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Electromagnetic properties of a neutrino stream
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In a medium that contains a neutrino background in addition to matter particles, the neutrinos contribute to
the photon self-energy as a result of the effective electromagnetic vertex that they acquire in the presence of
matter. We calculate the contribution to the photon self-energy in a dense plasma, due to the presence of a gas
of charged particles, or neutrinos, which moves as a whole relative to the plasma. General formulas for the
transverse and longitudinal components of the photon polarization tensor are obtained in terms of the momen-
tum distribution functions of the particles in the medium, and explicit results are given for various limiting
cases of practical interest. The formulas are used to study the electromagnetic properties of a plasma that
contains a beam of neutrinos. The transverse and longitudinal photon dispersion relations are studied in some
detail. Our results do not support the idea that neutrino streaming instabilities can develop in such a system.
We also indicate how the phenomenon of optical activity of the neutrino gas is modified due to the velocity of
the neutrino background relative to the plasma. The general approach and results can be adapted to similar
problems involving relativistic plasmas and high-temperature gauge theories in other environments.

PACS numbsgps): 13.15+¢, 95.30.Qd

[. INTRODUCTION AND CONCLUSIONS at rest. This is usually the relevant situation. Therefore, while
generally useful, the covariant nature of these methods has
From a modern point of view, the methods of finite tem-not been of particular importance in the applications men-
perature field theoryFTFT) [1] provide a natural setting to tioned.
treat the problems related to the propagation of photons and However, there is a class of problem in which setting

neutrinos through a dense medium. This view has bee[]uu:(liﬁ) is not possible. These are problems that involve
largely stimulated by the work of Weldoi2—4], who em-  gne stream of particlegvhich we can think of as a moving
phasized the convenience of carrying out covariant, real-timegnediun) flowing through a background medium, which we
calculations in this kind of problem. The work of Weldon can take to be sta‘[ionary_ If we denote bv the Velocity
demonstrated that the real'time formulation Of FTFT iS We”four_vector Of the Stationary medium and b)’/ﬂ the corre-

suited to the study of systems involving gauge fields and/ogponding one for the moving background, then we can set
chiral fermions at finite temperature, which can be extendeng(1 G), but we cannot take both to be (},Gimulta-

in an efficient and ransparent way 1o reali_stic _situations in'neously. Thus, for example, if we were to calculate the self-
nggggi(f?gjﬁgmple’ photons and/or neutrir(&§ in a mat- energy of the photon propagating through such media, it will
The e?ectrorﬁagnetic properties of neutrinos in a mediumdepend on _the m_o_mentum and_ veloc!ty four-ve as
usual and, in addition, on’#. This additional dependence

mh asdiggiog t(ljict:t?gn%%t]rmlzscl)? Ier::::ﬁslté "’gf; riﬁldelf:é Ienle?t?g}/ can have consequences that are as important as the effects of
phy PP : Pie, the stationary background itself.

magnetic couplings of a neutrino propagating in a back- For example, it is well known that in a plasma in which a

ground of electrons and nucleons are responsible for thg, ., ot electrons move, as a whole, relative to a plasma at
plasmon decay procesg—vv in stars, and modify the rest in addition to the usual dispersion relation of the longi-
Mikheyev-Smirnov-WolfensteifMSW) resonant condition y,dinal photon mode, another branch appears whose disper-
in the presence of an external magnetic figlet11]. A neu-  gjon relation depends on the velocity of the beam. Under
trino gas also exhibits the phenomemon of an optical activitysgme conditions, the sign of the imaginary part of this dis-
as a result of the chiral nature of the neutrino interactionspersiOn relation is such that the corresponding amplitude
[12,13. . o o grows exponentially, which signifies an instability of the sys-
The covariance in this type of calculation is implementediem against the excitation of those modes. This kind of sys-
by introducing the velocity four-vectar” of the medium, i tem js familiar in plasma physics research, and examples of
terms of which the thermal propagators are written in a manithem are discussed in textbooks on the subje4t1s).
festly covariant form. Therefore, covariance is maintained, Recently[16], it has been suggested that a similar kind of
but quantities such as the photon self-energy or the neutringreaming stability might be driven by a flow of neutrinos
electromagnetic form factors depend not just on the kinethrough a matter backgrourfd7,18. Because the neutrino
matical momentum variables of the problem, but alsabn  acquires an effective electromagnetic coupling as it traverses
In practice the vectou” is in the end set to (1)0 whichis  a medium[19,20,7,11, the propagation of a photon in a
equivalent to having carried out the calculation from the starimedium that contains a drifting neutrino background may be
with respect to a frame of reference in which the medium isaffected in a way similar to the case mentioned above. As
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r+q antiparticle$, and a neutrino gas that propagates as a whole

@) g A relative to the matter background, is considered in Sec. Ill.
imi” (@) = We begin by reviewing the one-loop formulas for the effec-
P tive electromagnetic vertex of the neutrino in a matter back-

FIG. 1. Diagram for the contribution to the photon self-energy ground, in the way that will be used in the calculation of the
matrix from a generic fermion. For a charged fermion, the electrofphoton self-energy. The neutrino background contribution to
magnetic coupling is given by the tree-level terms in the Lagrangiarihe photon self-energy is then determined. It depends on the
while for the neutrino it is the one-loop vertex function induced by momentum distribution functions of the matter particles and
the matter background. well as those for the neutrinos. As an application of the for-

mulas obtained, the dispersion relation for the longitudinal

argued in Ref[16], such effects can appear under the Con_modes is considered, with attention to the possible effect of

ditions of realistic situations such as those in a supernovi!® Neutrino contribution to the instability of the system. In

explosion, gamma ray bursts, or the early universe. that context, our results do not indicate the existence of un-
Similarly, other neutrino processes that have been studie§f@P!e modes, and therefore we do not find support for the

previously, such as those mentioned above, may be modifié&ea that stream instabilities due to the presence of the neu-

in important ways if the neutrino gas is moving as a whole!fin® background can develop in such systems.
In Sec. Il we also consider the dispersion relations for the

relative to the matter background. . 7
Motivated by all these considerations, in this work we transverse modes. The chiral nature of the neutrino interac-

calculate the neutrino contribution to the photon self-energyions gives rise to the phenomenon of optical activity, which
in a medium in which the neutrino gas moves as a whold'ad been studied earligt2,13. Here we show how the re-

relative to a matter background which we take to be at restUlts of Refs[12,13 are modified when the neutrino gas is
The calculation is based on the application of FTFT to thigh0Ving relative to the matter background. The main effect is
problem in the manner that has been suggested above. Ttfeat the dispersion relations for the two circularly polarized
implicit assumption is that, in the rest frame of the streamM0des are not isotropic. As a consequence, the frequency
the neutrino background is characterized by a momenturgPlitting between them, which is the measure of the rotation

distribution function that is parametrized in the usual way.0f the plane of polarization, depends on the direction of
Although our focus is the case in which the neutrino backPropagation of the mode relative to the velocity of the neu-

ground constitutes the stream, largely motivated by the pc)t_rino gas. In particular, under the appropriate conditions, the

tential applications that have been mentioned, the calculatiofféduency difference is the opposite to what is found if the
and the formulas for the photon self-energy are presented iﬂeutrlnc_) gas is not moving relative to the matter background.
such a way that they can be adapted to other cases as well. Section IV contains our outlook, where other possible ef-
Therefore, they complement the existing calculations of thd€Cts and applications are also mentioned.

photon self-energy in which all the particles form a common

background with a unique velocity four-vector. The results [l. PHOTON SELF-ENERGY IN A FERMION

for the photon self-energy can be equivalently interpreted in BACKGROUND

terms of the dielectric constant of the system, and in that way
we show that the well-known textbooks results for the strearrhu
stabilities are reproduced when the appropriate limits arg,
taken. On the other hand, the results we obtain are valid 1‘0;<
general conditiongwhether they are relativistic and/or de-
generate or the convensef the gases that form the plasma at
rest as well as the stream, hold for general values of th
velocity of the stream, and are valid also for general value
of the photon momentum and not necessarily for some par- d“p

ticular limit. Therefore, they are useful also in the study of im{?,,=(—1)(—i)? Trf SN (@isf(p+a)ifs"
similar processes that may occur in other contexts, such as (2m)

high-temperature QCD, heavy ion collisions, or other similar ><(_q)iS(f) (p) 2.1)
environments in which the methods of FTFT are applicable. FLRES '

In Sec. Il, we give the general one-loop formulas for thewherej{®™(q) is the electromagnetic current of the fermion.
generic contribution of a moving fermion background to the|t is defined in such a way that the on-shell matrix element of
photon self-energy. The contribution from any given fermionthe electromagnetic current operatl§j‘m) is given by
can be written in terms of a few independent functions, .
which are expressed as integrals over the momentum distri- (F(pHIEO)f(p)y=u(pHjE(u(p), (2.2
bution functions of the fermion. Explicit formulas are given
for various limiting cases of physical interest, which alsowhereq=p—p’ andu(p) is a Dirac spinor. For the electron
serve to show how some of the results derived in textbookd is simplyey,, , for the nucleons it must in principle include
for simple cases are reproduced in the appropriate limit.  the magnetic moment term, and for the neutrino we must use

The case of the system that is composed of a matter backhe effective electromagnetic neutrino vertex in the medium.
ground made of electrons and nucledasd possibly their The fermion propagator that appears in Ej1) is given by

We will consider a medium that consists of a gas of
cleons, electrons, neutrinos, and their antiparticles. Each
rmion gas gives a contribution to the elements of the 2
2 photon self-energy matrix, which are determined by cal-
culating the diagram shown in Fig. 1. In particular, the con-
tribution to the 7y, element from each fermiofin the
Eoop is
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SOp) =(p+m)| —— Q,w(q,U)=afaV,
p?—mi+ie u?
. i
+2i 5(p2—m?)m(p-u(”)], (2.3 Pw(q,u)=§ewﬁqauﬁ, (2.9
where with
6(p-u) 6(—p-u) -~ 9,0y
1y = = _ e
nf(p u ) eﬁfp'u(f)_af+1 e_pr'u(f)"'O‘f_’_l’ (24) u/./, g/LV q2 u-. (29)

with B; being the inverse temperature and the fermion  Although we have not indicated it explicitly, in general,
chemical potential. The vectar# is the velocity four- w(T’TP are functions of the scalar variables

vector of the fermion gas as a whole, so théi#=(1,0) if

the fermion background is at rest. In E8.4) we are allow- Q1=q-u,
ing for the possibility that the different fermion gases of the
background may be at different temperatures and, most im- Q=0?-¢? (2.10

portantly for our purposes later, that each gas has a velocity

four-vector that is not necessarily the same for all of themWhich have the interpretation of being the photon energy and
The implicit assumption here is that, in the rest frame of eactinomentum in the rest frame of the medium.

fermion background, the corresponding particles have an iso- A detailed calculation of the photon self-energy in such a
tropic thermal distribution characterized by a temperaturénedium was carried out in Ref21]. For our present pur-

and chemical potential B4 and a; . poses, it is useful to summarize those results as follows. The
The dispersion relations of the propagating photon modeBucleon magnetic moment term contribution is not important
are obtained by solving the equation for practical purposes. Therefore, we use hjéi;é‘)zef Vs
so that the neutron contribution is being neglected. Substitut-
(9%9,,—9*q"— =5/")A=0, (2.5 ing in Eq.(2.1) the formula forS),, the contribution from
each fermion in the loop can be expressed in the form
where
1 B1(Q,Q)
RemD=—4e?2Z| A 0,9 —————|R,.,(q,u
Reﬂﬁf,,ff)=2f Rew(!), 2.6 v 5| AL, Q) = CRY
f) Bf(ng)
and we have denoted b’y‘(ﬂy the background-dependent term +TQW(q,u) , (2.11
of Eqg. (2.2). In the rest of this paper we will focus only on u
the real part of the dispersion relations, but similar consider- . - _
ations could be used to calculate the imaginary part as wellVith the coefficientsi; andB; defined as
In order to calculate Re'S”, and thus determine the 4
dispersion relations, we must know the composition of the A :f f(D-U)+f(D-
medium and the formulas for the electromagnetic current (2.9 (277)325[ (p-W+Tip-w]
that must be substituted in ER.1). To proceed, we con-
sider the various cases separately. 2m$— 2p-q
————+@a—-0q)|,
A. Matter background qQ°+2p-q
We consider first an isotropic medium composed of 4
nucleon and electron gases, with a common velocity four- Bf(Q,Q):f—3[ff(p,u)+f?(p_u)]
vectoru®. The most general form of the physical self-energy (27)°2E;
function in this case, which we denote M";), is[2,12]
2(p-u)?+2(p-u)(g-u)—p-
7= 7R (0,0)+ 7{™Q,,(q,u) + 7IP,,(q,U), | 2R+ 2P UN(A W)~ P
(2.7 q°+2p-q
where
T(g——a)|. (212

R (q,u)=g —ﬂ—Q (q,u)
e W q? e In these formulas,
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r=(E,p), E;=+p2+nm? (2.13 ~, q.d,|
P P, B NPTy 0= g, ey 2.19
and f¢ ¥ denote the particle and antiparticle number density g
distributions, In analogy with Eq(2.10), the variable€)’, Q" are defined
by
ff’ﬂg):—eﬁffiaf-‘r-l’ (214) Q’:CI'U,,
with the minus(plus) sign holding for the particleGntipar- Q'=vO'"-q%, (2.20

ticles), respectively. Comparing Eq&.7) and(2.11) we can
identify the contribution of any fermion to the real part of the
transverse and longitudinal components of the self-energy,
and therefore obtain

and they are expressed in terms(bfand Q by the relations

Q/:U/OQ_U/'Q

o Q'=\(U°0-0"-3)2- 0%+ Q2. (2.21)
Rem(™=—-2e?> | A((Q,Q)+ —B(Q,9) |,
f Q The total photon self-energy is given by

2 7= a{"R, (q,u)+7{™Q,,(q.u)+ 7R, (q.u)
Rem{™=4e?>, q—zBf(Q,Q), (2.15 . T - - T
1 +a"Q,.(q.u’). (2.22
where the relationi?= — Q2/g? has been used. Equation(2.22 can be written in a convenient form by

the following procedure. From the definition Bf,, given in
Eq. (2.8) we have

B. Matter background and a stream of charged particles

R,.(q,u")=R,(q,u)+Q,,(q,u)—Q,,(q,u’).
We now consider a medium that contains, in addition to wl wd U+ Qusl8.0) = Qunl (2.23

the background as has been considered above, another gas of
particles with a velocity four-vectou, . We will refer to ~ We now define the vectors
them as the matter background and the stream, respectively,

and we assume that the latter consists of only one specie of e R“*(qg,u)u, p_ o

fermions f' with an electromagnetic couplingj 2‘?;‘) &= N, ey=-iP*(quley,, (2.29
=e; 7y, . The fermionf’ could be, for example, the electron

or any other charged particle. We will denotedy® andU’  Wwith

the components afi’* in the rest frame of the matter back- ~

ground so that, in that frame, Ny = — UL, R* (g, ) = (u-u’) _W2 (229

= ,
- . u
u*=(1,0), u’#=U'%U"). (2.16
which can be expressed in the form
The contribution fromf’ to the photon self-energy is

given by a formula analogous to E@.11), N;=U'202—(U’- Q)% (2.26)
=R, (qu)+7{Q,(qu’), (219 Itis easy to verify thatef, are mutually orthogonal and
satisfy
where _ ,
€120=€,,U=0, ej,=—1. (2.27
2
! 2 ! ! q ! ! M
Ren{!)=—2¢f,| An(Q,Q HEBV(Q QN Thus, together withu, they form a complete set transverse
to g, and therefore it is possible to expras in terms of
5 them. The desired relation, which follows from substituting
REW(Lf')=4ef2,Qq,zBf/(Q',Q')- 2189 Ea (2.9) into Eq.(2.249), is
~, u-u'\~
In Eq.(2.18 the functionsA;, andB;, are given by formulas U,= \/N_lel;ﬁ T2 U s (2.28

analogous to Eq2.12, but with the replacement*—u’#,

and we have used’?=—Q'?/q? where, similarly to Eq. which substituting into the definitions given in E¢Q.8)
(2.9, yields the convenient formulas
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Ni Ns 2 m f! N;q? f/ f!
Quiau) ==5erer, | =75 +1]Qu(ua) q°=m{"+ ’+?<w£ )=,
u u’ 2_ (m)+ (f")
+Nj==— (e, U, +u,ey,), =T
u‘u’ N, g2
! 1 ! ’
L S KX
.. Qu-u’ ) i L ~
P..(q,u )=WPW(q,u) with (.:orrespondlng polarization vectoes , and egoc.uizre—
spectively. In EQ.(2.32 we have used the relation”=
,Q\/— B —0?/g? and the corresponding one far2. If the mixing
(U,&,— uyezﬂ). (2.29 term is not sufficiently small so that the higher order terms

172 ~
Q are important, then the full’22 problem in thee;-u plane

must be considered which, although tedious, is straightfor-
On the other hand, as shown in REf2], R, can be de- Ward. o _
composed in the form In Egs.(2.32, it is understood that the variablés',Q’
are to be expressed in terms @f Q by means of the rela-
tions given in Eq.(2.21). They thus become implicit equa-
R,.(Q,u)=—(efel+e5e;). (2.30 tions for ), Q, whose solutions determine the dispersion re-
lations Q) (Q) of the various modes.

In this way, using Eqs(2.23 and (2.29 in Eq. (2.22 to-
gether with the decomposition given in E-30, we finally . ] . -
arrive at For illustrative purposes, we consider the specific case of
a stream of electrons and a matter background that consists
of an electron gas and a nonrelativistic proton gas. We bor-
row from Ref.[11] [see Eqs(A5) and (A9)] the following
results:

1 d*p O. Vp[ff(5)+f15)]
Bi(2.Q)= f(zw) Q—0p0

C. Discussion

eff) _
775.“/ )= _el,u.elv

! Nl ’ ’
i+l 1= )

f’
- eZ,ue2V( 77'(|'m) + 7T£|' ))

Yol myy ey NL Q[ d@p
+ =2 {WL + +a,2(77|_ 7T ) Af(Q,Q):Bf(Q,Q)+_f -
2J) (2m)
(G-u") () () - o~
+“\'—132af2m —a{'))(er,u,+ U ey,). L7 VA f(E)+ )] (233
Q—vp-Q '

(2.31
where&=\P?+ mfz, Vs the gradient operator with respect

Equation(2.31), in addition to unfolding the main struc- ™ ngjefmomlentunP, andﬁ{:ﬁ 7;/8' As shown there, they are
ture of the modes in a particularly simple way, is a usefyValld for values ofg such tha
formula that allows us to obtain the dispersion relation of the HEY <1 23
modes under a variety of conditions. In the absence of the (&)=L, 234

stream, the solutions consist of one longitudinal mode withyhere(&) stands for a typical average value of the energy of
polarization vectore4u* and two degenerate transverse the fermions in the gas. For distribution functions that de-

modes with polarization vectoey', that satisfyQ , ey ,=0. pend onP only through&, we can replac&pavpa/ag in
Their dlspersmn relatlons are determined by solving theeq.(2.33. Several useful formulas follow from E¢.33) in
equationsg? RewLT for the longitudinal and transverse particular cases. For example, if the fermions are relativistic,
modes, respectively. The presence of the stream breaks the

degeneracy of the transverse modes, and in general causes a A{(Q,Q) = —3wp;,

mixing between them with the longitudinal mode. In those

cases in which it is permissible to treat the mixing tdthe 2

last term in Eq.(2.31)] as a perturbatiorie.g., the number Bf(Q’Q)=_3w0f(1_ Eln
density in the stream is sufficiently smaller than those in the

matter backgroundthe dispersion relations are obtained ap-Equation(2.35 holds for a degenerate or nondegenerate gas.
proximately by solving For the nonrelativistic and nondegenerate case, we use

+Q
Q-9

’) (2.39
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0 _ 2 sz(z)f

Q2w2
B(Q,Q)= QZOf, (2.36
which are valid if, in addition to Eq(2.34),
Q=0 (237

Wherev_lel\/,Bfmf is a typical value of the velocity of the
fermions in the gas. The quantity, , which is related to the
plasma frequency in the gas, is given by

2

. P
3e2|

d*p
wé=f————ﬁ«a+m&]

2.3
(2m)32¢& 239

In Egs.(2.35 and(2.36) we have used its form in the rela-
tivistic (ER) limit and nonrelativistiogNR) limits:

1 o
_Zf dPPf«(P)+f(P)] (ER),
ofi={ (2.39
f

PHYSICAL REVIEW D 61 113008

Q’zwg,
Ae'(Q’,Q’):—3w§e/+Q—,ze,
12 2
C A “©ge
Be’(Q lQ ): Q'z 1 (24]7)

which, as we will see, are suitable for finding the long wave-

length limit of the dispersion relations. Equati¢®41) can

be used if the solution is such that
O'>v.0'. (2.42

The conditions under which the solution thus found is valid

can be ascertained afterwards. The formulad;ég, is the

same expression given in E.38, but with replacement

fe (&) —fe (&), where

for o ()= (2.43

efefrae 41

As we have indicated previously, the implicit assumption
that is being made here is that the electrons that compose the
stream have, in the rest frame of the stream, an isotropic
thermal distribution characterized by a temperature and
chemical 18 and e, .

Let us consider the dispersion relation for the longitudinal

where n; is the fermion number density in the frame in mode. From Eqgs(2.19 and(2.18) this yields

which the background is at rest. The corresponding formulas
for the nonrelativistic and degenerate case are given in Ref.

[21].

Under most circumstances, the protons make a negligible

contribution to the dispersion relations. The conditions undeFrom Eq.(2.20),

which those terms can be important are given in R2f].

Here we do not include those special cases and therefore we

2 wge Dper
1=4e E—FF . (244)
Q'=0-9-U0, (2.45

will not consider the protons further. Last, we assume that o _ _ o
the stream is not moving too fast as a whole, so that the terdSingU’"=1, and therefore the dispersion relation is

that is proportional toN; in Eq. (2.32 can be neglected,
since according to Eq2.26) it is or the order of the velocity
squared of the stream.

With these assumptions, the dispersion relations become

2
f=4élwag+§mmgﬁ
q2
+ Ae,(Q’,Q’)Jr?Be,(Q’,Q’))1,
q? q?
q2=462 EBe(Q,Q)‘FEBer(Q’,Q,)], (24@

for the transverse and longitudinal modes, respectively. We

now consider several cases separately.

1. Nonrelativistic matter and stream electrons

(Q—0-UNH 0% 4e2wd,) — 4e?w), 02=0.
(2.46

The salient feature of Eq2.46 is that, besides the usual
solution QZ(Q—0)=4e?w5,, there is another one with

Q,=U’- Q. The standard way to find this second solution is
to substitute

0=U0"-0+4, (2.47

in Eq. (2.46 and determineS, approximately by taking it to
be a small quantity. In this fashion, we find

|2€w0e, U " é|

5L:i
V(- 9246203,

, (2.48

which shows the well-known instability of this system. For
values ofU’- O such that

For the electrons in the matter background we use Eq.

(2.36). Similarly, for the stream

0<|U’- 9|<2|e|wge, (2.49
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U —02.6 = 45° a wider variety of conditions, including those for which the
U'=058=0 - - - semiclassical approaches, and the simple formula given in
i EqQ. (2.44) in particular, are not applicable.

2. Nonrelativistic matter electrons and relativistic
stream electrons

For the electrons in the stream we must use in this case

! ry — 2
2/0 6 8 10 A (Q1',Q")=—3wg, ,
v=88esy T (01,07 =302, [ 1- | —Q'+Q’) 251
'=05,6=0 - Be ,, "Y=—-3w ’ - n y .
- € Oe ZQ ' o' — Q ’
i while the matter electron formulas are the same as the pre-
| vious ones. The dispersion relations are then determined by
7 0°—4¢? w08—4e wOe,f , (2.52
1 |
a/Q 6 8 10
— Q%— 4’0l =4e%w], 1, (2.53

FIG. 2. The functionsf 1, defined in the text, are plotted as
functions ofQ)/Q, for some representative values of the velocity of for the longitudinal and transverse modes, respectively,
the streamU’ and the angle betwee@ andU’. For Q/Q=1 the = where we have defined
function f| becomes infinite, whild = 3/2.

f 302 e ]
the dispersion relation has a solution with a positive imagi- - Q220" |Q'-Q’ —1
nary part, which signals that the system is unstable against
oscillations with those values @’ - Q. The condition that @ o la+or
S, be small relative toU’- Q is satisfied for sufficiently fT_—{1+ — In H (2.59
small values ofvge / wge . ON the other hand, notice that, for Q2 20" |Q'-Q'

this solution,Q’=45,, and Q' =/Q'?— 0%+ Q%=Q. The
conditions given in Equation$2.34 and (2.42 are then Let us consider the longitudinal dispersion relation. With
equivalent to|]U’- Q|>v.Q and §>v. Q which, for suffi- the help of Fig. 2 it is easy to see that, besides the usual
ciently small values of the thermal velocities, are satisfied asolutionQ), =4ew,., any other solution to Eq2.52) must
well. haveQ ~ Q (which implies that)’~ Q" and the functiorf

Turning now the attention to the transverse dispersion reean be largeso that the stream term can compete with the
lation, we substitute the formulas fé, .- andB, ¢ givenin  matter term in that equation. Substituting
Egs.(2.36 and(2.4)) into Eq. (2.40. This yields simply

O=0+6, (2.55

9?=4%wi,+ 4%w],, (250 in Eq. (2.52 we find

. o _ —2(02- 46202 )1126%0°
which shows that in this case the presence of the stream S.=*2Qe oe 0e (2.56
perturbs somewhat the transverse dispersion relation by
shifting the value of the plasma frequency, but it does nofor Q2> 4e? wOe In contrast to the case considered in Sec.
produce a significant effect otherwise. Il C 1, there is no sign that a stream instability may develop
Egs. (2.44) and (2.50 reproduce the well-known results in the present one.
found in textbook$22], which are derived by kinetic theory For the transverse dispersion relations the situation is dif-
or similar semiclassical methods. However, the results thafierent. The functiorf; is not larger than a number of order 1,
we have obtained, and which are summarized in E281) as shown in Fig. 2, so that the stream contribution in Eq.
and(2.32, go further. Together with the expressions for the(2.53 only introduces a perturbation in the usual solution.
self-energy functions in terms of the coefficiets and B In summary, when the stream consists of a relativistic
[Egs.(2.15 and(2.18] they allow us to study systems under electron gas, there is no sign that any stream instabilities may
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develop. This result will be a useful reference point when weare the anomalous magnetic moment of the nucleons, and the
consider in Sec. Il the case in which the stream consists ofoefficientsa; andb; are the neutral current couplings of the

neutrinos. fermionf, while A, andB,, are defined in Eq(2.12 and
: d3 u-
. PHOTON SELF-ENERGY IN A NEUTRINO STREAM Cf(Q,Q)=f S (~_2p) (f— )
In this section we consider a system composed of a matter (2m)°2E\ u
background as in Sec. Il B and a neutrino stream with a 1
velocity four-vectoru’#. Our immediate task is to determine X 2—+(q_>_q) . (3.7
the neutrino stream contribution to the photon self-energy, g°+2p-q

for which we must calculate a diagram similar to the one in © .
Fig. 1, but with a neutrino as the fermion in the loop. Denot-The electron term35” were calculated in Ref.7], and are

ing the effective electromagnetic vertex of the neutrino in thegiven by
matter background by {"(q), then

T®=2\2eG:| A

Bo(2, Q))[aﬁl (ve),
e(Q Q)_
(V) 2 d4p (v) a(v) ae (V,u,,r)v
i1, = (= 1) (= I)Trf( )4Fﬂ (q)iSE(p+0q)

T{¥=4\2eG;

e(Q Q)‘ae+l (Ve)
XTI (= q)iseh(p), (3.) w2

ae (V;L,T)!

where the neutrino propagattﬁ‘Fll is given by Eq.(2.3 (ve),
(with m,=0). The neutrino effective vertex can be ex- TH)=—4\2eG:QC4(Q, Q) (v ). (3.9
pressed in the form be T

Substituting Eq«(3.3) into Eq. (3.1, we then obtain, for

Ir(a)=T,. ()7L, (32 the neutrino stream contribution to the photon self-energy,
whereL = 3(1— ys) as usual, and ,, can be decomposed as Rem()=—2T,,(a)T,5(—q)3°, (3.9
T,,=TR,(q,u)+T.Q,.(qu)+TpP,,(q,u). where
(3.3
. _ _ _ d°p
A detailed calculation of the various terms in E§.3) was J“BEJ —3{[fy(p~u’)+f;(p- u’]
carried out in Ref[11]. For our purposes here, we can sum- (2m)°2E
marize the main results obtained there as follows. o008 — nagf— qopf+ q
For practical purposes, the contributionTig, due to the % PP —P4~9P 79 P4 +(qﬁ_q)]
anomalous magnetic moment couplings of the nucleons in I a°—2p-q

the background is negligible, so that , T a
+[,(p-u")+f(p-u")]ie*a,p,

Bp(Q2, Q) [
Tr=2\2]e|Geay| Ay(2,Q)~ == |+ T, ot 1
l9*~2p-a  g’-2p-q
B,(Q,09) The transversality and symmetry propertied&f imply that
_ p
T =4\2|e|Gea, =2 +T(7, (34 it is expressible in terms of the tensoR*A(q,u’),
Q*P(q,u’), andP*?(q,u’), with coefficients that can be de-

termined by projecting Eq.3.10 along these tensors. Thus
we find

] . (3.10

while

Tp=TE - 42Gb,0(|e|+2myk,)Cp(Q, Q) 1 B.(0,Q")
JP=2| A(Q,Q")— — = ——|R¥(q.U")
—8Mykny2Geb, QCH(2,Q). (3.5 u

B,(Q2",Q7)
In these formulas, + —Qaﬁ(q u’)

le]
Kp=1-7g(ﬁ), +0Q/C,(2,Q")P*(q.u), (3.1
p

with the coefficients A,(Q2',Q"), B, (Q',Q'), and
. :_1_91( el ) (3.6 CuQ',Q") defined in Eqs(2.12 and (3.7). In Eq. (3.1
P the tensorsR,,(q,u’), Q,,(q,u’), and P,,(q,u’) are
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eliminated using Eq92.23 and(2.29, andR,,(q,u) is decomposed as in E(.30. In this way,

1 B, N, [3B, 1 B, B, N, 3B,
‘]aﬁ__ E Av_? 2U,2 ~2 AV elaelﬁ_z Av_? e2a62,8+ ?+2u,2 ~2 V Qaﬁ(qiu)
u-u’ VYNu-u’ C,VN;Q -
+C,Q TJ_’Z) Pap(du) + —=—am T u’2 A, |(e1algt+U, elﬁ)+ =2 (Uo25~ E24Up).- (3.12

By substituting Eq(3.12) into Eq.(3.9) we finally obtain the tivistic electron gas and a nonrelativistic nucleon gas, and the
formula for the neutrino contribution which, when it is added neutrino stream. As in the case mentioned, the photon mo-
to rr(m) to obtain the total photon self-energy, is the startingmentum is assumed to be such that B34 holds. For the
pomt to determine the photon dispersion relations. Howeverglectrons in the matter background we then use the formulas
with all its generality, the formula is not particularly useful for Ag(2,Q) andB¢(£2,Q) given in Eq.(2.36), which are
and therefore we consider below some specific situations afalid forQ>v_eQ as indicated in Eq2.37), while the analo-

potential interest. gous proton terms are negligible. From E¢&4) and(3.9),
this yields
A. Longitudinal dispersion relation 5
As already seen in Sec. Il B, in general the effects of the T =— q—TO, (3.17
stream break the degeneracy of the transverse modes and 02
also mix them with the longitudinal one. When the latter
effect is not too large, the longitudinal dispersion relation iswhere
obtained approximately by solving the equation
To=42Grew? fetd (v, (3.19
q°= 7T(|_m)+ 7T|(V) , (3.13 0~ FE@oe ae (V) - '
where The neutrinos are, for all practical purposes, ultrarelativistic.
o For them, we use the formulas analogous to those in Eq.
L, ufu” o (2.39, namel
=), (3.14 y
A(Q",Q")=-303,,
. . ~M — ~ .
Using the relatioru“T,,=T u,, together with o |la+or
~ o~ B,(Q,Q' )——3woy 1-—In|———— |,
U'MUV ( ! )_ Nl ZQ/ Q/_Qr
2 a, 2 (3.19
o with
utu” o Ng
TQ,w(an )=~_,2+11 (315)
u wd,= j dPPf,(P)+T(P)], (3.20
we obtain, from Eq(3.9),
where
2 3
Rem”)—ZTLQq [B —N; ; . +§AV , 1
f,P)=—F5—— (3.21
(3.16 ' el Pmevt1

where, to simplify the notation, we have omitted the argu-are the neutrino and antineutrino momentum distributions, in
ments(Q)’ and Q' in the coefficient\, andB,,. The disper- the rest frame of the stream. The longitudinal dispersion re-
sion relation obtained by substituting E¢2.15 and(3.16 lation obtained from Eq(3.13 is

into Eqg. (3.13 is the same as the corresponding one for a

stream of charged particles, with an effective chame s oo ) (q2)2 3qg? 1
:(1/\/§)TL OV =4e‘wi+2To——— Q Q’Z B,—N; _Q/ZBV+§AV

Long wavelength limit (822

We consider the case analogous to the one discussed i this equationQ " and()" are expressed in terms ¢f and
Sec. Il C, namely, a matter background made of a nonrela€) by means o0’ =/Q’?—q? with Q' =U"°Q — U’-9Q, as
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indicated by Eq.(2.20. The solutions of Eq(3.22 deter-  \here cog=0-U’ and we have neglected the term propor-
mine the dispersion relatiof? (Q) in the long wavelength  tional toN,, as before. Equatiof8.28 has a solution of the
limit and are valid forQ>v 0. form

B. Neutrino driven stream instabilities Q,=QcosH+ s, (3.29

Besides the usual solutici?=4e?w3,, Eq. (3.22 can )
have an additional solution if the neutrino term is sufficiently With
large that it can compete with the electron term. To deter-

mine whether this can happen, consider the specific situation s02 TS(n,,+ n,) Q2sint
in which the velocity of the neutrino stream is not too large, L™= I3 2 2 24!
so that the term in Eq(3.22 proportional toN; can be coS 9(Q* cos'd— 4e”wg,) (3.30

neglectedsee Eq(2.26)]. Using the formula foB, given in

Eq. (3.19, the longitudinal dispersion relation then becomesWhiCh exhibits an instability foncos°-6<4eZw§e.

2 Thus, while we are able to reproduce qualitatively the
) fi, (3.23 result of Ref,[16] in this way, we must note that it is based
on an inconsistent application of the long wavelength formu-
las given in Eq.(2.33. As explained in detail in Ref21],
those formulas are obtained by expanding the integrands in
powers ofg/€ in the one-loop formulas given in EQR.12),
and retaining only those terms that are dominant in the limit
g/E—0. This requires, among other conditions, that the mo-
(3.24 mentum distribution_ functip_n be such_that its derivatives do
not introduce any singularities in the integrands. The results
derived in this way are equivalent to those obtained by semi-
clasical methods based on kinetic theory or similar ap-
T =—ToBeMe (3.259  proaches. However, the form given in E®.26 does not
satisfy the required conditions and therefore neither the long
in this limit, instead of Eq(3.17). Therefore, the neutrino wavelength approximation of the one-loop formulas nor the
contribution is not large in the limi€2—0 either. semiclassical formulas are applicable in that case.

We therefore conclude that the neutrino contribution pro- [eaving aside the question of whether or not a distribu-
duces a small correction to the usual dispersion relation buion function such as that given in E¢B.26 is realistic in
does not introduce any additional branch. In particular, therany particular physical context, in order to use it the coeffi-
are no stream-induced instabilities in this system. This coneientsA,,B, must be calculated with the complete one-loop
clusion is in sharp contradiction with the result obtained informulas given in Eq(2.12. Following this procedure we
Ref. [16], where it was found that, in the same system, thepbtain
dispersion relation indicates the appearance of neutrino-

2

Qz—4e2w§e=T§w§V< 1- 2

where f, is the same function defined in EQR.54). For
values ofQ)= Q the functionf, becomes large, but with the
factor (1— Q?/Q?) its contribution in Eq.(3.23 is negli-
gible in that region. On the other hand, far—0,

Be(2—0,0)=— BeMew?e,

so that

driven stream instabilities. 02—(3.0")?
To understand the origin of this discrepancy it is useful to B,=2&n,+n;) S 1
consider 4620 0-U0")2— (02— Q?)?
(3.3

f,o=(2m)°%n,;68(P-¢£0") (3.26
instead of Eq(3.27), so that the longitudinal dispersion re-
for the momentum distribution function of the neutrinos, |ation becomes
which is of the form used in Ref16]. Using it in Eq.(2.33

to calculateB,, results in 02— 02 2
. Q4(0?-4e%whe) =4TEE(N,+ 1) —)
_[n, 40 Q%=(Q-U")? 3.22 Q'
28 =002 ' Q7?sir? ¢
X .
which, when substituted in E¢B8.22), yields the longitudinal 48%2(Q— Qcosh)’— (0%—Q?)?
dispersion relation (3.32
200 4o 2_n2\2
92(92_4e2w§e):T°(n” ) 97-Q If we neglect here the? term in the denominator, we re-
€ Q' cover Eq.(3.28. However, when that term is taken into ac-
2 it count, the neutrino contribution becomes proportionai(/
X&, 329 for @~0-U’+ 45, and therefore the unstable solution of
(Q— Qcosh)? the form given in Eq(3.29 and(3.30 does not exist.
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C. Transverse dispersion relation %= 7™+ 7(=), (3.42
The dispersion relations for the transverse modes are . o .
given approximately by solving the equation with the corresponding polarization vecta@s™ .
[(0?=7™)R,,,(q,u) - W%;)V]AV: 0, (3.33 D. Optical activity of the neutrino gas
where Equation(3.41) exhibits the phenomenon of optical activ-
ity of the neutrino gas, in which the two circularly polarized
wﬁf}vz RM“(q,u)RVﬁ(q,u)w(a”g photon modes travel with different dispersion relations as a
result of the chiral interactions of the neutrihb2]. Notice
= —2[ Tr(A)R\(q,U) + Tp(A) P, (q,) ] that for this occur,Tp and/orC, must be nonzero. This re-

quires that the chemical potentials in the matter background
_ A be such that, for some particle species#0 or thata,
XITr(Q)R,,(4,W) = Te(Q) Py, (q, W ]I #0. In the latter case, however, there is an additional con-
(3.34 tribution to the photon self-energy that arises from the set of
diagrams that were calculated in detail in Reif3]. Those
is the transverse projection of the neutrino contribution to theliagrams are not included in Fig. 1 and their result is an
self-energy, and in the second line we have used(E9). additional contribution to the photon self-energy that must be
For J** we will use the formula given in Eq3.11) and taken into account in Ed3.42. The result of the calculation
consider the case in which the terms with the fadigrcan ~ Of Ref. [13] is taken into account by including in the right-
be neglected, as we did in Sec. lll B. Therefore, rememberhand side of Eq(3.9) the term
ing Eq.(2.30, we will substitute, in Eq(3.34),

ny'p,(q,u’), (3.43
gt B, u-u’ here, in the notation of th t
J =3 Av_a_,z Ra(0,u)+C,Q = Pas(0,U). where, in the notation of the present paper,
(3.35 2Gra Q°
Hf:V)Z\/; (-, (3.44)
It is now useful to introduce the linear combinatidi2g] ™ mg
() 1 with
Rc;ﬁEi[Raﬁ(qiu)iPaﬂ(qru)]! (336) 5
which satisfy nV;=f (zw)sfv;(P)' (349
R(s)“BR%EéSS, 5% (3.3 The result quoted in Eq(3.44 is valid for values ofq
_ <me. When this term is included in Eq3.34), the net ef-
and have the representation fect is that the right-hand side of E@.42) has the additional
RO — (5T term
ap =€y €5, (3.39 ~
where Tp= iH(p”)( g)lt—u (3.49
Ql U2
€y :T(elai i€2). (3.39 If the background contains an equal number of neutrinos and
2 antineutrinos, thefil ) as well asC, is zero. In such a case,

the optical activity of the neutrino gas is due to a nonzero
value of Tp in Eq. (3.41), which in turn depends on the
difference between the particle and antiparticle number den-

Writing R,z and P, in terms ofR(;) and substituting the
resulting formulas in Eq(3.34), with the help of Eq(3.37)

we obtain sities in the matter background.
) = (R . (IR
Ty =T R TR (340 1. Long wavelength limit
where m(*) can be evaluated explicitly by considering specific
_ situations. As an example we consider once more a matter
(+) T2 1 B, N u-u’ background that consists of nonrelativistic electron proton
T ==2(Tr£Tp) 2 Av_? +C,Q 2 gases, with the photon momentum satisfying E434) and

(3.41) Q>v¢Q. The proton contribution td'y is negligible, and
using Eq.(2.33 for A, andB,,
From Eq.(3.33, the dispersion relations for the transverse
modes are then T1=—Tg, (3.4
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with T, given in Eq.(3.18. On the other handl is given Therefore, retaining only the term proportionalli¢” in
by Eg. (3.5 where, in the momentum regime that we areEq. (3.52), the dispersion relation becomes
considering,

’=4e’wi,* £11Y), (3.59
. 01— 1] d3P  [f—f7 L 2P2
1(Q,0-0)=-3 (2mioel € T 3ez where
3.4 ~
(3.48 0 (5w
as shown in Refl11]. For the electron and proton gases we &= a 2 (3.56

use the nonrelativistic limit of thisC;= — wgf/2mf, which
implies that the proton term is negligible and therefore ¢ course, when the neutrino gas is not moving relative to
0 the matter background( =0), £¢=1 and Eq.(3.55 re-
Tp= ( )TO, (3.49  duces to the form given in Reff13].

The salient feature here is that, in general, the dispersion
relation is not isotropic, so that the splitting between the two

2mg

where circularly polarized modes is different depending on the di-
be—1 (ve), rection of propagation of the photon relative to the velocity
T(’J=4\/§GFew§e[ (3.50  of the neutrino gas. To assess the consequences that this
be (V) effect can have on the analysis given in Rdf3] we con-

sider two extreme cases.
(@) O perpendicular to U.
Using O-U’ =0, it is very simple to verify that

For the neutrino gas, the relativistic limit of E@.48 yields

Com— o[ amtp-ramn @sy
24/772 ~ - UrOQZ
while A, andB,, are given in Eq(3.19. wue q>

With the heIp of these formulas and remembering that
Rem{™ =4e’wj, in the case we are considering, the disper-ynije 0’ = \/§'2+ 0. Using 2= — 0?2, it then follows

sion relat|0n becomes that
QT |2 -
Q2= 46%wl +2T202 [ 17— } oV1+0"?
2mgTy = (3.57
- NRY: 2
Cc,9(u-u’ 2 H(”)Q u-u’ QU9
X[ 15—~ | =3 + , (3.52 N ) )

wy, \ U Q' u? For small velocities of the neutrino gas this reduces to 1, as

. o _ it should be, while for large velocities it implies that the
where we have included the{” term as indicated in Eq. effect of thelI term is reduced by the facta/( for Q
(3.46. > Q.
Let us consider first the situation in whi¢h~f-, so that (b) 3 parallel to U’
1Y andC, can be neglected in E¢3.52. The solutions for We set
the two modes are then given by

Q=xQU0’ (3.59

Me  \JO2+4e2w2 to include the possibility that the photon propagates antipar-
oe (3.53 allel to the velocity of the neutrino gas. A little algebra

shows that, in this case,

which is of the same form as that given in £E4.22 of Ref.

[13], if we make the correspondence U'°02+\00Q|U’|

cl
c
|

2
1 ToThwd, q
EaR,,H _— (3.59 _ .
Me while Q' =|Q|U’|-\QU"°|. Therefore

there. For the situations of potential interest analyzed in Ref. ,
[13], the effects of the dispersion relations given in Eg. = Q-Ap'Q (3.59
(3.53 are smaller than those found in that reference by a |Q,3'—)\Q|’ '
factor of aboutGFw?,e%GFne/me, and hence are unimpor-
tant for all practical purposes. where we have defined the speed of the neutrino gas
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g’ IV. OUTLOOK
= (3.60

>
!

Although our work has been largely motivated by the
study of the electromagnetic properties of a neutrino gas that
moves, as a whole, relative to a plasma, the approach is

Equation(3.59 reveals in a simple way the anisotropic applicable to a wider class of problem in similar physical
nature of the dispersion relation. For example, if the velocitysystems, involving relativistic plasmas or high temperature
of the neutrino stream is such that gauge theories. The field theory methods employed here al-

low us to consider situations for which the semiclassical ap-
o) proaches, such as those based on kinetic theory, are not suit-
—<p’, (3.6  able, and those for which the full power of the techniques
Q and methods that have been developed for high temperature
field theory calculations must be employed. Some possible
then é=—1 or +1 depending on whether the photon is extensions of the present work along those lines would in-
propagating para||e| or antipara”e| t,é’, respective|y_ In volve the calculation of the imaginary part of the Self-energy
particular, this implies that the frequency difference betweeri0 determine the damping rates, and the application of the
the dispersion relations of the tweircularly polarized ~ resummation method4] to study the dispersion relations
transverse modes is the opposite to what it is if the neutrind? those circumstances in which the perturbative approxima-
gas is not moving relative to the matter background. Thigions are not reliable.
effect is easy to understand by noticing that, if the condition

in Eq. (3.61) holds, then a photon moving parallel @/

appears to be moving in the opposite direction in the rest This work has been partially supported by U.S. National
frame of the neutrino gas. Science Foundation Grant PHY-9900766.
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