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CP violating phased13 and the quark mixing anglesu13, u23, and u12 from flavor permutational
symmetry breaking

A. Mondragón and E. Rodrı´guez-Ja´uregui
Instituto de Fı´sica, UNAM, Apdo. Postal 20-364, 01000 Me´xico, D.F. México

~Received 9 July 1999; revised manuscript received 4 November 1999; published 28 April 2000!

The phase equivalence of the theoretical mixing matrixVth derived from breaking of flavor permutational
symmetry and the standard parametrizationVPDG advocated by the Particle Data Group is explicitly exhibited.
From here, we derive exact explicit expressions for the three mixing anglesu12, u13, u23, and theCP violating
phased13 in terms of the quark mass ratios (mu /mt ,mc /mt ,md /mb ,ms /mb) and the parametersZ* 1/2 andF*
characterizing the preferred symmetry breaking pattern. The computed values for theCP violating phase and
the mixing angles ared13* 575°, sinu12* 50.221, sinu13* 50.0034, and sinu23* 50.040, which coincide almost
exactly with the central values of the experimentally determined quantities.

PACS number~s!: 12.15.Ff, 11.30.Er, 11.30.Hv, 12.15.Hh
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I. INTRODUCTION

In this paper we are concerned with the functional re
tions between flavor mixing anglesu12,u13,u23, theCP vio-
lating phased13 and the quark masses resulting from brea
ing flavor permutational symmetry.

In a previous paper@1# different Hermitian mass matrice
Mq of the same modified Fritzsch type were derived fro
breaking flavor permutational symmetry according to
symmetry breaking scheme SL(3)^ SR(3).SL(2)
^ SR(2).Sdiag(2). In a symmetry adapted basis, differe
patterns for the breaking of the permutational symmetry g
rise to different mass matrices which differ in the ratioZ1/2

5M23/M22, and are labeled in terms of the irreducible re
resentations of an auxiliaryS̃(2) group. Then, diagonalizing
the mass matrices, we obtain exact, explicit expressions
the elements of the mixing matrixVth, the Jarlskog invarian
J, and the three inner anglesa, b, and g of the unitarity
triangle in terms of the quark mass ratios, the symme
breaking parameterZ1/2 and oneCP violating phaseF. The
numerical values ofZ1/2 andF which characterize the pre
ferred symmetry breaking pattern were extracted from ax2

fit of the theoretical expressionsuVthu to the experimentally
determined values of the moduli of the elements of the m
ing matrix uVexpu. In this way, we obtained an explicit param
etrization of the quark mixing matrix in terms of four qua
mass ratiosmu /mt ,mc /mt ,md /mb ,ms /mb , and the param-
etersZ1/2 andF in excellent agreement with the experime
tal information about quark mixings andCP violation in the
K0-K̄0 system and the most recent data on oscillations in
B0-B̄0 system. These same experimental data are usually
resented by means of the standard parametrization of
mixing matrix @2# VPDG, recommended by the Particle Da
Group @3#, which is written in terms of three mixing angle
u12,u13,u23 and oneCP violating phased13. The standard
parametrizationVPDG, was introduced without taking th
functional relations between the quark masses and the fl
mixing parameters into account. In contrast, these functio
relations are exactly and explicitly exhibited in the theore
cal expressions forVth derived in our previous work@1#.
When the best set of parameters of each parametrizatio
0556-2821/2000/61~11!/113002~14!/$15.00 61 1130
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used, the moduli of corresponding entries of the two para
etrizations are numerically equal and give an equally go
representation of the experimentally determined values of
moduli of the mixing matrixuVi j

expu. Hence, we are justified in
writing

uVi j
thu5uVi j

PDGu, ~1.1!

even thoughVth has only two free, real linearly independe
parameters while the number of adjustable parameter
VPDG is four.

The invariant measurables of the quark mixing matrix a
the moduli of its elements, i.e., the quantitiesuVi j u, and the
Jarlskog invariantJ. But evenJ, up to a sign, is a function o
the moduli@4#. Hence, two different parametrizations, su
asVi j

th andVi j
PDG, are equivalent if the moduli of correspond

ing entries are equal even if the arguments of correspond
entries are different. This difference is of no physical con
quence, it reflects the freedom in choosing the unobserv
phases of the quark fields.

In this paper, it is shown that a suitable rephasing of
quark fields changesVth into a new, phase transformedṼth

such that all the matrix elementsṼi j
th are numerically equal to

the correspondingVi j
PDG, both in modulus and phase. Onc

this equality is established, we solve the equations of tra
formation for sinu12, sinu23 and sinu13 in terms of the
moduli uṼi j

thu. We also derive exact explicit expression
for the phases of the matrix elementsVi j

PDG in terms
of the phases of the matrix elements ofVi j

th . In this way,
we derive exact explicit analytical expressions for t
mixing parameters sinu12, sinu23, sinu13 and the CP
violating phased13 of the standard parametrization of th
mixing matrix @2# in terms of the quark mass ratio
mu /mt ,mc /mt ,md /mb ,ms /mb , the flavor symmetry break
ing parameterZ* 1/2, and theCP violating phaseF* .

The plan of this paper is as follows. In Sec. II, we intr
duce some basic concepts and fix the notation by way o
very brief sketch of the group theoretical derivation of ma
matrices with a modified Fritzsch texture. Section III is d
voted to the derivation of exact, explicit expressions for t
elements of the mixing matrixVi j

th in terms of the quark mas
©2000 The American Physical Society02-1
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A. MONDRAGÓN AND E. RODRÍGUEZ-JÁUREGUI PHYSICAL REVIEW D61 113002
ratios and the parametersZ1/2 andF characterizing the sym
metry breaking pattern. In Sec. IV, the phase equivalenc
Vth and VPDG is explicitly exhibited, and a set of equation
expressing the nonvanishing argumentswi j

PDG of Vi j
PDG in

terms of the argumentswi j
th of Vi j

th is derived. Explicit expres-
sions for the mixing parameters sinu12, sinu23, sinu13, and
the CP violating phased13 as functions of the quark mas
ratios and the parametersZ* 1/2 and F* characterizing the
preferred symmetry breaking scheme are obtained in Sec
and VI. Our paper ends in Sec. VII with a summary of resu
and some conclusions.

II. MASS MATRICES FROM THE BREAKING
OF SL„3…‹SR„3…

In the standard model, analogous fermions in differ
generations, sayu, c, and t or d, s, andb, have completely
identical couplings to all gauge bosons of the strong, we
and electromagnetic interactions. Prior to the introduction
the Higgs boson and mass terms, the Lagrangian is chiral
invariant with respect to any permutation of the left and rig
quark fields. The introduction of a Higgs boson and t
Yukawa couplings give mass to the quarks and leptons w
the gauge symmetry is spontaneously broken. The qu
mass term in the Lagrangian, obtained by taking the vacu
expectation value of the Higgs field in the quark Higgs co
pling, gives rise to quark mass matricesMd andMu ,

LY5q̄d,LMdqd,R1q̄u,LMuqu,R1H.c. ~2.1!

In this expression,qd,L,R(x) andqu,L,R(x) denote the left
and right quarkd andu fields in the current or weak basis
qq(x) is a column matrix, its componentsqq,k(x) are the
quark Dirac fields,k is the flavor index. In this basis, th
charged hadronic currents,

Jm;q̄u,Lgmqd,L , ~2.2!

are not changed if both, thed-type andu-type fields are
transformed with the same unitary matrix.

A. Modified Fritzsch texture

A number of authors@1,5–23# have pointed out that real
istic quark mass matrices result from the flavor permu
tional symmetrySL(3)^ SR(3) and its spontaneous or ex
plicit breaking. The group S(3) treats three object
symmetrically, while the hierarchical nature of the mass m
trices is a consequence of the representation structure1% 2 of
S(3), which treats the generations differently. Under ex
SL(3)^ SR(3) symmetry, the mass spectrum for either up
down quark sectors consists of one massive particle i
singlet irreducible representation and a pair of massless
ticles in a doublet irreducible representation, the correspo
ing quark mass matrix with the exactSL(3)^ SR(3) symme-
try will be denoted byM3q . In order to generate masses f
the first and second families, we add the termsM2q andM1q
to M3q . The termM2q breaks the permutational symmet
11300
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SL(3)^ SR(3) down toSL(2)^ SR(2) and mixes the single
and doublet representation ofS(3). M1q transforms as the
mixed symmetry term in the doublet complex tensorial re
resentation ofSdiag(3),SL(3)^ SR(3). Putting the first fam-
ily in a complex representation will allow us to have aCP
violating phase in the mixing matrix. Then, in a symmet
adapted basis,Mq takes the form

Mq5m3qF S 0 Aqe2 ifq 0

Aqeifq 0 0

0 0 0
D

1S 0 0 0

0 2nq1dq Bq

0 Bq nq2dq

D G
1m3qS 0 0 0

0 0 0

0 0 12nq

D
5m3qS 0 Aqe2 ifq 0

Aqeifq 2nq1dq Bq

0 Bq 12dq

D . ~2.3!

From the strong hierarchy in the masses of the qu
families,m3q@m2q.m1q , we expect 12dq to be very close
to unity. The entries in the mass matrix may b
readily expressed in terms of the mass eigenval
(m1q ,2m2q ,m3q) and the small parameterdq . Computing
the invariants ofMq , trMq , trMq

2 , and detMq , we get

Aq
25m̃1qm̃2q~12dq!21, nq5m̃2q2m̃1q , ~2.4!

Bq
25dq@~12m̃1q1m̃2q2dq!2m̃1qm̃2q~12dq!21#,

~2.5!

wherem̃1q5m1q /m3q andm̃2q5m2q /m3q .
If each possible symmetry breaking pattern is now ch

acterized by the ratio

Zq
1/25Bq /~2nq1dq!, ~2.6!

the small parameterdq is obtained as the solution of th
cubic equation

dq@~11m̃2q2m̃1q2dq!~12dq!2m̃1qm̃2q#

2Zq~2m̃2q1m̃1q1dq!250, ~2.7!

which vanishes whenZq vanishes. An exact explicit expres
sion for dq as function of the quark mass ratios andZq is
given in Ref.@1#. An approximate solution to Eq.~2.7! for
dq(Zq), valid for small values ofZq(Zq<10), is
2-2
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dq~Zq!'
Zq~m̃2q2m̃1q!2

~12m̃1q!~11m̃2q!12Zq~m̃2q2m̃1q!F11
1

2
~m̃2q2m̃1q!G . ~2.8!
g
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B. Symmetry breaking pattern

In the symmetry adapted basis, the matrixM2q , written in
terms ofZq

1/2, takes the form

M2q5m3q~2m̃2q1m̃1q1dq!S 0 0 0

0 1 Zq
1/2

0 Zq
1/2 21

D ,

~2.9!

whenZq
1/2 vanishes,M2q is diagonal and there is no mixin

of singlet and doublet representations ofS(3). Therefore, in
the symmetry adapted basis, the parameterZq

1/2 is a measure
of the amount of mixing of singlet and doublet irreducib
representations ofSdiag(3),SL(3)^ SR(3).

We may easily give a meaning toZq
1/2 in terms of permu-

tations. From Eqs.~2.1! and ~2.9!, we notice that the sym
metry breaking term in the Yukawa Lagrangianq̄LM2qqR is
a functional of only two fields: 1/A3@q2(X)1A2q3(X)# and
1/A3@2A2q2(X)1q3(X)#. Under the permutation of thes
fields,q̄LM2qqR splits into the sum of an antisymmetric ter
q̄LM2q

A qR which changes sign, and a symmetric te

q̄LM2q
S qR , which remains invariant,

M2q52
2

9
m3q5 aS 0 0 0

0 1 2A8

0 2A8 21
D

12bS 0 0 0

0 1
1

A8

0
1

A8
21

D 6 , ~2.10!
11300
where a5(dq2nq)(A2Zq
1/22 1

2 ) and b5(dq2nq)@(A2/
2)Zq

1/212#. It is evident that there is a corresponding deco
position of the mixing parameterZq

1/2,

Zq
1/25NAqZA

1/21NSqZS
1/2 ~2.11!

with

15NAq1NSq, ~2.12!

where ZA
1/252A8 is the mixing parameter of the matri

M2q
A , andZS

1/251/A8 is the mixing parameter ofM2q
S . In this

way, a unique linear combination ofZA
1/2 andZS

1/2 is associ-
ated to the symmetry breaking pattern characterized byZq

1/2.
Thus, the different symmetry breaking patterns defined
M2q for different values of the mixing parameterZq

1/2 are
labeled in terms of the irreducible representations of
group S̃(2) of permutations of the two fields inq̄LM2qqR .
The pair of numbers (NA ,NS) enters as a convenient math
ematical label of the symmetry breaking pattern without
troducing any assumption about the actual pattern ofSL(3)
^ SR(3) symmetry breaking realized in nature.

C. The Jarlskog invariant

The Jarlskog invariant,J, may be computed directly from
the commutator of the mass matrices@4#

J52
det$2 i @Mu ,Md#%

2F
, ~2.13!

where

F5~11m̃c!~12m̃u!~m̃c1m̃u!~11m̃s!~12m̃d!~m̃s1m̃d!.
~2.14!

Substitution of the expression~2.3! for Mu andMd , in Eq.
~2.13!, with Zu

1/25Zd
1/25Z1/2 gives
J5

ZAm̃u /m̃c

12du
Am̃d /m̃s

12dd
sinF

~11m̃c!~12m̃u!~11m̃u /m̃c!~11m̃s!~12m̃d!~11m̃d /m̃s!
H @~2nu1du!~12dd!2~2nd1dd!~12du!#2

2
~m̃um̃c!

12du
~2nd1dd!22S m̃dm̃s

12dd
D ~2nu1du!212Am̃um̃c

12du
Am̃dm̃s

12dd
~2nu1du!~2nd1dd!cosFJ , ~2.15!
2-3
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A. MONDRAGÓN AND E. RODRÍGUEZ-JÁUREGUI PHYSICAL REVIEW D61 113002
wherenq anddq are defined in Eqs.~2.4! and~2.7!. In this,
way, an exact closed expression forJ in terms of the quark
mass ratios, theCP violating phaseF, and the parameterZ
that characterizes the symmetry breaking pattern is deriv

III. THE MIXING MATRIX

The Hermitian mass matrixMq may be written in terms of
a real symmetric matrixM̄q and a diagonal matrix of phase
Pq as follows:

Mq5PqM̄qPq
†. ~3.1!

The real symmetric matrixM̄q may be brought to a diagona
form by means of an orthogonal transformation

M̄q5OqMq,diagOq
T , ~3.2!

where
o
l

11300
d.

Mq,diag5m3qdiag@m̃1q ,2m̃2q ,1#, ~3.3!

with subscripts 1,2,3 refering tou,c,t in the u-type sector
and d,s,b in the d-type sector. After diagonalization of th
mass matricesMq , one obtains the mixing matrixVth as

Vth5Ou
TPu2dOd , ~3.4!

wherePu2d is the diagonal matrix of relative phases

Pu2d5diag@1,eiF,eiF#, ~3.5!

and

F5~fu2fd!. ~3.6!

The orthogonal matrixOqis given by
Oq5S ~m̃2qf 1 /D1!1/2 2~m̃1qf 2 /D2!1/2 ~m̃1qm̃2qf 3 /D3!1/2

@~12dq!m̃1qf 1 /D1#1/2 @~12dq!m̃2qf 2 /D2#1/2 @~12dq! f 3 /D3#1/2

2~m̃1qf 2f 3 /D1!1/2 2~m̃2qf 1f 3 /D2!1/2 ~ f 1f 2 /D3!1/2
D , ~3.7!
up
ame

o

.

where

f1512m̃1q2dq , f2511m̃2q2dq , f35dq , ~3.8!

D15~12dq!~12m̃1q!~m̃2q1m̃1q!, ~3.9!

D25~12dq!~11m̃2q!~m̃2q1m̃1q!, ~3.10!

D35~12dq!~11m̃2q!~12m̃1q!. ~3.11!

In these expressions,du anddd are, in principle, functions
of the quark mass ratios and the parametersZu

1/2 and Zd
1/2,

respectively. However, in Ref.@1# we found that keepingZu
1/2

andZd
1/2 as free, independent parameters gives rise to a c

tinuous ambiguity in the fitting ofuVi j
thu to the experimenta
n-

data. To avoid this ambiguity we further assumed that the
and down mass matrices are generated following the s
symmetry breaking pattern, that is,

Zu
1/25Zd

1/25Z1/2. ~3.12!

Then, from Eqs.~3.4!–~3.12! all matrix elements inVth may
be written in terms of four quark mass ratios and only tw
free, real parameters: the parameterZ1/2 which characterizes
the symmetry breaking pattern in theu andd sectors and the
CP violating phaseF. The computation ofVi j

th is quite
straightforward. Here, we will give, in explicit form, only
those elements ofVth which will be of use later. From Eqs
~3.4!–~3.12! we obtain
Vus
th 52S m̃c~12m̃u2du!m̃d~11m̃s2dd!

~12du!~12m̃u!~m̃c1m̃u!~12dd!~11m̃s!~m̃s1m̃d!
D 1/2

1S m̃um̃s

~12m̃u!~m̃c1m̃u!~m̃d1m̃s!
D 1/2

3H S ~12m̃u2du!~11m̃s2dd!

~11m̃s!
D 1/2

1S ~11m̃c2du!du~12m̃d2dd!dd

~12du!~12dd!~11m̃s!
D 1/2J eiF, ~3.13!

Vub
th 5S m̃c~12m̃u2du!

~12du!~12m̃u!~m̃c1m̃u!

m̃dm̃sdd

~12dd!~11m̃s!~12m̃d!
D 1/2

1H 2S m̃u~11m̃c2du!du~12m̃d2dd!~11m̃s2dd!

~12du!~12m̃u!~m̃c1m̃u!~12dd!~11m̃s!~12m̃d!
D 1/2

1S m̃u~12m̃u2du!dd

~12m̃u!~m̃c1m̃u!~11m̃s!~12m̃d!
D 1/2J eiF, ~3.14!
2-4
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Vcs
th5S m̃u~11m̃c2du!m̃d~11m̃s2dd!

~12du!~11m̃c!~m̃c1m̃u!~12dd!~11m̃s!~m̃s1m̃d!
D 1/2

1H S m̃cdu~12m̃u2du!m̃sdd~12m̃d2dd!

~12du!~11m̃c!~m̃c1m̃u!~12dd!~11m̃s!~m̃s1m̃d!
D 1/2

1S m̃c~11m̃c2du!m̃s~11m̃s2dd!

~11m̃c!~12m̃u!~11m̃s!~12m̃d!
D 1/2J eiF, ~3.15!

and

Vcb
th 52S m̃u~11m̃c2du!

~12du!~11m̃c!~m̃c1m̃u!

m̃dm̃sdd

~12dd!~11m̃s!~12m̃d!
D 1/2

1H 2S m̃c~12m̃u2du!du~12m̃d2dd!~11m̃s2dd!

~12du!~11m̃c!~m̃c1m̃u!~12dd!~11m̃s!~12m̃d!
D 1/2

1S m̃c~11m̃c2du!

~m̃c1m̃u!~11m̃c!

dd

~11m̃s!~12m̃d!
D 1/2J eiF. ~3.16!
d
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The ‘‘best’’ symmetry breaking pattern. In order to find the
actual pattern ofSL(3)^ SR(3) symmetry breaking realize
in nature, we made ax2 fit of the exact expressions for th
moduli of the entries in the mixing matrixuVi j

thu, the Jarlskog
invariant Jth, and the three inner angles of the unitarity t
anglea th, b th, andg th, to the experimentally determined va
ues ofuVi j

expu, Jexp, aexp, bexp, andgexp. A detailed account of
the fitting procedure is given in Ref.@1#. Here, we will give
only a brief relation of the main points in the fitting proc
dure.

For the purpose of calculating quark mass ratios and c
puting the mixing matrix, it is convenient to give all qua
masses as running masses at some common energy
@24,25#. In the present calculation, following Peccei@24#,
Fritzsch@26#, and the Ba-Bar book@27#, we used the values
of the running quark masses evaluated atm5mt :

mu53.2560.9 MeV, mc5760629.5 MeV,

mt5171.0612 GeV, md54.460.64 MeV,

ms510066 MeV, mb52.9260.11 GeV. ~3.17!

These values, with the exception ofms , mc , andmb , were
taken from the work of Fusaoka and Koide@25# see also
Fritzsch@26# and Leutwyler@28#. The values ofmc(mt) and
mb(mt) were obtained by rescaling tom5mt the recent cal-
culations ofmc(mc) and mb(mb) by Pineda and Yndura´in
@29# and Yndura´in @30#. The value ofms agrees with the
latest determination made by the ALEPH collaboration fro
a study oft decays involving kaons@31#.

We kept the mass ratiosm̃c5mc /mt , m̃s5ms /mb and
m̃d5md /mb fixed at their central values
11300
-

ale

m̃c50.0044, m̃s50.034, andm̃d50.0015,
~3.18!

but we took the value

m̃u50.000032, ~3.19!

which is close to its upper bound. We found the followin
best values forF andZ1/2,

F* 590°, Z* 1/25
1

2
@ZS

1/22ZA
1/2#5A81

32
~3.20!

corresponding to a value ofx2<0.32. The values of the pa
rametersdu(Z) anddd(Z) obtained from Eqs.~3.18!, ~3.19!,
and ~3.20! are

du~Z* 1/2!50.000048, dd~Z* 1/2!50.00228. ~3.21!

Before proceeding to give the numerical results for the m
ing matrix Vth, it will be convenient to stress the following
points.

~1! The masses of the lighter quarks are the less w
determined, while the moduli of the entries inuVi j

expu with the
largest error bars, namelyuVubu and uVtdu, are the most sen
sitive to changes in the ratiosmu /mc and md /ms , respec-
tively. Hence, the quality of the fit ofuVi j

thu to uVi j
expu is good

(x2<0.5) even if relatively large changes in the masses
the lighter quarks are made. The sensitivity ofuVubu and
uVtdu to changes inmu /mc and md /ms respectively, is re-
flected in the shape of the unitarity triangle which chang
appreciably when the masses of the ligther quarks cha
within their uncertainty ranges. The best simultaneousx2 fit
of uVi j

thu, Jth anda th, b th, andg th, to the experimentally de-
2-5
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termined quantities was obtained when the ratiom̃u
5mu /mt is taken close to its upper bound, as given in E
~3.19!. Furthermore, the chosen high value ofm̃u gives for
the ratiouVub /Vcbu the value

uVubu
uVcbu

'Amu

mc
50.08560.009 ~3.22!

in very good agreement with its latest world average@32–
34#.

~2! As the energy scale changes, say fromm5mt to m
51 GeV, the running quark masses change appreciably,
since the masses of light and heavy quarks increase almo
the same proportion, the resulting dependence of the q
mass ratios on the energy scale is very weak. When the
ergy scale changes fromm5mt to m51 GeV, m̃u and m̃d

decrease by about 25% andm̃c andm̃s also decrease but b
less than 16%.

~3! In view of the previous considerations, a reasona
range of values for the running quark mass ratios, evalua
at m5mt5171 GeV, would be as follows

0.000022<m̃u<0.000037,

0.0043<m̃c<0.0046,
f
ed
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-
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0.0013<m̃d<0.0017,

0.032<m̃s<0.036. ~3.23!

The results of thex2 fit of the theoretical expressions fo
uVi j

thu, Jth, a th, b th, andg th to the experimentally determine
quantities is as follows. The quark mixing matrix comput
from the theoretical expresionVth with the numerical values
of quark mass ratios given in Eqs.~3.18! and ~3.19! and the
corresponding best values of the symmetry breaking par
eterZ* 1/25A81/32, and theCP-violating phase,F* 590°, is

Vth5S 0.9753ei1° 0.221ei158° 0.0034ei84°

0.220ei112° 0.9745ei89° 0.040ei90°

0.0085ei270° 0.039ei270° 0.9992ei90°
D .

~3.24!

In order to have an estimation of the sensitivity of our n
merical results to the uncertainty in the values of the qu
mass ratios, we computed the range of values of the ma
of moduli uVi j

thu, corresponding to the range of values of t
mass ratios given in Eq.~3.23!, but keepingF andZ1/2 fixed
at the valuesF* 590° andZ* 1/25A81/32. The result is
uVthu5S 0.973520.9771 0.215120.2263 0.002820.0040

0.215120.2263 0.972620.9764 0.03720.043

0.007820.0093 0.03620.042 0.999120.9993
D , ~3.25!

which is to be compared with the experimentally determined values of the matrix of moduli@3#,

uVexpu5S 0.974520.9760 0.21720.224 0.001820.0045

0.21720.224 0.973720.9753 0.03620.042

0.00420.013 0.03520.042 0.999120.9994
D . ~3.26!
he
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As is apparent from Eqs.~3.24!, ~3.25!, and ~3.26!, the
agreement between computed and experimental values o
entries in the mixing matrix is very good. The estimat
range of variation in the computed values of the moduli
the four entries in the upper left corner of the matrixuVthu is
larger than the error band in the corresponding entries of
matrix of the experimentally determined values of t
moduli uVexpu. The estimated range of variation in the com
puted values of the entries in the third column and the th
row of uVi j

thu is comparable with the error band of the corr
sponding entries in the matrix of experimentally determin
values of the moduli, with the exception of the eleme
uVub

th u anduVtd
thu in which case the estimated range of variati

due to the uncertainty in the values of the quark mass ra
is significantly smaller than the error band in the experim
tally determined value ofuVub

expu and uVtd
expu.
all

f

e

d

d
s

s
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The value obtained for the Jarlskog invariant is

Jth52.831025 ~3.27!

in good agreement with the valueuJexpu5(3.061.3)
31025sind obtained from current data onCP violation in
the K°-K̄° mixing system@3# and theB°-B̄° mixing system
@27#.

For the inner angles of the unitarity triangle, we found t
following central values:

a583°, b522°, g575°. ~3.28!

An estimation of the range of values of the three inner ang
of the unitarity triangle, compatible with the experiment
2-6
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information on the absolute values of the matrix eleme
Vexp, is given by Mele@32# and Ali @33#. According to this
authors, 79°<a<102°, 21°<b<28°, and 55°<g<78°.
We see that the central value ofb obtained in this work is
close to the lower limit according to Mele@32#, while g is
close to the upper limit given by Mele@32# anda is in the
allowed range given by these authors.
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sIV. PHASE EQUIVALENCE OF V th AND THE STANDARD
PARAMETRIZATION V PDG

The standard parametrization@2# of the mixing matrix
recommended by the Particle Data Group@3# is written in
terms of three mixing anglesu12,u23,u13 and oneCP violat-
ing phased13,
VPDG5S c12c13 s12c13 s13e
2 id13

2s12c232c12s23s13e
id13 c12c232s12s23s13e

id13 s23c13

s12s232c12c23s13e
id13 2c12s232s12c23s13e

id13 c23c13

D , ~4.1!
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s in
whereci j 5cosuij andsi j 5sinuij .
The range of values of the experimentally determin

moduli in uVi j
expu, as given by Casoet al. @3#, corresponds to

90% confidence limits on the range of values of the mix
angles of

0.217<s12<0.222, ~4.2!

0.036<s23<0.042, ~4.3!

0.0018<s13<0.0044. ~4.4!

Seven of the nine absolute values of the Cabib
Kobayashi-Maskawa~CKM! entries have been measured d
rectly, by tree level processes. A range of values for the f
parameterss12, s23, s13, and d13 which is consistent with
the seven direct measurements and the experimentally d
mined values of the moduli ofuVuexp @3#, is given by Nir
@35#:

0.2173<s12<0.2219, ~4.5!

0.0378<s23<0.0412, ~4.6!

0.00237<s13<0.00395, ~4.7!

c13 is known to deviate from unity only in the sixth decim
place@3,35#.

TheCP violating phased13, at present, is not constraine
by direct measurements. However, the measurements oCP
violation in K decays@36# force d13 to lie in the range

0<d13<p. ~4.8!

The standard parametrizationVPDG was introduced with-
out taking the possible functional relations between
quark masses and the flavor mixing parameters into acco
In contrast, these functional relations are explicitly exhibit
in the theoretical expressionsVi j

th , derived in the previous
sections. Furthermore, we have seen that, when the bes
ues of the parametersZ1/2 andF are used, the mixing matrix
Vth reproduces the central values of all experimentally de
mined quantities, that is, the moduliuVi j

expu, the Jarlskog in-
d

-

r

er-

e
nt.
d

al-

r-

variant Jexp and the three inner anglesa, b, andg, of the
unitarity triangle@1#. Since the two parametrizations repr
duce the same set of experimental data equally well, we
justified in writing

uVi j
thu5uVi j

PDGu5uVi j
expu. ~4.9!

We cannot simply equateVth and VPDG because the argu
ments of corresponding matrix elements in the two para
etrizations are not equal

arg~Vi j
th!Þarg~Vi j

PDG!. ~4.10!

This difference is of no physical consequence, it reflects
freedom in choosing the unobservable phases of the q
fields in the mass representation. In the following, we w
take advantage of this freedom to derive a phase tra
formed, theoretical mixing matrixṼth, related toVth by a
biunitary phase transformation, such that all correspond
entries inṼth andVPDG are equal in modulus and phase. W
will also derive exact, explicit expressions for the phases
the matrix elementsVi j

PDG in terms of the phases of the ma
trix elementsVi j

th , which, together with Eq.~4.9!, will be
enough to show thatVPDG may be obtained fromVth by
means of a suitable rephasing of the quark fields in the m
representation.

Phase relations. In the mass basis, the quark charged c
rents take the form

Jc
m5

g

A2
q̄Li

u gmVi j
thqL j

d . ~4.11!

A redefinition of the phases of the quark fields which leav
Jc

m invariant, will change the argument ofVi j
th but leave the

moduli uVi j
thu invariant,

Vi j
th→Ṽi j

th5e2 ix i
u
Vi j

theix j
d
. ~4.12!

The phasesx i
u andx j

d ocurring in Eq.~4.12! will be de-
termined from the requirement that corresponding entrie
Ṽth andVPDG be equal,
2-7
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uVi j
thuei [wi j

th
2(x i

u
2x j

d)]5uVi j
PDGueiwi j

PDG
, ~4.13!

in this expressionwi j
th andwi j

PDG are the arguments ofVi j
th and

Vi j
PDG, respectively. Since the moduliuVi j

thu and uVi j
PDGu are

equal, the arguments of the entries in the two parametr
tions are related by the set of nine equations

x i
u2x j

d5wi j
th2wi j

PDG. ~4.14!

The set of Eqs.~4.14! relate the differences of the unob
servable quark field phases to the differences of the a
ments of corresponding entries inVth andVPDG. These two
parametrizations of the mixing matrix are representations
the same set of experimental data. Therefore, it should
possible to derive, from Eqs.~4.14!, a new set of equations
expressing the five non-vanishing argumentswi j

PDG of Vi j
PDG

in terms only of the argumentswi j
th of Vi j

th without making
reference to the unobservable phases of the quark fie
With this purpose in mind, we notice that, in the left ha
side of Eqs.~4.14!, there are nine differences of unobser
ables phases (x i

(u)2x j
(d)), formed from only six different

quark field phases. Differences of phases of the same q
field type, say (x j

(d)2x j 8
(d)), may be computed from Eqs

~4.14! in at least three different ways. This redundancy i
plies the existence of nontrivial relations among the ar
ments of the entries of the two parametrizations. For
ample, from Eqs.~4.14!, the difference (x2

(u)2x3
(d))2(x2

(u)

2x2
(d)) gives

x2
(d)2x3

(d)5w23
th 2w22

th 1w22
PDG, ~4.15!

and the difference (x1
(u)2x3

(d))2(x1
(u)2x2

(d)) gives

x2
(d)2x3

(d)5w13
th 2w12

th 1d13. ~4.16!

If the phase difference (x2
(d)2x3

(d)) is eliminated between
Eqs.~4.15! and ~4.16! we get

d132w22
PDG5w12

th 2w13
th 2w22

th 1w23
th . ~4.17!

Using the same elimination procedure for all possible co
binations (x i

(u)2x j
(d))2(x i

(u)2x j 8
(d)) we derive a set of nine

equations, only four of which are linearly independent. O
of these is Eq.~4.17!, for the other three we may take

2w21
PDG1w22

PDG5w11
th 2w12

th 2w21
th 1w22

th , ~4.18!

w31
PDG2w32

PDG52w11
th 1w12

th 1w31
th 2w32

th , ~4.19!

and

2w22
PDG1w32

PDG52w22
th 1w23

th 1w32
th 2w33

th . ~4.20!

Since, inVPDG there are five entries with non-vanishin
arguments, namely,w13

PDG52d13, w21
PDG, w22

PDG, w31
PDG, and

w32
PDG, we require still one more equation relating the arg

ments of the entries of the two parametrizations. This is
tained from the phase relations between the determinan
the two matricesVth andVPDG. From Eqs.~4.12! and~4.13!,
it follows that
11300
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detVth5det@Xu
†VPDGXd#, ~4.21!

in this expressionXu andXd are the diagonal unitary matri
ces of phases ocurring in Eq.~4.12!. The determinant of
VPDG is one, hence,

det@Xu
†VPDGXd#5ei ( i 51

3 (x i
(u)

2x i
(d)). ~4.22!

Similarly, from the definition ofVth, Eq. ~3.4!, we get

detVth5det@Ou
TPu2dOd#5det~Ou

TOd!detPu2d,
~4.23!

the determinant of the orthogonal matrices is one, and
determinant of the diagonal matrix of phasesPu2d is ei2F.
Taking for F the best valueF* 5p/2, we obtain

detVth5ei2F* 5eip. ~4.24!

Substitution of Eqs.~4.22! and ~4.24! in Eq. ~4.21! gives

(
i 51

3

~x i
(u)2x i

(d)!52F* 5p. ~4.25!

This phase relation guarantees the equality of the dete
nants ofṼth and VPDG. The sum of the unobservable qua
field phases ocurring in the left hand side of Eq.~4.25! may
be computed from Eqs.~4.14!,

(
i 51

3

~x i
(u)2x i

(d)!5(
i 51

3

wii
th2w22

PDG. ~4.26!

Now, we eliminate the unobservable quark field phases
tween Eqs.~4.25! and ~4.26!, to get

w22
PDG5(

i 51

3

wii
th22F* . ~4.27!

This relation shows that arg(V22
PDG) is uniquely determined

(mod 2p) in terms of the arguments of the entries inVth.
With the help of Eq.~4.27! we solve Eqs.~4.17!–~4.20!

for all the other nonvanishing arguments ofVPDG:

d135w11
th 1w12

th 2w13
th 1w23

th 1w33
th 22F* , ~4.28!

w21
PDG5w21

th 1w12
th 1w33

th 22F* , ~4.29!

w31
PDG5w31

th 1w12
th 1w23

th 22F* , ~4.30!

w32
PDG5w32

th 1w23
th 1w11

th 22F* . ~4.31!

In this way, we have shown that the argumentswi j
PDG of Vi j

PDG

are uniquely determined (mod 2p) by the argumentswi j
th of

Vi j
th .
We now return to the question of the quark field phas

and the phase transformation fromVi j
th to Vi j

PDG. Substitution
of Eqs.~4.27!–~4.31! into Eq.~4.14!, gives the differences o
the quark field phases explicitly in terms of the known arg
mentswi j

th of Vi j
th . The quark field phases themselves are
2-8
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termined only up to a common additive constant. Since
quark field phases are unobservable, without loss of gene
ity, we may fix one of them, and solve for the others. In th
way, if we setx1

d50, we get

x1
d50°,

x2
d5w11

th 2w12
th ,

x3
d52w23

th 2w33
th 2w12

th 12F* ,

x1
u5w11

th ,

x2
u52w12

th 2w33
th 12F* ,

x3
u52w23

th 2w12
th 12F* . ~4.32!

Then, the diagonal matrices of phases required to com
the phase transformedṼth are

Xu5diag@eiw11
th

,ei (2w12
th

2w33
th

12F* ),ei (2w23
th

2w12
th

12F* )#
~4.33!

and

Xd5diag@1,ei (w11
th

2w12
th ),ei (w12

th
2w23

th
2w33

th
12F* )#. ~4.34!

Hence, with the help of Eqs.~4.28!–~4.31!, we verify that

Xu
†VthXd5VPDG ~4.35!

is satisfied as an identity, provided thatuVi j
thu5uVi j

PDGu.

V. THE MIXING ANGLES

The invariant measurables of the quark mixing matrix
the moduli of its elements, i.e., the quantitiesuVi j u, and the
11300
e
al-

te

e

Jarlskog invariantJ. But evenJ, up to a sign, is a function o
the moduli @4#. Hence, two different parametrizations, a
equivalent if the moduli of the corresponding entries a
equal. In the case ofVi j

th and Vi j
PDG, when the best set o

adjustable parameters of each parametrization (Z1/2,F) and
(u12,u23,u13,d13), respectively, is used to fit the experime
tal data, the moduli of corresponding entries of the two p
rametrizations are numerically equal and give an equ
good representation of the experimentally determined va
of the moduli of the mixing matrixuVi j

expu @3#. Therefore we
are justified in writing

uVi j
thu5uVi j

PDGu, ~5.1!

even thoughVi j
th has only two adjustable parameters (Z1/2,F)

while the number of adjustable parameters inVi j
PDG is four,

namely, (u12,u23,u13,d13). All entries in uVi j
thu are explicit

functions of the four quark mass ratio
(mu /mt ,mc /mt ,md /mb ,ms /mb) and the two parameter
Z1/2 and F. The equality of the moduli of correspondin
entries of the two parametrizations will allow us to deri
explicit expressions for the mixing angles in terms of t
four quark mass ratios (mu /mt ,mc /mt ,md /mb ,ms /mb) and
the parametersZ1/2 andF.

From the equality ofuV13
th u and uV13

PDGu, it follows that

sinu135uVub
th u, ~5.2!

if we takeuVub
th u from Eq.~3.14!, and we setF andZ1/2 equal

to their best valuesF* 5p/2 andZ1/2* 5A81
32 we get
sinu135H m̃c~12m̃u2du* !m̃dm̃sdd*

~12du* !~12m̃u!~m̃c1m̃u!~12dd* !~11m̃s!~12m̃d!
1F S m̃u~12m̃u2du* !dd*

~12m̃u!~m̃c1m̃u!~11m̃s!~12m̃d!
D 1/2

2S m̃u~11m̃c2du* !du* ~12m̃d2dd* !~11m̃s2dd* !

~12du* !~12m̃u!~m̃c1m̃u!~12dd* !~11m̃s!~12m̃d!
D 1/2G 2J 1/2

. ~5.3!

The computation of sinu23 is slightly more involved. From Eq.~4.1! and the equality ofuVi j
thu and uVi j

PDGu, we obtain

sinu235
uVcb

PDGu

A12uVub
PDGu2

5
uVcb

th u

A12uVub
th u2

. ~5.4!

Substitution of the expressions~3.16! and ~3.14! with F* 5p/2 andZ* 1/25A81
32 for uVcb

th u and uVub
th u in Eq. ~5.4! gives

sinu235A12m̃u

11m̃c

$m̃u~11m̃c2du* !m̃dm̃sdd* 1@A~12du* !m̃c~11m̃c2du* !~12dd* !dd*

2Am̃c~12m̃u2du* !du* ~12m̃d2dd* !~11m̃s2dd* !#2%1/2$2@A~12du* !m̃u~12m̃u2du* !~12dd* !dd*

2Am̃u~11m̃c2du* !du* ~12m̃d2dd* !~11m̃s2dd* !#21~12du* !~12m̃u!~m̃c1m̃u!~12dd* !~11m̃s!~12m̃d!

2m̃c~12m̃u2du* !m̃dm̃sdd* %21/2. ~5.5!
2-9
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Similarly from Eq.~4.1! and the equality ofuV12
th u and uV12

PDGu, we obtain

sinu125
uVus

PDGu

A12uVub
PDGu2

5
uVus

th u

A12uVub
th u2

. ~5.6!

Then, substitution of the expressions~3.13! and ~3.14! for uVus
th u and uVub

th u in Eq. ~5.6! gives

sinu125A 12m̃d

m̃s1m̃d

$m̃c~12m̃u2du* !m̃d~11m̃s2dd* !1@A~12du* !m̃u~12m̃u2du* !~12dd* !m̃s~11m̃s2dd* !

1Am̃u~11m̃c2du* !du* m̃s~12m̃d2dd* !dd* #2%1/2$2@A~12du* !m̃u~12m̃u2du* !~12dd* !dd*

2Am̃u~11m̃c2du* !du* ~12m̃d2dd* !~11m̃s2dd* !#21~12du* !~12m̃u!~m̃c1m̃u!~12dd* !~11m̃s!~12m̃d!

2m̃c~12m̃u2du* !m̃dm̃sdd* %21/2. ~5.7!
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The computed values for sinu12, sinu23, and sinu13 corre-
sponding to the bestx2 fit of uVi j

thu, Jth anda th, b th andg th to
the experimentally determined quantitiesuVi j

expu, Jexp and the
three inner angles of the unitarity triangleaexp, bexp, andgexp

are obtained when the numerical values ofuVus
th u, uVub

th u, and
uVcb

th u computed from Eqs.~3.13!,~3.14!,~3.16! and given in
Eq. ~3.24! are substituted in to Eqs.~5.2!, ~5.4!, and~5.6!. In
this way, we get

sinu12* 50.221, ~5.8!

sinu23* 50.040, ~5.9!

sinu13* 50.0034. ~5.10!

The numerical value of cosu13* deviates from unity in the
sixth decimal place.

We notice that the numerical values of the mixing ang
computed from quark masses and the best values of the
metry breaking parameters coincide almost exactly with
central values of the experimentally determined quantities
could be expected from Eq.~5.1!. This observation is inter-
esting because, in the case of three families, the most ge
form of the mixing matrix has at most four free, independe
parameters@4# which could be four independent moduli o
three mixing angles and one phase as occurs inVPDG. The
symmetry derivedVth has only two free, real independe
parameters. In spite of that, the quality of the fit ofVth to the
experimental data is as good as the quality of the fit ofVPDG

to the same data. The predictive power ofVth implied by this
fact originates in the flavor permutational symmetry of t
standard model and the assumed symmetry breaking pa
from which the texture in the quark mass matrices andVth

were derived.

VI. THE CP VIOLATING PHASE d13

The CP violating phased13 of the standard parametriza
tion VPDG of the quark mixing matrix is given in Eq.~4.28!
11300
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in terms of the argumentswi j
th of five entries in the theoretica

expression forVi j
th and the correspondingCP violating phase

F. Taking from Eq.~3.24! the numerical values of the argu
mentswi j

th and settingF equal to the best valueF* 5p/2,
we obtain the numerical value ofd13 corresponding to the
best fit of uVi j

thu to the experimental data

d13* 575°. ~6.1!

This predicted value ofd13 is very close to the numerica
value of the third inner angleg, of the unitarity triangle. The
difference may readily be computed in terms of the arg
mentswi j

th . From the expression forg

g5argF2
Vcb* Vcd

Vub* Vud
G ~6.2!

we get

2g5w11
th 2w13

th 2w21
th 1w23

th 1p ~6.3!

which, when compared with the expression~4.28! for d13
gives

2g5d132~w12
th 1w21

th 1w33
th 22F* 2p!. ~6.4!

Taking from Eq.~3.24! the numerical values of the argu
ments corresponding to the best valuesF* 590° andZ1/2*

5A 81
32 , we obtain

~w12
th 1w21

th 1w33
th 22F* 2p!50.04°. ~6.5!

This is, indeed, a very small number, and justifies the
proximation

2g'd13* . ~6.6!

According to this, the value ofugu computed from quark
mass ratios and the best values of the parametersZ* 1/2 and
2-10
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F* is ugu575°, in agreement with the bounds extract
from the precise measurements of theBd

0 oscillation fre-
quency@32# and the measurements of the rates of the ex
sive hadronic decaysB6→pK and theCP averagedB6

→p6p0 @37#. Exact explicit expressions for theCP violat-
ing phased13 in terms of the four quark mass ratios and t
parametersZ* 1/2 and F* may readily be found; such a
expression could be derived from Eq.~4.28! in terms of the
arguments of five matrix elements ofVth. However, a sim-
pler expression, involving only four matrix elements ofVth

may be obtained from the Jarlskog invariantJ.
The Jarlskog invariant may be written in terms of fo

matrix elements ofV as
m
am

at

ul

om

11300
-

J5Im@V12V23V13* V22* #. ~6.7!

SinceJ is an invariant, its value is independent of the pa
ticular parametrization ofV. If we write the right hand side
of Eq. ~6.7! in terms of the standard parametrizationVPDG,
we obtain

sind135
Jth

s12s13s23c12c13
2 c23

. ~6.8!

The terms in the denominator in the right hand side of t
expression were written in Eqs.~5.2!, ~5.4!, and ~5.6! in
terms of the moduliuV12

th u, uV13
th u, anduV23

th u. Hence,
s12s13s23c12c13
2 c235

uV12
th uuV13

th uuV23
th u@~12uV13

th u22uV12
th u2!~12uV13

th u22uV23
th u2!#1/2

12uV13
th u2

. ~6.9!

Substitution of Eq.~6.9! in Eq. ~6.8! gives

sind135
~12uV13

th u2!Im@V12
thV23

thV13
th* V22

th* #

uV12
th uuV13

th uuV23
th uA~12uV13

th u22uV12
th u2!~12uV13

th u22uV23
th u2!

, ~6.10!
the
the right hand side of this equation may be written in ter
of the quark mass ratios and the symmetry breaking par
etersZ* 1/2 and F* with the help of Eqs.~5.3!, ~5.5!, and
~5.7!. A simpler expression which leads to a very accur
approximation ford13 is obtained from Eq.~6.10! if the ma-
trix elements in the square brackets are written as mod
and argument, and use is made of the unitarity ofVth to
simplify the denominator,

sind135
~12uV13

th u2!uV22
th usin~w12

th 1w23
th 2w13

th 2w22
th !

uV11
th uuV33

th u
.

~6.11!

Explicit expressions for the argumentsw12
th , w23

th , w13
th , and

w22
th in terms of the quark mass ratios may be derived fr

Eqs. ~3.13!–~3.16! setting Z1/2, and F equal to their best

valuesZ* 1/25A81
32 andF* 5p/2, we get

wus
th 5p2tan21SAm̃um̃s

m̃cm̃d
FA~12du* !~12dd* !

1Adu* dd*
~11m̃c2du* !~12m̃d2dd* !

~12m̃u2du* !~11m̃s2dd* !
G D ,

~6.12!
s
-

e

us

wcb
th 5p2tan21SA m̃c

m̃um̃dm̃s
FA~12du* !~12dd* !

2Adu* ~12m̃u2du* !~12m̃d2dd* !~11m̃s2dd* !

dd* ~11m̃c2du* !
G D ,

~6.13!

wub
th 5tan21SA m̃u

m̃cm̃dm̃s
FA~12du* !~12dd* !

2Adu* ~11m̃c2du* !~12m̃d2dd* !~11m̃s2dd* !

dd* ~12m̃u2du* !
G D ,

~6.14!

wcs
th5tan21SAm̃cm̃s

m̃um̃d
FA~12du* !~12dd* !

1Adu* dd*
~12m̃u2du* !~12m̃d2dd* !

~11m̃c2du* !~11m̃s2dd* !
G D .

~6.15!

Computing the second factor in square brackets in
leading order of magnitude, we get
2-11
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wus
th 'p2tan21SAm̃um̃s

m̃cm̃d
D , ~6.16!

wcb
th 'p2tan21SA m̃c

m̃um̃dm̃s
F S 12Adu*

dd*
D G D ,

~6.17!

wub
th.'tan21SA m̃u

m̃cm̃dm̃s
F S 12Adu*

dd*
D G D , ~6.18!
rs

s
e

11300
and

wcs
th'tan21SAm̃cm̃s

m̃um̃d
D . ~6.19!

The modulusuVub
th u has already been expressed in terms

quark mass ratios and the parameters characterizing the
metry breaking patternZ* 1/2 andF* , in Eqs.~5.2! and~5.3!.
Similar expressions for the other moduli occurring in E
~6.11! may also be given
uVudu5S m̃c~12m̃u2du* !m̃s~12m̃d2dd* !

~12du* !~12m̃u!~m̃c1m̃u!~12dd* !~12m̃d!~m̃s1m̃d!
D 1/2

3H 11
m̃um̃d

m̃cm̃s
F @~12du* !~12dd* !#1/21S du* dd*

~11m̃c2du* !~11m̃s2dd* !

~12m̃u2du* !~12m̃d2dd* !
D 1/2G 2J , ~6.20!

uVcsu5S m̃c~11m̃c2du* !m̃s~11m̃s2dd* !

~11m̃c!~m̃c1m̃u!~11m̃s!~m̃s1m̃d!
D 1/2

3H F11S du* dd* ~12m̃u2du* !~12m̃d2dd* !

~12du* !~12dd* !~11m̃c2m̃u!~11m̃s2dd* !
D 1/2G 2

1
m̃um̃d

m̃cm̃s

1

~12du* !~12dd* !
J 1/2

, ~6.21!

uVtbu5F ~12m̃u2du* !~11m̃c2du* !~12m̃d2dd* !~12m̃s2dd* !

~12du* !~11m̃c!~12m̃u!~12dd* !~11m̃s!~12m̃d!
G 1/2

3H F11S du* dd* ~12du* !~12dd* !

~11m̃c2du* !~12m̃u2du* !~12m̃d2dd* !~11m̃s2dd* !
D 1/2G 2

1
m̃um̃cdu* m̃dm̃sdd*

~12m̃u2du* !~11m̃c2du* !~11m̃s2dd* !~12m̃d2d* !
J 1/2

. ~6.22!
nd

q.

t

rgu-
Computing in the leading order of magnitude, the fi
factor in the right hand side of Eq.~6.11! gives

~12uV13
th u2!uV22

th u

uV11
th uuV33

th u
'

~12du* !~12m̃u!~12dd* !~12m̃d!

~12m̃u2du* !~12m̃d2dd* !

3S 12
m̃u

m̃d

~Add* 2Adu* !D . ~6.23!

Inserting in to Eq.~6.23! the numerical values of the mas
ratios andAdd* 2Adu* 50.04, we find that the right hand sid
of Eq. ~6.23! differs from one in the third decimal place

~12uV13
th u2!uV22

th u

uV11
th uuV33

th u
'1. ~6.24!

Therefore,
t sind13* 'sin~wuc
th 1wcb

th 2wub
th 2wcs

th !, ~6.25!

taking the numerical values of the argument in the right ha
side of Eq.~6.25! from ~3.22!, we obtain

d13* '75°, ~6.26!

in agreement with Eq.~6.1!. The approximate expression E
~6.25! for sind13* could also be derived from Eq.~4.17! if
w22

PDG is neglected. Computingw22
PDG from Eq. ~4.27! and

~6.12!–~6.15!, we obtainw22
PDG520.0018° which shows tha

Eq. ~6.25! is a very good approximation. Since Eq.~4.27!
was derived from the phase relations expressing the a
ments ofVi j

PDG in terms of those ofVi j
th , while Eq.~6.11! was

derived from the expression Eq.~6.10! for the Jarlskog in-
variant, the agreement found between Eqs.~4.27! and
~6.11!–~6.25! is a consistency check of our formalism.
2-12
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VII. SUMMARY AND CONCLUSIONS

In this work, we explicitly exhibit the phase equivalen
of the theoretical mixing matrixVth, derived from the break-
ing of the flavor permutational symmetry in a previous wo
@1#, and the standard parametrization@2# VPDG advocated by
the Particle Data Group@3#. More precisely, we show tha
when the best set of adjustable parameters of each param
zation is obtained from ax2 fit to the same experimenta
data, the moduli of corresponding entries in the matrices
numerically equal and give an equally good representatio
experimentally determined values of the moduli of the m
ing matrix Vexp. Hence we are justified in writing

uVi j
thu5uVi j

PDGu ~7.1!

even thoughVth has only two adjustable parametersZ1/2 and
F, while the number of adjustable parameters inVPDG is
four, the three mixing anglesu12,u23,u13 and theCP violat-
ing phased13. From this result, we proceed to fomulate a
solve the equations of the rephasing transformation wh
acting onVth gives a phase transformatedṼth such that the
corresponding entries inṼth andVPDG are equal in modulus
and phase. As part of the solution, we obtain a set of eq
tions expressing the nonvanishing argumentswi j

PDG of the
matrix elementsVi j

PDG of the standard parametrization
terms of the argumentswi j

th of the entries in the flavor sym
metry derivedVi j

th . Since the matrix elements ofVth are
known functions of the quark mass ratios and the parame
Z1/2 andF, we obtain exact, explicit, analytical expressio
for the argumentswi j

PDG as functions of the quark mass ratio
and the parametersZ* 1/2 andF* which characterize the bes
or preferred symmetry breaking pattern. In particular, we
rive an exact, explicit expression for theCP violating phase
d13* written as a linear combination of the arguments of fi
entries inVth. Similarly, from the equality of the moduli o
the corresponding entries in the two parametrizations,
solve for the mixing parameters sinu12, sinu13, sinu23, oc-
curring in the standard parametrization, in terms of
moduli uVi j

thu. Then, using the explicit expressions found f
Vi j

th in our previous work@1#, we obtain exact, explicit ex
pressions for the mixing parameters sinu12* , sinu13* , sinu23* ,
in terms of the quark mass ratios and the parametersZ* 1/2

and F* . From these results and an expression for the J
skog invariant, written in terms of four matrix elements
Vth, we derive an alternative, explicit, analytical express
for sind13* as function of the quark mass ratios and the
rametersZ* 1/2 andF* .

In conclusion, in the standard electroweak model of p
ticle interactions, both the masses of the quarks as well as
mixing parameters and theCP violating phase appear as fre
11300
tri-
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independent parameters. In this work we have given exp
expressions for the mixing parameters sinu12, sinu13,
sinu23 and theCP violating phased13 of the standard param
etrization of the mixing matrix@2# as functions of the four
quark mass ratiosmu /mt ,mc /mt ,md /mb ,ms /mb , and two
parametersZ1/2 and F. These expressions were obtain
from a simple and explicit ansatz for the pattern of the bre
ing of quark flavor symmetry and a rephasing transformat
of the quark fields in the mass representation.

The numerical values of the mixing parameters sinu12* ,
sinu13* , and sinu23* computed from quark mass ratios and t
best values of the parametersZ* 1/2 andF* , coincide almost
exactly with the central values of the same mixing para
eters, determined from the experimental data@35#, as could
be expected from the phase equivalence ofVth and VPDG,
expressed in Eq.~7.1!. This observation is interesting be
cause, in the case of three families, the most general form
the mixing matrix has at most four free, independent para
eters@4# which could be four independent moduli or thre
mixing angles and one phase as occurs inVPDG. The sym-
metry derivedVth has only two free, real independent param
eters. In spite of that, the quality of the fit ofVth to the
experimental data is as good as the quality of the fit ofVPDG

to the same data. The predictive power ofVth implied by this
fact originates in the flavor permutational symmetry of t
standard model and the assumed symmetry breaking pa
from which the texture in the quark mass matrices andVth

were derived.
The value of d135arg(Vub* PDG) computed from quark

mass ratios and the best values of the parametersZ* 1/2 and
F* is d13* 575° in agreement with the bounds extracted fro
the precise measurements of theBd

0 oscillation frequency
@32# and the measurements of the rates of the exclusive h
ronic decaysB6→pK and theCP averagedB6→p6p0

@37#. It is interesting to notice that, in the flavor symmet
breaking parametrization of the mixing matrix, the best va
of the symmetry breaking parameterZ1/2 may be written as a
purely algebraic number,

Z* 1/25
1

2
~ZS

1/22ZA
1/2!5

1

2 S 1

A8
1A8D ~7.2!

and the best value of theCP violating phaseF is consistent
with F* 5p/2.
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