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CP violating phase 6,5 and the quark mixing angles 8,3, 8,5, and 8, from flavor permutational
symmetry breaking
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The phase equivalence of the theoretical mixing ma#fkderived from breaking of flavor permutational
symmetry and the standard parametrizatti?® advocated by the Particle Data Group is explicitly exhibited.
From here, we derive exact explicit expressions for the three mixing aégle®, 3, 6,3, and theCP violating
phases,; in terms of the quark mass ratiosi(/m, ,m./m, ,mg/m, ,ms/m,) and the paramete* ¥? andd*
characterizing the preferred symmetry breaking pattern. The computed values @P thelating phase and
the mixing angles aré};=75°, sind;,=0.221, sindj;=0.0034, and sib,=0.040, which coincide almost
exactly with the central values of the experimentally determined quantities.

PACS numbs(s): 12.15.Ff, 11.30.Er, 11.30.Hv, 12.15.Hh

[. INTRODUCTION used, the moduli of corresponding entries of the two param-
etrizations are numerically equal and give an equally good
In this paper we are concerned with the functional relarepresentation of the experimentally determined values of the
tions between flavor mixing anglék,, 613, 6,3, the CP vio- moduli of the mixing matri>4vﬁx'“|. Hence, we are justified in
lating phased;; and the quark masses resulting from break-writing
ing flavor permutational symmetry.
In a previous pap€] different Hermitian mass matrices Vil =IViPY, (1.9
M, of the same modified Fritzsch type were derived from i ) .
breaking flavor permutational symmetry according to the€Ven thoughv™ has only two free, real linearly independent
symmetry  breaking  scheme S_(3)®Sk(3)DS.(2) p%g%meters while the number of adjustable parameters in
©SR(2)DSqiag(2)- In @ symmetry adapted basis, different V is four. L _
patterns for the breaking of the permutational symmetry give The invariant measurables of the quark mixing matrix are

rise to different mass matrices which differ in the rang?  the moduli of its elements, i.e., the quantitjé;|, and the
=M ,3/M,,, and are labeled in terms of the irreducible rep_JarIskog invariang. But evenJ, up to a sign, is a function of

resentations of an auxilia¥(2) group. Then, diagonalizing the moduli[4]. Hence, two different parametrizations, such

. ; o ; asVM andVFPC, are equivalent if the moduli of correspond-
the mass matrices, we obtain exact, explicit expressions far~ " ! |

the elements of the mixing matr™, the Jarlskog invariant Ing entries are equal even if the arguments of corresponding

J, and the three inner angles, 8, and y of the unitarity entries are different. This difference is of no physical conse-

: ; . quence, it reflects the freedom in choosing the unobservable
triangle in terms of the quark mass ratios, the symmetry

) 112 o7 phases of the quark fields.
break”.‘g parametet ’mand oneCR violating phe}setb. The In this paper, it is shown that a suitable rephasing of the
numerical values oZ*< and® which characterize the pre- . th ~h
ferred symmetry breaking pattern were extracted froyfa duark fields change¥™ into a new, phase transformad
fit of the theoretical expressiof¥ to the experimentally ~such that all the matrix elemeri&" are numerically equal to
determined values of the moduli of the elements of the mixthe corresponding/ﬁDG, both in modulus and phase. Once
ing matrix|V®®¥. In this way, we obtained an explicit param- this equality is established, we solve the equations of trans-
etrization of the quark mixing matrix in terms of four quark formation for sinfy,, siné,3 and sindy; in terms of the
mass ratiosn, /m;,mc/m;,mq/m,,ms/m,, and the param-  moduli |V{f]. We also derive exact explicit expressions
etersZ'? and® in excellent agreement with the experimen-for the phases of the matrix elemeni&®® in terms
tal |ﬂf0rmat|on about quark mixings ar@P violation in the ¢ the phases of the matrix elements \brﬁ_w_ In this way,
K®-K? system and the most recent data on oscillations in thgve derive exact explicit analytical expressions for the
BO-BY system. These same experimental data are usually repaixing parameters sify,, Sinf,3, sinf; and the CP
resented by means of the standard parametrization of théolating phased,; of the standard parametrization of the
mixing matrix[2] VPP® recommended by the Particle Data mixing matrix [2] in terms of the quark mass ratios
Group[3], which is written in terms of three mixing angles my/m;,m./m;,myg/my,mg/my, the flavor symmetry break-
615,013,063 and oneCP violating phases;s. The standard ing parameteZ* 2, and theCP violating phaseb*.
parametrizationV"P® was introduced without taking the  The plan of this paper is as follows. In Sec. II, we intro-
functional relations between the quark masses and the flavoluce some basic concepts and fix the notation by way of a
mixing parameters into account. In contrast, these functionatery brief sketch of the group theoretical derivation of mass
relations are exactly and explicitly exhibited in the theoreti-matrices with a modified Fritzsch texture. Section Il is de-
cal expressions fo" derived in our previous workl].  voted to the derivation of exact, explicit expressions for the
When the best set of parameters of each parametrization alements of the mixing matrb(ﬂ1 in terms of the quark mass
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ratios and the parametezs’? and® characterizing the sym- S (3)® Sg(3) down t0S, (2)® Sg(2) and mixes the singlet
metry breaking pattern. In Sec. 1V, the phase equivalence adnd doublet representation 8(3). M, transforms as the
Vv and VPP is explicitly exhibited, and a set of equations mixed symmetry term in the doublet complex tensorial rep-
expressing the nonvanishing argumemt"® of V{°® in  resentation 0Byag(3)C S.(3)® Sr(3). Putting the first fam-
terms of the arguments;” of V' is derived. Explicit expres- ily in a complex representation will allow us to haveC®
sions for the mixing parameters g, siné,z, sinfys, and  Vviolating phase in the mixing matrix. Then, in a symmetry
the CP violating phases;; as functions of the quark mass adapted basisVl, takes the form

ratios and the paramete’' 2 and ®* characterizing the

preferred symmetry breaking scheme are obtained in Secs. V 0 Aqefizéq 0
and VI. Our paper ends in Sec. VII with a summary of results B ié

and some conclusions. Mg=mMgq| | Aq€™ 0 0
0 0 0

Il. MASS MATRICES FROM THE BREAKING 0 0 0

OF S, (3)®Sk(3)
. o +|1 0 —Ayt 4 Bq
In the standard model, analogous fermions in different

generations, say, ¢, andt or d, s, andb, have completely 0 By L£q= 4

identical couplings to all gauge bosons of the strong, weak,

and electromagnetic interactions. Prior to the introduction of

the Higgs boson and mass terms, the Lagrangian is chiral and +Mgq
invariant with respect to any permutation of the left and right

quark fields. The introduction of a Higgs boson and the

Yukawa couplings give mass to the quarks and leptons when

00 0
00 0

0 0 1-A,

0 Age %0
¢€

0

the gauge symmetry is spontaneously broken. The quark =My, A€ %a —Ngtdqy Bgq |. (23
mass term in the Lagrangian, obtained by taking the vacuum B 1-8
expectation value of the Higgs field in the quark Higgs cou- q a

ling, gives rise to quark mass matri andM,,, . .
Ping. g q o ! From the strong hierarchy in the masses of the quark

_ _ families, mz>m,>m,,, we expect - , to be very close
Ly=0q, Mgy r+qu,Mydy,r+H.c. (20  to unity. The entries in the mass matrix may be
readily expressed in terms of the mass eigenvalues
In this expressiongy . r(X) andqy,  r(x) denote the left  (myq,—myq,Mz,) and the small paramete,. Computing
and right quarkd and u fields in the current or weak basis, the invariants oM, trMy, tng, and deM, we get
qq(x) is a column matrix, its componentg, (x) are the
quark Dirac fieldsk is the flavor index. In this basis, the

s B e ~
charged hadronic currents, AG=MyMy(1=38) Y, Ag=Myq—Myg, (2.4
3~ Au L VoL 22 BG= Sql (1~ Myq+Mayq— 5g) — MygMyq(1- 6q)-1],(2 !
are not changed if both, thd-type andu-type fields are
transformed with the same unitary matrix. wherefnlq: Myq/Msq and ﬁ]zq: Myq/Mag -
If each possible symmetry breaking pattern is now char-
A. Modified Fritzsch texture acterized by the ratio

A number of author$1,5-23 have pointed out that real-
istic quark mass matrices result from the flavor permuta- Zq1’2= Bo/(—Aqgt dy), (2.6
tional symmetryS, (3)® Sg(3) and its spontaneous or ex-
plicit breaking. The groupS(3) treats three ODJeCtS the small parametes, is obtained as the solution of the
symmetrically, while the hierarchical nature of the mass magypjc equation
trices is a consequence of the representation strutthgeof
S(3), which treats the generations differently. Under exact

S, (3)®Sk(3) symmetry, the mass spectrum for either up or ol (14 Myq—Myg— 8) (1= 84) — MygMyg]
down quark sectors consists of one massive particle in a - - 5
singlet irreducible representation and a pair of massless par- —Zg(—Myqt+myq+64)°=0, 2.7

ticles in a doublet irreducible representation, the correspond-

ing quark mass matrix with the exa8t(3)® Sg(3) symme-  which vanishes whei, vanishes. An exact explicit expres-
try will be denoted byM ;. In order to generate masses for sion for 5, as function of the quark mass ratios afgl is
the first and second families, we add the teivhg, andM,,  given in Ref.[1]. An approximate solution to Ed2.7) for
to M3y. The termM,, breaks the permutational symmetry 64(Z,), valid for small values oZ ((Z,<10), is
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8q(Zg)~

Zy(Myq—Mmyg)?

PHYSICAL REVIEW D 61 113002

(1_ Fhlq)( 1+ ﬁ']Zq) + qu(ﬁhq_ ﬁqlq)

B. Symmetry breaking pattern

In the symmetry adapted basis, the mali, , written in
terms ofZ?, takes the form

0 O 0
~ ~ 1/2
M 2q: mgq( - m2q+ mlq+ 50]) 0 1 ZC]
1/2
0z -1
(2.9
when Y2 vanishesM 2q IS diagonal and there is no mixing

of singlet and doublet representationsS§B). Therefore, in
the symmetry adapted basis, the paramEﬁé"ns a measure
of the amount of mixing of singlet and doublet irreducible
representations cﬁd,ag(S)C S (3)®SR(3).

We may easily give a meaning "Zin terms of permu-
tations. From Egs(2.1) and (2.9), we notice that the sym-
metry breaking term in the Yukawa LagranglaLrM 2qdR IS
a functional of only two fields: 3/3[q,(X)+ \2qs(X)] and
13— 205(X) +q3(X)]. Under the permutation of these
fields, g, M q0r splits into the sum of an antisymmetric term
q,_quqR which changes sign, and a symmetric term

qLquqR, which remains invariant,

]
0 0 0
2
M2q §m3q< a 1 —V8
_\/§ -1
\
0 0 01
0o 1
+2b CERY (2.10
o L 1
V8 )

md/mS )

\/m /mc\/
1-464

(2.9

1. ~
1+ E(qu_mlq)}

where a=(8;—Ag)(V2Z5%=3) and b=(8;— Ay (V2!
2)21/2+ 2]. It is evident that there is a corresponding decom-
position of the mixing parametet./?,

1/ 2

Z4M2=NpgZ3?+Ng (2.12
with
1=Naq+Nsq, (2.12
where ZX?=— /8 is the mixing parameter of the matrix
M2y andZ”2 1//8 is the mixing parameter dfl3, . In this

way, a unique linear combination @2 and Zl’2 is associ-
ated to the symmetry breaking pattern characterized

Thus, the different symmetry breaking patterns defined by
M, for different values of the mixing parametélfll2 are
labeled in terms of the irreducible representations of the

group $(2) of permutations of the two fields ig_M 2q0R -

The pair of numbersNa,Ng) enters as a convenient math-
ematical label of the symmetry breaking pattern without in-
troducing any assumption about the actual patter$ ¢8)

® Sr(3) symmetry breaking realized in nature.

C. The Jarlskog invariant

The Jarlskog invariant], may be computed directly from
the commutator of the mass matrideg

_ def{—i[M,,Mq]}
J=- oF ,

(2.13
where

F=(14m)(1—my)(Me+my)(1+mg)(1—mg)(Ms+my).

(2.19

Substitution of the expressid.3) for M, andMy, in Eq.
(2.13, with ZX?=7%2=712 gives

B (1+mg)(1—my)(1+m,/my)(1+m)

myMg
_ 2__
(—Ag+6q) (1_5d

~ (mymy) m
1-6,

(—Ay+6,)%+2

(1—md)(1+Fnd/Fns)[[

(= Ayt 8,)(1=89) = (= Ag+8)(1—6,)]°

myme

'rﬁdﬁ‘]s
(= A+ 6 )(—=Ag+ 5g)cosd [,

= (2.15
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whereA ; and &, are defined in Eqg2.4) and(2.7). In this,
way, an exact closed expression fbin terms of the quark

PHYSICAL REVIEW D61 113002

M q,diag— msqdiag:ﬁ'llq 7 ﬁ2q 17, (3.3

mass ratios, th€P violating phased, and the parametet

that characterizes the symmetry breaking pattern is derived’."Ith subscripts 1,2,3 refering to,c,t in the u-type sector

andd,s,b in the d-type sector. After diagonalization of the

mass matri n ins the mixing matriy™
1. THE MIXING MATRIX ass matrice/;, one obtains the g mat as

The Hermitian mass matriM, may be written in terms of V= OIPU7dOd , (3.9

a real symmetric matrif, and a diagonal matrix of phases

. whereP'~ 9 is the diagonal matrix of relative phases
P, as follows: g p

My=PqMPq". (3.0 PU-d=diad 1,6'®,e'?], (3.5
The real symmetric matriqu may be brought to a diagonal gnqg
form by means of an orthogonal transformation
vl D=(p,— dq). 3.6
Mg=0gMg,qiadOq (3.2 (éu= ¢a) (3.6
where The orthogonal matriXDis given by
|
(Myqf1/Dp)Y? —(Myyf, /D)% (MygMygfs/Dg)™?
Og=| [(1=8g)Mygf1/D1]¥? [(1=8q)Maafo/Do]"2 [(1=8g)fa/Dal™ |, 3.7
—(Mygfafs/DD)™ = (Myefafs/D)M (f1f2/Da)*
|
where data. To avoid this ambiguity we further assumed that the up

and down mass matrices are generated following the same

f1=1—myy— &g, symmetry breaking pattern, that is,

fo=1+Myg— 3y, f3=Jq, (3.9

D 1= (1~ ) (1= Myq)(Mpq+Myg), (3.9 ZV2= 742 7112 (3.12
D2=(16g)(1+myq)(Maq+Myg), (310 Then, from Eqs(3.4—(3.12 all matrix elements in/t" may
Dy=(1- 5q)(1+ﬁ12q)(1_ﬁ11q)- (3.11) be written in terms of four quark mass ratios and only two

free, real parameters: the paramet&f which characterizes
the symmetry breaking pattern in theandd sectors and the
of the quark mass ratios and the parame®{$ andZ§®>,  CP violating phased. The computation ofvi! is quite
respectively. However, in Reffil] we found that keeping/”>  straightforward. Here, we will give, in explicit form, only
andzé’2 as free, independent parameters gives rise to a conhose elements of " which will be of use later. From Eqgs.
tinuous ambiguity in the fitting or\/itjh| to the experimental (3.4—(3.12 we obtain

In these expressions, and 84 are, in principle, functions
1/2

|
_( Me(1—My— 8,)My( 1+ Mg~ )
(1—8,)(1—my) (M +my) (1— 84) (1+mg) (Mg+my)

m,mg

1/2 1/2
" +( )
(1—my)(Me+my)(my+my)

us—

~ ~ 1/2 ~ ~ 1/2
X|((1—mu—6u><~1+ms—5d>> +(<1+mc—5u)6u<1—md—~6d>5d> ]e@, 319
(1+my) (1= 8,)(1— 8g)(1+m)
th _ ( Arhc(l_ ﬁ]u_ 5u) ﬁ]dﬁ]sgd ) v
(1= ) (1= My (Me+My) (1= 8)(1+Mg)(1— M)
. _( My (14 Mg — 8y) 8,(1— My — 5g) (1+ M= 8) )1’2
(1= 8,)(1—my)(Mg+my) (1= 8g) (1+Mg) (1—myg)
~ ~ 1/2
+< _ MM 00 ) ]ei‘D, (3.14
(1_mu)(mc+mu)(1+ms)(1_md)
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th

my(1+mg— 8,)My(1+mg— 54)
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1/2

cs

((1—5u><1+ﬁwc><ﬁwc+%u)(1

Fﬁc‘su(l_ Fhu_ 5u

— 8g)(1+mg)(Mg+myg)

~ ~ )
YMgSg(1—my— &g)

=

8u) (14 M) (Me+My) (1 — 8g)(1+Mg) (Mg+My)

Me(1+ M= 8,)Mg(1+Mg— 8y)

(1+mg)(1—my)(1+mg)(
and
’rﬁu(l'l'ﬁ]c_ 5u)

th

(3.19

1/2
) ] ei [}

F’ndi:hséd

1-my)

1/2

- ((1—5u)<1+ﬁwc><ﬁwc+ﬁwu>

Me(1—my—8,) 8,(

(1— 8)(1+mg)(1—my)

1—my— 8g)(1+mg— &)

s

ﬁ:]c(l'f_ F'nc_ 2n)

(1= 8,)(1+me)(Me+my)(1— 85)(1+mg)(1—my)

4

) 1/2

The “best” symmetry breaking patterin order to find the
actual pattern of5 (3)® Sg(3) symmetry breaking realized
in nature, we made & fit of the exact expressions for the
moduli of the entries in the mixing matriX/ﬁ‘l, the Jarlskog
invariantJ™", and the three inner angles of the unitarity tri-
anglea™, B andy™ to the experimentally determined val-
ues of| V¥, J¥P, «*®, B andy®®. A detailed account of
the fitting procedure is given in Rgfl]. Here, we will give
only a brief relation of the main points in the fitting proce-
dure.

For the purpose of calculating quark mass ratios and com-

puting the mixing matrix, it is convenient to give all quark
masses as running masses at some common energy Sc
[24,25. In the present calculation, following Pecdé&4],
Fritzsch[26], and the Ba-Bar book27], we used the values
of the running quark masses evaluategkat m, :

m,=3.25-0.9 MeV, m.=760+29.5 MeV,
m,=171.0£12 GeV, my=4.4+0.64 MeV,
ms=100=6 MeV, m,=2.92+0.11 GeV. (3.17

These values, with the exception of;, m., andm,, were
taken from the work of Fusaoka and Koidl25] see also
Fritzsch[26] and Leutwyler{28]. The values ofn.(m;) and
mp(m;) were obtained by rescaling = m; the recent cal-
culations ofm,(m.) and my(my) by Pineda and Ynduia
[29] and Yndurin [30]. The value ofmg agrees with the
latest determination made by the ALEPH collaboration from
a study ofr decays involving kaong31].

We kept the mass ratiosi,=m./m,, ms=ms/m, and
my=mgy/m, fixed at their central values

(Me+my)(1+m) (1+mg)(1—myg)

(3.19

e

m.=0.0044, m.=0.034,

andmy=0.0015,
(3.18

but we took the value

m,=0.000032, (3.19
which is close to its upper bound. We found the following
best values fob andz*?,

1 \/ﬁ
* _ono *12_ T r712_ 5127 _
| ©*=90°, Z*P=2[z8-Z}= /5, (3.20
ale

corresponding to a value gf?<0.32. The values of the pa-
rameterss,(Z) and d4(Z) obtained from Eqs(3.18), (3.19),
and(3.20 are

5,(2*Y?=0.000048, §4(Z* % =0.00228. (3.21)

Before proceeding to give the numerical results for the mix-
ing matrix V™", it will be convenient to stress the following
points.

(1) The masses of the lighter quarks are the less well
determined, while the moduli of the entries|W* with the
largest error bars, namely,,| and|V,4|, are the most sen-
sitive to changes in the ratias,/m., and my/mg, respec-

tively. Hence, the quality of the fit div!'] to [V is good

(x?<0.5) even if relatively large chanjges in the masses of
the lighter quarks are made. The sensitivity |¥f,,] and
[Vi4| to changes imm,/m, and my/mg respectively, is re-
flected in the shape of the unitarity triangle which changes
appreciably when the masses of the ligther quarks change
within their uncertainty ranges. The best simultaneptisit

of [V{fl, J" anda™, g™, andy™, to the experimentally de-
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termined quantities was obtained when the raﬁtnJ 0.0013 md <0.0017,
=m,/m, is taken close to its upper bound, as given in Eq.

(3.19. Furthermore, the chosen high valuerof gives for

the ratio|Vp/V,,| the value 0.032<m,=0.036. (323
|Vub| my The results of theg? fit of the theoretical expressions for
Voo~ “Vm, =0.085+0.009 3.22 VT, 3™, o™, g™, andy™ to the experimentally determined
quantities is as follows. The quark mixing matrix computed
in very good agreement with its latest world aver488—  from the theoretical expresiovi™ with the numerical values
34]. of quark mass ratios given in Eg®8.18 and(3.19 and the

(2) As the energy scale changes, say frpmrm; to u corresponding best values of the symmetry breaking param-
=1 GeV, the running quark masses change appreciably, batterz* >= \/81/32, and th&€P-violating phased* =90°, is
since the masses of light and heavy quarks increase almost in
the same proportion, the resulting dependence of the quark 0975%1° 0.221e158° (.0034e!84°
mass ratios on the energy scale is very weak. When the en-

ergy scale changes from=m, to =1 GeV, m, and my o - -
~ ~ I ° I o l o

decrease by about 25% ang, andm; also decrease but by 0.0085 0.03% 0.9992¢

less than 16%. (3.29

(3) In view of the previous considerations, a reasonable _ _ o
range of values for the running quark mass ratios, evaluateth order to have an estimation of the sensitivity of our nu-

vih=[ 0.220e'12° 0.9745%/8° 0.040e"%"

at u=m,=171GeV, would be as follows merical results to the uncertainty in the values of the quark
mass ratios, we computed the range of values of the matrix
0.000022<m,<0.000037, of moduli |V | corresponding to the range of values of the
mass ratios g|ven in Eq3.23), but keepingd andz*? fixed
0.0043<m,=<0.0046, at the valuesb* =90° andZ* 2= /81/32. The result is

0.9735-0.9771 0.215%0.2263 0.0028 0.004
|[vih=| 0.215}+0.2263 0.9726:0.9764 0.0370.043 |, (3.25
0.0078-0.0093 0.036-0.042 0.999% 0.999

which is to be compared with the experimentally determined values of the matrix of mi8¢uli

0.9745-0.9760 0.21#0.224 0.0018 0.004
[vea=| 0.217-0.224 0.9737#0.9753 0.036-0.042 |. (3.26
0.004-0.013 0.0350.042 0.999%0.999

As is apparent from Eq93.24), (3.29, and (3.26), the The value obtained for the Jarlskog invariant is
agreement between computed and experimental values of all
entries in the mixing matrix is very good. The estimated Jth=28x10°5 (3.27)

range of variation in the computed values of the moduli of

the four entries in the upper left corner of the mathg"| is )

larger than the error band in the corresponding entries of thif 9°°d agreement with the valugJ®=(3.0-1.3)
matrix of the experimentally determined values of the <10 °sin& obtained from current data oGP violation in
moduli [V®¥(. The estimated range of variation in the com- the K°-K® mixing systen{3] and theB°-B° mixing system
puted values of the entries in the third column and the third 27J-

row of |Vth| is comparable with the error band of the corre- For the inner angles of the unitarity triangle, we found the
sponding entries in the matrix of experimentally determmeomnowIng central values:

values of the moduli, with the exception of the elements

[V | and| VM| in which case the estimated range of variation a=83°, p=22°, y=75°. (3.28
due to the uncertainty in the values of the quark mass ratios

is significantly smaller than the error band in the experimen-an estimation of the range of values of the three inner angles
tally determined value ofVi and|Vig". of the unitarity triangle, compatible with the experimental
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information on the absolute values of the matrix elementdV. PHASE EQUIVALENCE OF V ' AND THE STANDARD

Ve is given by Mele[32] and Ali [33]. According to this PARAMETRIZATION V PP¢
authors, 79%<a=<102°, 21%<B=<28°, and 55%y=<78°.
We see that the central value Bfobtained in this work is The standard parametrizatid?] of the mixing matrix

close to the lower limit according to Mel82], while y is  recommended by the Particle Data Grdu) is written in
close to the upper limit given by Mel82] and « is in the  terms of three mixing angle®,,, 0,3, 613 and oneCP violat-

allowed range given by these authors. ing phaseds,
C1€13 S12C13 S
VPPO=| —51Co3—C155255138' 13 C1lpg—S1550551' "8 SpC1z |, 4.7)
12523~ C12C235138 13 —C15553— S1C23915€ 8 CogCia
|
wherec;; = cosé; ands;; =sing; . variant J**P and the three inner angles, 3, and y, of the

The range of values of the experimentally determinedunitarity triangle[1]. Since the two parametrizations repro-
moduli in |V, as given by Caset al.[3], corresponds to  duce the same set of experimental data equally well, we are
90% confidence limits on the range of values of the mixingjustified in writing
angles of

Vil =IViPa=[vi. 4.9
0.217%<s,,<0.222, 4.2
We cannot simply equate" and VPP® because the argu-
0.036<5,3<0.042, 4.3 ments of corresponding matrix elements in the two param-
etrizations are not equal
0.0018<5,5<0.0044. 4.9
arg(Vi) #arg(V°). (4.10

Seven of the nine absolute values of the Cabibbo-
Kobayashi-Maskaw&CKM) entries have been measured di- This difference is of no physical consequence, it reflects the
rectly, by tree level processes. A range of values for the foufreedom in choosing the unobservable phases of the quark
parameterss;,, S,3, Si3, and d13 which is consistent with fields in the mass representation. In the following, we will

the seven direct measurements and the experimentally deteake advantage of this freedom to derive a phase trans-
mined values of the moduli ofV|®® [3], is given by Nir  formed, theoretical mixing matri%/™", related toV" by a

[35]: biunitary phase transformation, such that all corresponding
0.2173=5,,<0.2219, (4.5  entries in\~/‘h_andVF’DG are equal in modulus and phase. We
will also derive exact, explicit expressions for the phases of
0.0378<5,:<0.0412, (4.6 the matrix element¥;°®in terms of the phases of the ma-
trix eIementsVi‘]h, which, together with Eq(4.9), will be
0.00237%s,5<0.00395, (4.77  enough to show tha¥"°® may be obtained fromV" by

means of a suitable rephasing of the quark fields in the mass
C13is known to deviate from unity only in the sixth decimal representation.
place[3,35]. Phase relationsin the mass basis, the quark charged cur-
The CP violating phase’, 3, at present, is not constrained rents take the form
by direct measurements. However, the measuremen@Pof
violation in K decayq 36] force 8,5 to lie in the range _
a8l v ’ J€=EQEi7“VFE‘QEJ : (4.11
0< 3= (4.9 V2

The standard parametrizatiafP°® was introduced with- A redefinition of the phases of the quark fields which leaves

out taking the possible functional relations between thele invariant, will change the argument o but leave the
quark masses and the flavor mixing parameters into accouroduli [Vi7| invariant,

In contrast, these functional relations are explicitly exhibited _ Cu

in the theoretical expressiond, derived in the previous ViI— V= Niviielxi, (4.12
sections. Furthermore, we have seen that, when the best val-

ues of the paramete®&-? and® are used, the mixing matrix ~ The phases' and x{ ocurring in Eq.(4.12 will be de-

V" reproduces the central values of all experimentally detertermined from the requirement that corresponding entries in

mined quantities, that is, the mod{Ws®, the Jarlskog in- V™ andVPP® be equal,
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|Vit?|ei[wit?—(xf—x?)] = |V5DG| eierDG, 4.13 detVh=def XVPPOX ], (4.21)

ViFj’DG, respectivelyf Since the mOddﬁ/ith| and |ViF]_’D | are €S of phases ocurring in E¢4.12. The determinant of

J PDG ;
equal, the arguments of the entries in the two parametrizal IS One, hence,

tions are related by the set of nine equations (u)

def X[VPPoK ] = el ¥ V=), (4.2

u d__,,th PDG

AR A A 419 Similarly, from the definition ofvth, Eq. (3.4), we get
The set of Eqs(4.14) relate the differences of the unob-

servable quark field phases to the differences of the argu-  detV=def{O[P'~%O4]=de( OjO)detP' "¢,

ments of corresponding entries VA" and VPPC. These two (4.23

parametrizations of the mixing matrix are representations o{

the same set of experimental data. Therefore, it should b

possible to derive, from Eq$4.14), a new set of equations,

expressing the five non-vanishing argumenfs™® of V;;°°

in terms only of the arguments;]’ of V| without making detyih gi20* _ gim (4.24)

reference to the unobservable phases of the quark fields. ’ '

With this purpose in mind, we notice that, in the left hand Substitution of Eqs(4.22) and (4.24) in Eq. (4.21) gives

side of Egs.(4.14), there are nine differences of unobserv-

ables phases){" — x{?), formed from only six different 3

quark field phases Differences of phases of the same quark > (- x)=20* =7, (4.2

X =1

field type, say k}d)—xfﬁn), may be computed from Egs.

(4.19 in at least three different ways. This redundancy im-This phase relation guarantees the equality of the determi-

plies the existence of nontrivial relations among the argunants ofV™" and VPP®. The sum of the unobservable quark

ments of the entries of the two parametrizations. For exfield phases ocurring in the left hand side of E425 may

ample, from Eqs(4.14, the difference =X -8 be computed from Eqg4.14),

—x&%) gives

he determinant of the orthogonal matrices is one, and the
determinant of the diagonal matrix of phades @ is ef2®.

Taking for @ the best valueb* = 7/2, we obtain

3 3
d h
x50 — D = wi— wii,+whDC, (4.15 |=21 (X —x¢ )):Z’l wi'— w55, (4.2

i (u_ L (d)y _y (u) _ (d)y 4
and the differencex; "~ x57) ~ (x1”~x2") gives Now, we eliminate the unobservable quark field phases be-

X(zd)_ng):thha_thh2+ S1a. (4.16 tween Eqs(4.25 and(4.26), to get
If the phase difference,\((zd)—)((d)) is eliminated between PDG : h
8 whe=> wih—2d*, (4.27
Egs.(4.15 and(4.16 we get i=1

PDG_ th_ . th . th,  th . _ o .
013~ Wpz = Wiy~ Wiz~ Wopt Wos. (417 This relation shows that argf>®) is uniquely determined

Using th liminati dure for all bl (mod 277) in terms of the arguments of the entries\ff.
sing the same elimination procedure for all possible com-"", .. " help of Eq.(4.27 we solve Eqs(4.17—(4.20

inati (u) _ (d)y ¢ (u)_ (d) i i L
binations ™ —x;™) — (xi " —x;,") we derive a set of nine ¢, 4| the other nonvanishing arguments\6t°
equations, only four of which are linearly independent. One

of these is Eq(4.17), for the other three we may take Sis=wWh+wih—wi+wi+wi—2d*,  (4.28
PDG, ., ,PDG_ th _ th__ . th ,  th
—Wpp Wy “=Wq3—WiHh— W+ Wy, (4.18 WEPC= Wi 4 w4 Wil 2+, (4.29
PDG PDG__ th th th th
W3p —Wsgy = — W71+ Wipt W3 — Wy, (4.19 ngez Wt3h1+ Wt1h2+ Wtzhs_ 2% (4.30
and
. . R whDC= Wi+ Wi+ wih — 2% (4.31)
PD! PDG__ t t t i
—Wyy +Wsgs o= —Wopt+Wyst War—Wgz.  (4.20 P0G

In this way, we have shown that the argumenfS® of V]
Since, inVPPC there are five entries with non-vanishing are uniquely determined (mod by the argumentsv}? of

arguments, namelyy75 %= — 8,5, w5p®, wh2®, wip®, and VI

wh2€, we require still one more equation relating the argu- We now return to the question of the quark field phases
ments of the entries of the two parametrizations. This is oband the phase transformation froAf to V{;°°. Substitution
tained from the phase relations between the determinants of Egs.(4.27)—(4.31) into Eq.(4.14), gives the differences of
the two matrice/"" andV"PC. From Eqs(4.12 and(4.13, the quark field phases explicitly in terms of the known argu-

it follows that mentsw;’ of V{I'. The quark field phases themselves are de-
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termined only up to a common additive constant. Since thdarlskog invariand. But evenJ, up to a sign, is a function of
guark field phases are unobservable, without loss of generalhe moduli[4]. Hence, two different parametrizations, are
ity, we may fix one of them, and solve for the others. In thisequivalent if the moduli of the corresponding entries are

way, if we sety?=0, we get equal. In the case 0¥} and V°®, when the best set of
:Oo adjustable parameters of each parametrizatiot?,@®) and
(012,053, 0413,013), respectively, is used to fit the experimen-
x5=wi—wi, tal data, the moduli of corresponding entries of the two pa-

rametrizations are numerically equal and give an equally
good representation of the experimentally determined values
Xi=wh, of the moduli of the mixing matrixV{¥ [3]. Therefore we

are justified in writing

X3= — Wi~ Wii— wih+ 2%,

Xu - le W33+ 2q)*

th PDG
Yi= —wih—wih+ 2d* (4.32 IVil=Vvi°, (5.1)
Then, the diagonal ma;rlces of phases required to computg,ep, though/ has only two adjustable parameteZ&/g, @)
the phase transforméd™ are while the number of adjustable parametersviiP® is four,
Xu=diaQe'W11 ol (—wih—wii+20%) ei(—wtzhs—w‘1“2+2<p*)] namely, @1,,60,3,013,613). All entries in |Vth| are explicit

(4.33 functions of the four quark mass ratios

(my/my,m./m,,my/m,,mg/my) and the two parameters

ZY2 and ®. The equality of the moduli of corresponding

Xy dlag[le'(wll le) o (W wl- s 20% 1. (434 entri.eg of the two parametrizqtipns will alloyv us to derive
' explicit expressions for the mixing angles in terms of the

Hence, with the help of Eq$4.28—(4.31), we verify that f(r)]ur quark mas.':ilgatio;rmu/mt ,m./m;,my/m,,mg/my) and
t\sthy _ \/PDG the parameterg™'< and ®
AV Xg=V (4.39 From the equality of V3 and|Vi99, it follows that

and

is satisfied as an identity, provided tHat| = |V{;°9.
sin615= |V, (5.2
V. THE MIXING ANGLES

H th 1/2
The invariant measurables of the quark mixing matrix are We take[Vi| from Eq.(3.14, and we se® andZ™“equal
the moduli of its elements, i.e., the quantitieasj|, and the to their best value®* = /2 andz/? = \/g——; we get

Mu(1—m,— &%) Mg, S N v
(1= 85)(1=my)(Me+my) (1= 55)(1+Mmg)(1—mg)

( Fnu(1+ﬁqc—5’5)53(1_Fnd_5§)(1+rns_5§) )1/212]1/2

Sin 013:

( my(1—m,— &%) &%
(1—my)(Me+my)(1+mg)(1—my)

———=—= = = (5.3
(1= 65 (1—my)(Mm+my)(1—65)(1+mg)(1—mg)
The computation of sifi; is slightly more involved. From Eq4.1) and the equality ofV{| and|V{°9, we obtain
|VPDG |Vthb
sin 923 ° (54)

VI-IVe 9 V1=Vl

Substitution of the expressioii8.16) and (3.14) with ®* = 7/2 andZ* ¥?= \/% for V| and|V™] in Eq. (5.4 gives

1-m, ~ - -~ = =
sin 5= \/ 1+r~n”{mu<1+mc—5:)mdm36;§+N<1—6:>mc<1+mc—6:><1—63>6’5
C

—mg(1—my— &%) 8% (1—My— 85)(1+Mg— &) 1 YH ~ [ V(1 - &) my(1—my— 8%)(1— %) 5}

— My (1+Me— 85) 8% (1—My— 85)(1+Mg— 85) 12+ (1= 85)(1—My) (Me+My) (1= 85)(1+mg)(1— )

—me(1—my— 8%)mgmgo% 12 (5.9
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Similarly from Eq.(4.1) and the equality ofVY} and|V5 29, we obtain
PDG th
Vis . Vi
PDG2 h2"
VI- Ve Vi-|vil®

Then, substitution of the expressiof&13 and(3.14 for [V and|V™"| in Eq. (5.6 gives

Sin 012: (56)

1 - - - - = = = =
sin@,= m{mc(l—mu— S5 )mg(1+mg— 5§)+[\/(1— Se)my(1—my—85)(1—55)mg(1+mg— 5y)
s d

+ ML+ Me— %) 8% Me(1—My— 85) 85 13 YA ~[V(1— &%) my(1—my— 85 (1~ 8%) S

— ML+ M= &%) 8% (1—Mg— &%) (1+Mg— &%) 12+ (1— 8%) (1~ my) (Me+My) (1— 8%) (1+mg) (1—myg)

—me(1—my— &%)mgmgo% 12 (5.7

The computed values for sifi;, sinf,3, and sindy5 corre- i terms of the arguments;] of five entries in the theoretical
sponding to the bes¢? fit of |ViT], J™ anda™, " andy"to  expression fol/|! and the correspondingP violating phase
the experimentally determined quantitigg’¥, J*?and the ~ @. Taking from Eq.(3.24 the numerical values of the argu-
three inner angles of the unitarity triangl€™, 8%, andy®®  mentsw{! and setting® equal to the best valu®* = /2,
are obtained when the numerical valueg\dfy, |Vi, and  we obtain the numerical value a5 corresponding to the

IVE,| computed from Eq$3.13,(3.14,(3.16 and given in  best fit of V]| to the experimental data
Eq. (3.29) are substituted in to Eq$5.2), (5.4), and(5.6). In

this way, we get T3=75°. (6.2
sin67,=0.221, (5.8 This predicted value of;5 is very close to the numerical
value of the third inner angle, of the unitarity triangle. The
sin 65,=0.040, (5.9  difference may readily be computed in terms of the argu-
mentsw}}‘. From the expression foy
sin #75;=0.0034. (5.10
VepVed
The numerical value of cod; deviates from unity in the y=ar% - (6.2
sixth decimal place. VipVud
We notice that the numerical values of the mixing anglesWe get
computed from quark masses and the best values of the sym-
metry breaking parameters coincide almost exactly with the _ ,y:thhl_ thh3_ Wt2h1 n Wt2h3 . 6.3

central values of the experimentally determined quantities, as
COL-”d be eXpeCt-ed from E(q51) This Ob-S-erVation is inter- Which’ when Compared with the expressing for 513
esting because, in the case of three families, the most geneigiles

form of the mixing matrix has at most four free, independent

parameterg4] which could be four independent moduli or —y=813— (Wt wh+wh—20*— 7). (6.4
three mixing angles and one phase as occurgfif®. The _ _

symmetry derivedv™ has only two free, real independent Taking from Eq.(3.24 the numerical values of the argu-
parameters. In spite of that, the quality of the findf to the ~ ments corresponding to the best valdes=90° andz/*

experimental data is as good as the quality of the fW&?®  — /81 \ve obtain
to the same data. The predictive poweMdt implied by this
fact originates in the flavor permutational symmetry of the (Wh+ Wi+ wiy— 2d* — 77)=0.04°. (6.9

standard model and the assumed symmetry breaking pattern
from which the texture in the quark mass matrices &  This is, indeed, a very small number, and justifies the ap-
were derived. proximation

VI. THE CP VIOLATING PHASE &5 — Y~ s (6.6

The CP violating phases,; of the standard parametriza- According to this, the value ofy| computed from quark
tion VPPC of the quark mixing matrix is given in Eq4.28  mass ratios and the best values of the paramé®t€ and
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®* is |y|=75°, in agreement with the bounds extracted =IM[V1Vo3VEVE,]. (6.7)
from the precise measurements of tB§ oscillation fre-

quency[32] and the measurements of the rates of the excluSinceJ is an invariant, its value is independent of the par-
sive hadronic decay8*— 7K and theCP averagedB™ ticular parametrization of/. If we write the right hand side

— 7 a° [37)]. Exact explicit expressions for tHeP violat-  0f Eq. (6.7) in terms of the standard parametrizatigR°C,
ing phases,  in terms of the four quark mass ratios and theWe obtain
parametersZ*¥2 and ®* may readily be found; such an "
expression could be derived from Ed.28 in terms of the S J
. . h . S|n(513——. (68)
arguments of five matrix elements of". However, a sim- s 26
L : ) 12513523C12C13C23
pler expression, involving only four matrix elements\&f'
may be obtained from the Jarlskog invaridnt The terms in the denominator in the right hand side of this
The Jarlskog invariant may be written in terms of four expression were written in Eq$5.2), (5 4), and (5.6) in
matrix elements o¥/ as terms of the modul|VYy, [V, and|VYy. Hence,
|
o IVRJIVRIVRI[(1-|VT; |2 V) (1= |VE*— V351
$12513523C12C13C23= VT : (6.9
Substitution of Eq(6.9) in Eg. (6.8) gives
(1_ th Z)Im[vthvthvth*vth*]
| | 12V 23V 13 V22 (6.1@

néy3= ,
VI VI VI V(1= VI 2= VI 2) (1— VY%= [VEY?)

the right hand side of this equation may be written in terms

. m. |
of the quark mass ratios and the symmetry breaking param,vt =mo—tan ! - (1-85)(1-8%)
etersZ* Y2 and ®* with the help of Eqs(5.3), (5.5, and ]

(5.7). A simpler expression which leads to a very accurate \/

S5 (1—my—8%)(1—my— &%) (1+mg— %)
5;(1+ﬁrhc_ 53)

approximation ford,; is obtained from Eq(6.10 if the ma-
trix elements in the square brackets are written as modulus
and argument, and use is made of the unitarityVdf to

|

simplify the denominator, 613
m
s (1= |V VR sinwiy+ way— wik— W22 thb=tan‘1( == V(1= &) (1~ &%)
Sind 3= v ||V McMyMg
(619 _\/63(1%0—63)(1—%—63)(1%5—5:;)
3§ (1—my— &%) ’
Epr|C|t expressions for the argumem&élh , W23, thh3, and (6.14
w, in terms of the quark mass ratios may be derived from
Egs. (3.13—(3.16 settingZ*2, and ® equal to their best )
valueszZ* 2= /% and®* ==/2, we get mem
Ve " ? wi=tan ! \/ == V(1 &) (1~ &})
myMgq|
mum (1-my—&5)(1—Mmy— &)
th -1 u's _ ok _ ok \/5* .
Wys™m—tan ( g V127 %) (1+me—&%)(1+mg— &%)
— — (6.195
1+me—85)(1—my— 5
+\/5*5*< c *>< o= %) )
(1-my— %) (1+mg— &%)

Computing the second factor in square brackets in the
(6.12 leading order of magnitude, we get
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=~ = and
m,m
wh~7—tan 1( #) , (6.16
MefMd m.m
. " Wg‘gtanl( #) . (6.19
th —1 Me S MuMa
Wep=~ 7 —tan ——— 1=\ =]/
m,mgms| 85y

(6.17  The modulusV",| has already been expressed in terms of
quark mass ratios and the parameters characterizing the sym-
m 5* metry breaking patterd* Y2 and®*, in Egs.(5.2) and(5.3).
th. —1 u u i ; ; TGN
w,p~=tan = 1-\/— , (6.18 Similar expressions for the other moduli occurring in Eq.
] (6.11) may also be given

WE M(1—M,— &%) My(1—Mg— 5) 1
" (1= 85 (1= My (Me+ M) (1= 85) (1= Mg) (Mg+ M)
My 1+me— &) (1+me— %) | V72
sl 14 Ml P g ey (1 o) ]12y 5*5*( YL+ ms= o) , (6.20
mcms (1 m 5)(1 md 5;)
|V |_ ﬁ’]c(l"_ﬁ]c_‘s:)ﬁ]s(l'i'ﬁqs_&g) v
L (L Mo (Mgt My) (1+ M) (Mg My)
~ ~ 1212 ~ ~ 1/2
S¥ & (1—my— 8*)(1—my— &%
x[ 1+( u O (A= my f)(de ~d) ) MuMa ! ] , (6.20)
(1-67)(1=63)(1+me—my)(1+ms— 5y) memg (1—65;)(1—65)
Vil (1—My— &%) (L+Me— &%) (1—my— 85)(1—my— %) | 2
Pl (- e (MmO (L- My (1- 8)(1+mg) (1—mg)
l ( * (1 5*)(1 ) )1/2‘|2
X 1+ = = = =
(L+me=65)(1—my— &) (L—my—85)(1+mg—85)
MM, 5 MgMs 85 ] e
+ — — = = . (6.22
(1—my= &) (1+me—85)(1+mg— 55)(1—my— &%)
[
Computing in the leading order of magnitude, the first sins¥y~sin(wn +wh —wh —wih, (6.25

factor in the right hand side of E§6.11) gives

taking the numerical values of the argument in the right hand

_ th|2 th _ = _ =
(1 Vg9V - (1-65)(1—my)(1—55)(1—mg) side of Eq.(6.25 from (3.22), we obtain

VY|V (1-my—&%)(1—my— &%)

1- 2 (a o | 629
d

St ~T75°, (6.26

in agreement with Eq6.1). The approximate expression Eq.

(6.29 for sindy; could also be derived from Ed4.17) if
Inserting in to Eq.(6.23 the numerical values of the mass who is neglected. Computing/s2® from Eq. (4.27) and

ratios and\/— \/_ 0.04, we find that the right hand side (6 12) (6.15), we obtameDG —0.0018° which shows that
of Eqg. (6.23 differs from one in the third decimal place Eq (6 23 is a very good approxima’[ion_ Since aeﬂ_zn
thi2s 1« sth was derived from the phase relations expressing the argu-
(1-[Vigd9)| V2 _ (6.24  Ments ofv;°®in terms of those o¥/}", while Eq.(6.11) was
ViV ' ' derived from the expression E¢6.10 for the Jarlskog in-
variant, the agreement found between E@4.27 and
Therefore, (6.1)—(6.29H is a consistency check of our formalism.
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VIl. SUMMARY AND CONCLUSIONS independent parameters. In this work we have given explicit
expressions for the mixing parameters &5 Siné,s,

sin 6,3 and theCP violating phased, ; of the standard param-
etrization of the mixing matrif2] as functions of the four

In this work, we explicitly exhibit the phase equivalence
of the theoretical mixing matrix'"", derived from the break-

ing of the flavor permutational symmetry in a previous Workquark mass ratiosn. /m. .m./m. ma/m. m./me. and two
i PDG u ty!llc ty!ld b 'lls b
[1], and the standard parametrizatid) V" ™ advocated byt parametersZ¥? and ®. These expressions were obtained

the Particle Data Grou_{ﬁ]. More precisely, we show tha from a simple and explicit ansatz for the pattern of the break-
when the best set of adjustable parameters of each parametri-

zation is obtained from a2 fit to the same experimental ing of quark flavor symmetry and a rephasing transformation

. . oo : of the quark fields in the mass representation.
data, the moduli of corresponding entries in the matrices are . - .
The numerical values of the mixing parameters &in

numerically equal and give an equally good representation of. : .
experimen¥a|l?/ determi%ed valugs ofytﬁe modLFJJIi of the mix-S" 013, and sindy; computed frc:JLg] quark*mas-s rgtlos and the
ing matrix V®*®. Hence we are justified in writing best valugs of the parameted$*“ andd*, comcu_jg almost

exactly with the central values of the same mixing param-

|Vi‘?|=|ViF]-’D (7.0 eters, determined from the experimental d&8], as could

be expected from the phase equivalencev8f and VPP,
even though/™ has only two adjustable paramet&? and expressed in Eq(7.1). This observation is interesting be-
®, while the number of adjustable parametersViiP® is  cause, in the case of three families, the most general form of
four, the three mixing angleg,,, 6,3, 613 and theCP violat-  the mixing matrix has at most four free, independent param-
ing phased,3. From this result, we proceed to fomulate andeters[4] which could be four independent moduli or three
solve the equations of the rephasing transformation whicmixing angles and one phase as occur®/fi*®. The sym-

acting onV™" gives a phase transformat&f’ such that the metry derivedv™ has only two free, real independent param-
corresponding entries ™ and VPPC are equal in modulus eters. In spite of that, the quality of the fit & to the

. . . G
and phase. As part of the solution, we obtain a set of equsZXPerimental data is as good as the quality of the fiv O

tions expressing the nonvanishing argumewfs’® of the ;EO tthe %a.met data. ;Lheﬂpredictive P(thfwlimplied t;y thifsth
matrix elementsVP® of the standard parametrization in ac. ONIiNAIEs In mMe tavor permutational symmefry of the

terms of the argumenw}? of the entries in the flavor sym- standard model and the assumed symmetry breaking pattern

. th o _ th from which the texture in the quark mass matrices
metry derivedVjj. Since the matrix elements of™ are o6 derived.
known functions of the quark mass ratios and the parameters . \ajue of S15=arg(V*F°% computed from quark

Z7*and®, we Obt‘;‘,')r(‘; exact, explicit, analytical EXPIESSIONS 1455 ratios and the best values of the param&et€ and

fordtrgﬁ argumen;[své* 1,2&13 fg?bc*tmn; c;:‘tr;]e qu:;trk. mat.?]s rkz)itlots ®* is 57,=75° in agreement with the bounds extracted from
and the paramete an which characterize the best precise measurements of tB@ oscillation frequency

or preferred symmetry breakin_g pattern. In 'parti_cular, we de-[32] and the measurements of the rates of the exclusive had-
rive an exact, explicit expression for ti@P violating phase

*3 written as a linear combination of the arguments of fiverOniC decaysB*—wK and theCP averagedB™—m*
I8 e : 9 : [37]. It is interesting to notice that, in the flavor symmetry
entries inV™. Similarly, from the equality of the moduli of

. S o breaking parametrization of the mixing matrix, the best value
the corresponding entries in the two parametrizations, Wes the symmetry breaking parame¥2 may be written as a
solve for the mixing parameters 9y, sinéy3, sinf,3, Oc-

curring in the standard parametrization, in terms of thepurely algebraic number,
moduli |V}Jh|. Then, using the explicit expressions found for
V}T in our previous worl{ 1], we obtain exact, explicit ex-
pressions for the mixing parameters 8fg, siné;, sind,
in terms of the quark mass ratios and the p_arameitéﬂéz and the best value of th@P violating phaseb is consistent
and ®*. From these results and an expression for the Jarlyith d* = /2.
skog invariant, written in terms of four matrix elements of
Vv we derive an alternative, explicit, analytical expression
for sindj; as function of the quark mass ratios and the pa-
rametersZ* Y2 and ®* . We are indebted to Dr. M. Mondragdor a careful read-

In conclusion, in the standard electroweak model of paring of the manuscript. This work was partially supported by
ticle interactions, both the masses of the quarks as well as tHeGAPA-UNAM under Contract No. PAPIIT-IN125298 and
mixing parameters and th@P violating phase appear as free, by CONACYT (México) under Contract No. 3909P-E9607.

1
(Z42— 7Y% = 5

7* 1/2_ i

8
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