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Finite density fat QCD
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Lattice formulation of finite baryon density QCD is problematic from the computer simulation point of view;
it is well known that for light quark masses the reconstructed partition function fails to be positive in a wide
region of parameter space. For a large bare quark mass, problems related to the phase of the determinant are
still present but restricted to a small region in the chemical poteptiale present evidence for a transition
line that, starting from the temperature critical poinguat 0, moves towards a small@ with increasingu.

PACS numbds): 12.38.Gc, 11.15.Ha

[. INTRODUCTION not be numerically evaluated shrinks considerdblly
The phase diagram of QCD at large quark mass has been

From the point of view of computer simulations, the lat- studied using numericdb,7] as well as analytical methods
tice approach to the nonperturbative aspects of quantum field]. As a consequence of the numerical simulation results the
theory is a mature technique; apart from a few exceptionsauthors of 6,7] cast doubts on the existence of a deconfining
well consolidated schemes of simulation do exist that allowtransition atu#0 and finite temperature, but a clear evi-
studies of the most interesting features of QCD. The “fewdence of thigunexpectefibehavior is still lacking. Different
exceptions,” however, concern very interesting problems agPProximationg(infinite quark masg6] or truncation of an
well. The most paradigmatic of these dark zones is the stud§*Pansion in a fixed baryon density approdahy and the
of the thermodynamics of QCD in the presence of a nonzergMall lattices Ni=2) used could have obscured the transi-
baryonic density, or finite density QCD. tion S|gnql. In or(_jer to_clarlfy some_vvhat _the scenario we

The standard way to include the effects of baryonic mattepa.ve decided to investigate if, by simulating true QC.D at
on QCD vacuum leads to a complex action in the EuclideanInlte but large masses artd=4, atx#0 the theory stil

formulation and this prevents the use of standard simulatiorh1615 a discontinuous transition.
P By monitoring the expectation value of the phase of the

?Igodrltrr\]ms, lralased on thed |cf1|_eg OL |mp_orta?ce ?)arkr:_rlJ_llng, deDirac determinant we can distinguish the regions in the pa-
ined through a positive definite density of probability, €.9. .y yeter space where our evaluation of the partition function

the exponential of minus the Euclidean action. This problenys finite density QCD is(in principle) exact from the ones
can be rephrased stating the impossibility of defining a Boltyhere we miss a possible contribution £o

zmann weight for each field configuration: only calculating | the next section we will give arguments to explain why
the partition function can we correctly define the observableghe contribution of the phase cannot be measured and will
and obtain sensible results for quantities of physical interespresent, in the strong coupling limit, a quantitative check of
Calculations of partition functions are not infrequent in the grand canonical formulation using results obtained with
lattice simulation$ 1], but their nature of extensive quantities gfferent techniques. The third section is devoted to the ex-
raises the problem of the feasibility of this type of calcula- position of our approach to simulations of finite density QCD
tion with limited statistics, as forced from finite computing at finite coupling which exploits the main advantage of the
power. microcanonical fermion averad®IFA) approach8], i.e. the
Although a reliabl_e eval_uation of the partition function of free mobility in the (3,1) plane, and then we present results
lattice gauge theories with dynamical fermions at zerofor fermionic and gluonic observables, discussing the fate of
baryon density is possible and succes$ll] the extension  the deconfining phase transition when one increases the
of such a technique for finite density QCD appears out ofyaryon density. A coherent picture seems to emerge from our

reach for any reasonable statistics, at least in a range Qfata: a deconfining critical line that, with respectuae-0,
theory parameters: for some values of the chemical potentig},qyes towards smallgs with increasingu.

u the phase of the fermionic determinant can be estimated
only averaging oveO(e") configurationg3,4].

In order to have some hints of the finite density QCD
behavior the attention has moved to simpleren if un-
physica) models like infinite mass QCD. Despite the prob-  The finite density QCD partition function can be written
lems related with the phase of the Dirac determinant, in thes
large bare quark masses regime one can hope to obtain reli-
able results since, for ang in this regime, the interval of
chemical potential where the contribution of the phase can-

II. THE PARTITION FUNCTION OF FINITE
DENSITY QCD

z=f [dUJe AS(VdetA(U,my, u) (1)
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r T T ] =6°x4. At fixed quark massn, the partition function of the
2000 — - system is only dependent on chemical potentialf we plot
- . the free energy versys we can extract the phase structure
1500 - B from the appearance of a singularity (some derivative of
B C 7 the curve.
§ ] Two extreme limits are well known. A=0 we get the
= 100017 ] logarithm of the usual fermion determinant averaged over
& ] gauge field configurations: an average of a well defifmedl
500 — - and positive quantity that can be computed. On the other
C ] hand in the largeu limit only the last term of the grand
o - canonical partition function(see later survives: defA
£ o L —(1/2)%VedVr and the free energy is a straight line with
oo o5 1o 15 slope 3/. In this limit the (baryor) number density, defined
" as
1 9
FIG. 1. Free energy g8=0 andmy=0.1 of true QCD in the N(u)= 3v a—log Z, (5)
MDP approach(dotted ling and of modulus QCD(continuous s
line).

is equal to 1, and we can say that we are in a saturation
where, using the staggered formulation, the fermionic matrixe€gime, with the Pauli exclusion principle preventing further
A takes the standard forf9] increase of baryon density. In these two limits modulus QCD
is coincident with the true theory and deviations are possible
1 . ) b only in the intermediate region.
Aij=3 u=§1:23 7(DLU(1) 845 — U (i—v)6j-3] Starting fromu =0, we can use the data of Fig. 5 in Ref.
o [11], regarding number density at,= 0.1, in order to recon-

1 ] £ a B struct the free energy of the true theory as seen from the
+5[Va(1) 65128~ Uy(i—4) 828 #] monomer dimer polymefMDP) approach. This is shown in
Fig. 1 as the dotted line. If we superimpose the results of
+mMyd; ;- modulus QCD(continuous ling we can easily identify three

o ) ) regions: u<u,=0.3, which defines the onset in modulus
its phasep, can be separated §50] ~1.0, the saturated region; and,<u<u,, the region
where modulus QCD grossly overestimates the free energy

Z=Z (™), @ of true theory. As stated ifi.2], using the Glasgow prescrip-
where tion [13] for dealing with the complex determinant, we ob-
tain, for the free energy, exactly the same results as in modu-
lus QCD?
3qu [dUJe A5V detA(U,mg, u)] 3 In Fig. 2 we report, for the same lattice and quark mass,

the difference between the free energy of modulus QCD and
is the partition function of the model with the modulus of the the estimation based on data of REf1]. Superimposed to
determinan{modulus QCD in the following and that we plot the expectation value ¢&'?s); at the same
value of the parameters. It is evident that the intermediate
region is where the phase term is vanishing within statistical
errors. If we concentrate on a value @finside this region,
: @4 for examplexw=0.7, the distribution of the phase of the fer-
[dU]e #Se(V)|detA| mion determinant of single field configurations is almost flat.
With a statistics oN configurations we can hope to mea-

It is clear from Eq.(2) that, in the thermodynamical limit, Sure accurately the phase terfe'?s); only dvown to
the theory defined by means o is physically different O(1/VN) (=0.02 for our runs far from theO(e™") order
from the origina| theory On|y When the expectation Value ofneeded n prInCIple. Even W|th a statistics Of some thousands
the cosine of the phase of fermion determinant is vanishin@f configurations, we can say nothing on free energy of true
exponentially with the system volume. In the regions of pa-theory in the range.; << u,, that covers the region where
rameter space where the aforementioned expectation value is
not O(e™ "), modulus QCD is an equivalent formulation of
finite density QCD, i.e. indistinguishable in the thermody- 1 jight of some recent resulfd4] serious doubts can be cast on
namical limit. In the rest of parameter space, modulus QCQne MDP data in the critical region; however, what is crucial here,
clearly overestimates the true QCD partition function. actually, is the value of the onsgt for this approach: the more
Let us try to better illustrate this concept Iooking at Fig. 1.recent analysis moved it down ]m):O_G, still far from onsefu of
It refers to the infinitely strong coupling limiB=0 andV modulus QCD.

[dU]e #Se(V)|detA|e'?

(ei¢A>H:
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1.00F | N F
; [dU]8(6VE—SyLUDSL([U], 2,mg)
0.75 - <ngf(ILL1mq)>E: n(E)
] ()
0.50 -
7 is the average over gauge field configurations at fixed energy
0.25 E E of a suitable definition of effective fermionic action.
1 For the calculation ofSgy)e we proceed as follows: first,
0.00 E we choose a set of energies selected to cover the range of
] we are interested in. Secondly, for all the energies in the set,
—0.28 3 we generate gauge field configurations using a pseudo-
. ' | S S microcanonical code; the generation of gauge fields at fixed
0.0 0.5 1.0 1.5 .
L energy is not the costly part of the whole procedure, so we

can well decorrelate the configurations used for measuring
FIG. 2. Normalized difference between the free energy ofthe Dirac operator. Then, a library routine is used in order to
modulus QCD and the free energy of true QCD in the MDP ap-Obtain the complete set of eigenvalues of the propagator ma-
proach(continuous ling superimposed to the expectation value of trix P. At this point we can reconstruct the fugacity expan-
the determinant phase At=0 andm,=0.1. sion coefficients or, without any substantial additional com-
puter cost, use the eigenvalues to explore the possibilities
the number density varies rapidly. This does not imply necoffered by alternative prescriptions for the fermionic effec-
essarily that the phase is relevant in this region: for exampléve action, i.e. evaluate the modulus of the determinant and
it could go to zero as~ Vs, with Vg the spatial volume, being henceZz; . At the end, we have the fermionic effective action
in this case at the same time irrelevant and nonmeasurablevaluated at discrete energy values: a polynomial interpola-
The situation becomes somewhat better if we move tdion allows the reconstruction at arbitrary values of the en-
large quark mass: the rangg{, u,), where finite statistics €rgy E, in order to perform the numerical one-dimensional
effects prevent one from obtaining a sensible evaluation oftegration in Eq.(6) and obtain the partition function
free energy, becomes narrower and the region between Z(B,px,m).
=0 andu,, where interesting physics can be studied at least [N @ previous wor12] we have found evidence for nu-
at finite temperaturel becomes wider. The same Scenarmerical instabilities in the evaluation of COEfﬁCientS, whose
holds at finite coupling too, allowing us to investigate a greatrigin lies on the ordering of the eigenvaluesPfs calcu-
part of the parameter space. In particular, as we will see ifgted by a standard diagonalization routine. A random ar-
the following, we are interested in the neighborhood of therangement of the eigenvalues, before the calculation of the
=0 finite temperature critical point, to address the fate ofcoefficients, is necessary in order to control rounding effects.

the deconfining transition when baryon density increases. In the present work we have always used this procedure to
calculate the GCPF expansion coefficients.

Let us now present our results in the large bare quark
mass limit at intermediate coupling finite density QCD. We
have performed simulations in @44 lattice (10 masses

Our simulations are based on the GC@Fand canonical Mq=1.0—5.0) in the range of the chemical potential
partition function formalism[15] with an MFA (microca- €[0.0,4.0 and fe[4.0,6.0; we will show the results at
nonical fermionic average8] inspired approach for inter- Mq=1.8 as representative.
mediate coupling analysis. If the hadronic and quark-gluon plasma phases have to be

The basic idea in MFA is the exploitation of the physical separated in the physical parameter space of temperature and
equivalence between the canonical and microcanonical fochemical potential we have to find evidence for a transition
malism via the introduction of an explicit dependence on thdine in the plane of the bare quantitigs—u. This line
pure gauge energy in the computation of the partition funcshould start from thg8 (= 0) first order critical point and

tion. Indeed Eq(1) can be written as continue for smaller values @8 as u is increased.
To address this point we have studied the plaquette en-

ergy E(B,u), the Polyakov loopP(B,u) and the number
Z(,B,,u,m):j dENn(E)e *VAE(S[(u,my))e  (6)  density as a function of.
In Figs. 3a and 3b) we report E(B,u) and
JE(B,u)/ 3B, evaluated at bare quark masg=1.8 and at
different values of the chemical potenti,aj<,u§’. In Fig.
3(a) we can clearly see a rapid variation of the observable for
n(E):J [dU]8(6VE—Sy[U]) (7) all the values of,u; for the u=0 curve this happen;; in cor-
respondence with the pseudo-temperature transition of zero
density full QCD. The critical gauge coupling moves to
is the density of states at fixed pure gauge enérgsnd smallerB as we increasg. This phenomenon is also evident

Ill. SIMULATION SCHEME AND LARGE QUARK
MASS RESULTS

where
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FIG. 3. Plaquette energye(B,n) (@ and its derivative FIG. 4. Polyakov loopP(B,u) (a) and number densityb)

JE(B, )38 (b) evaluated in a #x 4 lattice atmy=1.8 for u evaluated in a #x 4 lattice atmg=1.8 for ©=0.0— 1.5 (from the
=0.0—1.5 (from the right to the leftin steps of 0.1. Dashed lines right to the lef} in steps of 0.1. Dashed line are far>u,.
are foru> 4.

approach, probably the only one able to tackle the nonper-
rgjrbative effects leading to quark-gluon plasma transition,
suffers severe problems due to the lack of hermiticity of
Dirac operator for a single realization of gauge fields.

In the first part of the paper we have shown, as for small
quark masses and strong coupling, any numerical algorithm
based on the GCPF approach gives results different from
)\/Nhat is expected in the region where the contribution of the

as a sharp peak in the figure of the derivafidg. 3b)]. It is
tempting to interprete this as an evidence of a temperatu
induced phase transition extending at nonzero valueg.of
Also the behavior of the Polyakov loop points in this direc-
tion: as can be seen in Fig(a}, P,(B) changes rapidly at
values of 8 consistent with the ones obtained from the en-
ergy.

We have completed the analysis with the number densit
results. This observable gives a less clear signal since it is
forced to be a constant function gfat ©=0. Nevertheless
we can see in Fig.(®) that the behavior of this observable is

still consistent with previous findings for the gluonic quanti-

ties. It is useful to remark that plotting the same quantities at i
fixed B as a function ofu we would be practically unable to L
see any signal. Lor

Signals for a developing discontinuity in all these observ- H L

ables rely on data in the region where the contribution of the
phase is negligible, but similar behavior is found at larger 0.5
values ofu, too. i

To conclude our analysis we report in Fig. 5 the, )
phase diagram of the theory @i, = 1.8 andV=4%

\
T R |

IV. CONCLUSIONS B

In this paper we have studied finite density lattice QCD  FIG. 5. Phase diagram for the’4 4 lattice atm,=1.8 in the
by means of numerical simulations. As is well known this (8,u) plane; the dotted line is for> u;.
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phase cannot be evaluated. To our understanding only a stBue to the differences in methods these results cannot be
tistics exponentially large with the system volurfend a  directly compared; larger lattices could clarify the issue, but

consequently high accuracy in numerical calculatiotsn  the volumes attainable with reasonable computer resources
solve this problem. make this program not effective. To extend these results to

Moving to the large quark mass region we meet a muchhe small quark mass region is impossible since the contri-
better situation and a large part of the parameter space b@ytion of the phase to the partition function becomes practi-
comes accessible to numerical simulations. cally unmeasurable in the whole parameter space.

The new result is the evidence of a transition line for true At the end we have to conclude that, until now, finite
QCD that originates from the critical point of the four flavor gensity lattice QCD, far from providing quantitative insights
w=0 theory. This has to be regarded as the lattice countelinto the behavior of quarks and gluons, can at most give us
part of the transition line in the temperature-chemical potensome qualitative indication.
tial plane that separates the hadronic phase from the quark-
gluon plasma phase at large masses.
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