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Mass hierarchies and the seesaw neutrino mixing
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We give a general analysis of neutrino mixing in the seesaw mechanism with three flavors. Assuming that
the Dirac andu-quark mass matrices are similar, we establish simple relations between the neutrino parameters
and individual Majorana masses. They are shown to depend rather strongly on the physical neutrino mixing
angles. We calculate explicitly the implied Majorana mass hierarchies for parameter sets corresponding to
different solutions to the solar neutrino problem.

PACS number~s!: 14.60.Pq, 12.15.Ff
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One of the most pressing questions in particle physics
been the determination of the intrinsic properties of the n
trinos, namely, their masses and mixing angles. The re
atmospheric neutrino data@1# suggest strongly that neutrino
do have masses, and that, unlike the quark sector, at
some of the mixing angles are large. The most appea
model for small neutrino masses derives from the see
mechanism@2#. In doing so, however, one also introduc
additional unknowns in the form of the Dirac and Majora
mass matrices. We do have a handle on the Dirac ma
since, from the ideas of grand unified theories~GUTs!, it
should be similar to that of the quark sector. Not much
known about the Majorana mass matrix. The challenge
then to find out what the Majorana matrix is like in order f
the effective neutrino mass matrix to come out correctly.

In this paper, we will analyze the general structure of
seesaw mass matrix. Without loss of generality, we w
work in the basis in which the charged lepton and Majora
mass matrices are diagonal. As a starting point, we ass
that the Dirac mass matrix, in analogy with the quark m
matrix, has hierarchical eigenvalues and small left-han
mixing angles. Even in this case, large mixing can oc
through the interplay of the Dirac and Majorana matric
@3–7#.

In the seesaw mechanism, the effective neutrino mass
trix is given bymeff5mDM 21mD

T . The Dirac matrix can be
written asmD5U0mD

diagV0 in the basis whereM 21 is diag-
onal,

M 215S R1
2 0 0

0 R2
2 0

0 0 R3
2
D . ~1!
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HereU0 andV0 are left-handed~LH! and right-handed~RH!
rotations, respectively.mD

diag is a diagonal matrix with eigen
valuesmi ( i 51,2,3). The Majorana mass eigenvalues a
given by Mi51/Ri

2 ( i 51,2,3). For simplicity, we assum
thatU0 andV0 are real~i.e., we ignoreCP violating effects!.
Note thatV0 also contains contribution from the diagonaliz
tion of M 21, and thus it may contain large angles. Howev
we will restrict our discussions to reasonably small ang
~,p/4! in V0.

It is convenient to writeU0
21meffU05NNT, where

N5mD
diagV0M 2 1/25S m1

m2

m3

D V0S R1

R2

R3

D .

~2!

For hierarchical Dirac masses, to a good approximation

S m1

m2

m3

D V0.S m1V11 0 0

m2V21 m2V22 0

m3V31 m3V32 m3V33

D . ~3!

Here Vi j [(V0) i j are the matrix elements ofV0. More pre-
cisely @8#, the leading correction to this approximation is
LH rotation with rotation angles

~f12,f13,f23!.S m1

m2

V12

V22
,
m1

m3

V13

V33
,
m2

m3

V23

V33
D .

This can be absorbed intoU0, and will be ignored hence
forth.

If M 21}I , then NNT will be diagonal andmeff will be
diagonalized byU0. When M 21 deviates from the identity
matrix, the productV0M 21/2 is no longer orthogonal; then
N5UNdiagW, where U and W are LH and RH rotations,
respectively. The LH rotationU is induced byM 21/2 so that
(U21U0

21)meff(U0U)5(Ndiag)2. Thus, the mixing angles
for the effective neutrino mass matrix come fromU0U,
while the eigenvalues ofN are justAmi

eff, with mi
eff denoting
©2000 The American Physical Society01-1
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the effective neutrino masses. To the extent that we m
assumeU0 to be nearly the identity matrix, the case of lar
mixing angles receives its main contribution fromU, which
is induced byM.

From Eq.~2!, we have

N.S R1m1V11 0 0

R1m2V21 R2m2V22 0

R1m3V31 R2m3V32 R3m3V33

D . ~4!

While we have assumed that the Dirac mass eigenvaluemi
have the hierarchical structure of the quark masses, littl
known about the values ofRi .

The problem within the seesaw model is then twofo
One, given the parametersmi , Ri , andVi j , what is the LH
rotation matrixU as defined byN5UNdiagW? Conversely, if
we know U, i.e., the physical mixing angles for the neut
nos, what can we deduce about these parameters? We
discuss these issues in this paper.

Let us start from a general 333 matrix

N5S a1 a2 a3

b1 b2 b3

c1 c2 c3

D . ~5!

Anticipating the applications to the neutrino sector, we w
assumea2!b2;c2,where we have used the notationaW
5(a1 ,a2 ,a3), etc. We have shown elsewhere@8# that when
a matrix is brought into the upper triangular form, we c
obtain the LH mixing angles easily. Now, it is always po
sible to find a RH rotation so thatN becomes upper triangu
lar. In fact, geometrically, this amounts to a new coordin
system wherecW is aligned with the third axis, while the sec
ond and first axes are in the directionscW3(bW 3cW ) andbW 3cW ,
respectively. It is then clear that, for an appropriate RH
tation R,

Nt5NR5S aW • î aW • ĵ aW • ĉ

0 ubW 3 ĉu bW • ĉ

0 0 c
D , ~6!

where î 5bW 3cW /ubW 3cW u, ĵ 5cW3(bW 3cW )/(ucW uubW 3cW u), and ĉ

5cW /ucW u. Note that, since the physical mass matrix is given
NNT, the matrix N in Eq. ~5! is arbitrary up to any RH
rotation. The matrix in Eq.~6!, however, is constructed en
tirely from rotational invariants, and is given in terms
physical quantities. There is still some ambiguity in Eq.~6!,
in that the diagonal elements can be of either sign, co
sponding to the choice of orientation of the axes.

To diagonalizeN, we first diagonalize its~23! submatrix
explicitly by RL(23) andRR(23), with

tan 2u23
L 5

2ubW •cW u

c22b2
, tan 2u23

R 5
2ubW •cW uubW 3cW u

c41~bW •cW !22~bW 3cW !2
. ~7!

Further, the eigenvalues ofN arem2 andm3, with

m2,3
2 5 1

2 ~c21b2!7D, D25 1
4 ~c21b2!22ubW 3cW u2. ~8!
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Thus we find

Nt85RL~23!NtRR~23!5S aW • î a2 a3

0 m2 0

0 0 m3

D , ~9!

where (a2 ,a3)5(aW • ĵ ,aW • ĉ)RR(23). Note that the mixing
angleu23

L is maximal whenb25c2. Also, a mass hierarchy

m3@m2, implies thatbW •cW'c2, i.e., bW and cW are nearly par-
allel. Sinceua3u&a!m3, a LH ~13! rotation RL(13), with
uL

13;ua3u/m3!1, removes the~13! element ofNt8 without
changing the other elements appreciably. Summarizing,
see that, ifa2!c2,

N̄5RL~13!RL~23!NRRR~23!.S aW • î a2 0

0 m2 0

0 0 m3

D , ~10!

whereRL(13).I , R is defined in Eq.~6!, and the rotation
angles inRL,R(23) are given in Eq.~7!. The final diagonal-
ization ofN̄ can be achieved by a combined LH and RH~12!
rotation. In particular, maximal mixing is possible ifa2
;m2. We emphasize that as long as the~13! rotationRL(13)
is small, the diagonalization ofN can be decomposed int
that of two 232 matrices. This is a very useful simplifica
tion.

Of particular interest in neutrino physics is the possibil
of large mixing angles. AssuminguaW u!ucW u, which ensures
that u13

L !1, maximal~23! rotation,u23
L 5p/4, is obtained if

ubW u5ucW u. There are now two possibilities:
~A! ubW •cW u@ubW 3cW u2.
In this case, from Eq.~8! we find thatm2

2.ubW 3cW u2/(c2

1b2)!m3
2 . Under this condition, we can have bimaxim

mixing, u12
L .p/4. This is achieved ifa2.m2. Note that, for

ubW 3cW u!ubW •cW u, we have the boundutan2uR
23u&ubW 3cW u/ubW •cW u.

Thus usinuR
23aW • ĉu!m2, so the conditiona2.m2 can also be

written asaW • ĵ .m2.
~B! ubW •cW u;ubW 3cW u.
In this casem2;m3. All of the components ofaW are

smaller than m2, in particular, um2u@a2. Thus, u12
L

;ua2u/um2u!1, and we can only have single maximal mi
ing.

Knowing N, the above analysis yields the neutrino mixin
anglesu i j

L . In Eq. ~4!, N is given in terms of the parameter
mi , Ri , andVi j . There are generally two classes of pos
bilities: ~A! All Ri are of the same order, or~B! there is a
strong hierarchy in the Majorana sector.

For the case of no Majorana hierarchy,R1;R2;R3, we
can find approximately the rotation angles, which give

R̄L5R12S m1R1
2

m2R2
2

V21D R13S m1R1
2

m3R3
2

V31D R23S m2R2
2

m3R3
2

V32D , ~11!

so thatR̄LNNTR̄L
T5Ndiag

2 .In other words, the induced neu
trino mixing angles are given approximately byu IJ

L

. (mIMJ/mJMI) VJI , (I ,J)5(1,2),(2,3),(1,3).Unless ther
1-2
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is a stronger hierarchy in the Majorana sector in compari
to the Dirac sector, all neutrino mixing angles are negligi
whenVi j is reasonably small.

To analyze the situation when there is a strong hierar
in Ri , we will limit our discussion to situations which ar
physically interesting. For this purpose, it is actually mo
convenient to reverse our procedure above, i.e., given
physical mixing angles, we deduce the form of the matrixN.
We note that, experimentally, it is quite suggestive that
neutrino masses are hierarchical, and that the neutrino m
ing matrix Ua i (a5e,m,t; i 51,2,3) is given approximately
by

U5R23~f!R13~e!R12~u!

.S cu su e

2~sucf1ecusf! ~cucf2esusf! sf

~susf2ecucf! 2~cusf1esucf! cf

D , ~12!

where tanf;O(1) and e!1 @9#. We have kept only the
leading terms ofe in U. Here, tanu can be either of order 1
~corresponding to the ‘‘bi-maximal’’ mixing scenario!, or
could be smaller~‘‘single-maximal’’ scenario!. In the latter
situation, we will discuss two possibilities:~A! e!su , ~B!
e@su . Appropriate approximations can be obtained for ea
of them.

For the casee!su , the matrixN is

N5US n1 0 0

0 n2 0

0 0 n3

D 5S cun1 sun2 en3

2sucfn1 cucfn2 sfn3

susfn1 2cusfn2 cfn3

D .

~13!

up to an arbitrary RH rotation. From Eq.~13!, with the as-
sumptionn1!n2!n3, it is readily seen thatb2/sf

2 . c2/cf
2

5n3
25m3

eff , and

ubW 3cW u

ubW •cW u
.

cun2n3

sfcfn3
2

5
cun2

sfcfn3
!1. ~14!

These two equations imply thatbW andcW are nearly parallel to
leading order inn2 /n3. Also a!b,c, so that our genera
analysis is applicable toN.

We can put Eq.~13! in the lower triangular form through
a RH rotation. We have

N5S a 0 0

bW •aW /a uaW 3bW u/a 0

cW•aW /a
~aW 3bW !•~aW 3cW !

auaW 3bW u

~aW 3bW !•cW

uaW 3bW u

D
.S Acu

2n1
21su

2n2
21e2n3

2 0 0

~cfsucun2
21sfen3

2!/a susfn2n3 /a 0

~2sfsucun2
21cfen3

2!/a sucfn2n3 /a n1 /susf

D .

~15!
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Note that, as in Eq.~6!, the entries ofN in Eq. ~15! are
uniquely determined by the physical neutrino paramete
while Eq. ~13! is not.

A similar analysis can be done fore@su . Here, Eqs.~13!
and~15! are no longer valid. To lowest order insu ande and
with f5p/4, we obtain

N.S en3 0 0

n3

A2
S 11

s2un2
2

2en3
2 D n2

A2
S cu2

su

e D 0

n3

A2
S 12

s2un2
2

2en3
2 D 2

n2

A2
S cu1

su

e D A2n1

e

D . ~16!

We may now compare Eq.~4! to Eqs.~15! and ~16!. Given
the neutrino parameters,ni , su , and e, this method gives
immediately the Majorana massesMi , assuming that we
may identify the Dirac masses with the quark masses.
emphasize that this comparison is viable because the lo
triangular form for theN matrix is unique, there being no
more ambiguities due to RH rotations. Also, the structure
these equations shows immediately that they are consis
only if there is a very strong hierarchy,R1@R2@R3. Next,
we will discuss in detail the physical consequences of t
result.

Assuming hierarchical Dirac neutrino masses and sm
RH rotation angles, it is seen from Eqs.~4! that theN matrix
is naturally of lower-triangular form. The discussion
physical constraints can be done most conveniently in
lower triangular basis. In this section, we will start from Eq
~4!, ~15!, and ~16! and present the results for the neutrin
parameters derived from different solutions to the solar a
atmospheric neutrino observations. To be concrete, we
usef545°, andmi5(mu ,mc ,mt) ~at the seesaw scale!, al-
though different choices can be accommodated.

~A! e!su :
Depending one, Eq. ~15! gives rise to three differen

patterns, with the largest elements located in the~a! ~2,2!,
~3,2!, ~b! ( i , j ), i 51,2,~c! ~2,1!, ~3,1! positions, respectively
It can be seen that only type~a! with e!m2

eff/m3
eff is natural,

which we will concentrate on. In this limit, with tanu
.n1 /n2,

N.S sun2 0 0

1

A2
cun2

1

A2
n3 0

2
1

A2
cun2

1

A2
n3 A2

n1

su

D , ~17!

where we identifyni
25mi

eff . Comparison to Eq.~4! immedi-
ately yields~with V11'V22'V33'1)

m2
eff5n2

25~R1m1!2/su
25mu

2/su
2M1 ,

m3
eff5n3

252~R2m2!252mc
2/M2 ,

m1
eff5n1

25su
2~R3m3!2/25 su

2mt
2/2M3 . ~18!

2V31/V215 V32/V225 m2/m3 5 mc/mt . ~19!
1-3
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Quite surprisingly,m3
eff scales asmc

2 rather thanmt
2 . This is

because in Eq.~17! the ~22! element is one of the larges
This gives a scale forM2 much lower than one would ex
pect,

M2.
2mc

2

ADmatm
2

563109 GeV, ~20!

where we have usedmc(M2).0.4 GeV, andm3
eff5ADmatm

2

5A331023, which will also be used in the following.
Note also thatV32 is independent of the Majorana ma

Mi and that it scales linearly withmc /mt . This means that
the Majorana sector decouples owing to its very large h
archy. Similarly, we have

V21

V11
5

m1

A2tanum2

5
mu

A2tanumc

, ~21!

V31

V11
52

m1

A2tanum3

5 2
mu

A2tanumt

. ~22!

From Eqs.~19!, ~20!, ~21!, we see that all of the RH angle
u i j

R are small.
The other two heavy Majorana mass values depend on

different solutions to the solar neutrino problem@10#. We
will use m3

eff5ADmatm
2 , m2

eff5ADmsolar
2 , while m1

eff is not
known. However, we can derive a bound forM3 using the
parameterr 5m2

eff/m1
eff@1. From Eq.~18!, we note thatM1

andM3, in addition to the usual Dirac mass squared, dep
sensitively onsu as well as on the effective neutrino mass
This can be seen directly in the following equations:

M1

M2
5

mu
2m3

eff

2mc
2su

2m2
eff

,
M2

M3
5

4mc
2m1

eff

mt
2su

2m3
eff

. ~23!

We will now turn to numerical estimates with inputs comin
from the three solutions to the solar neutrino proble
vacuum oscillations~VO!, large angle Mikheyev-Smirnov
Wolfenstein~MSW! ~LAM !, and small angle MSW~SAM!.

~A1! VO
The neutrino masses and mixings are given by@10# u
545°, m2

eff'ADM solar
2 5A7310211 eV. From Eq.~23!, we

find

M152mu
2/m2

eff '53108 GeV, ~24!

M3 /r'431017 GeV ~r[m2
eff/m1

eff@1!. ~25!

~A2! LAM
Here we take@10#,

sin2 2usolar.0.8, m2
eff'ADmsolar

2 5A331025 eV. ~26!

Going through the same analysis as in the VO ca
we haveM1'13106 GeV, M2'63109 GeV, M3 /r'4
31014 GeV (r @1).

~A3! SAM-I
We now have@10#
11130
r-
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,

e,

sin2 2usolar.531023, m2
eff'ADmsolar

2 5A531026 eV.
~27!

They imply M1'73108 GeV, M2'63109 GeV, M3 /r
'431012 GeV (r @1). These results were obtained und
the assumption thate→0. Thus, ife@n2 /n3, Eq. ~17! is no
longer valid. Also, ife@su , Eq. ~15! should be replaced by
Eq. ~16!. This condition is actually very likely to be valid fo
the case of the SAM solution. We treat this case in de
next.

~B! e@su ~SAM-II !:
The parameters foru and m2

eff are taken as in SAM-I.
However, we now use Eq.~16! instead of Eq.~15!. Also, the
numerical result depends on the value ofe, which, for defi-
niteness, we will take to bee50.1. We obtainM1'2
3106 GeV, M2'131011 GeV, M3 /r'231013 GeV (r
@1). In summary, we find that if the physical neutrino p
rameters are known, we can obtain the Majorana masse
rectly when we identify the Dirac masses with the qua
masses. The Majorana masses have rather strong depen
on the physical mixing angles, so that their values spa
wide range. Numerically, it is noteworthy thatM2'6
3109 GeV for a wide range of parameters. Also, the V
solution forM3 (@431017GeV) seems too large for it to b
viable. Finally, in some casesM1 can be rather low
(;106 GeV).

The observation that neutrino masses are tiny has a n
ral explanation in the seesaw model. However, its com
cated structure also means that the neutrino mixing angle
not derive simply from the seesaw components, viz.,
Dirac matrix mD and the Majorana matrixM 21. In fact, if
we writemD5U0mD

diagV0 , M 215UM(Mdiag
21/2)2UM

T , meff de-
pends, roughly speaking, quadratically on all of the com
nents that we displayed.

In this paper, we analyze the problem in several ste
First, we writemeff5NNT, so thatN depends linearly on the
aforementioned components. ButN has the further ambiguity
of an arbitrary RH rotation. We will eliminate this ambiguit
by reducingN to the triangular form. The lower triangula
form arises naturally ifmD has a hierarchy. However, th
upper triangular form is the easiest to use in order to ext
the LH, physical, neutrino mixing angles. By expressing t
triangular matrix elements in terms of RH rotational inva
ants, it is easy to transform back and forth between the
ferent forms ofN. Thus, given the parameters inmD andM,
we can deduce the neutrino mixing angles. Convers
given the physically plausible values of the neutrino mas
and mixing angles, we can obtain the constraints that mus
satisfied by the parameters inmD andM. Experimentally, we
have a fairly good idea about the intrinsic neutrino para
eters. Their masses are most probably hierarchical, the~23!
mixing angle is almost maximal, and the~13! mixing angle is
small. From these parameters, we can infer the propertie
the Majorana masses and the RH mixing angles ofmD , if we
assume thatmD is similar to theu-quark mass matrix, i.e.
mD has small LH mixing angles andmi'(mu ,mc ,mt). It
was found that there must be a large hierarchy inM, propor-
tional not only to the ratios of Dirac masses squared, but a
1-4
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to the squares of the mixing angles. In addition, the R
mixing angles inmD combined with M 21 must be very
small, and must be equal to the mass ratios inmD . Physi-
cally, the large hierarchy inM implies the existence of inter
mediate mass scales. It would be most interesting if th
conclusions can be corroborated by other sources.

Using solar neutrino solutions as inputs, we calculated
individual Majorana masses. Because of their strong dep
dence on the physical neutrino mixing angles, a wide ra
of values was found. In particular,M3 is so large (@4
31017GeV) for the VO solution which makes it highly dis
favored. In this work we have not treated the issue of ren
th

s.

s
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malization, although it can be shown that the RGE effects
small @11#. We have also not discussed the case when ei
or both ofmD andM are complex. Although the 232 prob-
lem can be solved, the 333 case does not seem to have
simple solution. Nevertheless, it can be shown that, with
erarchical masses and small angles, complex phases do
contribute significantly@4#. We hope to return to this prob
lem in the future.
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