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Electromagnetic properties of a neutrino stream
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In a medium that contains a neutrino background in addition to matter particles, the neutrinos contribute to
the photon self-energy as a result of the effective electromagnetic vertex that they acquire in the presence of
matter. We calculate the contribution to the photon self-energy in a dense plasma, due to the presence of a gas
of charged particles, or neutrinos, which moves as a whole relative to the plasma. General formulas for the
transverse and longitudinal components of the photon polarization tensor are obtained in terms of the momen-
tum distribution functions of the particles in the medium, and explicit results are given for various limiting
cases of practical interest. The formulas are used to study the electromagnetic properties of a plasma that
contains a beam of neutrinos. The transverse and longitudinal photon dispersion relations are studied in some
detail. Our results do not support the idea that neutrino streaming instabilities can develop in such a system.
We also indicate how the phenomenon of optical activity of the neutrino gas is modified due to the velocity of
the neutrino background relative to the plasma. The general approach and results can be adapted to similar
problems involving relativistic plasmas and high-temperature gauge theories in other environments.

PACS number~s!: 13.15.1g, 95.30.Qd
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I. INTRODUCTION AND CONCLUSIONS

From a modern point of view, the methods of finite tem
perature field theory~FTFT! @1# provide a natural setting to
treat the problems related to the propagation of photons
neutrinos through a dense medium. This view has b
largely stimulated by the work of Weldon@2–4#, who em-
phasized the convenience of carrying out covariant, real-t
calculations in this kind of problem. The work of Weldo
demonstrated that the real-time formulation of FTFT is w
suited to the study of systems involving gauge fields and
chiral fermions at finite temperature, which can be exten
in an efficient and transparent way to realistic situations
volving, for example, photons and/or neutrinos@5# in a mat-
ter background.

The electromagnetic properties of neutrinos in a mediu
in addition to their intrinsic interest, are relevant in ma
physical applications@6#. For example, the induced electro
magnetic couplings of a neutrino propagating in a ba
ground of electrons and nucleons are responsible for
plasmon decay processg→nn̄ in stars, and modify the
Mikheyev-Smirnov-Wolfenstein~MSW! resonant condition
in the presence of an external magnetic field@7–11#. A neu-
trino gas also exhibits the phenomemon of an optical acti
as a result of the chiral nature of the neutrino interactio
@12,13#.

The covariance in this type of calculation is implement
by introducing the velocity four-vectorum of the medium, in
terms of which the thermal propagators are written in a ma
festly covariant form. Therefore, covariance is maintain
but quantities such as the photon self-energy or the neut
electromagnetic form factors depend not just on the ki
matical momentum variables of the problem, but also onum.
In practice the vectorum is in the end set to (1,0W ), which is
equivalent to having carried out the calculation from the s
with respect to a frame of reference in which the medium
0556-2821/2000/61~11!/113008~13!/$15.00 61 1130
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at rest. This is usually the relevant situation. Therefore, wh
generally useful, the covariant nature of these methods
not been of particular importance in the applications m
tioned.

However, there is a class of problem in which setti

um5(1,0W ) is not possible. These are problems that invo
one stream of particles~which we can think of as a moving
medium! flowing through a background medium, which w
can take to be stationary. If we denote byum the velocity
four-vector of the stationary medium and byu8m the corre-
sponding one for the moving background, then we can
um5(1,0W ), but we cannot take both to be (1,0W ) simulta-
neously. Thus, for example, if we were to calculate the s
energy of the photon propagating through such media, it w
depend on the momentum and velocity four-vectorum as
usual and, in addition, onu8m. This additional dependenc
can have consequences that are as important as the effe
the stationary background itself.

For example, it is well known that in a plasma in which
bunch of electrons move, as a whole, relative to a plasm
rest, in addition to the usual dispersion relation of the lon
tudinal photon mode, another branch appears whose dis
sion relation depends on the velocity of the beam. Un
some conditions, the sign of the imaginary part of this d
persion relation is such that the corresponding amplitu
grows exponentially, which signifies an instability of the sy
tem against the excitation of those modes. This kind of s
tem is familiar in plasma physics research, and example
them are discussed in textbooks on the subject@14,15#.

Recently@16#, it has been suggested that a similar kind
streaming stability might be driven by a flow of neutrino
through a matter background@17,18#. Because the neutrino
acquires an effective electromagnetic coupling as it trave
a medium @19,20,7,11#, the propagation of a photon in
medium that contains a drifting neutrino background may
affected in a way similar to the case mentioned above.
©2000 The American Physical Society08-1
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argued in Ref.@16#, such effects can appear under the co
ditions of realistic situations such as those in a supern
explosion, gamma ray bursts, or the early universe.

Similarly, other neutrino processes that have been stu
previously, such as those mentioned above, may be mod
in important ways if the neutrino gas is moving as a wh
relative to the matter background.

Motivated by all these considerations, in this work w
calculate the neutrino contribution to the photon self-ene
in a medium in which the neutrino gas moves as a wh
relative to a matter background which we take to be at r
The calculation is based on the application of FTFT to t
problem in the manner that has been suggested above.
implicit assumption is that, in the rest frame of the strea
the neutrino background is characterized by a momen
distribution function that is parametrized in the usual wa
Although our focus is the case in which the neutrino ba
ground constitutes the stream, largely motivated by the
tential applications that have been mentioned, the calcula
and the formulas for the photon self-energy are presente
such a way that they can be adapted to other cases as
Therefore, they complement the existing calculations of
photon self-energy in which all the particles form a comm
background with a unique velocity four-vector. The resu
for the photon self-energy can be equivalently interpreted
terms of the dielectric constant of the system, and in that w
we show that the well-known textbooks results for the stre
stabilities are reproduced when the appropriate limits
taken. On the other hand, the results we obtain are valid
general conditions~whether they are relativistic and/or de
generate or the converse! of the gases that form the plasma
rest as well as the stream, hold for general values of
velocity of the stream, and are valid also for general val
of the photon momentum and not necessarily for some
ticular limit. Therefore, they are useful also in the study
similar processes that may occur in other contexts, suc
high-temperature QCD, heavy ion collisions, or other sim
environments in which the methods of FTFT are applicab

In Sec. II, we give the general one-loop formulas for t
generic contribution of a moving fermion background to t
photon self-energy. The contribution from any given fermi
can be written in terms of a few independent functio
which are expressed as integrals over the momentum d
bution functions of the fermion. Explicit formulas are give
for various limiting cases of physical interest, which al
serve to show how some of the results derived in textbo
for simple cases are reproduced in the appropriate limit.

The case of the system that is composed of a matter b
ground made of electrons and nucleons~and possibly their

FIG. 1. Diagram for the contribution to the photon self-ener
matrix from a generic fermion. For a charged fermion, the elec
magnetic coupling is given by the tree-level terms in the Lagrang
while for the neutrino it is the one-loop vertex function induced
the matter background.
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antiparticles!, and a neutrino gas that propagates as a wh
relative to the matter background, is considered in Sec.
We begin by reviewing the one-loop formulas for the effe
tive electromagnetic vertex of the neutrino in a matter ba
ground, in the way that will be used in the calculation of t
photon self-energy. The neutrino background contribution
the photon self-energy is then determined. It depends on
momentum distribution functions of the matter particles a
well as those for the neutrinos. As an application of the f
mulas obtained, the dispersion relation for the longitudi
modes is considered, with attention to the possible effec
the neutrino contribution to the instability of the system.
that context, our results do not indicate the existence of
stable modes, and therefore we do not find support for
idea that stream instabilities due to the presence of the n
trino background can develop in such systems.

In Sec. III we also consider the dispersion relations for
transverse modes. The chiral nature of the neutrino inte
tions gives rise to the phenomenon of optical activity, whi
had been studied earlier@12,13#. Here we show how the re
sults of Refs.@12,13# are modified when the neutrino gas
moving relative to the matter background. The main effec
that the dispersion relations for the two circularly polariz
modes are not isotropic. As a consequence, the freque
splitting between them, which is the measure of the rotat
of the plane of polarization, depends on the direction
propagation of the mode relative to the velocity of the ne
trino gas. In particular, under the appropriate conditions,
frequency difference is the opposite to what is found if t
neutrino gas is not moving relative to the matter backgrou

Section IV contains our outlook, where other possible
fects and applications are also mentioned.

II. PHOTON SELF-ENERGY IN A FERMION
BACKGROUND

We will consider a medium that consists of a gas
nucleons, electrons, neutrinos, and their antiparticles. E
fermion gas gives a contribution to the elements of the
32 photon self-energy matrix, which are determined by c
culating the diagram shown in Fig. 1. In particular, the co
tribution to thep11mn element from each fermionf in the
loop is

ip11mn
( f ) 5~21!~2 i !2 TrE d4p

~2p!4
j f m
(em)~q!iSF11

( f ) ~p1q! j f n
(em)

3~2q!iSF11
( f ) ~p!, ~2.1!

wherej f m
(em)(q) is the electromagnetic current of the fermio

It is defined in such a way that the on-shell matrix elemen
the electromagnetic current operatorJm

(em) is given by

^ f ~p8!uJm
(em)~0!u f ~p!&5ū~p8! j f m

(em)~q!u~p!, ~2.2!

whereq5p2p8 andu(p) is a Dirac spinor. For the electro
it is simply egm , for the nucleons it must in principle includ
the magnetic moment term, and for the neutrino we must
the effective electromagnetic neutrino vertex in the mediu
The fermion propagator that appears in Eq.~2.1! is given by

-
n

8-2
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SF11
( f ) ~p!5~p”1mf !F 1

p22mf
21 i e

12p id~p22mf
2!h f~p•u( f )!G , ~2.3!

where

h f~p•u( f )!5
u~p•u( f )!

eb f p•u( f )2a f11
1

u~2p•u( f )!

e2b f p•u( f )1a f11
, ~2.4!

with b f being the inverse temperature anda f the fermion
chemical potential. The vectoru( f )m is the velocity four-
vector of the fermion gas as a whole, so thatu( f )m5(1,0W ) if
the fermion background is at rest. In Eq.~2.4! we are allow-
ing for the possibility that the different fermion gases of t
background may be at different temperatures and, most
portantly for our purposes later, that each gas has a velo
four-vector that is not necessarily the same for all of the
The implicit assumption here is that, in the rest frame of e
fermion background, the corresponding particles have an
tropic thermal distribution characterized by a temperat
and chemical potential 1/b f anda f .

The dispersion relations of the propagating photon mo
are obtained by solving the equation

~q2gmn2qmqn2pmn
(e f f)!An50, ~2.5!

where

Repmn
(e f f)5(

f
Repmn

( f ) , ~2.6!

and we have denoted bypmn
( f ) the background-dependent ter

of Eq. ~2.1!. In the rest of this paper we will focus only o
the real part of the dispersion relations, but similar consid
ations could be used to calculate the imaginary part as w

In order to calculate Repmn
(e f f) , and thus determine th

dispersion relations, we must know the composition of
medium and the formulas for the electromagnetic curr
that must be substituted in Eq.~2.1!. To proceed, we con
sider the various cases separately.

A. Matter background

We consider first an isotropic medium composed
nucleon and electron gases, with a common velocity fo
vectorum. The most general form of the physical self-ener
function in this case, which we denote bypmn

(m) , is @2,12#

pmn
(m)5pT

(m)Rmn~q,u!1pL
(m)Qmn~q,u!1pP

(m)Pmn~q,u!,
~2.7!

where

Rmn~q,u!5gmn2
qmqn

q2
2Qmn~q,u!,
11300
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Qmn~q,u!5
ũmũn

ũ2
,

Pmn~q,u!5
i

Q emnabqaub, ~2.8!

with

ũm[S gmn2
qmqn

q2 D un. ~2.9!

Although we have not indicated it explicitly, in genera
pT,L,P

(m) are functions of the scalar variables

V5q•u,

Q5AV22q2, ~2.10!

which have the interpretation of being the photon energy
momentum in the rest frame of the medium.

A detailed calculation of the photon self-energy in such
medium was carried out in Ref.@21#. For our present pur-
poses, it is useful to summarize those results as follows.
nucleon magnetic moment term contribution is not import
for practical purposes. Therefore, we use herej f m

(em)5efgm ,
so that the neutron contribution is being neglected. Subst
ing in Eq. ~2.1! the formula forSF11

( f ) , the contribution from
each fermion in the loop can be expressed in the form

Repmn
( f )524e2F1

2 S Af~V,Q!2
Bf~V,Q!

ũ2 D Rmn~q,u!

1
Bf~V,Q!

ũ2
Qmn~q,u!G , ~2.11!

with the coefficientsAf andBf defined as

Af~V,Q!5E d3p

~2p!32Ef

@ f f~p•u!1 f f̄~p•u!#

3F2mf
222p•q

q212p•q
1~q→2q!G ,

Bf~V,Q!5E d3p

~2p!32Ef

@ f f~p•u!1 f f̄~p•u!#

3F2~p•u!212~p•u!~q•u!2p•q

q212p•q

1~q→2q!G . ~2.12!

In these formulas,
8-3
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JOSÉF. NIEVES PHYSICAL REVIEW D 61 113008
pm5~E,pW !, Ef5ApW 21mf
2, ~2.13!

and f f , f̄ denote the particle and antiparticle number dens
distributions,

f f , f̄~E!5
1

eb fE7a f11
, ~2.14!

with the minus~plus! sign holding for the particles~antipar-
ticles!, respectively. Comparing Eqs.~2.7! and~2.11! we can
identify the contribution of any fermion to the real part of th
transverse and longitudinal components of the self-ene
and therefore obtain

RepT
(m)522e2(

f
S Af~V,Q!1

q2

Q2
Bf~V,Q!D ,

RepL
(m)54e2(

f

q2

Q2
Bf~V,Q!, ~2.15!

where the relationũ252Q 2/q2 has been used.

B. Matter background and a stream of charged particles

We now consider a medium that contains, in addition
the background as has been considered above, another g
particles with a velocity four-vectorum8 . We will refer to
them as the matter background and the stream, respecti
and we assume that the latter consists of only one spec
fermions f 8 with an electromagnetic couplingj f 8m

(em)

5ef 8gm . The fermionf 8 could be, for example, the electro
or any other charged particle. We will denote byU80 andUW 8
the components ofu8m in the rest frame of the matter back
ground so that, in that frame,

um5~1,0W !, u8m5~U80,UW 8!. ~2.16!

The contribution fromf 8 to the photon self-energy i
given by a formula analogous to Eq.~2.11!,

pmn
( f 8)5pT

( f 8)Rmn~q,u8!1pL
( f 8)Qmn~q,u8!, ~2.17!

where

RepT
( f 8)522ef 8

2 S Af 8~V8,Q 8!1
q2

Q 82
Bf 8~V8,Q 8!D ,

RepL
( f 8)54ef 8

2 q2

Q 82
Bf 8~V8,Q 8!. ~2.18!

In Eq. ~2.18! the functionsAf 8 andBf 8 are given by formulas
analogous to Eq.~2.12!, but with the replacementum→u8m,
and we have usedũ8252Q 82/q2 where, similarly to Eq.
~2.9!,
11300
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ũm8 5S gmn2
qmqn

q2 D u8n. ~2.19!

In analogy with Eq.~2.10!, the variablesV8,Q 8 are defined
by

V85q•u8,

Q85AV822q2, ~2.20!

and they are expressed in terms ofV andQ by the relations

V85U80V2UW 8•QW

Q 85A~U80V2UW 8•QW !22V21Q 2. ~2.21!

The total photon self-energy is given by

pmn
(e f f)5pT

(m)Rmn~q,u!1pL
(m)Qmn~q,u!1pT

( f 8)Rmn~q,u8!

1pL
( f 8)Qmn~q,u8!. ~2.22!

Equation~2.22! can be written in a convenient form b
the following procedure. From the definition ofRmn given in
Eq. ~2.8! we have

Rmn~q,u8!5Rmn~q,u!1Qmn~q,u!2Qmn~q,u8!.
~2.23!

We now define the vectors

e1
m[

Rmn~q,u!un8

AN1

, e2
m[2 iPmn~q,u!e1n , ~2.24!

with

N152um8 un8R
mn~q,u!5

~ ũ•u8!2

ũ2
2ũ82, ~2.25!

which can be expressed in the form

N15U82Q 22~UW 8•QW !2. ~2.26!

It is easy to verify thate1,2
m are mutually orthogonal and

satisfy

e1,2•q5e1,2•ũ50, e1,2
2 521. ~2.27!

Thus, together withũm, they form a complete set transvers
to qm, and therefore it is possible to expressũ8m in terms of
them. The desired relation, which follows from substituti
Eq. ~2.8! into Eq. ~2.24!, is

ũm8 5AN1e1m1S ũ•u8

ũ2 D ũm , ~2.28!

which substituting into the definitions given in Eq.~2.8!
yields the convenient formulas
8-4
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Qmn~q,u8!5
N1

ũ82
e1me1n1S N1

ũ82
11D Qmn~u,q!

1AN1

ũ•u8

ũ2ũ82
~e1mũn1ũme1n!,

Pmn~q,u8!5
Qũ•u8

Q 8ũ2
Pmn~q,u!

1
iQAN1

Q 8ũ2
~ ũme2n2ũne2m!. ~2.29!

On the other hand, as shown in Ref.@12#, Rmn can be de-
composed in the form

Rmn~q,u!52~e1
me1

n1e2
me2

n!. ~2.30!

In this way, using Eqs.~2.23! and ~2.29! in Eq. ~2.22! to-
gether with the decomposition given in Eq.~2.30!, we finally
arrive at

pmn
(e f f)52e1me1nFpT

(m)1pT
( f 8)2

N1

ũ82
~pL

( f 8)2pT
( f 8)!G

2e2me2n~pT
(m)1pT

( f 8)!

1
ũmũn

ũ2 FpL
(m)1pL

( f 8)1
N1

ũ82
~pL

( f 8)2pT
( f 8)!G

1AN1

~ ũ•u8!

ũ2ũ82
~pL

( f 8)2pT
( f 8)!~e1mũn1ũme1n!.

~2.31!

Equation~2.31!, in addition to unfolding the main struc
ture of the modes in a particularly simple way, is a use
formula that allows us to obtain the dispersion relation of
modes under a variety of conditions. In the absence of
stream, the solutions consist of one longitudinal mode w
polarization vectore3

m}ũm and two degenerate transver
modes with polarization vectorse1,2

m that satisfyQmne1,2
n 50.

Their dispersion relations are determined by solving
equationsq25RepL,T

(m) for the longitudinal and transvers
modes, respectively. The presence of the stream break
degeneracy of the transverse modes, and in general cau
mixing between them with the longitudinal mode. In tho
cases in which it is permissible to treat the mixing term@the
last term in Eq.~2.31!# as a perturbation~e.g., the number
density in the stream is sufficiently smaller than those in
matter background!, the dispersion relations are obtained a
proximately by solving
11300
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q25pT
(m)1pT

( f 8)1
N1q2

Q 82
~pL

( f 8)2pT
( f 8)!,

q25pT
(m)1pT

( f 8) ,

q25pL
(m)1pL

( f 8)2
N1q2

Q 82
~pL

( f 8)2pT
( f 8)!, ~2.32!

with corresponding polarization vectorse1,2 and e3}ũ, re-
spectively. In Eq.~2.32! we have used the relationũ25

2Q 2/q2 and the corresponding one forũ82. If the mixing
term is not sufficiently small so that the higher order ter
are important, then the full 232 problem in thee1-ũ plane
must be considered which, although tedious, is straight
ward.

In Eqs.~2.32!, it is understood that the variablesV8,Q 8
are to be expressed in terms ofV,Q by means of the rela-
tions given in Eq.~2.21!. They thus become implicit equa
tions for V,Q, whose solutions determine the dispersion
lationsV(Q) of the various modes.

C. Discussion

For illustrative purposes, we consider the specific case
a stream of electrons and a matter background that con
of an electron gas and a nonrelativistic proton gas. We b
row from Ref. @11# @see Eqs.~A5! and ~A9!# the following
results:

Bf~V,Q!52
1

2E d3P
~2p!3

QW •¹P@ f f~E!1 f f̄~E!#

V2vW P•QW
,

Af~V,Q!5Bf~V,Q!1
V

2 E d3P
~2p!3

3
vW P•¹P@ f f~E!1 f f̄~E!#

V2vW P•QW
, ~2.33!

whereE5APW 21mf
2, ¹P is the gradient operator with respe

to the momentumPW , andvW P5PW /E. As shown there, they are
valid for values ofq such that

q/^E&!1, ~2.34!

where^E& stands for a typical average value of the energy
the fermions in the gas. For distribution functions that d
pend onPW only throughE, we can replace¹P→vW P]/]E in
Eq. ~2.33!. Several useful formulas follow from Eq.~2.33! in
particular cases. For example, if the fermions are relativis

Af~V,Q!523v0 f
2 ,

Bf~V,Q!523v0 f
2 S 12

V

2Q lnUV1Q
V2QU D . ~2.35!

Equation~2.35! holds for a degenerate or nondegenerate g
For the nonrelativistic and nondegenerate case, we use
8-5
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Af~V,Q!523v0 f
2 1

Q 2v0 f
2

V2
,

Bf~V,Q!5
Q 2v0 f

2

V2
, ~2.36!

which are valid if, in addition to Eq.~2.34!,

V@ v̄ fQ, ~2.37!

wherev̄ f[1/Ab fmf is a typical value of the velocity of the
fermions in the gas. The quantityv0 f

2 , which is related to the
plasma frequency in the gas, is given by

v0 f
2 5E d3P

~2p!32E @ f f~E!1 f f̄~E!#F12
P 2

3E 2G . ~2.38!

In Eqs.~2.35! and ~2.36! we have used its form in the rela
tivistic ~ER! limit and nonrelativistic~NR! limits:

v0 f
2 55

1

6p2E0

`

dPP@ f f~P!1 f f̄~P!# ~ER!,

nf

4mf
~NR!,

~2.39!

where nf is the fermion number density in the frame
which the background is at rest. The corresponding formu
for the nonrelativistic and degenerate case are given in
@21#.

Under most circumstances, the protons make a neglig
contribution to the dispersion relations. The conditions un
which those terms can be important are given in Ref.@21#.
Here we do not include those special cases and therefor
will not consider the protons further. Last, we assume t
the stream is not moving too fast as a whole, so that the t
that is proportional toN1 in Eq. ~2.32! can be neglected
since according to Eq.~2.26! it is or the order of the velocity
squared of the stream.

With these assumptions, the dispersion relations beco

q2522e2F S Ae~V,Q!1
q2

Q 2
Be~V,Q!D

1S Ae8~V8,Q 8!1
q2

Q 82
Be8~V8,Q 8!D G ,

q254e2F q2

Q 2
Be~V,Q!1

q2

Q 82
Be8~V8,Q 8!G , ~2.40!

for the transverse and longitudinal modes, respectively.
now consider several cases separately.

1. Nonrelativistic matter and stream electrons

For the electrons in the matter background we use
~2.36!. Similarly, for the stream
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Ae8~V8,Q 8!523v0e8
2

1
Q 82v0e8

2

V82
,

Be8~V8,Q 8!5
Q 82v0e8

2

V82
, ~2.41!

which, as we will see, are suitable for finding the long wav
length limit of the dispersion relations. Equation~2.41! can
be used if the solution is such that

V8@ v̄e8Q 8. ~2.42!

The conditions under which the solution thus found is va
can be ascertained afterwards. The formula forv0e8

2 is the
same expression given in Eq.~2.38!, but with replacement
f f , f̄(E)→ f e8,ē8(E), where

f e8,ē8~E!5
1

ebe8E7ae811
. ~2.43!

As we have indicated previously, the implicit assumpti
that is being made here is that the electrons that compose
stream have, in the rest frame of the stream, an isotro
thermal distribution characterized by a temperature a
chemical 1/be8 andae8 .

Let us consider the dispersion relation for the longitudin
mode. From Eqs.~2.15! and ~2.18! this yields

154e2S v0e
2

V2
1

v0e8
2

V82 D . ~2.44!

From Eq.~2.20!,

V85V2QW •UW 8, ~2.45!

usingU80.1, and therefore the dispersion relation is

~V2QW •UW 8!2~V224e2v0e
2 !24e2v0e8

2 V250.
~2.46!

The salient feature of Eq.~2.46! is that, besides the usua
solution VL

2(Q→0).4e2v0e
2 , there is another one with

VL.UW 8•QW . The standard way to find this second solution
to substitute

V5UW 8•QW 1dL ~2.47!

in Eq. ~2.46! and determinedL approximately by taking it to
be a small quantity. In this fashion, we find

dL56
u2ev0e8U

W 8•QW u

A~UW 8•QW !224e2v0e
2

, ~2.48!

which shows the well-known instability of this system. F
values ofUW 8•QW such that

0,uUW 8•QW u,2ueuv0e , ~2.49!
8-6
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the dispersion relation has a solution with a positive ima
nary part, which signals that the system is unstable aga
oscillations with those values ofUW 8•QW . The condition that
dL be small relative toUW 8•QW is satisfied for sufficiently
small values ofv0e8 /v0e . On the other hand, notice that, fo
this solution,V85dL , andQ 85AV822V21Q 2.Q. The
conditions given in Equations~2.34! and ~2.42! are then
equivalent touUW 8•QW u@ v̄eQ and d@ v̄e8Q which, for suffi-
ciently small values of the thermal velocities, are satisfied
well.

Turning now the attention to the transverse dispersion
lation, we substitute the formulas forAe,e8 andBe,e8 given in
Eqs.~2.36! and ~2.41! into Eq. ~2.40!. This yields simply

q254e2v0e
2 14e2v0e8

2 , ~2.50!

which shows that in this case the presence of the str
perturbs somewhat the transverse dispersion relation
shifting the value of the plasma frequency, but it does
produce a significant effect otherwise.

Eqs. ~2.44! and ~2.50! reproduce the well-known result
found in textbooks@22#, which are derived by kinetic theor
or similar semiclassical methods. However, the results
we have obtained, and which are summarized in Eqs.~2.31!
and~2.32!, go further. Together with the expressions for t
self-energy functions in terms of the coefficientsAf andBf
@Eqs.~2.15! and~2.18!# they allow us to study systems und

FIG. 2. The functionsf L,T , defined in the text, are plotted a
functions ofV/Q, for some representative values of the velocity

the streamU8 and the angle betweenQW andUW 8. For V/Q51 the
function f L becomes infinite, whilef T53/2.
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a wider variety of conditions, including those for which th
semiclassical approaches, and the simple formula given
Eq. ~2.44! in particular, are not applicable.

2. Nonrelativistic matter electrons and relativistic
stream electrons

For the electrons in the stream we must use in this ca

Ae8~V8,Q 8!523v0e8
2 ,

Be8~V8,Q 8!523v0e8
2 S 12

V8

2Q 8
lnUV81Q 8

V82Q 8
U D , ~2.51!

while the matter electron formulas are the same as the
vious ones. The dispersion relations are then determined

V224e2v0e
2 54e2v0e8

2 f L , ~2.52!

V22Q 224e2v0e
2 54e2v0e8

2 f T , ~2.53!

for the longitudinal and transverse modes, respectiv
where we have defined

f L5
3V2

Q 82 F V8

2Q 8
lnUV81Q 8

V82Q 8
U21G ,

f T5
3

2 H 11
q2

Q 82 F12
V8

2Q 8
lnUV81Q 8

V82Q 8
UG J . ~2.54!

Let us consider the longitudinal dispersion relation. W
the help of Fig. 2 it is easy to see that, besides the us
solutionVL.4e2v0e , any other solution to Eq.~2.52! must
haveV'Q ~which implies thatV8'Q 8 and the functionf L
can be large! so that the stream term can compete with t
matter term in that equation. Substituting

V5Q1dL ~2.55!

in Eq. ~2.52! we find

dL562Qe22(Q 224e2v0e
2 )/12e2v

0e8
2

~2.56!

for Q 2.4e2v0e
2 . In contrast to the case considered in S

II C 1, there is no sign that a stream instability may deve
in the present one.

For the transverse dispersion relations the situation is
ferent. The functionf T is not larger than a number of order 1
as shown in Fig. 2, so that the stream contribution in E
~2.53! only introduces a perturbation in the usual solution

In summary, when the stream consists of a relativis
electron gas, there is no sign that any stream instabilities m
8-7
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develop. This result will be a useful reference point when
consider in Sec. III the case in which the stream consist
neutrinos.

III. PHOTON SELF-ENERGY IN A NEUTRINO STREAM

In this section we consider a system composed of a ma
background as in Sec. II B and a neutrino stream with
velocity four-vectoru8m. Our immediate task is to determin
the neutrino stream contribution to the photon self-ener
for which we must calculate a diagram similar to the one
Fig. 1, but with a neutrino as the fermion in the loop. Den
ing the effective electromagnetic vertex of the neutrino in
matter background byGm

(n)(q), then

ip11mn
(n) 5~21!~2 i !2TrE d4p

~2p!4
Gm

(n)~q!iSF11
(n) ~p1q!

3Gn
(n)~2q!iSF11

(n) ~p!, ~3.1!

where the neutrino propagatorSF11
(n) is given by Eq.~2.3!

~with mn50). The neutrino effective vertex can be e
pressed in the form

Gm
(n)~q!5Tmn~q!gnL, ~3.2!

whereL5 1
2 (12g5) as usual, andTmn can be decomposed a

Tmn5TTRmn~q,u!1TLQmn~q,u!1TPPmn~q,u!.
~3.3!

A detailed calculation of the various terms in Eq.~3.3! was
carried out in Ref.@11#. For our purposes here, we can su
marize the main results obtained there as follows.

For practical purposes, the contribution toTT,L due to the
anomalous magnetic moment couplings of the nucleon
the background is negligible, so that

TT52A2ueuGFapS Ap~V,Q!2
Bp~V,Q!

ũ2 D 1TT
(e) ,

TL54A2ueuGFap

Bp~V,Q!

ũ2
1TL

(e) , ~3.4!

while

TP5TP
(e)24A2GFbpQ~ ueu12mpkp!Cp~V,Q!

28mnknA2GFbnQCn~V,Q!. ~3.5!

In these formulas,

kp51.79S ueu
2mp

D ,

kp521.91S ueu
2mn

D ~3.6!
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are the anomalous magnetic moment of the nucleons, and
coefficientsaf andbf are the neutral current couplings of th
fermion f, while Ap andBp are defined in Eq.~2.12! and

Cf~V,Q!5E d3p

~2p!32E
S ũ•p

ũ2 D ~ f f2 f f̄ !

3F 1

q212p•q
1~q→2q!G . ~3.7!

The electron termsTX
(e) were calculated in Ref.@7#, and are

given by

TT
(e)52A2eGFS Ae~V,Q!2

Be~V,Q!

ũ2 D H ae11 ~ne!,

ae ~nm,t!,

TL
(e)54A2eGF

Be~V,Q!

ũ2 H ae11 ~ne!,

ae ~nm,t!,

TP
(e)524A2eGFQCe~V,Q!H be21 ~ne!,

be ~nm,t!.
~3.8!

Substituting Eq.~3.3! into Eq. ~3.1!, we then obtain, for
the neutrino stream contribution to the photon self-energ

Repmn
(n)522Tma~q!Tnb~2q!Jab, ~3.9!

where

Jab[E d3p

~2p!32E
H @ f n~p•u8!1 f n̄~p•u8!#

3F2papb2paqb2qapb1gabp•q

q222p•q
1~q→2q!G

1@ f n~p•u8!1 f n̄~p•u8!# i eablrqlpr

3F 1

q222p•q
1

1

q222p•q
G J . ~3.10!

The transversality and symmetry properties ofJab imply that
it is expressible in terms of the tensorsRab(q,u8),
Qab(q,u8), andPab(q,u8), with coefficients that can be de
termined by projecting Eq.~3.10! along these tensors. Thu
we find

Jab5
1

2 S An~V8,Q 8!2
Bn~V8,Q 8!

ũ82 D Rab~q,u8!

1
Bn~V8,Q 8!

ũ82
Qab~q,u8!

1Q 8Cn~V8,Q 8!Pab~q,u8!, ~3.11!

with the coefficients An(V8,Q 8), Bn(V8,Q 8), and
Cn(V8,Q 8) defined in Eqs.~2.12! and ~3.7!. In Eq. ~3.11!
the tensorsRmn(q,u8), Qmn(q,u8), and Pmn(q,u8) are
8-8
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eliminated using Eqs.~2.23! and ~2.29!, andRmn(q,u) is decomposed as in Eq.~2.30!. In this way,

Jab52H 1

2 S An2
Bn

ũ82D 2
N1

2ũ82 F3Bn

ũ82
2AnG J e1ae1b2

1

2 S An2
Bn

ũ82D e2ae2b1H Bn

ũ82
1

N1

2ũ82 F3Bn

ũ82
2AnG J Qab~q,u!

1CnQS ũ•u8

ũ82 D Pab~q,u!1
AN1ũ•u8

2ũ82ũ2 F3Bn

ũ82
2AnG ~e1aũb1ũae1b!1

iCnAN1Q
ũ2

~ ũae2b2e2aũb!. ~3.12!
ed
ng
ve
ul
s

th
a

e
i

u

r

d
el

the
mo-

ulas

tic.
Eq.

, in
re-
By substituting Eq.~3.12! into Eq.~3.9! we finally obtain the
formula for the neutrino contribution which, when it is add
to pmn

(m) to obtain the total photon self-energy, is the starti
point to determine the photon dispersion relations. Howe
with all its generality, the formula is not particularly usef
and therefore we consider below some specific situation
potential interest.

A. Longitudinal dispersion relation

As already seen in Sec. II B, in general the effects of
stream break the degeneracy of the transverse modes
also mix them with the longitudinal one. When the latt
effect is not too large, the longitudinal dispersion relation
obtained approximately by solving the equation

q25pL
(m)1p l

(n) , ~3.13!

where

p l
(n)[

ũmũn

ũ2
pmn

(n) . ~3.14!

Using the relationũmTma5TLũa , together with

ũmũn

ũ2
Rmn~q,u8!52

N1

ũ82
,

ũmũn

ũ2
Qmn~q,u8!5

N1

ũ82
11, ~3.15!

we obtain, from Eq.~3.9!,

Rep l
(n)52TL

2 q2

Q 82 H Bn2N1F3q2Bn

Q 82
1

1

2
AnG J ,

~3.16!

where, to simplify the notation, we have omitted the arg
mentsV8 andQ 8 in the coefficientsAn andBn . The disper-
sion relation obtained by substituting Eqs.~2.15! and ~3.16!
into Eq. ~3.13! is the same as the corresponding one fo
stream of charged particles, with an effective chargeen

5(1/A2)TL .

Long wavelength limit

We consider the case analogous to the one discusse
Sec. II C, namely, a matter background made of a nonr
11300
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tivistic electron gas and a nonrelativistic nucleon gas, and
neutrino stream. As in the case mentioned, the photon
mentum is assumed to be such that Eq.~2.34! holds. For the
electrons in the matter background we then use the form
for Ae(V,Q) and Be(V,Q) given in Eq.~2.36!, which are
valid for V@ v̄eQ as indicated in Eq.~2.37!, while the analo-
gous proton terms are negligible. From Eqs.~3.4! and ~3.8!,
this yields

TL52
q2

V2
T0 , ~3.17!

where

T0[4A2GFev0e
2 H ae11 ~ne!,

ae ~nm,t! .
~3.18!

The neutrinos are, for all practical purposes, ultrarelativis
For them, we use the formulas analogous to those in
~2.35!, namely

An~V8,Q 8!523v0n
2 ,

Bn~V8,Q 8!523v0n
2 S 12

V8

2Q 8
lnUV81Q 8

V82Q 8
U D ,

~3.19!

with

v0n
2 5

1

6p2E0

`

dPP@ f n~P!1 f n̄~P!#, ~3.20!

where

f n,n̄~P!5
1

ebnP2an11
~3.21!

are the neutrino and antineutrino momentum distributions
the rest frame of the stream. The longitudinal dispersion
lation obtained from Eq.~3.13! is

V254e2v0e
2 12T0

2 ~q2!2

V2Q 82 H Bn2N1S 3q2

Q 82
Bn1

1

2
AnD J .

~3.22!

In this equation,Q 8 andV8 are expressed in terms ofQ and
V by means ofQ 85AV822q2 with V85U80V2UW 8•QW , as
8-9
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indicated by Eq.~2.20!. The solutions of Eq.~3.22! deter-
mine the dispersion relationVL(Q) in the long wavelength
limit and are valid forV@ v̄eQ.

B. Neutrino driven stream instabilities

Besides the usual solutionVL
2.4e2v0e

2 , Eq. ~3.22! can
have an additional solution if the neutrino term is sufficien
large that it can compete with the electron term. To de
mine whether this can happen, consider the specific situa
in which the velocity of the neutrino stream is not too larg
so that the term in Eq.~3.22! proportional toN1 can be
neglected@see Eq.~2.26!#. Using the formula forBn given in
Eq. ~3.19!, the longitudinal dispersion relation then becom

V224e2v0e
2 5T0

2v0n
2 S 12

Q 2

V2 D 2

f L , ~3.23!

where f L is the same function defined in Eq.~2.54!. For
values ofV'Q the functionf L becomes large, but with th
factor (12Q 2/V2) its contribution in Eq.~3.23! is negli-
gible in that region. On the other hand, forV→0,

Be~V→0,Q!52bemev0e
2 , ~3.24!

so that

TL52T0beme ~3.25!

in this limit, instead of Eq.~3.17!. Therefore, the neutrino
contribution is not large in the limitV→0 either.

We therefore conclude that the neutrino contribution p
duces a small correction to the usual dispersion relation
does not introduce any additional branch. In particular, th
are no stream-induced instabilities in this system. This c
clusion is in sharp contradiction with the result obtained
Ref. @16#, where it was found that, in the same system,
dispersion relation indicates the appearance of neutr
driven stream instabilities.

To understand the origin of this discrepancy it is usefu
consider

f n,n̄5~2p!3nn,n̄d (3)~PW 2EÛ8! ~3.26!

for the momentum distribution function of the neutrino
which is of the form used in Ref.@16#. Using it in Eq.~2.33!
to calculateBn results in

Bn5S nn1nn̄

2E DQ 22~QW •Û8!2

~V2QW •Û8!2
, ~3.27!

which, when substituted in Eq.~3.22!, yields the longitudinal
dispersion relation

V2~V224e2v0e
2 !5

T0
2~nn1nn̄ !

E S V22Q 2

Q 8
D 2

3
Q 2 sin2 u

~V2Q cosu!2
, ~3.28!
11300
r-
on
,

s

-
ut
e
-

e
o-

,

where cosu5QW •Û8 and we have neglected the term propo
tional to N1, as before. Equation~3.28! has a solution of the
form

VL5Q cosu1dL
(n) , ~3.29!

with

dL
(n)25

T0
2~nn1nn̄ !

E
Q 2 sin4 u

cos2u~Q 2 cos2u24e2v0e
2 !

,

~3.30!

which exhibits an instability forQ 2 cos2u,4e2v0e
2 .

Thus, while we are able to reproduce qualitatively t
result of Ref.@16# in this way, we must note that it is base
on an inconsistent application of the long wavelength form
las given in Eq.~2.33!. As explained in detail in Ref.@21#,
those formulas are obtained by expanding the integrand
powers ofq/E in the one-loop formulas given in Eq.~2.12!,
and retaining only those terms that are dominant in the li
q/E→0. This requires, among other conditions, that the m
mentum distribution function be such that its derivatives
not introduce any singularities in the integrands. The res
derived in this way are equivalent to those obtained by se
clasical methods based on kinetic theory or similar a
proaches. However, the form given in Eq.~3.26! does not
satisfy the required conditions and therefore neither the l
wavelength approximation of the one-loop formulas nor
semiclassical formulas are applicable in that case.

Leaving aside the question of whether or not a distrib
tion function such as that given in Eq.~3.26! is realistic in
any particular physical context, in order to use it the coe
cientsAn ,Bn must be calculated with the complete one-lo
formulas given in Eq.~2.12!. Following this procedure we
obtain

Bn52E~nn1nn̄ !F Q 22~QW •UW 8!2

4E 2~V2QW •UW 8!22~V22Q 2!2G
~3.31!

instead of Eq.~3.27!, so that the longitudinal dispersion re
lation becomes

V2~V224e2v0e
2 !54T0

2E~nn1nn̄ !S V22Q 2

Q 8
D 2

3
Q 2 sin2 u

4E 2~V2Q cosu!22~V22Q 2!2
.

~3.32!

If we neglect here theq2 term in the denominator, we re
cover Eq.~3.28!. However, when that term is taken into a
count, the neutrino contribution becomes proportional 1/d (n)

for V'QW •UW 81d (n), and therefore the unstable solution
the form given in Eq.~3.29! and ~3.30! does not exist.
8-10
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C. Transverse dispersion relation

The dispersion relations for the transverse modes
given approximately by solving the equation

@~q22pT
(m)!Rmn~q,u!2p tmn

(n) #An50, ~3.33!

where

p tmn
(n) [Rm

a~q,u!Rn
b~q,u!pab

(n)

522@TT~q!Rml~q,u!1TP~q!Pml~q,u!#

3@TT~q!Rnr~q,u!2TP~q!Pnr~q,u!#Jlr

~3.34!

is the transverse projection of the neutrino contribution to
self-energy, and in the second line we have used Eq.~3.9!.
For Jab we will use the formula given in Eq.~3.11! and
consider the case in which the terms with the factorN1 can
be neglected, as we did in Sec. III B. Therefore, rememb
ing Eq. ~2.30!, we will substitute, in Eq.~3.34!,

Jab5
1

2 S An2
Bn

ũ82D Rab~q,u!1CnQS ũ•u8

ũ2 D Pab~q,u!.

~3.35!

It is now useful to introduce the linear combinations@23#

Rab
(6)[

1

2
@Rab~q,u!6Pab~q,u!#, ~3.36!

which satisfy

R(s)abRbg
(s8)5dss8dg

a ~3.37!

and have the representation

Rab
(6)52ea

(6)eb
(6)† , ~3.38!

where

ea
(6)5

1

A2
~e1a6 ie2a!. ~3.39!

Writing Rab and Pab in terms ofRab
(6) and substituting the

resulting formulas in Eq.~3.34!, with the help of Eq.~3.37!
we obtain

p tmn
(n) 5p (1)Rmn

(1)1p (2)Rmn
(2) , ~3.40!

where

p (6)522~TT6TP!2F1

2 S An2
Bn

ũ82D 6CnQS ũ•u8

ũ2 D G .

~3.41!

From Eq.~3.33!, the dispersion relations for the transver
modes are then
11300
re

e

r-

q25pT
(m)1p (6), ~3.42!

with the corresponding polarization vectorsea
(6) .

D. Optical activity of the neutrino gas

Equation~3.41! exhibits the phenomenon of optical activ
ity of the neutrino gas, in which the two circularly polarize
photon modes travel with different dispersion relations a
result of the chiral interactions of the neutrino@12#. Notice
that for this occur,TP and/orCn must be nonzero. This re
quires that the chemical potentials in the matter backgro
be such that, for some particle species,a fÞ0 or that an

Þ0. In the latter case, however, there is an additional c
tribution to the photon self-energy that arises from the se
diagrams that were calculated in detail in Ref.@13#. Those
diagrams are not included in Fig. 1 and their result is
additional contribution to the photon self-energy that must
taken into account in Eq.~3.42!. The result of the calculation
of Ref. @13# is taken into account by including in the righ
hand side of Eq.~3.9! the term

PP
(n)Pmn~q,u8!, ~3.43!

where, in the notation of the present paper,

PP
(n)5

A2GFa

3p

q2

me
2 ~nn2nn̄ !Q 8, ~3.44!

with

nn,n̄5E d3P
~2p!3

f n,n̄~P!. ~3.45!

The result quoted in Eq.~3.44! is valid for values ofq
,me . When this term is included in Eq.~3.34!, the net ef-
fect is that the right-hand side of Eq.~3.42! has the additional
term

pP56PP
(n)S Q

Q 8
D ũ•u8

ũ2
. ~3.46!

If the background contains an equal number of neutrinos
antineutrinos, thenPP

(n) as well asCn is zero. In such a case
the optical activity of the neutrino gas is due to a nonze
value of TP in Eq. ~3.41!, which in turn depends on the
difference between the particle and antiparticle number d
sities in the matter background.

1. Long wavelength limit

p (6) can be evaluated explicitly by considering speci
situations. As an example we consider once more a ma
background that consists of nonrelativistic electron pro
gases, with the photon momentum satisfying Eq.~2.34! and
V@ v̄ fQ. The proton contribution toTT is negligible, and
using Eq.~2.33! for Ae andBe ,

TT52T0 , ~3.47!
8-11
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with T0 given in Eq.~3.18!. On the other hand,TP is given
by Eq. ~3.5! where, in the momentum regime that we a
considering,

Cf~V,Q→0!52
1

2E d3P
~2p!32E S f f2 f f̄

E D F12
2P 2

3E 2 G ,

~3.48!

as shown in Ref.@11#. For the electron and proton gases w
use the nonrelativistic limit of this,Cf52v0 f

2 /2mf , which
implies that the proton term is negligible and therefore

TP5S Q
2me

DT08 , ~3.49!

where

T0854A2GFev0e
2 H be21 ~ne!,

be ~nm,t!.
~3.50!

For the neutrino gas, the relativistic limit of Eq.~3.48! yields

Cn52
1

24p2E0

`

dP@ f n~P!2 f n̄~P!#, ~3.51!

while An andBn are given in Eq.~3.19!.
With the help of these formulas and remembering t

RepT
(m)54e2v0e

2 in the case we are considering, the disp
sion relation becomes

q254e2v0e
2 12T0

2v0n
2 F17

QT08

2meT0
G2

3F17
CnQ
v0n

2 S ũ•u8

ũ2 D G 2

6
PP

(n)Q
Q 8

S ũ•u8

ũ2 D , ~3.52!

where we have included thePP
(n) term as indicated in Eq

~3.46!.
Let us consider first the situation in whichf n' f n̄ , so that

PP
(n) andCn can be neglected in Eq.~3.52!. The solutions for

the two modes are then given by

V65AQ 214e2v0e
2 7

T0T08v0n
2

me

Q
AQ 214e2v0e

2
,

~3.53!

which is of the same form as that given in Eq.~4.22! of Ref.
@13#, if we make the correspondence

1

2
aRn→

T0T08v0n
2

me
~3.54!

there. For the situations of potential interest analyzed in R
@13#, the effects of the dispersion relations given in E
~3.53! are smaller than those found in that reference b
factor of aboutGFv0e

2 'GFne /me , and hence are unimpor
tant for all practical purposes.
11300
t
-

f.
.
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Therefore, retaining only the term proportional toPP
(n) in

Eq. ~3.52!, the dispersion relation becomes

q254e2v0e
2 6jPP

(n) , ~3.55!

where

j5
Q
Q 8

S ũ•u8

ũ2 D . ~3.56!

Of course, when the neutrino gas is not moving relative
the matter background (UW 850), j51 and Eq.~3.55! re-
duces to the form given in Ref.@13#.

The salient feature here is that, in general, the dispers
relation is not isotropic, so that the splitting between the t
circularly polarized modes is different depending on the
rection of propagation of the photon relative to the veloc
of the neutrino gas. To assess the consequences that
effect can have on the analysis given in Ref.@13# we con-
sider two extreme cases.

~a! QW perpendicular to UW 8.
Using QW •UW 850, it is very simple to verify that

ũ•u852
U80Q 2

q2
,

while Q 85AUW 821Q 2. Using ũ252Q 2/q2, it then follows
that

j5
QA11UW 82

AV2UW 821Q 2
. ~3.57!

For small velocities of the neutrino gas this reduces to 1
it should be, while for large velocities it implies that th
effect of thePP

(n) term is reduced by the factorQ/V for V
.Q.

~b! QW parallel to UW 8.
We set

QW 5lQÛ8 ~3.58!

to include the possibility that the photon propagates antip
allel to the velocity of the neutrino gas. A little algebr
shows that, in this case,

ũ•u85
2U80Q 21lVQuUW 8u

q2
,

while Q 85uVuUW 8u2lQU80u. Therefore

j5
Q2lb8V

uVb82lQu
, ~3.59!

where we have defined the speed of the neutrino gas
8-12
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bW 85
UW 8

U80
. ~3.60!

Equation~3.59! reveals in a simple way the anisotrop
nature of the dispersion relation. For example, if the veloc
of the neutrino stream is such that

Q
V

,b8, ~3.61!

then j521 or 11 depending on whether the photon
propagating parallel or antiparallel tobW 8, respectively. In
particular, this implies that the frequency difference betwe
the dispersion relations of the two~circularly polarized!
transverse modes is the opposite to what it is if the neut
gas is not moving relative to the matter background. T
effect is easy to understand by noticing that, if the condit
in Eq. ~3.61! holds, then a photon moving parallel tobW 8
appears to be moving in the opposite direction in the r
frame of the neutrino gas.
va

-

,
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IV. OUTLOOK

Although our work has been largely motivated by t
study of the electromagnetic properties of a neutrino gas
moves, as a whole, relative to a plasma, the approac
applicable to a wider class of problem in similar physic
systems, involving relativistic plasmas or high temperat
gauge theories. The field theory methods employed here
low us to consider situations for which the semiclassical
proaches, such as those based on kinetic theory, are not
able, and those for which the full power of the techniqu
and methods that have been developed for high tempera
field theory calculations must be employed. Some poss
extensions of the present work along those lines would
volve the calculation of the imaginary part of the self-ener
to determine the damping rates, and the application of
resummation methods@24# to study the dispersion relation
in those circumstances in which the perturbative approxim
tions are not reliable.
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