally, changing the mass quark allows to change the discussion in a field theory contexfThe energy has a
number of light flavors, as exemplified in the previous sec-multibranch structure

tion.
At 6=, the trivial, CP conserving solution isp= .
Spontaneou€ P violation can occur only if

(2.19

=My,

To see this, leU, be the vacuum expectation of thé matrix,
and defind =UyV, M= MU= A+iB. As shown by Witterj8],
vacuum stability requires

S B=2761,. (2.9
With this decomposition and using E@.9), the CP violating part
of the potential(2.1) is
E(6)cp=—ird2tr (ImV)—log detV]
which vanishes if9=0.

(2.10

5 . 0+k2
E(6)=NZminF , (2.16
N¢
wherek is an integer and
e[ ) ecor 28 4ol 2.1
R A A TG

This form of the energy has been postulated by Witten many
years agq3] in order to reconcile larghl. with the requisite

2 periodicity in 6. A striking feature of Eq(2.16) is that, at
fixed 6, it implies the existence of many nondegenerate
vacua in pure Yang-Mills theory at large.. It has been
argued in[8], and explicitely shown in the more recdis]
and[15], that these states are stable at infilNte For com-
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pleteness, we show how this conclusion, as well as the largmeson mass, so that the gradient of the meson field is typi-
N. scaling of the quantities of interest, can be reproduceaally O(M/f ) accross the wall. Corrections to the leading
within the framework of the Di Vecchia—Veneziano—Witten order resultg2.21) and (2.22 from higher order operators

effective Lagrangian. are thus under control as long as we kedg<f ., which
For m,%>r, the potential has a large numbek,., imposes the following hierarchy<m3=M?f2<f* .
~mZ/7~N,, of local minima. Atd=0, the ground state is Increasing @ further, ¢~0 becomes a local minimum
unique andCP conserving¢o=0. Then there are two adja- while ¢~27 becomes the true ground state. Whén
cent, degenerate, metastable solutions reaches Z, things just repeat, witlp shifted by 2. If we
N integrate out the heavy quark, the ground state energy as
¢y ~*2m(1-7/m3), (218 function of  becomes
with energy r
E(6)= =miny (6— ¢)?
AE,~2mr, (2.19 (6)= 3 ming (0=

where we have substracted the trivial contribution from the T _ 2

min, (60— 2km)*,
qguark mass term. For genericand k<<k.y, ¢+~ £ 2K, 2

with AE,~(7/2)(6—k2)2. As 6 increases from 0¢, and

the ¢, go up and the¢, go down. At 6=m, ¢, Which agrees with the multibranch structure @16 and
~m7/mS and ¢,~ 27— wr/m3, become degenerate. In this Shows that the Di Vecchia-Veneziano-Witter(a least for-
picture, CP is spontaneously broken &t=, but only very ~ Mally) consistent with the expected dependence of pure
slightly asf~ + 2 7/m3 modulo 7, which goes to zero as Ya'r;\?-fMlllg teh?f(])ry afc IargleNc. b f metastable stat

m or N, go to infinity. The height of the potential barrier Ixe di ter(i'lfza Sarge ”LF‘T“ erlo (rjnel?s?(le states,
between the two vacua ieX ~ N, and they can be related by corresponding tab~k2.” (See Figs. 1 and pFork large,

a domain walf The profile of the domain wall can be easely K= Kmax. thes_e states are essentlall){ unstablg. For sknall
estimated in the limitr<m3. Choosing ¢(x)=dy=0 <Knax the lifetime of the lowest lying solutions can be

+O(#/m3) at spatial x=— and ¢(+o)= ;=27 easely evaluated. The energy difference between two adja-
= =¢,=

_ P SN
+O(r/m3) and solving the differential equation for the C€Nt Ak=1) vacuaAE~277"~N is much less than the
eight of the potential barriefE~m2~N, and the thin-

phased(x), wall approximation applies|21,22. The decay rate is
£292¢p— 84E(¢)=0, (220 T'exp(-=S), whereSg is the Euclidean action for a bubble of
lower energy vacuum. In the thin wall approximati@®y is
whereE is given by Eq.(2.12, we find well approximated by
_ R*
H(X)~m+2 arctar{ exp(ym2f,) l]. (2.21) SE*—W“TZJFZTFZR%, (2.23
exp(VmEx/f,)+1

In the same approximation, the tension of this domain wall igvhere the first term is the contribution from the volume and
the other from the surface tensio®.22), while R is the ra-

oo 1 dius of the bubble of “true” vacuum. The actid® (2.23 is
7 ﬁx dx[zfi(ax¢)2+ E(¢)] ~8f - ym=~Nc. extremized for
(2.22 60
Let us comment about the validity of these expressions, Egs. Re~ wr Ne. (2.24

(2.21) and (2.22. Note that the domain wall configuration

arises from the balance between the kinetic and quark masghile from Eq. (2.21), the bubble wall thickness is5
terms, which are of the same order in the low energy expan»fw/\/ﬁ~N2< R.. The rate for a(low lying) false
sion of the effective theory.From Eq.(2.21), the domain  vacuum to decay to its lower energy neighbor is finally given
wall has a widths~f_/\mS~1/M, whereM~N? is the by

2In the AdS conformal field theoryCFT) approach, the domain  “For this particular matter, the modifications of the Di Vecchia—
wall is a wrapped six-branevith o~N¢). In theN=1 SUSY ap-  Veneziano—-Witten effective Lagrangian proposef2id] thus seem
proach, the domain wall relates two adjacent vacua, out oznge superfluous.
distinct ones with different gluino condensate. ®In this picture,(¢) is a sort of auxiliary field which labels the
3The situation is thus better than for skyrmions. The stability ofdifferent vacua branches. It plays a role similar to the gluino con-
these topological defects necessitates to mix different orders in théensate irN=1 supersymmetrySUSY) or to the flux of thelU(1)
low energy expansion, while in the case of domain walls the calcugauge field from the Ramond-Ramond sector of type IlIA super-
lations can be made arbitrarily reliable, even in an effective theorystring in the AdS-CFT correspondence.
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E(6)= —2m3 cos¢ cosa+ %(0—2@2, (2.26

becomes
E(7)=2m3 sing cosa+27¢? (2.27
and Eqs.(2.6),(2.7),
E sing sina=0, (2.28
COS@ COSa= — 2i (2.29

ms, ¢

Note first that if7/mX —o, ¢=0, andCP is not broken
(=2¢=0). The potential2.27) vanishes for anyyx—the
pion are massless, and the transitionfat« is of second
order. This is precisely the situation that occurs to leading
order in SU(2)XSU(2) xPT and raised as a puzzle by
Smilga[11]. Integrating out theyp’ from Eg. (2.26 in the
limit 7/mX — o, sets¢p=0/2 and gives

0 pi 2 pi

FIG. 2. Energy levels fomZ>7 (~N;=0) and C<60<2w
(first Brillouin zone. For fixed g, there are manynetastablesacua,
corresponding ta¢)~k2w. At 6=, the lowest energy levels
cross and there are two degenerate vatBee Fig. 1.

F{ 27284 m?3.?
F~exp ————5=5—

’7T4 ,7_3

E(0)=—2mX cogcosm (2.30

which is the potential energy to leading orderyRT. At ¢
=1, Eq. (2.30 vanishes.
In the limit mX < 7, it is easy to solve the equatio(®.6).
~ —_ 4 ’

) exp(—Nc) (2.29 The trivial CP conserving solution is
so that, ad\, goes to infinity, the non-degenerate vacua be- (2.31)
come stable.

Shifman has also attempted to compute the decay rate afhjs sojution is however a saddle point, wiEh=0. The true

the lowest lying metastable states in the pure Yang-Millsyroyng state i< P violating, with the two solutions
theory, but starting fromN=1 super Yang-Mills(SYM)

theory and decoupling the gluing$5]. (See also Gabadadze
[17].) His expression, which rests on tleell motivated
assumption that the domain walls relating adjacent vacua in
N=1 SYM theory are Bogomol'nyi-Prasad-Sommerfield
(BPS saturated states, is reliable for small gluinos masses,
i.e. my smaller than[(A\)|=A where (A\) is the gluino el
condensate. Similarly, the expression we have derived, Eq.
(2.25, is valid as long as chiral perturbation theory is reli-
able, that is if the quark mass is such tM<f2 , whereM

is the meson mass. In order to match to the pure glue theory
requires to decouple respectively the gluinos or the heavgontrary to the one flavor casg.15, for Ny=2 spontane-
quark. In the former case, one loses the control of holomoreus CP violation occurs for anyinite 7/m2..

phy, while in the latter case chiral perturbation theory breaks The two CP violating vacua are separated by an energy
down. As could be expected, the predictions\of1 SYM  parrier(see Fig. 3 witlz=1) and can be related by a domain
theory and of chiral perturbation theory can only be com-wall. Note that for my=my the vacuum has an
pared at a qualitative level. It is quite remarkable thatNge  SU(2)/U (1)~ S? degeneracy and, correspondingly, there is
scaling of the decay rate, E(.29), is precisely the same in  an infinite family of domain walls with the same tension.
both approaches. Two of these vacua are shown in Fig.z3; 1. The vacua at
a=0 anda =27 as well as the saddle pointsat 7/2 and
a=3m/2 are equivalent and can be mapped onto each other

¢,=0, a=m/2 modulo 7.

§D||%_m2/27', C(||:O,
(2.32

(P|||~m2/27', o =1,

m?3,2

Ey=En~-— 2

(2.33

C. Two flavors, degenerate case

If m,=my=m, the equationg2.6),(2.7) can be easily
solved atd=m, at least in the limitmX < 7, which we will
assume to hold from now on. Defining= 7/2+ ¢, the po-
tential energy(2.5),

by a Weyl reflection,a— —« (modulo 27). This degen-
eracy is lifted for anym,#my: there are onlytwo vacua,
which are shown in Fig. 3 for# 1, andone domain wall
[11]. As discussed in the next section, there is also a wall-
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z=1 z>1 ma23,2
E(a)=- 27

cofa. (2.39

We can then compute the tension of the domain wall as in
the previous section, to get

2mxf
0,~ .
\/;
The error made by neglecting the gradient of #ieconden-

sate ¢ within the domain wall can be estimated using Eq.
(2.39 to eliminatea instead. This gives

(2.39

mm?32f
U‘wa, (237)

which confirms thair, <o, for mX<r.

How do these results compare to the predictions of chiral
perturbation theorywPT? At leading order the potential van-
ishes atd= . As discussed above, this corresponds to the
-3 -2 limit 7— o orm,,—cc. Obviously, there is no trace of ayl
condensate. As shown by Smilga, at next-to-leading order
¥he only O(p*) operator relevant af= 7 is O, (following
the nomenclature of Gasser and Leutwy23]). Adding O~
to Eq.(2.30 gives

FIG. 3. These figures show contour plots of the potential energ
for the case of two quark flavors ét 7. The vacuum expectation
of the »' field, o= ¢— 7/2, is plotted on the horizontal axis. The
CP violating vacua correspond to the dark spots wjti 0. The
VEV of the pion field,«, is plotted on the vertical axigWe have

2
takenm ~ 7 to make the picture more impressivét z=1 (m, E(a)=—2m3 co 0COSa—4I m= sinzfcosza
=my) there are twoCP violating vacua, separated by an energy % ! TZ,T_ 2

barrier. Note that the vacua at~27 and a~0 areidentical In (2.39

this degenerate limit, there is an infinite family of equivalent vacua,
related by an infinite number of equivalent domain wall configura-or, at 6=,

tions. At z#0, this degeneracy is lifted and there are only two

vacua. Consider>1 for definitiveness. The configuration which 2

interpolates between the two vacua by going through the saddle E(a)= _4|7(f_2> cosa. (2.39
with energyE,, [see Eq.(2.48)] is the domain wall. The one that m
goes through the saddle with ener@i,>E,, is a wall-some

Furthermore, in the largé\. limit, the »' is “not that
sphaleron.

heavy” mf?,~1/Nc, and the couplind, can be saturated by

) i o ~ 1’ meson exchang3],
some sphaleron, i.e., a metastable configuration interpolating

between the two vacua, which relaxes into the domain wall if £2 f4
subject to perturbatiorfs. ly=—2-=-Z, (2.40
In the limit mX <7, ¢ ;;;<1, and the domain wall pro- 2m77, 87

file is essentially along the direction. To estimate the ten-

sion of the domain wall, we first integrate outusing Eq. Where we used the Veneziano-Witten relati@m).” Substi-

(2.29 tuting Eqg.(2.40 in Eq. (2.39 gives back the largé&l, pre-
diction (2.35. Also, Eq.(2.36) reads

m>,
@~ — ——COS« (2.39
27 In SU(2)xSU(2) chiral perturbation theory at finitdl, and
finite strange quark mass; is instead saturated by meson ex-
and substituting in Eq2.27) to get the potential energy for Change.l7>1/m}~1ims. Although we have not pursued in this
o direction, most presumably the results of next-to-leading order
SU(2) X SU(2) chiral perturbation theory could be recovered start-
ing from theSU(3) X SU(3) case to leading order, and decoupling
the strange quark. In the latter case, the vacuum degeneracy is in-
5Wwe thank A. Smilga for making this point clear to us. Wall-some deed lifted already at leading order ¥PT. Incidentally, this is
sphalerons have been first discussed in the context of supersymmeirecisely the reason why does not appear in the inequality.1).
ric effective theorie$25]. See the discussion of Smilga.
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m32,

0.~ 5327, (2.41)

which is precisely the result derived by Smilga.
That predictions from next-to-leading order chirgPT

and the large\. effective Lagrangian can be made to agree

is a nice consistency check. As a bonus, in the laxge

PHYSICAL REVIEW D 61 114009

47%ly?—(1—1z)2.

1+z

||~ (2.49

These exist provided

*

2
T) <(1-2z,)% (2.50

framework, we see explicitly how the two degenerate vacua

are related to spontaneoG@s breaking with any’ conden-
sate, and why they disappear asn3 —co, with a second

order transition ab= r, features which, for obvious reasons,

are not manifest withinkPT8

D. Two flavors, mass splitting effects

If m,#my, the algebra is just a bit more cumbersome.

Defining
(2.42
(2.43

and ¢= ¢+ m/2, the potential energ2.5) at == becomes

z=mg/my,

y=27/3m,,

E=3my{(1+2)sing cosa+ (1—2z)cose sina+ye?}.
(2.49

In what follows, we will keepy fixed and varyz (i.e., my).
Minimizing with respect top and a gives

sina=-y—_- sing' (2.45
while eliminating«, gives
S'Z‘P 4y—222=(1—z)2+(1+z)2tar12<p. (2.49
As for z=1, theCP conserving solution is again
¢©,=0, a=w/2 modulo 7. (2.47

Note however that, for# 1, these are two distinct solutions
with energies

Ea=(1-2m:2=(m,—my)Z,

(2.48
Ep=—(1-2)mZ=(mg—m,)Z.

For mg>m, (respectivelymq<m,), E;5 (E;,) has lower
energy.

In the limit mX <7, we can write down the tw&€ P vio-
lating solutions

8As emphasized ifi24], |, is anomalously large in the large,

which gives two critical values of the mass rato
=mg/my,

y

*

Zl_—y+2<1, (2.5])
y

* _

=51 (2.52

For two light flavors CP is spontaneously broken with a first
order phase transition &= 7 if and only if®

(2.53

» _Md
7 <—<17z3,
mu

which is the equivalent for two flavors of Witten's inequality
(1.1). For realistic quark mass and Eq. (2.53 gives

2
mg—m m
e (2.54
mu+md m-,
7

which, just like Eq.(1.1), is unfortunately not satisfied in
nature’®

For completeness, we give ti&P violating solutions for
zin the range of Eq(2.53. Assuming small mass splitting,
so thata<<1 modulos, and using Eq92.49 and(2.45, we
have

~—1(1—Z).

and ) 27

<P||”‘|€D|

(2.55
y
em~lel and ay~7+ Z(l_z)'

For larger mass splittings; P violation goes away ¢— 0)
and

mod

a||’|||—>—— |f Z—>Z;_c (256

2

That the two solutiong} andz; are not symmetric around
=1 is not surprising. Atfixed m,, the two limits,z—~ and z
—0 correspond to two physically different situations: decoupling of
a heavy quark in the former casd{—1) andN;=2 with a mass-
less quark in the latter. The distinction goes however away for

framework,l,= O(N?). If large N, is adopted as a guideline, con- largery’s, z*~1+2/y. If we exchange the role ahy andm,, z
sistency would require to work with the extended symmetry—z ', y—zy, andz} <z} .

U(N{) X U(N;), i.e. with a dynamicaly’, rather thanSU(N;) 10ysing the mass of° and 7', 7~(200 MeV)* and 3~(250
X SU(N;). Our discussion provides another illustration of this MeV)? (for N;=3). As m,~4 MeV andmy~7 MeV, y~40 and
point. 71 ,~1+1/20, to be compared tmy/m,~1.75.
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serving vacuum and the domain wall disappears: the phase
transition is of second order, with massless pion excitations.
In particular, chiral perturbation theory at leading order cor-
responds to the limit—o, or zy =z; = 1.

crossover As can be seen on Fig. 3, fa# 1 there are apparently
two distinct potential barriers between the t@d violating
vacua, which correspond to the twidP conserving saddle
points of Eq.(2.48. The configuration that relates the two
3T @ 2 order vacua by going through the saddle point of higher energy at
¢»=0 anda= w/2 modulow (2.48 is not a domain wall but

a wall-some sphaleron, i.e., a metastable configuration

1st order which, if subject to the slightest perturbation, will relax to
1t the domain wall configuration. This sphaleron is a remnant
of the infinite family of equivalent domain walls that exist in
2 & 2nd order the degenerate limith,=my. Similar objects have been en-
0 . countered in supersymmetric theor{@%].
0 n 2n
0 lll. SUMMARY: PHASE DIAGRAM

OF QCD IN THE z— 6 PLANE
FIG. 4. Phase diagram ®;=2 QCD in thez— 6 plane, with

z=my/m,, for genericfixed m, and r. Spontaneou€ P violation ForN¢=2, we have shown th& P is spontaneously bro-
occurs on the line of first order phase transitiongatm for z} ken atd= 7 also for finite quark mass splitting, and derived
<z<Z5 . Chiral perturbation theory at Ieadlng order corresponds tathe inequality(2.53), valid in the limitmX <7 (m <m ).
the particular limit in whichr—o andzf=z;=1. If the quark  The resulting phase diagram of;=2 QCD in thez 0
nlass |rrcrease for fixed the critical line is stretched In particular, plane, wherem, and  are held fixed andny is allowed to
25— if mg>m, (Ng~1) andmy=17/3. vary, is shown on Fig. 4. A= = there is a line of first order
transitions forzy <my/m,<z5 . At the critical pointsz*,
the phase transition becomes of second order, while beyond
- these, there is just a smooth crossover. If the ratio
anin— 5 mod 7 if z—2Z5. (2.57 =7/2m,>, increases, the critical lines shrinks to a point at
=1, with a second order phase transition. This is the limit

The energy differencAE between theCP violating vacua ~ described by leading ordeyPT. In the opposite limit of
and thelowest energy CFeonserving saddle point of Eq. Mu= =T, like at very largeN, or for heavy quarks, the criti-

or

(2.48 is cal line is stretched. Ifny decreases, spontanedd® viola-
tion still goes away at some<0z; <1. If my increases in-
Ezmﬁ ¥ —2z\? stead, the “down quark” eventually decouples and the
AB=AE~- T( 7 — 1) , (258 system is essentially that of one flavdl,= 1. In this case, if

m,2 = 7, there is spontaneo3P violation at§= 7 for any
which vanishes at=z} or z=z5 . Forz~1, the tension of my andz goes to infinity. Finally, if both quarks are heavy,
the domain wall relating the tw@ P violating vacua is well  the system is analogous to pure Yang-Mills theory, &l
approximated by is always broken at= . This completes our survey of

Dashen’s phenomenon fd&;=0,1,2.
Z* -z

2m2f .
zF—1

\/;
where, again, we are neglecting a small contribution from the We would like to thank Andrei Smilga and Robert D.

7' condensatg.Compare with Eq(2.36).] As z approaches Pisarski for useful comments, Rafel Escribano and Fu-Sin
ZI ,, the CP violating vacua merge into a uniqu€P con-  Ling for discussions, and the FNRS for financial support.

, (2.59
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