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Dynamical properties of the conformally coupled flat FRW model
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In this paper we study the dynamical behavior of a simple cosmological model defined by a spatially flat
Robertson-Walker geometry, conformally coupled with a massive scalar field. We determine a Lyapunov-like
function for the nonlinear evolution equations. From this function we prove that all the stationary solutions are
unstable. We also show that all initial conditions, different from the stationary points, originate an expanding
universe in the asymptotic regime, with a scale parametera(t) that goes to infinity and the scalar fieldf(t)
that goes to zero in an oscillatory way. We also find two asymptotic solutions, valid for sufficiently large
values of time. These solutions correspond to a radiation dominated phase and to a matter dominated phase,
respectively.

PACS number~s!: 98.80.2k
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I. INTRODUCTION

In this work we briefly analyze some new properties of
oversimplified cosmological model: a spatially fl
Robertson-Walker geometry, conformally coupled with
massive scalar field, which has been studied in many pa
@1#. The universe is well described by spatially flat (k50)
cosmological models, which are also compulsory if we u
inflationary theories, and an inflation field is usually includ
in these models. Moreover, the conformal coupling is nec
sary if we want to satisfy the equivalence principle@2#.
Hence, the studied oversimplified structure is necessa
contained in the universe, albeit complemented by m
more detailed features. Since this simplified structure by
self implies several of the most important cosmologi
properties we believe that the results of this Brief Report
of interest.

These properties are~a! it expands to infinity forall non-
stationary initial conditions,~b! it contains a Lyapunov-like1

function F with a positive time derivative and therefore
essentially time asymmetric,~c! the final phase of the uni
verse evolution is either radiation or matter dominated, a
~d! the scalar fieldf(t) goes to zero in an oscillatory way i
the asymptotic regime.

II. THE MODEL

Let us consider a flat Robertson-Walker geometry w
scale factora(t) conformally coupled with a neutral massiv

*Email address: lplara@arnet.com.ar
1A Lyapunov function is an evergrowing function oft that van-

ishes at a critical point and it is different from zero in a neighb
hood of this point. Our function is not a proper Lyapunov functi
because it is not of definite sign.
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scalar rescaled fieldf(t) of massm. The Hamiltonian reads
@3#

H5
1

2
~ḟ22ȧ2!1

m2

2
a2f25

1

m2
k ~1!

where

k5
1

2
~ ẋ22 ẏ2!1

1

2
x2y2, ~2!

x5mf, y5ma, px5 ẋ, py5 ẏ, and the overdots indicate
derivative with respect to the conformal timet, defined by
the relationdtp5a(t) dt, where tp is the commoving or
proper time. The field equations read

ẍ52xy2, ÿ5yx2 ~3!

and the Einstein constraint isH50. This condition ex-
presses the Hamiltonian constraint of general relativity. T
fixed points are located at

x arbitrary, y5px5py50,

y arbitrary, x5px5py50.

These fixed points are stationary solutions of the system

III. MAIN DYNAMICAL PROPERTIES OF THE MODEL

Let us define the function

F~y,ẏ!5yẏ. ~4!

Taking the time derivative of this function along an orbit
the system and using the second Eq.~3! we obtain

-
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dF

dt
5 ẏ21x2y2^0. ~5!

Hence, functionF is a monotonically growing function oft.
Then, we have

lim
t→1`

F@y~ t !,ẏ~ t !#51` ~6!

for an arbitrary nonstationary initial condition. The ca
limt→1` F@y(t),ẏ(t)#5C, where C is a constant, is ex-
cluded since for great values oft we have y(t)>
1A2Ct1C0 ~here we consider only positive ‘‘physical’
values ofy since this variable is simply a rescaled version
the scale factor!, and the second Eq.~3! cannot be satisfied
for real values ofx. Here,C0 is an integration constant tha
appears when we solve the differential equationy(t) ẏ(t)
>C. We conclude that limt→1`y(t)51`, i.e., all the orbits
in phase space (x,y,px ,py) go to infinity. It is clear that Eq.
~5! forbids the existence of periodic solutions. If a period
solutionx(t), y(t) of periodT exists, integrating both side
of Eq. ~5! along this solution we obtain zero in the left-han
side and a positive number in the right-hand side and
have a contradiction. All initial conditions different from th
fixed points yield a universe evolution that ends in an
panding phase.

Moreover, from this fact we see that all the fixed poin
are unstable. We also conclude that the system has no
otic behavior because all the orbits different from the fix
points are not bounded~see Ref.@4#!.

Let us now study the asymptotic behavior of the sca
field. For great values oft the functiony(t) goes to1` in a
monotonous way, and the productyẏ is positive. Then, the
function G(y,ẏ)5 ẏ/y is well defined and positive in the
asymptotic regime. Taking the time derivative ofG along an
orbit of the system and using the second Eq.~3! we obtain

Ġ5
ÿ

y
2

ẏ2

y2
5

y2x22 ẏ2

y2
. ~7!

The constraintH50 gives

ẏ25 ẋ21x2y2. ~8!

Replacing this expression ofẏ2 in Eq. ~7! we obtain

Ġ52
ẋ2

y2
<0. ~9!

Since the functionG is positive and always decreasing w
have

lim
t→1`

G5 lim
t→1`

ẏ
y 5k, ~10!

wherek is a non-negative constant. Since functionG tends to
a constant value in a monotonous way, its first derivat
must tend to zero whent→1`, i.e.,
10730
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lim
t→1`

Ġ5 lim
t→1`

2
ẋ2

y2
50. ~11!

Equation~8! can be written as follows:

ẏ2

y2
5

ẋ2

y2
1x2. ~12!

Taking the limit whent→1` in both sides of this equality
and using Eqs.~10! and ~11!, we obtain

lim
t→1`

x25k2. ~13!

We will now show that the constantk is zero. From Eq.
~13! we have that limt→1`x56k. Let us consider a first
case where the limit is positive. For sufficiently great valu
of t, x must approach the value1k in a monotonous way. In
fact, small oscillatory behavior with decreasing amplitu
around the value1k is impossible, since such type of be
havior implies a sequence of changes of sign of the sec
derivative ofx. From the first Eq.~3! we see that it is impos-
sible because the functionx does not change sign.

But, if the functionx approaches the value1k in a mo-
notonous way, its first and second derivatives must go
zero whent→1`. Since limt→1`y251`, we see from the
first Eq.~3! that ẍ cannot go to zero. The analysis of the ca
where x approaches the value2k is analogous. Then, we
conclude that the constantk must be zero, i.e.,

lim
t→1`

x50. ~14!

We have proved thatx cannot approach the value6k in a
monotonous way. The analysis is independent of the valu
k. Then, we conclude thatx has an oscillatory behavior with
a decreasing amplitude whent→1`. This oscillatory be-
havior is not possible forkÞ0 but it becomes possible in th
casek50 becausex(t) can change sign.

To summarize, we have proved that the scalar fieldf
5x/m goes to zero in an oscillatory way, the factor scalea2

goes to infinity in a monotonous way, andȧ/a goes to zero
when t→1` @Eq. ~10! with k50].

IV. ASYMPTOTIC SOLUTIONS

For t@1 we can obtain explicit asymptotic solutions. In
stead of system~ 3! we will consider the system

ẍ52xy2, H50 ~15!

because deriving the second equation with respect tot and
using the first one we obtainÿ5yx2. System~15! automati-
cally satisfies the constraintH50, while the system~3! has
solutions that do not satisfy this constraint.

Inspired by exhaustive numerical calculations we ha
been able to determine two different asymptotic solutions
t@1: namely,
2-2
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x~ t !;
1

t
sinS 1

2
t2D , y~ t !;t ~16!

and

x~ t !;
2

t
sinS 1

3
t3D , y~ t !;t2. ~17!

Introducing these expressions in system~15! and takingt
@1, it can easily be verified that Eqs.~16! and ~17! are
asymptotic solutions. Expressions~16! and ~17! agree with
the general results of Sec. III.

Expressing these asymptotic solutions in terms of com
ing time tp we conclude that~a! the final phase of solution
~16! is radiation dominated@since y(tP);tP

1/2] and ~b! the
final phase of solution~17! is matter dominated@since
y(tP);tP

2/3].
We have proved that Eqs.~16! and ~17! are asymptotic

solutions but this does not imply that they are the uniq
solutions fort@1. For a large number of initial condition
chosen at random, numerical computations show that the
sociated asymptotic solution is given by Eq.~17!, i.e., a mat-
ter dominated evolution.

We have performed our analysis in the conformal timet.
In general, to translate the results to the comoving timetp is
not an easy matter~in some cases it is practically impossibl!
when the scale factora(t) changes sign or vanishes. In o
case, for sufficiently large values oft, a(t) does not vanish
and the asymptotic behavior in the variablet can be easily
translated to the comoving timetp . If we choose physica
initial conditions in such a way thata(t50)ȧ(t50).0, it is
10730
-
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easy to show thata(t) does not vanish Then, for such initia
conditions all the results obtained in terms oft can be easily
translated in terms of comoving timetp , for arbitrary values
of t. For more general cosmological models where the sc
factor changes sign or vanishes the dynamical analysi
terms of conformal timet is not justified. In fact, it is clearly
wrong from the point of view of dynamical system theory

V. CONCLUSIONS

In spite of the simplified nature of our cosmologic
model, its dynamical evolution is controlled by highly no
linear equations. Nevertheless, we have been able to ob
in a rigorous way, the most relevant dynamical properties
the model: the instability of all the stationary solutions, t
expansive nature of the evolution, the fact that the sca
field f(t) goes to zero in an oscillatory way and explic
expressions for the asymptotic solutions, giving the two p
sible phases of the universe.

Under the time inversiont→2t the Hamiltonian~2!, the
field equations~3! and the constraintH50 remain invariant,
so the system is trivially time symmetric. Nevertheless, if t
motion begins at a finite point with a finite value ofF ~and
this would be the case for the real universe that began v
small and with high temperature in a quantum phase!, the
motion always goes to infinity. Then, it is time asymmet
since its initial and final states are different. Of course,
inverse motion is also a solution of the evolution equatio
But the motion towards infinity is usually expanding an
with creation of matter-field energy, and therefore cor
sponds to what we see in the observable universe.
ion
m
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