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We develop a perturbative QCD factorization theorem for the semileptonic heavy baryon dgcay
—>ACI;, whose form factors are expressed as the convolutions ofthgudrk decay amplitudes with universal
A, and A baryon wave functions. Large logarithmic corrections are organized to all orders by Sudakov
resummation, which renders perturbative expansions more reliable. It is observed that perturbative QCD is
applicable toA,— A . decays for velocity transfer greater than 1.2. Under the requirement of heavy quark
symmetry, we predict the branching raB(AbHAcI;)va%, and determine thda, and A baryon wave
functions.

PACS numbgs): 12.38.Bx, 11.30.Rd, 12.38.Cy, 12.39.Fe

I. INTRODUCTION theory[5]. Not only factorizable but nonfactorizable contri-
butions can be evaluaté¢fl]. The BSW model considers only
Analyses of exclusive heavy hadron decays are a chakactorizable contributions: two fitting parametexs and a,

lenging subject because of their complicated QCD dynamicsare associated with external and interigemission form
Recently, we have proposed a rigorous theory for these prdactors, respectively. Nonfactorizable contributions must be
cesses based on perturbative QCPQCD factorization included as additional parametdd.
theorems[1,2]. In this approach heavy hadron decay rates The above PQCD formalism has been applied to heavy
are expressed as convolutions of hard heavy quark decdpeson decays successfully. It is then natural to extend the
amplitudes with heavy hadron wave functions. The formeformalism to more complicated heavy baryon decayg8in
are calculable in perturbation theory, if processes involvéVe have developed a factorization theorem for the semilep-
large momentum transfer. The latter, absorbing nonperturbdonic decayA,—plv, in which Sudakov resummation of
tive dynamics of processes, must be obtained by means oudouble logarithmic corrections to the, baryon wave func-
side the PQCD regime. Since wave functions are universation was included, and a full set of diagrams for the hiard
they can be determined once and for all, and then employe@uark decay amplitudes was calculated. This is an analysis
to make predictions for other processes containing the sanfgore complete than the work in the literat@. On the
hadrons. With this prescription for nonperturbative waveOther handb baryons have been observed in experiments at

functions, PQCD factorization theorems possess a predictiveEP @nd at the Tevatron. Masses and decay widths of the
power. lightestb baryons, as compared with theoretical predictions,

For semileptonic decays, the PQCD approach Complehave stimulated many interesting discussions and investiga-

ments heavy quark symmetry in studies of heavy hadrorqons[lO—lq. When run Il of the Tevatron comes up with a

transition form factorg3]. Heavy quark symmetry deter- vertex trigger employed, it will be expectgd to cpllect more
. S . than 16 b baryon events. Therefore, an intensive study of
mines the normalization of transition form factors at zero

| of final-state h had N " exclusive heavy baryon decays is urgent.
recoil of final-state heavy hadrons, up to power corrections™ £, | \cive heavy baryon decays are dominatecbbyc

n 1M, M t_)emg_ the heavy quark mass, and_up to pert_urbafnodes. In this paper we shall develop a factorization theo-

tive corrections in the coupling constamg, while PQCD is tor th | i d ALy and | h

appropriate for fast recoil, the region with large energy refem for the semileptonic ecazyb_—> c!v, and locate the
nematic region where PQCD is applicable. It will be

lease, and gives a dependence of transition form factors Jf‘L hat POCD dicti for the involved "
velocity transfer. For nonleptonic decays, PQCD is a more"oWn that PQCD predictions for the involved transition

systematic approach compared with the phenomenologicz‘;\?rm factors are reliable at fast recoil of the; baryo_n With
Bauer-Stech-Wirbe(BSW) model[4]. In PQCD factoriza- velocity transfer greater than 1.2. L_Jnder the requw_ement _of
tion theorems contributions to nonleptonic decay rates chafl€avy duark symmetry, we predict the branching ratio
acterized by different scales are carefully absorbed into difB(Ap,—Aclv)~2%. We shall also determine the unknown
ferent subprocesses, among which renormalization-grouparameters in thé., and A baryon wave functions, which
(RG) evolutions are constructd@], leading to a scale and can be employed to study nonleptonk, baryon decays
scheme independent, gauge invariant, and infrared finiteecause of the universality.

In Sec. Il we develop a factorization theorem for the

semileptonic decayAp,— A lv. Sudakov resummation of

*Email address: hhshih@phys.sinica.edu.tw double logarithmic corrections to the process is performed.
"Email address: phsclee@ccvax.sinica.edu.tw The factorization formulas for the involved heavy baryon
*Email address: hnli@mail.ncku.edu.tw transition form factors and their numerical results are pre-
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sented in Sec. lll and in Sec. 1V, respectively. Section V is na K g /\a
the conclusion.
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Il. FACTORIZATION THEOREM
(@ (®) (©

The amplitude for the semileptonic decady,— Al v is
written as

\LEEE LEAL
LDEE
X
\
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T _
M= Tchbl (1= ys) vi{Ac(p")[Cy (1= vs5)b|Ap(pP)),
1

where G is the Fermi coupling constanty., is the
Cabibbo-Kobayashi-Maskaw@&KM) matrix element, ang
andp’ are theA, andA . baryon momenta, respectively. All
QCD dynamics is contained in the hadronic matrix element @ ® "

M, =(Ac(p")|ey,u(1=y5)blAn(P)).
=Ac(PF1(0) 7.~ if2(0%)0,,0"+ F3(aP) A, ]An(P) 3
+Ae(P)[91(0%) 7,75~ 192(0%) 04, v50” 0 " 0

+93(9%) v50,,]Ap(P).- 2
In the second expressiol,, has been expressed in terms of

six form factorsf; andg;, whereA,(p) andA.(p’) are the
Ay and A baryon spinors, respectively, and the variagjle (m m
denotesg=p—p’. In the case of massless leptons with
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FIG. 1. Lowest-order diagrams fo‘rbHAcljdecay.

Al v“(1=ys5)v=0, ) _ _ _ _
will not be pinched 1], and soft divergences are important.

the form factorsf; andgs; do not contribute. Since the con- However, there is a probability, though small, of finding
tributions fromf, andg, are small, we shall concentrate on light quarks in theA, baryon with longitudinal momenta of
f1 andg, in the present work. order M, . Therefore, reducible corrections on tht,

The idea of PQCD factorization theorems is to sort OUtharyon side are dominated by soft dynamics, but contain
nonperturbative dynamics involved in QCD processes angyeak double logarithms with collinear ones suppressed.
factorize it into hadron wave functions. Nonperturbative dy'SimiIarIy, three-particle reducible corrections on tie.
namics is reflected by infrared divergences in radiative COrharyon side are absorbed into the baryon wave function.
rections to quark-level amplitudes in perturbation theory.|y the fast recoil region collinear divergences become stron-
The construction of a factorization theorem for the decayger, and double logarithms associated with the baryon
Ap—Aclv is basically similar to that for the decag, wave function are more important. The remaining part of
epl?in [8]. The lowest-order diagrams fdr—c decays radiative corrections, with all collinear and soft divergences
are shown in Fig. 1, where two hard gluons attach the thregubtracted, is characterized by a scale of ordley,, and
incoming and outgoing quarks in all possible ways. We therabsorbed into the hatdquark decay amplitudes. Irreducible
investigate infrared divergences from radiative corrections t@orrections, with a gluon attaching a quark in thg baryon
these diagrams. Small transverse momdgtare associated and a quark in the\, baryon, are infrared finite in the large
with the valence quarks, such that they are off mass shell gecoil region[15] and also absorbed into the hard decay am-
bit. The transverse momeria serve as a factorization scale, plitudes.
below which dynamics is regarded as being nonperturbative, The kinematic variables are defined as follows. The
and absorbed into\, and A, baryon wave functions, and baryon is assumed to be at rest with momentum
above which perturbation theory is reliable, and radiative

corrections are absorbed into hdre-c decay amplitudes. My,
Infrared divergences from radiative corrections are collin- p=(p*,p”,pr)=—=(1,10). (4)
ear, when loop momenta are parallel to an energetic light V2

quark, and soft, when loop momenta are much smaller tha?‘he valence quark momenta in the, baryon are param-
the Ay, baryon masv . Collinear and soft enhancements etrized as

may overlap to give double logarithms. Three-particle reduc-

ible corrections on thé ,, baryon side are absorbed into the kKi=(p",X1p 7 Ke1),  ka=(0Xp 7, Kop),
A baryon wave function. If the light valence quarks move
slowly, collinear divergences associated with these quarks ks=(0,x3p" ,K37), 5)
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wherek; is associated with thé quark. The momentum wherek; is associated with the quark. The primed vari-

fractions and the transverse momenta obey the conservatiables obey similar relations to E(f).

laws According to the factorization theorem, the hadronic ma-
trix element is expressed as

X1+X2+X3:1, le+k2T+k3T:O' (6) 1 R ,
M= [ Tl ] [ (AT o (K] )
The A, baryon momentum is chosen as=(p’*,p’ ~,0) 0

with p’ “>p’~ at fast recoil. We define the velocity transfer &' By @By
P g Y XH/AB 7 By(ki ’ki'p’MAbl/‘L)\PAbaﬁ'y(ki!M)a

p1
p.p’ sz\b‘FM[Z\ (11)
p= MM 1<p<—2MAbMA ) (7)  with the notation
¢ 3
M, being theA ; baryon mass. Using the on-shell condition [dX]=dX1dX2dX35( 1—21 Xi) :
c i=
p'2= Mic, the plus and minus componentspf are written
as 3
L [deTJ=d2k1Td2k2Td2k3T62( 2, kiT) : (12
p'T=pip’, P =p_p, (8) =
with [dx'] and[d?k;] associated with thd . baryon are defined

pr=(p+p>=1Dr, p_=(p—+p°—1r, (99  inasimilar way. The hard amplitud¢,, will be computed in
Sec. IlIl. The dependence on the factorizatioenormaliza-
andr=M, /M, . The valence quark momenta in the tion) scaleu will disappear after performing a RG analysis.

baryon are parametrized as The structure of theA, baryon distribution amplitude
‘I’Aba,gy is simplified under the assumptions that the spin and
ki=0xp'".p" " kip),  kp=(X3p" ", 0kz1), orbital degrees of freedom of the light quark system are de-
) VTR coupled and that thé\, baryon is in the ground states (
ky=(x3p"",0K37), (100 wave. The distribution amplitude is then expressed s

1 : dyfdy| ik - abc a c
Wy, apy (K ,M>=TZNC f Bl Wek' N1€20%(0| T[b3(y1)u(y2)d5(0) ]| Ap(p))

fa
= 5 (M) 75CTs AP 1P (ki ), 13

whereN.=3 is the number of colord, u, andd are quark fieldsa, b, andc are color indicesg, B, andy are spinor indices,
fAb is a normalization constang is the charge conjugation matrix, add is the A, baryon wave function. Under similar

assumptions, thé . baryon distribution amplitud& , g, is written as

' _ 1 : dy’, dy’s ik -y/ _abc WA AN '
Voo =5 20 o e S SO YU A0 AP)

fa,
=8\/§Nc[(¥5'+MAC)Vsc]m[Ac(p')]aH(k{ ), (14

where the normalization constaﬁ,{C and the wave function 3
IT are associated with th&, baryon. O (ki ,bj,pu)=ex —;2 s(w.k;)
Because of the inclusion of parton transverse momenta, da
. . e y72 _
Sudakov resummation for a hadron wave functlgn should be _3f — yglas(w) | #(x), (15
performed in impact parametérspace withb conjugate to wou
kt [1,16]. The result i48] where y,= — as/ 7 is the quark anomalous dimension, and
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the factorization scalev is chosen as right-hand side of the above expression can be computed
reliably in perturbation theory. To simplify the formalism,
W min(i 1 i) 16 e shall make the approximations!,~M, and M
by" by b3/’ ~M,_, and neglect the transverse momentum dependence of

the virtual quark propagators as mentioned before. The two
arguments; andt, of H,, which will be specified in the
next section, imply that each running coupling constanis
evaluated at the mass scale of the corresponding hard gluon.
F , (17 Substituting Eqs(13)—(21) into Eqg.(11), we derive the fac-
torization formula for the semileptonic decay,— A lv,
where the anomalous dimensioAsto two loops andB to ~ Where thex, dependence has disappeared as stated before.
one loop are For theA, baryon wave functionp(x4,X»,X3), we adopt
the model proposed 9],

with bs=|b;—b,|. The explicit expression of the Sudakov
exponents is given by[17]

Q

Qdp
. |n(E>A(as(p))+B(as(p))

sw.0)- |

Ac. s, |67 m* 10 8 ol & [ @ 2
IR T Ll e = ) 2
$(Lm=Np*L(1=n)(1-expy — ———
2 a; (e?rel 2p°(1—-mn)
B=§?In( 2 ), (18) ml2
——, (22
Ce=4/3 being a color factom;=4 the flavor number, and 2B°ng(1-¢)
ve the Euler constant. The one-loop running coupling con-
stant with N being a normalization constarg, a shape parameter,
and m; the mass of light degrees of freedom in thg
as( ) 1 19 baryon. The new variables and » are defined by
= , 19
m Boln(? Adcp) X,
: - _ {= v =Xt X3, (23)
with the coefficient 8;=(33—2n;)/12 and QCD scale Xo1 X3

Aqcp, Will be substituted into Eq.17). The initial condition
¢ of the Sudakov evolution absorbs nonperturbative dynamin terms of{ and », the normalization ots(¢, ) is given by
ics below the factorization scale.
Following the derivation if3,18], we obtain the Sudakov
resummation for the\ . baryon distribution amplitude: f d¢ndne(L,m)=1, (24)

which determines the constaNt once the parametef and
m, are fixed. The above wave function with the factor
7?0(1—7)(1— ) =X1X,X3 suppresses contributions from
) the end points of momentum fractions. The exponents pro-
7(X{). (200 portional to MZ/(1—5)=MZ/x, and to m/[5Z(1-{)]
=m?/x,+m?/x3 with M,>m, indicate that¢ has a maxi-
We have included the Sudakov exponsrassociated with Mmum at largex; and at smalk, andxs, and that théd quark
the ¢ quark, which carries large longitudinal momentum in momentumk? is roughly equal toM{. For ¢(xz,X;,X)
the fast recoil region. Notice the same transverse extgnts Which will appear in the factorization formulas presented in
as those for the\, baryon. This is the consequence of ne-Sec. llI, the above expression is transformed into
glecting the transverse momenta which flow through the vir-

3
(ki " b, ,m=exp[ -2 swki™)

du _
- 3f#:# Yalas(n))
wop

tual quark lines irH , [18]. , 2
The RG analysis oH, leads to (L, n)=Nn<L(l—n)(1-expg — m
H,u(ki,+'ki_'biiPaMA u“) 2 1— ot
° _m (2 an 29
2B°n¢(1—n)

2 t|d; _
—exg =32, | — vq(as(n)
=1 Ju

For convenience, we assume that the wave function

XH (X X, b P Myt t), 2y  w({',n') possesses the same functional _form and the same
parametersd and m; as of ¢(¢,#n), but with theb quark
where the superscripts’, 8’, ..., have been suppressed. massM,, replaced by the quark massvl.. The wave func-

Since large logarithms have been collected by the exponerion m(x;,X5,x3) also has a maximum at largeg , such that
tial, the initial conditionH, of the RG evolution on the thec quark momentunllq2 is roughly equal tdvlﬁ.
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Ill. TRANSITION FORM FACTORS \FAca’E’y’HZ,'B,y,aﬁy\PAba,By in momentum space, we ex-

. . o tract the hard pand. Employing a series of permutations of
In this section we present _the factorlzanc_)n form_ulas forthe valence quark kinematic variables ag8, the summa-
the form factorsf, and g;, which are associated with the o over the leading diagrams in Fig. 1 reduces to two terms
spin structuresA.y, A, and Acy,ysA, in M, respec- for each form factor. The factorization formulas for the form
tively. Working out the contraction of factorsf,(p) andg,(p) are written as

2
A7 (1 © 2@
F1(9)= 5 | L0100 | "balbibadib, | 01, £, 5, HX D1 oM ) FX )
Xex —S(x{ %, w,p,My )], (26)

2
477 1 ®© 2
9:(p) = ffo [dx'][dx] JO bldblbzdbzfo defACfAijl Hi(x{ i, bi,p My 50 Gi (X X1, p)

XEXF{_S(X{ W X !W!leAbitjl)]i (27)

where 6 is the angle betweeh; andb,.
The functions?; andg; , which group together the products of the initial and final baryon wave functions, are, in terms of
the notation,

h125= (X1, X2,X3),  T1p5= (X1, X5,X3), (29)
given by

.7:1 rz
= 2(2\p°—1-1)(1—x))+[2(1 —4r—1 2(2p—1
b123T123 [(1_X£_P—)P++fz](l—Xi)X2p+{ (2Vp Y(1—=x1)+[2(1+r1)p—4r—1]x,+[2(2p—1)

I.2

2r\p2—1+3+4r— 1-
(X pop P2l xgp, P VAT

+(2p=3)p1lxoX1}+

r

—(p1+3)(1—x)x1+2[2(p—1)(Np+1+p)—1]xo} + >
(1=X1)"%zp

S {2r(2\p*—1-1+2p)(1-x)
<

{2(Jp*—1+2—p)+r(p;+3)

—x1)(1=x1)Xap%

X(1=xp)(1=x7)+2r[2(p— 1) (Vp*=1+p) = 1]x,}, (29

+2(Np*=1-2+p)xp—r[(2—p)p1+1—2p](1—xq) X5} + 1

Fa r
b312m312 [(1=x3—p_)p++1%](1=Xa)X1p-
=2r[(p=1)Vp*—1=p®Ix5— (1+p)[r(p—1)X1+X5](1—x3)}
2r
= p ) (1= x0)ps + 21— (1= xsp ) (1— %3]

{2rp(1—x5)+4r2(1+p)(1—x) +2r3(3—\p*—1)x,

{r(p+Vp = D)[X1X5— p1(X1+X3)]

r

+p41(2r2x, + x5+ 2r Jp2— 1)+ 2rp1(1—X3)+4(1+p)(1—X!
p1(2r°x;+Xx; p )} [1_(1_X2p+)(1_Xi)](l_X3)p+{ pa( 3)+4(1+p)( 1)
—2(\p?=1-3)x{—2r[(p—1)(p+ Vp?— 1)+ L]Xo— 1 (1+ po) (X + p?— 1x{) (1= X3)}, (30)
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$123m123 [(1=X1—p_)ps +r21(L=X})Xop s

r

[(2p—=3+(2p—

r
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1)pa)Xa(1=Xx1) +2(2—=p—p*—1)x,

2

—2(2p—1+2p?=1)(1—x})]+

[(1=X{=p_)p++T2](1—X1)X5p

+2r(Vp=1+1)(1=x1) = (3p2+ 1)(1—x)(1—xp)} +

+2(2—p—p*—1)x,—2(2p—1+2p*—1)(1—xy) ]+

X (Vp?= 1+ p) = 1xo—2(\p?= 1+ 2= p)(1= %)+ (3po+ 1) (LX) (1= X))},

G
ba12m312 [(1-x3—p_)po +r2](1—X5)Xip

r

{2[2(p— 1) (Np*~1+p)—1]x;

2

r
m[(zp_3+(2p—]_)pz)xz(l_xl)

2 {_Zr[z(P_l)

+

(1=X1)(1=x1)X2p
(31)

{=4r?(1+p)+r1px(4—p—p?)x+1(p—1)(pa— 1)XaX1+2r (1—X3)

+2r[(p—1)(Vp*—1+p) +1]x5=(po+ 1)x5(1-x3)}

2r
+

[(X3=p)(1=X)ps+T2[1—(1=X1p. ) (1—X3)]

r

X(1—=x5)]+
2] [1- (1= )(1—x1)](1—X3)p+

X(Vp?=1+p)+ 11— (pa+1)(rXa+(p—1)x1)(1—X3)},

with p1=+/(p+21)/(p—1) andp,=1/p;.

The hard parts are given by

H1=a(ti) ag(ti) Ko(V(1=X0)(1=X1)p My, by)

X Ko(VXaX2p + My, D), (33
Hao= as(tar) as(to) Ko(VX1X1p My by)
XKo(VX%zp+ My D), (34)

with Ko being the modified Bessel function of order zero.
The complete Sudakov exponedits written as

S(Xil !Xi 1W!leAb1tj|):Sd(Xi, vxi 1W1p1MAb)+SS(W!tj|)1

(39
with
3 3
Sy= 2, s(wW,xip7)+ 2, s(wx(p'"), (36)
t'1d_ — t'2d_ —
Ss:‘?’jj :M'Yq(as(ﬂ))‘*'?’fj :M')’q(as(ﬂ))-
w0 wou

(37

{_

[r(Vp?=1—-2—p)+ 12 +x5—2r(p+p?=1)(1-x,)

A4(1+p)+2r(1—x3)—2(\p°—1+2p—1)x;+2r[(p—1)

(32

The hard scalet are chosen as

t13=may \/(1_X1)(1_X1)P+MAb,1/b1],
tor=ma VXiX;p My, 1, ],

to1=tr=max yXoX5p . My, 15 ], (38)

which are always greater tham It is possible that the hard
scalest;; are small and the running coupling constants be-
come large ab; are close to W cp. These nonperturbative
enhancements are, however, suppressed by the Sudakov ex-
ponential exp{S;), which decreases quickly in the larbe
region and vanishes d$=1/Aqcp. The exponential exp
(—%y) approaches unity; that is, there is no Sudakov suppres-
sion from the all-order summation of infrared logarithmic
corrections at smallb;. In these short-distance regions
higher-order corrections are regarded as being hard and
should be absorbed intbl [20]. Another exponential exp
(—S), as a consequence of single-logarithm summation, de-
scribes the RG evolution from the factorization scal® the
hard scales; .

For the case with massless leptons, it is easy to show that
the differential decay rate in the rest frame of thg baryon
is given by
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dr M/S\ r3 TABLE |. Percentages of perturbative contributions for various
— b 2 2 2 dp.
—=—"—GE|V —1|f,]2%(p—1 A andp
a7l \ 2 ST LAGVRSY
P t =1.2 =13 =14
X[3+3r2=2(2p—1)r]+]g:/%(p+ 1) creenage P P P
343r2-2(2 1 39 B=1.0 GeV 77.7% 83.6% 85.2%
X[3+3r°=2(2p+1)rl}, B9 5-20 Gev 79.3% 83.0% 85.7%
where only the contributions from the form factdrsandg; p=4.0 Gev 82.3% 84.7% 86.3%
are considered. It is straightforward to obtain the total decay

rate :
ends of the momentum fractiong and x; . We conclude

dr that the PQCD analysis of the transition form factors is self-
FEJ' dP% (40 consistent for3>1.0 GeV andp>1.2, viewing the pertur-
bative percentage of about 80%. Compared to the corre-

from Eq.(39) and thus the branching rat®(A,— Al v), if  sponding meson decayB—Dlv [3], a perturbative

the form factorsf,(p) andg,(p) in the whole range gp are  expansion is less reliable in the baryon case, because partons

known. in a baryon are softer, such that Sudakov suppression is
weaker.

IV. RESULTS To obtain the total decay rate, we need the information on
f, and g, in the whole range op. Since the perturbative
In order to reduce the number of unknown parameters, wW@nalysis is reliable only in the fast recoil region, we extrapo-
make an approximation. Consider the baryonic decay congte the PQCD predictions at largeto smallp. Hinted at by

stantf A defined, in heavy quark effective theory, by [23], we propose the following parametrization for the form
_ _ factors:
(0[]°|Aq)=TrAq, (41)
in terms of theA baryonic currenf21,22] f1(p)= &, gi(p)= ﬁ' (45
- “ pe
]V =€3YudCysd®)hS, (42)

. ) where the constants andcy and the powers; andag are
where Ag is the heavy baryon spinoh, the heavy quark getermined by the PQCD results at lajgeThe constants,
field, anda, b, ¢ denote the color indices. We contract dandcg, equal to the values of the form factors at zero recoil
Dirac tensor Cys) 4, with a heavyA baryon distribution (13 'should be close to unity according to heavy quark
amplitude such a¥ .4, in Eq. (13) and integrate out the gy mmetry. We fit Eq(45) to the PQCD results in the range
valence quark moment;. Compared with Eq(41), we  with p>1.3 for 3=1.0, where the perturbative contribution

extract the baryonic decay constant has exceeded 80%. The powesis=5.18 and a,=5.14,
~ close toa;~4.6 at largep from the method of wave function
fA=fAQ'V| Ay’ (43 overlap integral§24], are obtained. These values are larger

than 1.8 extracted from the transition form factors associated

with the corresponding meson decBy-Dlv [3]. This is
expected, because perturbative baryon decays involve more
hard gluon exchanges.

On the experimental side, there exist only the data of the
: . . semileptonic branching ratioB(A,— Xlv)~10% [25],
Therefore,fAc associated W'_th thel.c bar¥°“ wil no.t be where the final-state particleéare dominated by the charm
treated as a free parameter in the numerical analysis belOVY)aryons. The data of tHB meson semileptonic decays show

We are now ready to compute the.form factbyép) anq B(B—>D*I7)~3B(B—>DI7) indicating that each of the
91(p) from Eqs.(26) and (27, adopting the CKM matrix three polarization states of tHe* meson contributes the

elementV,=0.04, the masse A, =624 GeV and\/IAc same amount of branching ratio as themeson does. It is
=2.285 GeV, and the QCD scaleqcp=0.2 GeV. We ex-  possible that this observation applies to dominant modes in
amine the self-consistency of our calculation by consudermqhe AvosXlp decays with the excited charm baryons
the percentage of the full contribution to the form facter A (2583) of spinJ=1/2 andA (2625) of J=3/2. That is

Cc Cc . '

that arises from the short-distance region witha|(t;)/ = , i A
<0.5. The percentages for differeftwith m, fixed at 0.3 e branching ratioB(A,—Aclv) is about 1/4 ofB(Ay

GeV are listed in Table 1. It is observed that the perturbative—>Xl7), i.e., about 2-3 %. This estimation is consistent with
contributions become dominant gradually asand 3 in- the experimental upper bound of the branching ratio from the
crease: a largep corresponds to larger momentum transferdataB(A,— Al v+ X)=(8.27+3.38)%[25].

involved in decay processes, and a lar@ecorresponds to We substitute Eq45) for the form factorsf; andg; into
heavy baryon wave functions which are less sharp at the higthe decay ratd™ in Eq. (40), and adjust the normalization

It implies that in the heavy quark limit the normalization
constantsf Ay andf A, are related by

fAbMAb:fAcMAc' (44)
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0.00
1.00

! . !
1.10 1.20 1.40

FIG. 2. Dependence of, and|g;| on p for 3=1.0 andm,
=0.3 obtained from PQCIxsolid lineg and from the extrapolation
in Eq. (46) (dashed lines The upper(lower) set of curves repre-
sents the form factof; (|g4]).

constann‘Ab such that our predictions for the branching ratio

are located in the range of 2—3%. The baryon normal-
ization constant, changes according to E¢4). We adopt
the A, baryon lifetimer= (1.24+ 0.08)x 10 *? s[25]. The
value offAb determines the parametezsandcg. It is then

found thatf, =2.71x10"% GeV?, corresponding to

—-1.19
p514”

1.32

: (46)
518

fi(p)= 01(p)=

gives a branching ratio 2%, arfd, =3.0x10"° GeV?, cor-
responding to

—1.46

5.14 '
p

162

1(p)= p5.18’

f 91(p)= (47)

PHYSICAL REVIEW D61 114002

0.40

0.30 -

dr/dp

0.20

0.00
1.00

1.20 1.30 1.40

p

1.10

FIG. 3. Dependence afl'/dp on p obtained from Eq(46) in
units of 1013 GeV.

malizing the corresponding form factors in the way that they
have similar values to those f@=1.0 GeV in Eq.(46), we
obtain the form factors

1.34 —-1.17

fi(p)= o 91(p)= = (48)

and

filp)= ﬁ, 91(p)= p4—_.79, (49

respectively. Equationg8) and(49) lead to increases of the

branching ratio by 4% and 8%, respectively. That is, our
predictions for the branching ratio are not sensitive to the
choice of baryon wave functions. This observation is attrib-

factors at zero recoil should be close to unity as stated abov&ctors at large recoil are insensitive to the variation of

we prefer Eq.(46) with f;(1)=1.32 andg,(1)=—1.19,
which are also consistent with the conclusion[##]. The
corresponding normalization constant fAb:2'71
X103 Ge\?, of the same order asfp=(5.2+0.3)
X103 Ge\? for the proton[26], is reasonable. The PQCD

predictions and the corresponding extrapolations are dis-

played in Fig. 2, which deviate from each other at snpall
Applying the PQCD formalism to the zero recoil region, we

shall obtain divergent form factors as shown in Fig. 2, which

imply the failure of PQCD. Note that our results of the form

factors exhibit slopes larger than the dipole behavior as-

sumed in[23].

We then examine the sensitivity of our predictions for the

branching ratidB(AbHAcI;) to the variation of the param-
eter 8. ChoosingB8=2.0 GeV andB=4.0 GeV, and nor-

baryon wave functions.

We present in Fig. 3 the differential decay ratE/dp
derived from the form factors in Eq46), which can be
compared with experimental data in the future. Theand
A baryon wave functions determined in this work are given

by

M
2(1.0 Gey?(1-7)

|

$(¢,7)=6.67X10%7*{(1—7)(1— ()
o
m

2(1.0 GeV2pz(1-0)
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(¢, m)=6.94x 1047725(1_ 7)(1—9) V. CONCLUSION
M2 In this paper we have developed a PQCD factorization
X F{— ¢ theorem for the semileptonic heavy baryon decay
2(1.0 Gew*(1-17) _>ACI7, whose form factors are expressed as the convolu-

tions of hardb quark decay amplitudes with universal,

) (52 andA . baryon wave functions. It is observed that the PQCD
formalism with Sudakov suppression in the long-distance re-
gion is applicable to\,— A . decays for the velocity transfer
greater than 1.2. This observation indicates that PQCD is an
appropriate approach to analyses of two-body exclusive non-

ptonicA, baryon decays. Requiring that the normalizations
of the form factors at zero recoil be consistent with heavy
quark symmetry, we have predicted the branching ratio

B(Ab—)ACI;)""Z%. We have also determined tidg, and

_ m
2(1.0 GeWpe(1-0)

At last, we compare our predictions with those derived
from other approaches in the literature. Thg— A transi-
tion form factors have been evaluated by means of overla
integrals of infinite-momentum-fram&@IF) wave functions,
nonrelativistic and relativistic quark models, and QCD sum
rules. For a review, refer tf27]. Basically, they are nonper-
turbative methods without involving hard gluons. QCD dy-

namics is completely parametrized into IMF wave functionsAC b?WO“ wave functions shown in EqS0) and(51), re-
in the overlap-integral approadi?4,2§ and into baryon— spectively. These wave functions, because of their universal-

three-quark vertex form factors in the relativistic quark!ty' will be employed to study nonleptonit,, baryon decays
model[29]. Information on the above bound-state quantities” the future.

can be obtained by solving Bethe-Salpeter equat|@es.

Most of the analyses, including QCD sum ru[e&®,31,33,

led to branching ratios about or below 6%. The prediction ACKNOWLEDGMENTS

B(Ap—Adv)~9% in[28] is a bit higher compared to the  This work was supported by the National Science Council
data of B(Ap— A v+X). Our result is close to (3.4 of the Republic of China under Grants Nos. NSC-88-2112-

+0.6)% derived in31]. M-001-041 and NSC-88-2112-M-006-013.
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