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Dynamical properties of the conformally coupled flat FRW model
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In this paper we study the dynamical behavior of a simple cosmological model defined by a spatially flat
Robertson-Walker geometry, conformally coupled with a massive scalar field. We determine a Lyapunov-like
function for the nonlinear evolution equations. From this function we prove that all the stationary solutions are
unstable. We also show that all initial conditions, different from the stationary points, originate an expanding
universe in the asymptotic regime, with a scale parameer that goes to infinity and the scalar fiet{t)
that goes to zero in an oscillatory way. We also find two asymptotic solutions, valid for sufficiently large
values of time. These solutions correspond to a radiation dominated phase and to a matter dominated phase,
respectively.

PACS numbe(s): 98.80—k

. INTRODUCTION scalar rescaled fielgh(t) of massm. The Hamiltonian reads
In this work we briefly analyze some new properties of an[3]
oversimplified cosmological model: a spatially flat 1 m2 1
Robertson-Walker geometry, conformally coupled with a H==(p?—a?)+ —aZp?=—Kk (1)
massive scalar field, which has been studied in many papers 2 2 m?

[1]. The universe is well described by spatially flat=0)
cosmological models, which are also compulsory if we usevhere
inflationary theories, and an inflation field is usually included
in these models. Moreover, the conformal coupling is neces- kzl()'(z_yz)Jr Exzyz )
sary if we want to satisfy the equivalence princigl2]. 2 2 '
Hence, the studied oversimplified structure is necessarily
contained in the universe, albeit complemented by muck=me¢, y=ma, p,=x, py= y, and the overdots indicate
more detailed features. Since this simplified structure by itderivative with respect to the conformal tinbedefined by
self implies several of the most important cosmologicalthe relationdt,=a(t) dt, wheret, is the commoving or
properties we believe that the results of this Brief Report argroper time. The field equations read
of interest.

These properties ai@) it expands to infinity forall non- X=—xy?, y=yx? (3)
stationary initial conditions(b) it contains a Lyapunov-like
function F with a positive time derivative and therefore is and the Einstein constraint i3/=0. This condition ex-
essentially time asymmetri¢g) the final phase of the uni- presses the Hamiltonian constraint of general relativity. The
verse evolution is either radiation or matter dominated, andixed points are located at
(d) the scalar fieldp(t) goes to zero in an oscillatory way in
the asymptotic regime.

Il. THE MODEL y arbitrary, x=py=py=

Let us consider a flat Robertson-Walker geometry withThese fixed points are stationary solutions of the system.

scale factol(t) conformally coupled with a neutral massive
I1l. MAIN DYNAMICAL PROPERTIES OF THE MODEL

X arbitrary, y=p,=py,=0,

Let us define the function
*Email address: Iplara@arnet.com.ar

A Lyapunov function is an evergrowing function othat van- E(V.V)=V\ 4
: " : Lo . : (Y, y)=yy. 4
ishes at a critical point and it is different from zero in a neighbor-
hood of this point. Our function is not a proper Lyapunov function Taking the time derivative of this function along an orbit of
because it is not of definite sign. the system and using the second E}).we obtain
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dF .o 22 . ; X2
— =y“+x°y*=0. (5) lim G= lim ——=0. (11
dt t— 4o t—+oo y2

Hence, functiorF is a monotonically growing function df

Then, we have Equation(8) can be written as follows:

lim FLy(t),y(t)]=+2 (6) v _
s+ oo —2——+X2. (12)
for an arbitrary nonstationary initial condition. The case
lim,_ ;o F[y(t),y(t)]zc, where C is a constant, is ex-
cluded since for great values of we have y(t)=

Taking the limit whent— +<0 in both sides of this equality
and using Egs(10) and(11), we obtain

+2Ct+Cqy (here we consider only positive “physical” lim x2=Kk2. (13)
values ofy since this variable is simply a rescaled version of ——

the scale factgr and the second E¢3) cannot be satisfied
for real values oi. Here,C, is an integration constant that ~ We will now show that the constaftis zero. From Eq.
appears when we solve the differential equatigit)y(t) (13 we have that lim.,..x==k. Let us consider a first
=C. We conclude that lim. , .y(t) =+, i.e., all the orbits  Case where the limit is positive. Eor sufficiently great values
in phase spacex(y, py.p,) go to infinity. It is clear that Eq.  Of t, x must approach the valuék in a monotonous way. In
(5) forbids the existence of periodic solutions. If a periodicfact, small oscillatory behavior with decreasing amplitude
solutionx(t), y(t) of period T exists, integrating both sides around the valuetk is impossible, since such type of be-
of Eq. (5) along this solution we obtain zero in the left-hand havior implies a sequence of changes of sign of the second
side and a positive number in the right-hand side and wélerivative ofx. From the first Eq3) we see that it is impos-
have a contradiction. All initial conditions different from the Sible because the functiondoes not change sign.
fixed points yield a universe evolution that ends in an ex- But, if the functionx approaches the valuek in a mo-
panding phase. notonous way, its first and second derivatives must go to
Moreover, from this fact we see that all the fixed pointsZ€ro whert— +oo. Since lim_ ,..y*>= +, we see from the
are unstable. We also conclude that the system has no chiiest Eq.(3) thatx cannot go to zero. The analysis of the case
otic behavior because all the orbits different from the fixedwhere x approaches the value k is analogous. Then, we

points are not bounde@ee Ref[4]). conclude that the constaktmust be zero, i.e.,
Let us now study the asymptotic behavior of the scalar )
field. For great values dfthe functiony(t) goes to+ in a lim x=0. (14)
t—+ox

monotonous way, and the produgy is positive. Then, the

function G(y,y) =y/y is well defined and positive in the  We have proved that cannot approach the valuek in a
asymptotic regime. Taking the time derivative@falong an  monotonous way. The analysis is independent of the value of
orbit of the system and using the second E3).we obtain k. Then, we conclude thathas an oscillatory behavior with

a decreasing amplitude whenr-+. This oscillatory be-

g i’_z_ y2x2—y? havior is not possible fok+ 0 but it becomes possible in the

G= y B y2 B y2 ™ casek=0 becaus&(t) can change sign.
To summarize, we have proved that the scalar figld
The constrainf{=0 gives =x/m goes to zero in an oscillatory way, the factor scafe
T goes to infinity in a monotonous way, aada goes to zero
ye =X+ XY (8  whent— + [Eq. (10) with k=0].

Replacing this expression §f in Eq. (7) we obtain V. ASYMPTOTIC SOLUTIONS

G X2 -0 9 Fort>1 we can obtain explicit asymptotic solutions. In-
- F\ . ©  stead of systeni 3) we will consider the system
Since the functiorG is positive and always decreasing we x=—xy?, H=0 (15
have
, because deriving the second equation with respecttatod
lim G= lim X=k (10) using the first one we obtaiy=yx?. System(15) automati-
MU cally satisfies the constraifti{=0, while the systent3) has
solutions that do not satisfy this constraint.
wherek is a non-negative constant. Since funct®mends to Inspired by exhaustive numerical calculations we have
a constant value in a monotonous way, its first derivativebeen able to determine two different asymptotic solutions for
must tend to zero wheti— +x, i.e., t>1: namely,
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1 /1 easy to show thai(t) does not vanish Then, for such initial
X(t)~ Tsin<§t2). y(t)~t (16)  conditions all the results obtained in termstafan be easily
translated in terms of comoving tintg, for arbitrary values
and of t. For more general cosmological models where the scale
factor changes sign or vanishes the dynamical analysis in
, 3 2 terms of conformal time is not justified. In fact, it is clearly
()~ Tsm §t oy~ 17) wrong from the point of view of dynamical system theory.

Introducing these expressions in systéh®) and takingt
>1, it can easily be verified that Eq§l6) and (17) are V. CONCLUSIONS
asymptotic solutions. Expressiof&6) and (17) agree with

In spite of the simplified nature of our cosmological
the general results of Sec. lll. P P 9

: . . _ model, its dynamical evolution is controlled by highly non-
. E)_(pressmg these asymptotic SOIU.“O”S in terms of COMOVinear equations. Nevertheless, we have been able to obtain,
ing time t, we conclude thata) the final plr/lase of solution i, 4 rigorous way, the most relevant dynamical properties of
(16) is radiation dom.|nate@5|.ncey(tp)~tpz] and (b) the e model: the instability of all the stationary solutions, the
final phgse of solution(17) is matter dominatedsince  expansive nature of the evolution, the fact that the scalar
Y(tP)NtPS]- ~ field ¢(t) goes to zero in an oscillatory way and explicit
We have proved that Eq¢16) and (17) are asymptotic  expressions for the asymptotic solutions, giving the two pos-
solutions but this does not imply that they are the uniquesjple phases of the universe.
chosen at random, numerical computations show that the agg|q equationg3) and the constrairt{=0 remain invariant,
sociated asymptotic solution is given by Efj7), i.e., amat- g the system is trivially time symmetric. Nevertheless, if the
ter dominated evolution. o . motion begins at a finite point with a finite value Bf(and
We have performed our analysis in the conformal time  thjs would be the case for the real universe that began very
In general, to translate the results to the comoving tigie  small and with high temperature in a quantum phatee
not an easy mattein some cases it is practically impossible motion always goes to infinity. Then, it is time asymmetric
when the scale factaa(t) changes sign or vanishes. In our since its initial and final states are different. Of course, the
case, for sufficiently large values gfa(t) does not vanish jnverse motion is also a solution of the evolution equations.
and the asymptotic behavior in the variablean be easily Byt the motion towards infinity is usually expanding and
translated to the comoving tintg . If we choose physical with creation of matter-field energy, and therefore corre-
initial conditions in such a way that(t=0)a(t=0)>0, itis  sponds to what we see in the observable universe.
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