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Finite density fat QCD
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Lattice formulation of finite baryon density QCD is problematic from the computer simulation point of view;
it is well known that for light quark masses the reconstructed partition function fails to be positive in a wide
region of parameter space. For a large bare quark mass, problems related to the phase of the determinant are
still present but restricted to a small region in the chemical potentialm. We present evidence for a transition
line that, starting from the temperature critical point atm50, moves towards a smallerb with increasingm.

PACS number~s!: 12.38.Gc, 11.15.Ha
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I. INTRODUCTION

From the point of view of computer simulations, the la
tice approach to the nonperturbative aspects of quantum
theory is a mature technique; apart from a few exceptio
well consolidated schemes of simulation do exist that all
studies of the most interesting features of QCD. The ‘‘fe
exceptions,’’ however, concern very interesting problems
well. The most paradigmatic of these dark zones is the st
of the thermodynamics of QCD in the presence of a nonz
baryonic density, or finite density QCD.

The standard way to include the effects of baryonic ma
on QCD vacuum leads to a complex action in the Euclide
formulation and this prevents the use of standard simula
algorithms, based on the idea of importance sampling,
fined through a positive definite density of probability, e
the exponential of minus the Euclidean action. This probl
can be rephrased stating the impossibility of defining a B
zmann weight for each field configuration: only calculati
the partition function can we correctly define the observab
and obtain sensible results for quantities of physical inter

Calculations of partition functions are not infrequent
lattice simulations@1#, but their nature of extensive quantitie
raises the problem of the feasibility of this type of calcu
tion with limited statistics, as forced from finite computin
power.

Although a reliable evaluation of the partition function
lattice gauge theories with dynamical fermions at ze
baryon density is possible and successful@2#, the extension
of such a technique for finite density QCD appears out
reach for any reasonable statistics, at least in a rang
theory parameters: for some values of the chemical pote
m the phase of the fermionic determinant can be estima
only averaging overO(eV) configurations@3,4#.

In order to have some hints of the finite density QC
behavior the attention has moved to simpler~even if un-
physical! models like infinite mass QCD. Despite the pro
lems related with the phase of the Dirac determinant, in
large bare quark masses regime one can hope to obtain
able results since, for anyb in this regime, the interval of
chemical potential where the contribution of the phase c
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not be numerically evaluated shrinks considerably@5#.
The phase diagram of QCD at large quark mass has b

studied using numerical@6,7# as well as analytical method
@3#. As a consequence of the numerical simulation results
authors of@6,7# cast doubts on the existence of a deconfin
transition atmÞ0 and finite temperature, but a clear ev
dence of this~unexpected! behavior is still lacking. Different
approximations~infinite quark mass@6# or truncation of an
expansion in a fixed baryon density approach@7#! and the
small lattices (Nt52) used could have obscured the tran
tion signal. In order to clarify somewhat the scenario w
have decided to investigate if, by simulating true QCD
finite but large masses andNt54, at mÞ0 the theory still
has a discontinuous transition.

By monitoring the expectation value of the phase of t
Dirac determinant we can distinguish the regions in the
rameter space where our evaluation of the partition funct
of finite density QCD is~in principle! exact from the ones
where we miss a possible contribution toZ.

In the next section we will give arguments to explain w
the contribution of the phase cannot be measured and
present, in the strong coupling limit, a quantitative check
the grand canonical formulation using results obtained w
different techniques. The third section is devoted to the
position of our approach to simulations of finite density QC
at finite coupling which exploits the main advantage of t
microcanonical fermion average~MFA! approach@8#, i.e. the
free mobility in the (b,m) plane, and then we present resu
for fermionic and gluonic observables, discussing the fate
the deconfining phase transition when one increases
baryon density. A coherent picture seems to emerge from
data: a deconfining critical line that, with respect tom50,
moves towards smallerb with increasingm.

II. THE PARTITION FUNCTION OF FINITE
DENSITY QCD

The finite density QCD partition function can be writte
as

Z5E @dU#e2bSg(U)detD~U,mq ,m! ~1!
©2000 The American Physical Society01-1
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where, using the staggered formulation, the fermionic ma
D takes the standard form@9#

D i , j5
1

2 (
n51,2,3

hn~ i !@Un~ i !d j ,i 1 n̂2Un
†~ i 2 n̂ !d j ,i 2 n̂#

1
1

2
@U4~ i !d j ,i 14̂em2U4

†~ i 24̂!d j ,i 24̂e2m#

1mqd i , j .

The contribution of modulusudetDu of Dirac determinant and
its phasefD can be separated as@10#

Z5Z i^e
ifD& i , ~2!

where

Zi5E @dU#e2bSg(U)udetD~U,mq ,m!u ~3!

is the partition function of the model with the modulus of t
determinant~modulus QCD in the following!, and

^eifD& i5

E @dU#e2bSG(U)udetDueif

E @dU#e2bSG(U)udetDu
. ~4!

It is clear from Eq.~2! that, in the thermodynamical limit
the theory defined by means ofZi is physically different
from the original theory only when the expectation value
the cosine of the phase of fermion determinant is vanish
exponentially with the system volume. In the regions of p
rameter space where the aforementioned expectation val
not O(e2V), modulus QCD is an equivalent formulation o
finite density QCD, i.e. indistinguishable in the thermod
namical limit. In the rest of parameter space, modulus Q
clearly overestimates the true QCD partition function.

Let us try to better illustrate this concept looking at Fig.
It refers to the infinitely strong coupling limitb50 andV

FIG. 1. Free energy atb50 andmq50.1 of true QCD in the
MDP approach~dotted line! and of modulus QCD~continuous
line!.
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56334. At fixed quark massmq the partition function of the
system is only dependent on chemical potentialm. If we plot
the free energy versusm we can extract the phase structu
from the appearance of a singularity in~some derivative of!
the curve.

Two extreme limits are well known. Atm50 we get the
logarithm of the usual fermion determinant averaged o
gauge field configurations: an average of a well defined~real
and positive! quantity that can be computed. On the oth
hand in the largem limit only the last term of the grand
canonical partition function~see later! survives: detD
→(1/2)3Ve3Vm and the free energy is a straight line wi
slope 3V. In this limit the ~baryon! number density, defined
as

N~m!5
1

3V

]

]m
logZ, ~5!

is equal to 1, and we can say that we are in a satura
regime, with the Pauli exclusion principle preventing furth
increase of baryon density. In these two limits modulus QC
is coincident with the true theory and deviations are poss
only in the intermediate region.

Starting fromm50, we can use the data of Fig. 5 in Re
@11#, regarding number density atmq50.1, in order to recon-
struct the free energy of the true theory as seen from
monomer dimer polymer~MDP! approach. This is shown in
Fig. 1 as the dotted line. If we superimpose the results
modulus QCD~continuous line! we can easily identify three
regions:m,m1.0.3, which defines the onset in modulu
QCD, where the number density is essentially zero;m.m2
.1.0, the saturated region; andm1,m,m2, the region
where modulus QCD grossly overestimates the free ene
of true theory. As stated in@12#, using the Glasgow prescrip
tion @13# for dealing with the complex determinant, we o
tain, for the free energy, exactly the same results as in mo
lus QCD.1

In Fig. 2 we report, for the same lattice and quark ma
the difference between the free energy of modulus QCD
the estimation based on data of Ref.@11#. Superimposed to
that we plot the expectation value of^eifD& i at the same
value of the parameters. It is evident that the intermed
region is where the phase term is vanishing within statist
errors. If we concentrate on a value ofm inside this region,
for examplem50.7, the distribution of the phase of the fe
mion determinant of single field configurations is almost fl

With a statistics ofN configurations we can hope to me
sure accurately the phase term̂eifD& i only down to
O(1/AN) (.0.02 for our runs!, far from theO(e2V) order
needed in principle. Even with a statistics of some thousa
of configurations, we can say nothing on free energy of t
theory in the rangem1,m,m2, that covers the region wher

1In light of some recent results@14# serious doubts can be cast o
the MDP data in the critical region; however, what is crucial he
actually, is the value of the onsetm for this approach: the more
recent analysis moved it down tom50.6, still far from onsetm of
modulus QCD.
1-2
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the number density varies rapidly. This does not imply n
essarily that the phase is relevant in this region: for exam
it could go to zero ase2VS, with VS the spatial volume, being
in this case at the same time irrelevant and nonmeasura

The situation becomes somewhat better if we move
large quark mass: the range (m1 ,m2), where finite statistics
effects prevent one from obtaining a sensible evaluation
free energy, becomes narrower and the region betweem
50 andm1, where interesting physics can be studied at le
at finite temperature, becomes wider. The same scen
holds at finite coupling too, allowing us to investigate a gr
part of the parameter space. In particular, as we will see
the following, we are interested in the neighborhood of
m50 finite temperature critical point, to address the fate
the deconfining transition when baryon density increases

III. SIMULATION SCHEME AND LARGE QUARK
MASS RESULTS

Our simulations are based on the GCPF~grand canonical
partition function! formalism @15# with an MFA ~microca-
nonical fermionic average! @8# inspired approach for inter
mediate coupling analysis.

The basic idea in MFA is the exploitation of the physic
equivalence between the canonical and microcanonical
malism via the introduction of an explicit dependence on
pure gauge energy in the computation of the partition fu
tion. Indeed Eq.~1! can be written as

Z~b,m,m!5E dEn~E!e26VbE^Seff
F ~m,mq!&E ~6!

where

n~E!5E @dU#d~6VE2Sg@U# ! ~7!

is the density of states at fixed pure gauge energyE, and

FIG. 2. Normalized difference between the free energy
modulus QCD and the free energy of true QCD in the MDP
proach~continuous line! superimposed to the expectation value
the determinant phase atb50 andmq50.1.
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^Seff
F ~m,mq!&E5

E @dU#d~6VE2Sg@U# !Seff
F ~@U#,m,mq!

n~E!
~8!

is the average over gauge field configurations at fixed ene
E of a suitable definition of effective fermionic action.

For the calculation of̂Seff
F &E we proceed as follows: first

we choose a set of energies selected to cover the rangeb
we are interested in. Secondly, for all the energies in the
we generate gauge field configurations using a pseu
microcanonical code; the generation of gauge fields at fi
energy is not the costly part of the whole procedure, so
can well decorrelate the configurations used for measu
the Dirac operator. Then, a library routine is used in orde
obtain the complete set of eigenvalues of the propagator
trix P. At this point we can reconstruct the fugacity expa
sion coefficients or, without any substantial additional co
puter cost, use the eigenvalues to explore the possibil
offered by alternative prescriptions for the fermionic effe
tive action, i.e. evaluate the modulus of the determinant
henceZi . At the end, we have the fermionic effective actio
evaluated at discrete energy values: a polynomial interp
tion allows the reconstruction at arbitrary values of the e
ergy E, in order to perform the numerical one-dimension
integration in Eq. ~6! and obtain the partition function
Zi(b,m,m).

In a previous work@12# we have found evidence for nu
merical instabilities in the evaluation of coefficients, who
origin lies on the ordering of the eigenvalues ofP as calcu-
lated by a standard diagonalization routine. A random
rangement of the eigenvalues, before the calculation of
coefficients, is necessary in order to control rounding effe
In the present work we have always used this procedur
calculate the GCPF expansion coefficients.

Let us now present our results in the large bare qu
mass limit at intermediate coupling finite density QCD. W
have performed simulations in a 4334 lattice ~10 masses
mq51.0→5.0) in the range of the chemical potentialm
P@0.0,4.0# and bP@4.0,6.0#; we will show the results at
mq51.8 as representative.

If the hadronic and quark-gluon plasma phases have to
separated in the physical parameter space of temperature
chemical potential we have to find evidence for a transit
line in the plane of the bare quantitiesb2m. This line
should start from thebc(m50) first order critical point and
continue for smaller values ofb asm is increased.

To address this point we have studied the plaquette
ergy E(b,m), the Polyakov loopP(b,m) and the number
density as a function ofb.

In Figs. 3~a! and 3~b! we report E(b,m) and
]E(b,m)/]b, evaluated at bare quark massmq51.8 and at
different values of the chemical potentialm,mc

S . In Fig.
3~a! we can clearly see a rapid variation of the observable
all the values ofm; for the m50 curve this happens in cor
respondence with the pseudo-temperature transition of
density full QCD. The critical gauge coupling moves
smallerb as we increasem. This phenomenon is also eviden
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as a sharp peak in the figure of the derivative@Fig. 3~b!#. It is
tempting to interprete this as an evidence of a tempera
induced phase transition extending at nonzero values om.
Also the behavior of the Polyakov loop points in this dire
tion: as can be seen in Fig. 4~a!, Pm(b) changes rapidly a
values ofb consistent with the ones obtained from the e
ergy.

We have completed the analysis with the number den
results. This observable gives a less clear signal since
forced to be a constant function ofb at m50. Nevertheless
we can see in Fig. 4~b! that the behavior of this observable
still consistent with previous findings for the gluonic quan
ties. It is useful to remark that plotting the same quantities
fixed b as a function ofm we would be practically unable to
see any signal.

Signals for a developing discontinuity in all these obse
ables rely on data in the region where the contribution of
phase is negligible, but similar behavior is found at larg
values ofm, too.

To conclude our analysis we report in Fig. 5 the (b,m)
phase diagram of the theory atmq51.8 andV544.

IV. CONCLUSIONS

In this paper we have studied finite density lattice QC
by means of numerical simulations. As is well known th

FIG. 3. Plaquette energyE(b,m) ~a! and its derivative
]E(b,m)/]b ~b! evaluated in a 4334 lattice at mq51.8 for m
50.0→1.5 ~from the right to the left! in steps of 0.1. Dashed line
are form.m1.
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approach, probably the only one able to tackle the nonp
turbative effects leading to quark-gluon plasma transiti
suffers severe problems due to the lack of hermiticity
Dirac operator for a single realization of gauge fields.

In the first part of the paper we have shown, as for sm
quark masses and strong coupling, any numerical algori
based on the GCPF approach gives results different f
what is expected in the region where the contribution of

FIG. 4. Polyakov loopP(b,m) ~a! and number density~b!
evaluated in a 4334 lattice atmq51.8 for m50.0→1.5 ~from the
right to the left! in steps of 0.1. Dashed line are form.m1.

FIG. 5. Phase diagram for the 4334 lattice atmq51.8 in the
(b,m) plane; the dotted line is form.m1.
1-4
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phase cannot be evaluated. To our understanding only a
tistics exponentially large with the system volume~and a
consequently high accuracy in numerical calculations! can
solve this problem.

Moving to the large quark mass region we meet a mu
better situation and a large part of the parameter space
comes accessible to numerical simulations.

The new result is the evidence of a transition line for tr
QCD that originates from the critical point of the four flav
m50 theory. This has to be regarded as the lattice coun
part of the transition line in the temperature-chemical pot
tial plane that separates the hadronic phase from the qu
gluon plasma phase at large masses.

Concerning this transition, the previous results in lite
ture were not definite, but it has to be stressed that they h
been obtained using different approaches and/or approx
tions. Instead we directly simulate QCD in the large ma
limit, and in this limit we obtain a result in qualitative agre
ment with expectations for a true finite density transitio
s

.

,
t.

uc
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Due to the differences in methods these results canno
directly compared; larger lattices could clarify the issue, b
the volumes attainable with reasonable computer resou
make this program not effective. To extend these result
the small quark mass region is impossible since the con
bution of the phase to the partition function becomes pra
cally unmeasurable in the whole parameter space.

At the end we have to conclude that, until now, fini
density lattice QCD, far from providing quantitative insigh
into the behavior of quarks and gluons, can at most give
some qualitative indication.
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