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Noncommutative bion core
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We examine noncommutative solutions of the non-Abelian theory on the world-volume ofN coincident
D-strings. These solutions can be interpreted in terms of noncommutative geometry as funnels describing the
non-Abelian D-string expanding out into an orthogonal D3-brane. These configurations are ‘‘dual’’ to the bion
solutions in the Abelian world-volume theory of the D3-brane. In the latter, a chargeN magnetic monopole
describesN D-strings attached to the D3-brane with a spike deformation of the world volume. The noncom-
mutative D-string solutions give a reliable account of physics at the core of the monopole, where the bion
description is expected to break down. In the largeN limit, we find good agreement between the two points of
view, including the energy, couplings to background fields, and the shape of the funnel. We also study
fluctuations traveling along the D-string, again obtaining agreement in the largeN limit. At finite N, our results
give a limit on the number of modes that can travel to infinity along theN D-strings attached to the D3-brane.

PACS number~s!: 11.25.Hf
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I. INTRODUCTION

D-branes@1,2,3# have become important tools in the que
to develop a full understanding of string theory. The lo
energy action describing the dynamics of test D-branes c
sists of two parts: the Born-Infeld action@4# and the Chern-
Simons action@5,6#. This nonlinear action reliably capture
the physics of D-branes with great accuracy. One interes
aspect of this story is that one finds that the D-brane ac
supports solitonic configurations describing lowe
dimensional branes protruding from the original D-bra
@7,8,9#.

For instance, in the case of a D3-brane, one finds sp
solutions corresponding to fundamental strings and D-stri
~as well as strings! attached to the D3-brane. These config
rations have both the world-volume gauge fields and tra
verse scalar fields excited. The gauge field correspond
that of a point charge arising from the end-point of the
tached string, i.e., an electric charge for a fundamental st
and a magnetic monopole charge for a D-string. The sc
field on the other hand, represents a deformation of the
ometry of the D3-brane, caused by attaching the strings.

Naively, the range of validity of this analysis is limited t
a range far from the core of the spike where the fields on
D3-brane world-volume are slowly varying. This range c
be increased by increasing the numberN of attached strings
~Although N cannot be too large if we are to ignore gravit
tional effects.! However, the results obtained seem to hav
larger regime of validity, maybe even all the way to t
center of the spike where it protrudes an infinite distan
from the original position of the D3-brane. This can partly
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understood in light of the fact that the basic BPS spike i
solution to the full derivative-corrected equations of moti
following from string theory@10#. Even the dynamics of the
spike, as probed through small fluctuations, agree with
pected string behavior@11,12,13#. However, Kastor and Tra
schen@13# showed that certain fluctuation modes that a
inherently three-dimensional also appear to propagate to
finity in this picture, and hence the spike seems to retain
three-brane character even at large distances.

The purpose of this paper is to study the ‘‘dual’’ descri
tion of a system ofN D-strings attached to a D3-brane. Th
system has been analyzed previously in@14,15,16,17,18,19#
using the connection@14# between the Nahm equations fo
Bogomol’nyi-Prasad-Sommerfield~BPS! monopoles @20#
and the BPS condition for the non-Abelian D-string theo
This theory contains noncommutative solutions describ
the D-strings expanding out in a funnel-like geometry to b
come an orthogonal D3-brane. These solutions are valid
regime complimentary to the bion spikes discussed abo
That is, the solutions will accurately describe the phys
very close to the center of the spike, or alternatively very
from the D3-brane. The two approaches, i.e., the D3-br
spikes and the D-string funnels, turn out to agree exactly
the largeN limit, while we get new insights into the physic
at finite N near the core of the spike from the D-string fu
nels.

In the next section we will quickly review the full non
Abelian D-brane action, followed by an outline of the r
mainder of this paper.

II. NON-ABELIAN BRANE ACTION

Our starting point is the non-Abelian world-volume actio
describingN coincident D-strings, whose complete form w
recently discussed by Myers@21#, as well as Taylor and Van
Raamsdonk@22#. The action consists of two parts: the Bor
Infeld action
©2000 The American Physical Society09-1



CONSTABLE, MYERS, AND TAFJORD PHYSICAL REVIEW D61 106009
SBI52T1E d2sSTr†e2fA2det„P@Eab1Eai~Q212d! i j Ejb#1lFab…det~Qj
i !‡, ~1!
e
im

d

-

o

d
ze

-
th

d

n
e
he

e
n-
s
b

nt
y
nd
e

to

d
ual
rld
ed

e
ar

n-
in

ge-

et
ry
s-
tain

as
e of
D3-
-
lds
the

gen-
es

-
v-
l

ring
le-
n a

ct
es
t in
of

re-
ane
al

ture
with

l52pl s
2, Emn5Gmn1Bmn , and

Qj
i [d j

i 1 il@F i ,Fk#Ek j , ~2!

and the Chern-Simons action

SCS5m1E STrXPFeil i F i FS ( C~n!eBD GelFC. ~3!

Implicitly, Eqs. ~1! and ~3! employ static gauge where th
two worldsheet coordinates are identified with two spacet
coordinates. We have chosent5t5x0 ands5x9. In these
expressions,P@¯# denotes the pullback of the enclose
spacetime tensors to the worldsheet. TheF i , i 51, . . . ,8, are
the transverse scalars, which areN3N matrices in the ad-
joint representation of theU(N) worldsheet gauge symme
try. The notationi F denotes the interior product byF i re-
garded as a vector in the transverse space, e.g., acting
two-form C(2)5 1

2Cmn
(2)dxmdxn, we have

i Fi FC~2!5
1

2
@F i ,F j #Cji

~2! . ~4!

In both Eqs.~1! and~3!, the gauge trace indicated by STr~¯!
is a symmetrized trace. The precise prescription propose
Ref. @21# was that inside the trace one takes a symmetri
average over all orderings of theFab , DaF i , i @F i ,F j #, and
also the individualF i appearing in the functional depen
dence of the background supergravity fields. We refer
reader to Ref.@21# for more details on these actions.

In Ref. @21#, the D-particle version of this action was use
to analyze the behavior ofN D-particles when placed in a
constant background Ramond-Ramond~RR! field F (4). This
RR four-form is the field strength associated with D2-bra
charge, and ordinarily D0-branes would be considered n
tral with respect to this field. However, new couplings to t
corresponding RR potentialC(3) appear in the non-Abelian
Chern-Simons action~3! of the D-particles. As a result, th
D-particles are ‘‘polarized’’ by the external field into a no
commutative two-sphere, which can be interpreted a
spherical D2-D0 bound state. This analysis can readily
generalized to Dp-branes in a background of consta
F (p14). Starting with a flat Dp-brane with spatial geometr
Rp, it will be energetically favorable for the brane to expa
into a noncommutativeRp3S2 structure. For instance, in th
case of D-strings, the Chern-Simons action~3! involves a
coupling

ilm1E TrP@ i Fi FC~4!#. ~5!
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Using the same manipulations as in Ref.@21#, assumingF (5)

constant~in space!, this term produces a new contribution
the scalar potential of the form

i

3
l2m1E dtdsTr~F iF jFk!Fts i jk

~5! ~ t !. ~6!

As in Ref. @21#, one can find solutions forF i in terms ofN
dimensional representations of theSU(2) algebra, describ-
ing a D-string with anR13S2 structure. The energy an
radius of this solution can also be calculated from a d
perspective from the D3-brane action with appropriate wo
volume gauge fields excited, corresponding to dissolv
D-strings. The two approaches exactly agree in the largN
limit. Similar calculations in the dual D3-brane theory appe
in Ref. @23#.

In this paper we consider similar solutions of the no
Abelian D-string theory. The scalar field configuration aga
has a similar interpretation in terms of noncommutative
ometry such that spatial slices have the topologyR3S2.
However, now theF i matrices depend on the worldshe
coordinates, and so the radius of the two-sphere can va
along the length of the D-string. In Sec. III A, we study po
sible solutions in a flat space background, and we ob
configurations corresponding toN D-strings attached to a
D3-brane. We compare features of this solution—such
total energy, couplings to background fields, and the shap
the configuration—to the corresponding aspects in the
brane spike. In the largeN limit, there is an exact correspon
dence. Note that there are no nontrivial background fie
here, and so these constructions are quite distinct from
dielectric effect discussed above and in Ref.@21#.

Following the initial papers on the D3-brane spike@7,8,9#,
there has been a considerable literature studying various
eralizations. This includes the construction of dyonic spik
describing~p,q!-strings@15#, analysis of double-funnel solu
tions@7,8,24#, solutions in an additional D3-brane supergra
ity background @25,26#, and solutions with fundamenta
strings dissolved in the D3-brane@27#. We give a sample of
how these situations can be described from the dual D-st
picture. In Sec. III B, we show the existence of the doub
funnel solutions describing D-strings stretched betwee
D3-brane and an anti-D3-brane~or another D3-brane!. In
Sec. III C, we give a brief description of how to constru
~p, q!-string configurations, while Sec. III D demonstrat
how the BPS funnels survive even when the system is pu
a supergravity background corresponding to a collection
D3-branes.

A D-string stretched between two D3-branes is rep
sented as a non-Abelian BPS monopole in the D3-br
theory. The ‘‘dual’’ D-string description provides a physic
realization@14# of the Nahm equations@20#. This interpreta-
tion has already received extensive attention in the litera
9-2
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NONCOMMUTATIVE BION CORE PHYSICAL REVIEW D61 106009
@14,15,16,17,18,19#. In this paper we consider the primaril
the case of the D-string funnel, in which one of the D
branes has moved off to infinity. Our focus is on the largeN
limit at the point in monopole moduli space where all t
monopoles coincide. This allows us to make a direct co
parison with the bion spikes in theU(1) theory on the re-
maining D3-brane. In particular, using the new terms in
non-Abelian Chern-Simons action~3! @21,22#, we can ex-
plicitly show that the funnel has couplings corresponding
a D3-brane.

The dynamics of the D3-brane spike has also been c
sidered@11,12,13#. In Sec. IV, we analyze small fluctuation
propagating along the D-string in the funnel configuratio
We study both modes that are transverse and parallel to
D3-brane. Again, in the largeN limit, we obtain exact agree
ment with the D3-brane analysis@11,12,13#, in spite of the
fact that the present calculation involves noncommuting m
trices and looks rather different. At finiteN, we find signifi-
to
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cant discrepancies with the D3-brane analysis@13# for the
higher l modes. In particular, due to the noncommutati
character of the funnel, the spectrum is truncated atl max5N
21. This suggests a resolution of the puzzle appearing
Ref. @13#, which was mentioned above.

We conclude in Sec. V with some further discussion a
comments on our results.

III. D3-BRANES FROM D-STRINGS

In this section we will describe various solutions in th
non-Abelian world-volume theory of a D-string correspon
ing to the D-string opening up into a D3-brane.

A. The BPS funnel

In flat background, the Chern-Simons part~3! of the
D-string action plays no role, while the Born-Infeld actio
~1! reduces to@28,21#1
S52T1E d2sSTrA2det~hb1l2]aF iQi j
21]bF j !det~Qi j !, ~7!
es
en

ta-
the

d and
where

Qi j 5d i j 1 il@F i ,F j #. ~8!

Implicitly here, we have set the world-volume gauge field
zero. This is consistent with the equations of motions for
scalar field configurations considered here. However,
gauge field will play an essential role in Sec. III C belo
Recall that we are using static gauge and have chosen
world-volume coordinates to bet5t5x0 and s5x9. Ex-
panding this action~7! to leading order~in l!, yields the
usual non-Abelian scalar action

S.2T1E d2sXN1
l2

2
TrS ]aF i]aF i

1
1

2
@F i ,F j #@F j ,F i # D1¯C. ~9!

Varying this action yields the following equation of motio

]a]aF i5†F j ,@F j ,F i #‡. ~10!

Now we are looking for solutions which represent t
D-string expanding into a D3-brane, analogous or ‘‘dual’’
the bion solutions of the D3-brane theory@7,8#. The corre-
sponding geometry would be a long funnel where the cr
section at fixeds has the topology of a two-sphere. Hen
motivated by the noncommutative two-sphere constructi
of Refs. @29,21#, we consider the spherically symmetric a
satz

F i5R̂~s!a i , i 51,2,3, ~11!
e
e

he

s

s

where thea i give someN3N matrix representation of the
SU(2) algebra

@a i ,a j #52i« i jkak. ~12!

Now at fixeds, this ansatz for non-Abelian scalars describ
a noncommutative two-sphere with a physical radius giv
by

R~s!25
l2

N (
i 51

3

Tr@F i~s!2#5l2CR̂~s!2. ~13!

HereC is the quadratic Casimir of the particular represen
tion of the generators under consideration, defined by
identity

(
i 51

3

~a i !25CIN , ~14!

whereI N is theN3N identity matrix. For example,C5N2

21 for the irreducibleN3N representation.
Now given the ansatz~11!, the matrix equations of motion

~10! reduce to a single scalar equation

R̂9~s!58R̂~s!3. ~15!

Considering a trial solution,R̂}sp, yields

1In these expressions, the transverse space indices are raise
lowered withgi j 5d i j andgi j 5d i j .
9-3
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R̂~s!56
1

2~s2s`!
, ~16!

where we have used the translation invariance of Eq.~15! to
introduce the integration constants` . Since the second or
der equation~15! should have a general solution with tw
integration constants, it is clear that Eq.~16! is not the most
general solution—we will leave this solution to the next se
tion. However, this solution~16! indeed describes the desire
funnel, with the D-string opening up into a three-brane
s5s` , where the radius of the funnel diverges. As it stan
Eqs. ~11! and ~16! only represent a solution of the leadin
order equations of motion~10!, and so naively one expect
that it should only be valid for smallR̂ or small radius.
However, we will find that this configuration also solves t
full equations of motion extremizing the action~7!.

Before plunging into the full equations of motion, let u
investigate the supersymmetry of the funnel configurat
above. Following the analysis of Callan and Maldacena@7#,
we investigate the linearized supersymmetry conditio
which strictly speaking would only apply for the leadin
order action~9!.2 We may write the linearized conditions a

GmnFmne50, ~17!

where m,n are ten-dimensional indices ande is some con-
stant spinor. The latter world-volume supersymmetry para
eter also satisfies the usual D-string projection@3#: G09e
5e. Note thate transforms a spinor under both theSO(1,1)
Lorentz transformations of the D-string world-volum
theory, and theSO(8) rotations of the transverse spac
Hence it is reasonable to multiplye by ten-dimensional Dirac
matrices, such asGmn5@Gm,Gn#/2. Following the standard
notation~see, e.g., Refs.@31#!, whereFab denotes the world-
volume gauge field strength which vanishes in the pres
case, one also has

Fai5DaF i , Fi j 5 i @F i ,F j #. ~18!

Hence Eq.~17! yields

~2Gs iDsF i1 iG jk@F j ,Fk# !e50. ~19!

This condition can be solved by spinors satisfying the p
jection

Gs123e56e, ~20!

provided that the scalars satisfy the Nahm equations~14!

DsF i56
i

2
« i jk@F j ,Fk#. ~21!

Now inserting our ansatz~11! this implies

R̂8572R̂2. ~22!

However, the solution of this equation is precisely that giv
in Eq. ~16!. Hence, we conclude that the funnel configu
tions given by Eqs.~11! and ~16! are in fact BPS solutions
preserving 1/2 of the supersymmetry of the D-string the
10600
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~9!. From Ref.@24#, we can infer that BPS solutions of th
leading order theory~9! are also BPS solutions of the fu
non-Abelian Born-Infeld action~7!. That is, the funnel solu-
tions will also solve the full equations of motion, as we w
explicitly demonstrate below. In a related discussion, R
@15# showed, in the context of the full non-Abelian D-strin
theory~7!, that supersymmetric configurations satisfying E
~21! minimize the energy of the system.

We begin by substituting our ansatz~11! directly into the
action ~7!, and find that it becomes

S52T1E d2sSTrA„11l2a ia i~R̂8!2
…~114l2a ja j R̂4!,

~23!

where bothi and j are summed over 1,2,3. In deriving th
result, we have eliminated certain combinations of matri
from the determinants~and inverses! which will cancel under
the symmetrized trace. In the remaining expression, sym
trization applies to each of the individual generatorsa i ap-
pearing there. Now extremizing this action~23! with respect
to variations ofR̂ yields an equation of motion which may b
written as

1

R̂8

d

ds
STrA 114l2a ja j R̂4

11l2a ia i~R̂8!2
50. ~24!

If the radius profile satisfies the supersymmetry constra
~22!, then the expression under the square root is simply
identity and it follows that the equation of motion is satisfie
Hence the supersymmetric funnel solutions are in fact so
tions of the full non-Abelian equations of motion~24!. Note
that we were able to derive this result without making
expansion~in l! of the matrix expression in Eq.~24! and
explicitly implementing the symmetric trace on the ind
vidual terms in this expansion.

It is clear that the funnel solution, Eqs.~11! and ~16!,
describes the non-Abelian D-string opening up into a thr
brane on the (x1,x2,x3) hypersurface ats5s` . While the
natural intuition is that the latter is actually a D3-brane,
remains to be demonstrated. We begin by comparing
funnel solution to the D3-brane monopole or spike@7#. For
these purposes, we will focus on the funnel where thea i are
chosen as the irreducibleN3N representation, withC5N2

21. In this case, the radius~13! becomes~16!

R5
Np l s

2

s2s`

A121/N2. ~25!

To leading order for largeN, this yields precisely~including
numerical coefficient! the corresponding formula for th
height of D3-brane spike@7#, i.e.,

2Supersymmetry conditions for the full non-Abelian Born-Infe
action ~7! would be expected to be more complicated@28,30#.
9-4
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s2s`5
Np l s

2

R
. ~26!

This remarkable agreement is perhaps more than one sh
expect, since the D3-brane analysis is strictly speaking o
valid for R large, while the current calculations will be rel
able for smallR. We will comment more on this in the dis
cussion section.

To further corroborate the fact that our funnel yields
D3-brane, let us compare the energy and some coupling
those obtained from the dual D3-brane action. Given
static solution, the energy is easily derived from the D-str
action ~23!. Note that using the supersymmetry conditi
~22!, the two expressions under the square root are equal
hence the action is ‘‘linearized’’@15#. We are then left with

E5T1E dsSTru114l2a ia i R̂4u

52NT1E dsR̂2uR̂8uF S ds

dR̂
D 2

1l2CG , ~27!

where we have repeatedly appliedR̂8562R̂2 in producing
the second expression. We can further manipulate this re
by introducing the physical radiusR5lACuR̂u, as well as
usingT154p2l s

2T3 to put this expression in the form

E5T3

N

AC
E 4pR2dRF S ds

dRD 2

11G . ~28!

In the dual D3-brane picture, the energy of any~spherically
symmetric! BPS configuration3 is simply given by@7,15#

E5T3E d3x@11~¹s!2#5T3E 4pR2dRF11S ds

dRD 2G .
~29!

If we chose the irreducible representation, we haveN/AC
5(121/N2)21/2, and hence the energy calculated in the
two formulations agrees up toN22 corrections for largeN.

If a D3-brane is emerging in the funnel solution, this co
figuration should act as a source for the RR four-form pot
tial, C(4). Such a coupling arises in the Chern-Simons act
~3! because of the non-Abelian expectation value of the s
lars in this solution. To leading order, we can focus on
interaction given in Eq.~5!, which yields

3Note that this expression holds regardless of whether ele
fields, magnetic fields, or both are excited on the D3-brane. He
the agreement found here is more generally applicable.
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ilm1E TrP@ i Fi FC~4!#

5
il2m1

2 E d2sCtk ji
~4! ~t,s!Tr~]sFk@F i ,F j # !1¯

57 im3

N

AC
E dt4pR2dRCt123

~4! ~ t,R!. ~30!

Here we have used the ansatz~11! andR5lACuR̂u, as well
asm154p2l s

2m3 and Tr(a ia j )5(N/3)Cd i j . In the dual D3-
brane formulation, essentially the same expression arise
the standard coupling to the RR four-form

m3E P@C~4!#5m3E dtdRdudfCti jk
~4! ]sxi]uxj]fxk1¯

5m3E dt4pR2dRCt123
~4! ~ t,R!. ~31!

So once again if we chose the irreducible representation
would haveN/AC5(121/N2)21/2, and for largeN Eqs.
~30! and ~31! agree up toN22 corrections. It is interesting
that in deriving this agreement for the RR coupling, we on
used the basic ansatz~11!, but not the details of the funne
solution~16!. Hence this result will hold more generally, an
in particular it still holds in the following sections. In Eq
~30!, the minus~plus! sign arises ifR̂ is positive~negative!.
Hence this calculation shows that the minus solution in E
~16! corresponds to the D-string opening up into a D3-bra
~assuming we approach froms.s`), while the plus solu-
tion has the opposite orientation and corresponds to an a
D3-brane.

To summarize this section, we have shown that by allo
ing for suitable boundary conditions in the non-Abelia
D-string theory, the latter can ‘‘grow’’ into a D3-brane. Th
construction is a dual formulation of the BPS magne
monopole in the Abelian D3-brane theory which describe
D-string spike growing out of the three-brane surface. In
present calculation, we see that the geometry at the cor
the spike is noncommutative, with the level of discreten
set byN, the number of D-strings. In these last few calcu
tions, we have focused on using the irreducibleN3N repre-
sentation of theSU(2) generators~12!, and we found good
quantitative agreement at largeN between the two formula-
tions. These calculations indicate that the funnel solution
scribes theN D-strings expanding into a single fundamen
D3-brane. Using reducible representations would corresp
to creating several~independent! D3-branes from the sameN
D-strings. Paralleling the constructions in Ref.@21#, one
could then construct multicenter funnels located at differ
positions in the (x1,x2,x3) hypersurface.

B. Double funnels

With the ansatz~11!, the leading-order matrix equation
becameR̂958R̂3 in Eq. ~15!. As a first step to generating th
most general solution, we integrate this equation as

ic
ce
9-5
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~R̂8!254~R̂42R̂0
4!, ~32!

where R̂0
4 is an arbitrary integration constant. In princip

then, integrating once more yields the general solution

s5s`6
1

2
E

R

` dR̃

AR̃42R̃0
4

. ~33!

This solution looks remarkably similar to those describi
double funnels or wormholes in dual D3-brane framewo
@7,8#.

However, before examining the details of these confi
rations, let us consider the analogous solutions of the
equation of motion ~24!. The symmetrized prescriptio
@32,21# instructs us to expand the square root expression
symmetrize over all permutations of the generatorsa i in the
trace of each term in the expansion. For examp
STr(a ia i)5NC, STr(a ia ia ja j )5N(C224C/3), and
STr(a ia ia ja jakak)5N(C324C2116C/3). Unfortunately,
we have not been able to find a systematic construction
the general term in this expansion. However, observing
at leading order, STr(a ia i)m.NCm, we can construct an
approximate equation by replacing thea ia i by CIN in Eq.
~24!. For largeN, this keeps the leading order contribution
every order~in l! in the expansion of the square root
Within this approximation the equation of motion become

N

R̂8

d

ds
A 114l2CR̂4

11l2C~R̂8!2
50. ~34!

Integrating this equation is trivial, and the result may
expressed as

~R̂8!254
R̂42R̂0

4

114l2CR̂0
4

. ~35!

In terms of the physical radius~13!, we have

~R8!254
R42R0

4

l2C14R0
4 , ~36!

where we have also rescaled the integration constant in
obvious way. The solution of this equation is then implicit
given by

s5s`1
1

2
E

R

`

dR̃Al2C14R0
4

R̃42R0
4

. ~37!

With C5N221 for the irreducible representation, E
~37! precisely reproduces the general solutions constructe
Refs.@7,8# for largeN. For R050 we recover the supersym
metric funnel solution~25!. For largeR, the general solution
approximates this funnel and so given our previous disc
sion the nonabelian D-string is again expanding into a D
brane ats5s` . AssumingR0

4.0, we see from Eq.~36! that
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the noncommutative funnel stops contracting whenR5R0 .
The obvious solution to continue past this point is@7,8#

s5s`12Ds2
1

2 ER

`

dR̃Al2C14R0
4

R̃42R0
4

, ~38!

where Ds5s(R0)2s` . Hence beyond the minimum ra
dius, the solution reexpands into an anti-D3-brane ats
5s`12Ds.4 Thus we have reproduced the wormhole so
tions of Refs.@7,8# from the point of view of the non-Abelian
D-string theory.

In integrating Eq.~34!, one could also choose a negativ
integration constant, in which case it is natural to write

~R8!25~R08!214
11~R08!2

l2C
R4, ~39!

whereR08 is a new dimensionless integration constant. T
general solution then becomes

s5s`1
1

2
E

R

` lACdR̃

A
„11~R08!2

…R̃41l2C~R08!2/4
. ~40!

In this case, the funnel collapses all the way down to z
radius, which is approached with a finite slope, i.e., from E
~39!, R8(R50)5R08 . The integrand has no singularity atR̃
50, and so one can continue the solution beyond this poin
one allows the radius to become negative. Alternative
keeping the radius positive, we would match Eq.~40! onto

s5s`12Ds2
1

2
E

R

` lACdR̃

A
„11~R08!2

…R̃41l2C~R08!2/4
,

~41!

where nowDs5s(R50)2s` . Hence in this solution, the
funnel collapses down to zero size and then reexpands
another D3-brane4 at s5s`12Ds. These general solution
again match, for largeN, the analogous cusp configuration
constructed in the D3-brane framework@24#. For comparison
purposes, it may be simpler to think of these solutions in
form given in Eqs.~37! and ~38!, but with R0

4,0. Note that
in this case, we must choose2l2C/4,R0

4 to produce a real
solution. This lower boundR0

4→2l2C/4 corresponds to the
singular limit R08→`.

These cusp solutions describeN D-strings stretched be
tween two parallel D3-branes~or anti-D3-branes!, which
should be a supersymmetric configuration. However, the
persymmetry condition~22! is only satisfied whenR0850, in
which case the D-string extends off to infinity before reac
ing zero size. In the dual D3-brane framework, Hashim

4Verifying that the emergence of a D3-brane or an anti-D3-bra
at either end of these double funnel solutions actually requires

amining the sign ofR̂ ass5s` ands`12Ds, as per the discus-
sion in Sec. III A.
9-6
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@24# identified the correct supersymmetric solution forN
51 as a BPS monopole of the non-Abelian world-volum
theory describing the two D3-branes. To find the correspo
ing BPS solutions in the D-string theory, one must be
with an ansatz more general than Eq.~11! when solving the
Nahm equations~21!. Such solutions are known, see for e
ample Refs.@33,18#. We leave a discussion of these solutio
for future work @34#.
.
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C. „p,q…-strings

The previous analysis is readily generalized to~p,q!-
strings, i.e., bound states of D-strings and fundame
strings @35#. This is done by simply introducing a back
groundU(1) electric field on the D-strings, corresponding
fundamental strings dissolved on the worldsheet. Deno
the electric field asFts5EI N , the D-string action~23! be-
comes
S52T1E d2sSTrA„12l2E21l2a ia i~R̂8!2
…~114l2a ja j R̂4!, ~42!
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where we have inserted the noncommutative ansatz~11!. Ex-
tremizing with respect to variations ofR̂ yields

1

R̂8

d

ds
STrA 114l2a ja j R̂4

12l2E21l2a ia i~R̂8!2
50. ~43!

Now assumingE constant, a simple rescaling of Eq.~22!
yields an exact solution, i.e.,

R̂8562A12l2E2R̂2. ~44!

Hence the funnel solution for the~p,q!-string becomes

R̂~s!5
1

2A12l2E2

1

s2s`
. ~45!

@For simplicity, we will only consider the positive root of Eq
~44! in the following.# It is also useful to consider the electr
displacement D, conjugate toE,

D[
1

N

dS

dE 5
1

N
STrA 114l2a ia i R̂4

12l2E21l2a ja j~R̂8!2
l2T1E

5
l2T1E

A12l2E2
, ~46!

where we have used Eq.~44! to derive the final result. One
can verify that the equations of motion for the world-volum
gauge field specify D to be a constant, and so our assump
of constantE is consistent for any solutionR̂(s) obeying Eq.
~43!. For Nf fundamental strings, one obtains the corre
~p, q!-string tension by quantizingD5Nf /N, remembering
that the fundamental string tension is simply 1/l—see below.

To determine the energy of the system, we must evalu
the Hamiltonian,*ds(DE2L), for the dyonic funnel solu-
tions. Manipulating this expression in a manner similar to
analogous calculations in Eqs.~27!,~28!, the final result may
be expressed as a sum of two terms
on

t

te

e

E5T1E dsAN21g2Nf
21T3

N

AC
E 4pR2dR, ~47!

whereg is the string coupling, and we remind the reader th
T15(lg)21. Here the first term comes from collecting th
contributions independent ofR̂, and correctly matches th
energy of the (N,Nf)-string bound state@35#. The second
contribution involves the terms containingR̂ and as in Sec.
III A, Eq. ~44! is used to put these in the formR̂2uR̂8u. The
final result corresponds to the expected energy of an ortho
nal D3-brane, at largeN. Our expression~47! also matches
the expectations~for largeN! from the similar calculations in
the D3-brane theory@15#. Equation~29! still applies in this
case, and in this formulation the (¹s)2 term provides the
contribution of the (N,Nf)-string. In the D3-brane formula
tion, it is straightforward to show that the dyonic spike is s
supersymmetric. However, in the D-string formulation, intr
ducing a constant background electric field moves the the
to a new superselection sector where the supersymmet
nonlinearly realized.5 By theSL(2,Z) duality of the type IIb
superstring theory, it is clear that a (N,Nf)-string has pre-
cisely the same amount of supersymmetry as an ordin
D-string. Similarly the dyonic funnel will be a BPS configu
ration preserving 1/2 of the world-volume supersymmetri
This supersymmetry is reflected in that these configurati
~44! satisfy the full equations of motion~43!, and that the
corresponding energy~47! splits into a sum of string and
three-brane contributions.

There are also various other solutions known in the lite
ture involving~p,q!-strings~see, for example, Ref.@26#!, and
these should presumably also follow from the full equatio
of motion ~43! in a straightforward manner. For related di
cussion on string junctions, see Refs.@18,19#.

D. Embedding in a D3-brane background

We now consider constructing a noncommutative fun
for a non-Abelian D-string sitting in the background of a s

5We would like to thank Amanda Peet for a discussion on t
point.
9-7



ity
un
pe

e

-
e

ic

s
t

e
he

riva-
s,

g
ld-
er,

ve

ve,

he
-

the
k-

i-

CONSTABLE, MYERS, AND TAFJORD PHYSICAL REVIEW D61 106009
of orthogonal D3-branes. According to Refs.@25,26#, when
working with a test D3-brane sitting in such a supergrav
background, the BPS Born-Infeld spike solutions are
changed by the background fields. Hence one might ex
that the funnel solutions~11!,~16! will also appear un-
changed in the modified world-volume theory of th
D-strings.

An extremal D3-brane background can be written as@36#

ds25
2dt21~dxi !2

AH 1AH~dxm!2,

F ~5!57H22]mHdt`dx1`dx2`dx3`dxm

6]mHi x̂m~dx4`dx5`dx6`dx7`dx8`dx9!,

~48!

where thexi , i 51 . . . 3, directions are parallel to the D3
brane, and thexm, m54 . . . 9,directions are transverse. Th
function H satisfies the Laplace equation:]m]mH50. The
single center harmonic function is

H5114pgN3S l s

r D 4

~49!

for N3 D3-branes, wherer 25Sm54
9 (xm)2. The potential for

the five-form field strength has an electric component wh
may be written

Celec
~4! 56~H2121!dtdx1dx2dx3. ~50!

The magnetic part of the potential will only involve indice
in the transversexm directions, and we will argue below tha
it is irrelevant for the present calculation.

Now considerN D-strings extending into the transvers
space along thex9-axis. We again choose static gauge for t
D-string action witht5t and s5x9. In the non-Abelian
Chern-Simons action~3!, we have the interactions

m1E ilSTrP@ i Fi FC~4!#

5
i

2
lm1E d2sSTrS Ct9 j i

~4! @F i ,F j #

1lCtk ji
~4! DsFk@F i ,F j #2lC9k j i

~4! DtF
k@F i ,F j #
10600
-
ct

h

1
l2

2
Clk ji

~4! DtF
lDsfk@F i ,F j # D . ~51!

In the solution which we will construct, we assume that~i!
there are no background gauge fields so the covariant de
tives in the pullbacks are simply ordinary partial derivative
~ii ! the solution is static so thatDtF

l5] tF
l50, and~iii ! for

later purposes, that only theF i in the xi directions are rel-
evant, i.e., we only consider ‘‘deformations’’ of the D-strin
in its transverse directions which are parallel to the wor
volume directions of the background D3-brane. Furth
from Eqs. ~48! or ~50!, we know thatCt9 j i

(4) 50. Hence the
only relevant interaction above is

i

2
l2m1E d2sSTr~Ctk ji

~4! ]fFk@F i ,F j # !. ~52!

In the background RR potential and the metric, we ha
the harmonic function~49! which is only a function of the
non-Abelian radius

r 25s21l2@~F4!21~F5!21¯#.s2. ~53!

In the last step, in keeping with the assumptions listed abo
we have ignored the fluctuations of the D-string in thexm

directions. This simplifies the calculation since we haveH
5H(s), however, we might expect some smearing of t
D-string in thexm directions at higher order. With this sim
plification, the Chern-Simons interaction becomes

i

2
l2m1E d2s„H~s!2121…«k j iTr~]sFk@F i ,F j # !,

~54!

where for definiteness, we have chosen the plus sign for
potential in Eq.~50!. This choice corresponds to a bac
ground of D3-branes~as opposed to anti-D3-branes!.

The Born-Infeld part of the action is only slightly mod
fied by the background metric. For our usual ansatz~11!, the
Born-Infeld action now reads
ated
SBI52T1E d2sSTrAS 11
l2

H a ia i~R̂8!2D S 11
4l2

H a ia j R̂4D . ~55!

Similarly inserting Eq.~11! into the Chern-Simons interaction~54! yields

SCS52l2NCT1E d2s„H~s!2121…R̂2R̂852
2

3
l2NCT1E d2s]s„H~s!21

…R̂3. ~56!

Since the functionH depends ons, the full equations of motion following from this action are considerably more complic
than in the flat space case. The full equations of motion may be written as
9-8
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2
1

R̂8

d

ds
STr! 11

4l2

H a ja j R̂4

11
l2

H a ia i~R̂8!2

1
1

R̂8
STrF S 11

l2

H a ia i~R̂8!2D d̃

d̃s ! 11
4l2

H a ja j R̂4

11
l2

H a ia i~R̂8!2G
1STrF akak! 11

4l2

H a ja j R̂4

11
l2

H a ia i~R̂8!2Gl2]s„H~s!21
…R̂852l2NC]s„H~s!21

…R̂2. ~57!
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In the second term on the left hand side,d̃/d̃s denotes that
the s derivative only acts on the harmonic functionH. The
right hand side of this equation is the contribution from t
Chern-Simons term in Eq.~56!. Now if as in Eq.~22!, we set
(R̂8)254R̂4, the first two terms vanish and the entire expre
sion reduces to simply

R̂852R̂2, ~58!

with the standard solution

R̂52
1

2~s2s`!
. ~59!

Hence the background picks out the noncommutative fun
which corresponds to the D-string expanding into a D
brane, but not the one where an anti-D3-brane emerges.
should have been expected because an anti-D3-brane w
be unstable in the D3-brane background. Choosing the op
site sign of the RR potential in Eq.~54! would correspond to
putting the D-string in the supergravity background gen
ated by a collection of anti-D3-branes. This would al
change the sign of the Chern-Simons contribution in
equation of motion~57! to produceR̂8522R̂2 in place of
Eq. ~58!. Hence in this case, the non-commutative fun
corresponding to an anti-D3-brane would be picked out.
any event, the BPS funnel solution consistent with the sup
symmetry of the background survives unchanged, just as
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the analogous solutions found in the D3-brane formulati
As a final note here, we observe that this configuration sol
the full equations of motion~57! regardlessof the detailed
functional form ofH. In particular, the position of the end o
the funnel, i.e.,s5s` , is still an independent parameter, n
correlated to the position~s! of the background D3-branes
Further, one could consider multicenter solutions forH.

IV. FLUCTUATIONS OF THE D-STRING FUNNEL

In this section, we analyze the dynamics of the BPS fu
nel solution~16! ~in a flat background!. That is, we examine
the linearized equations of motion for small, time-depend
fluctuations of the transverse scalarsF r , around the exact
backgroundF i5(1/2s)a i .6 There are two types of fluctua
tions to consider: The first, in the language of Ref.@13#, are
the ‘‘overall transverse’’ excitations given by the scala
dFm which are transverse to both the D-string and the n
commutative two-sphere~or D3-brane!. The second are the
‘‘relative transverse’’ fluctuations of the coordinate fieldsF i

which lie in the two-sphere directions. Our notation in t
following will be that indicesi , j 51 . . . 3 denote the direc-
tions parallel to the D3-brane,m,n54 . . . 8 represent direc-
tions transverse to both the D-string and the D3-brane,
finally r ,s51 . . . 8 include all of these directions.

We start with the overall transverse fluctuations. The s
plest type of fluctuation is just proportional to the identi
matrix, saydFm(s,t)5 f m(s,t)I N . For these modes it is
straightforward to plug into the action~7!, and we find
S52T1E d2sSTrAS 11
l2

4s4 a ia i D F S 11
l2

4s4 a ja j D „12l2~] tdFm!2
…1l2~]sdFm!2G

.2NT1E d2sFH2
l2

2
H~] t f

m!21
l2

2
~]s f m!21¯G , ~60!

6For simplicity, we have sets`50. We will also choose the generators for the background solution to lie inN3N irreducible represen-
tation. HenceC5N221.
9-9
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where we introduced

H~s!511
l2C

4s4 . ~61!

In the final action, we have only kept the terms quadratic
the fluctuations as this is sufficient to determine the line
ized equations of motion:

~H] t
22]s

2 ! f m50. ~62!

This is precisely the equation of motion found for the tran
verse fluctuations of the DBI spike soliton in Ref
@7,11,13#. The identification of the functionH with the cor-
responding functions in Refs.@7,11,13# requires l2C/4
5p2N2l s

2, which again holds up to 1/N2 corrections for
largeN. Note that this equation was also found to agree w
the equation of motion for a fluctuating test string in t
supergravity background of a D3-brane@11#, after identify-
ing parameters on both sides in a specific way.7

In the detailed analysis of Ref.@13#, the fluctuations in
Eq. ~62! correspond to thel 50 modes, i.e., modes consta
on the two-sphere. We will now show that, up to an imp
tant modification, similar agreement also holds for the hig
l modes. To describe thel .0 modes we first note, follow-
ing Refs.@29,37#, that the fluctuationsdFm can be expanded
on the noncommutative two-sphere as a polynomial serie
the matricesa i as follows:

dFm~s,t !5 (
l 50

N21

c i 1i 2 ...i l

m ~s,t !a i 1a i 2
•••a i l , ~63!

where the coefficientsc i 1 ...i l

m are completely symmetric an

traceless in the lower indices. Also note that the series m
terminate afterN21 terms since there are at most this ma
linearly independent matrices which can be formed from
N3N irreducible representation of thea i . In the largeN
limit this expansion is analogous to expanding the fluct
tions in spherical harmonics on a commutative two-sphe

Substituting this form of the fluctuations into the actio
~7! is now slightly more involved, and it is more straightfo
ward to use an alternative form of the action, given in ter
of Eq. ~26! in Ref. @21#. In flat space, this form of the actio

~7! readsS52T1*A2D̃, with

D̃5detS hab l]aFs

2l]bF r d rs1 il@F r ,Fs#
D , ~64!

whereF r includes the backgroundF i and the overall trans
verse fluctuationsdFm. In general, this leads to a 10310
determinant, which, however, is straightforward to evalu

7More precisely, the functional forms of the equations agr
while the parameters undergo some form of renormalization
tween the two pictures. Exact matching occurs only at a spe
point in a parameter space, on the border between the two reg
of validity.
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keeping in mind the symmetrization procedure. We find t
the resulting action is the same as in the first line of Eq.~60!
up to the addition of an extra commutator ter
l2@F i ,dFm#@dFm,F i # in the second factor under the squa
root. The quadratic action then becomes

S.2T1E d2sTrS H2
l2

2
H~] tdFm!21

l2

2
~]sdFm!2

1
l2

2
@F i ,dFm#@dFm,F i #

1
l4

12
@]sF i ,] tdFm#@] tdFm,]sF i # D , ~65!

where the last term arises from taking care to expand
symmetrized trace in the kinetic term. Now the lineariz
equation of motion becomes

~H] t
22]s

2 !dFm1†F i ,@F i ,dFm#‡

2
l2

6
†]sF i ,@]sF i ,] t

2dFm#‡50. ~66!

In order to make contact with the discussion in Ref.@13#, we
must evaluate the commutator terms in this equation for
background solutionF i5(1/2s)a i . To facilitate this we will
make use of the expansion in Eq.~63!. Specifically, we
evaluate

†a i ,@a i ,dFm#‡5 (
l ,N

c i 1i 2 ...i l

m
†a i ,@a i ,a i 1a i 2

•••a i l #‡

5 (
l ,N

4l ~ l 11!c i 1i 2••• i l

m a i 1a i 2
•••a i l ,

~67!

making use of the fact thatc i 1i 2 ...i l

m is completely symmetric

and traceless. So we see that the double commutator a
essentially acts like the Laplacian on the noncommuta
two-sphere. Hence restricting the fluctuation to contain pr
ucts with a fixed number of generators, i.e., to contain
specific spherical harmonic on the two-sphere, we have

†F i ,@F i ,dF l
m#‡5

l ~ l 11!

s2 dF l
m

and ~68!

†]sF i ,@]sF i ,] t
2dF l

m#‡5
l ~ l 11!

s4 ] t
2dF l

m .

Thus we see that the equation of motion for each mode
comes

~H̃ l ] t
22]s

2 !dF l
m1

l ~ l 11!

s2 dF l
m50, ~69!

where

,
e-
c
es
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H̃ l ~s!511
l2

4s4 S C2
2

3
l ~ l 11! D . ~70!

Again for largeN andl !N, this reproduces the equatio
of motion for overall transverse fluctuations found from t
D3-brane spike@13#. However, for largel the coefficient in
H̃ l is significantly modified compared to the D3-bra
analysis. Another important difference is that in the nonco
mutative D-string analysis, the spectrum of modes is tr
cated atl max5N21. Note that given this truncation, the co
efficient of 1/s4 in Eq. ~70! cannot be negative—such
negative coefficient would have caused drastic change
the mode propagation. Thus for finiteN, there are a finite
number of modes propagating in the core of the bion. N
that this number is( l 50

N21(2l 11)5N2. Of course, this
counting is precisely what is expected for the adjoint sca
in the U(N) theory on the world-volume of theN D-strings.
A puzzle was raised in the D3-brane analysis@13#, where it
appeared that modes with arbitrarily highl would propagate
out along the D-string spike. The present D-string analy
in
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suggests that this is not the case, and that the propagatio
high l modes is significantly modified. We will commen
more on this point in the discussion section.

We finally briefly discuss the case of relative transve
fluctuations,dF i . From the D3-brane point of view these a
considerably more complicated to analyze, because of
interplay between the scalar field and the gauge field. In
D-string picture, an increased complication arises in evalu
ing the symmetrized trace. Unfortunately, we do not have
exact treatment of the quadratic action. Instead we use
same approximation as in Sec. III B, replacing in the act
everywherea ia i by CIN . For largeN, this keeps the leading
contribution at every order inl in an expansion of the action
As above, first let us consider thel 50 mode, and for con-
creteness consider a fluctuation in thex3 direction,
dF3(s,t)5 f (s,t)I N . One can show that fluctuations in di
ferent directions decouple at linear order, using Tr(a ia j )
5NC/3d i j . The determinant in Eq.~64! now involves a 5
35 matrix which again is straightforward to calculate. W
find
S52T1E d2sSTrAHS H2 ḟ 21
1

H
@11a3

2/~4s4!#~ f 8!21a3f 8/s2D , ~71!
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whereH is given in Eq.~61!. Using Tra350 in an expansion
in the amplitudef, the terms nicely arrange into

S52NT1E d2sFH2
ḟ 2

2
1

~ f 8!2

2H
1O~ f 4!G . ~72!

The equations of motion follow immediately, and aga
agree, for largeN, with the results from the D3-brane spik
and from supergravity@11,13#.

Higherl modes can be treated similarly. For instance,
l 51 ‘‘breathing’’ mode considered in Ref.@13# is imple-
mented by the fluctuationsdF i(s,t)5 f (s,t)a i . The result-
ing action is found most easily by substitutingR̂→R̂1 f in
the Born-Infeld action~23!, adding the obvious term involv
ing time-derivatives. The resulting equation of motion rea

] t
2f 2]sS ]s f

H D1
2

H2s2 ~42H ! f 50. ~73!

The corresponding equation is only given indirectly in R
@13#, but through a bit of algebra one can verify that the tw
approaches agree, again up to 1/N2 corrections.

V. DISCUSSION

Making use of the recently proposed non-Abelian ext
sion of the Born-Infeld action describing the world-volum
physics of Dp-branes@21,22#, we have found a description o
a D-string ending on a D3-brane ‘‘dual’’ to that obtaine
from the Abelian D3-brane action. Specifically we ha
e

s

.

-

shown that the world-volume action forN coincident
D-strings hasexactBPS solutions which describe a D3-bran
growing out of the noncommuting transverse coordinates
the collection of D-strings. We generalized this construct
to describe~p,q!-strings by considering the case where the
are a number of fundamental strings dissolved on the wo
sheet of the D-string. We have also considered the c
where the D-string is embedded in the supergravity ba
ground of a collection of D3-branes, and shown that the
persymmetric funnel remains a solution with its form u
changed. In all these cases we have found, in the largN
limit, precise agreement with the earlier literature on the D
spike soliton@7,8,9,15,25#.

As commented before, in these constructions~except in
Sec. III D!, there are no nontrivial supergravity fields in th
ambient spacetime. Hence these solutions are quite dis
from the configurations arising from the dielectric effect d
cussed in Ref.@21#. The latter involves a collection of Dp-
branes being ‘‘polarized’’ into a noncommutative configur
tion by an external field. As well as using the non-Abeli
character of the D-string theory, the essential new featur
the present constructions is the introduction of unusual~i.e.,
singular! boundary conditions in the world-volume theo
@16,17#. For example, in the BPS funnel~16! the scalars
diverge ats5s` . To comment on these boundary cond
tions further, let us consider the solution for different rep
sentation of the generatorsa i . Throughout the paper, we
emphasized the irreducibleN3N representation, for which
we found that the funnel corresponded precisely to theN
D-strings expanding into a single D3-brane. One could
9-11
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consider the analysis when thea i are chosen as the direc
sum ofq copies of theN/q3N/q representation. In this case
one would find that the BPS funnel~16! describes an expan
sion into q coincident D3-branes ats5s` . Using energy
considerations as in Eq.~28!, naively one might conclude
that it is favorable for this configuration to decay into t
original funnel. Of course, this is incorrect—theqD3-branes
cannot ‘‘decay’’ into a single D3-brane. Rather one sho
think of the new solution as a different superselection sec
which is distinguished in our construction by imposing
distinct set of boundary conditions ats→s` ~or alterna-
tively at R→`).

Actually from the D-string point of view, the scalar field
start to vary extremely rapidly ass→s` and so our descrip
tion in terms of the low energy world-volume action~7! will
break down before this point is reached. On the other ha
as s→` the world-volume scalars are both slowly varyin
and small, and so our formulation should give a very relia
description of the physics. This behavior is complement
to the D3-brane analysis. From this point of view, the wor
volume fields are slowly varying and small for largeR, and
rapidly varying for smallR. Thus these two approaches giv
complementary descriptions for the DBI spike. We note t
this complementarity arises because of the ‘‘duality’’8

R.
Nl s

2

s
~74!

between the world-volume coordinates in the two differe
formulations.

Let us try to be more precise about the ranges of valid
where we think we can trust the Born-Infeld analysis in ea
of these approaches. Essentially, we must determine w
we can confidently ignore higher derivative corrections
the action arising from the usuala8 expansion in string
theory. Schematically we would requirel s]

2F!]F. For
the spike soliton on the D3-brane, this translates intoR
@l s , or using Eq.~74!, s!Nl s . From the D-string funnel
point of view, we must requires@l s , which is equivalent
to R!Nl s . So we see that in a largeN limit, there is a
significant overlap region, and this explains, at least partia
the good agreement we find between the two approache
this regime.

Beyond the higher derivative corrections, the non-Abel
action ~1!,~3! requires additional higher order commutat
corrections@38,39,40#—see also the discussion in Ref.@21#.
Given this limitation, we might conclude that our no
Abelian D-string calculations are reliable only for sma
commutators. For the BPS funnel, we requirel suR̂u!1 since
the commutators of the scalar fields are characterized by
dimensionless quantityl sR̂. In terms of the physical radius
this restriction becomesR!Nl s , which coincides with the

8For simplicity, we sets`50 here. Further we assume the irr
ducibleN3N representation with largeN, so thatC.N2. Both of
these assumptions will apply throughout the remainder of the
cussion.
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restriction derived in the previous discussion. A better
striction for avoiding the higher commutator corrections
that the Taylor expansion of the square root in the action~23!
should converge rapidly. This requirement leads to the m
restrictive condition thatR!ANl s . However, for largeN,
there is still overlap with the D3-brane approach over a la
region. We should add, however, that this discussion app
to generic field corrections. There are some indications
for supersymmetric configurations, the higher commuta
corrections may vanish@38,39#, and so the less conservativ
restriction above may be the correct one for the BPS fun

We should also remember that we have neglected gr
tational effects, which is justified whengN!1. Since none
of our analysis involves the string couplingg, this require-
ment is easily satisfied by going to very weak coupling.

In Sec. IV, we also found remarkable agreement for
dynamics of small fluctuations on the D-string funnel a
those on the D3-brane spike, for largeN and alsol !N. Our
analysis begins to show significant discrepancies for hig
l modes. In particular, the spectrum of modes on the n
commutative funnel is truncated atl max5N21. This brings
us to the puzzle arising from Ref.@13#. There the detailed
analysis of the fluctuations on the D3-brane spike show
that there was no suppression of the higherl modes near the
core. Hence modes with arbitrarily largel appeared to
propagate out to infinity, and the spike would seem to ret
its three-dimensional character arbitrarily far out rather m
ing a transition to stringlike behavior. Since our D-strin
analysis provides a reliable description of physics at the c
of the spike, we conclude that this result cannot be corr
We have found that only a finite number of modes propag
far from the D3-brane. Note, however, that forN D-strings,
this number isN2, not justN, due to the nonabelian charact
of the coincident D-strings.

Above we considered in detail in what regimes the D
brane and D-string descriptions would be trustworthy. Ho
ever, this analysis was only for the spike or funnel soluti
itself, which plays the role of a background in the calcu
tions of the linearized fluctuations. Hence we should rep
this preceding analysis for the fluctuations themselves
particular, a fluctuation on the D3-brane with angular m
mentum numberl oscillates on spheres of constant radi
with an effective wavelengthl5R/l . Hence for higher de-
rivative corrections to the D3-brane action to be negligib
we must require thatl/l s@1. HenceR@l l s or from Eq.
~74!, s!(N/l )l s . Therefore even if we assumeN is large,
we can only trust the linearized equations of motion to ac
rately describe the propagation of fluctuations far out on
spike for l !N. Similarly the regime of validity of the
analysis for fluctuations on the D-string funnel is more
strictive for the higherl modes. In this case, we require th
higher commutator corrections to the non-Abelian Bo
Infeld action remain negligible. Given the commutators
Eq. ~68!, it appears the relevant quantity to characterize
commutators isl l sR̂. Thus our calculations would be trus
worthy for R!(N/l )l s or s@l l s . Hence we conclude
that we should not expect the two approaches to agree on
dynamics of the linearized fluctuations forl ;AN or higher.

s-
9-12
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Therefore it seems that the resolution of the conflict
tween the results of Ref.@13# and the present paper is that th
dynamics of the highl modes is significantly altered in
transition region between regimes where either of the
formulations can be trusted. In particular, higher derivat
corrections to the D3-brane action must play an import
role near the core of the spike, and cause the very higl
modes to be reflected back out to the region of large rad
Unfortunately, beyond the observations made above, we
not provide a detailed account of this suppression mec
nism.

To summarize, we have again seen that the Born-In
action is a remarkably powerful tool in describing the lo
energy dynamics of Dp-branes. On the one hand, with th
D3-brane action one can construct spike configurations
responding to D-strings attached to the D3-brane, and
validity of these solutions seems to go far beyond naive
pectations. In this paper, we have shown how these confi
rations also emerge from the D-string action in terms of n
commutative geometry. This formulation provides a relia
description of the central core of the DBI spike, but is a
reliable to a very large radius when the number of D-strin
is large. Hence we find surprising agreement with the or
nal D3-brane theory point of view. Combining these tw
approaches presents an intriguing picture of D-strings
tached to an orthogonal D3-brane. At large radius we hav
continuous D3-brane being smoothly deformed into the sp
geometry. However, near the core far out along the sp
there is a metamorphosis to a discrete structure, name
noncommutative funnel geometry. One can begin to gain
sight into this transition from the recent observations in R
@41#. In the D3-brane analysis, the spike is a magnetic mo
pole. Thus there is also a constant flux of magnetic field
the spheres of constant radius surrounding the spike. As
radius shrinks the local flux density becomes very large,
hence we can expect to enter a regime where noncomm
tive geometry provides an efficient description of the syste

Despite the striking agreement in the shape of the D
brane spike and the D-string funnel, one may quest
whether or not the agreement should actually be complete
Ref. @10#, Thorlacius showed that the BPS spike soluti
found on the D3-brane was actually a solution of the f
string action. This analysis was made for the electric sp
describing a fundamental string, and it appears the pr
would be more involved for the magnetic monopole desc
ing the D-string @42#. Certainly the D3-brane and th
D-string theories yield the same shape for the latter confi
ration, however they only agree on the overall coefficient
largeN. For smallN, the coefficients will differ significantly.
It may still be that the monopole provides an exact bound
conformal field theory, but that there is a ‘‘renormalization
0;
on
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of the metric relevant to describing the geometry. This wo
be somewhat similar to the difference between the clo
and open string metrics in situations where noncommuta
geometry is relevant@41#. However, we will leave this ques
tion for future work.

It would be interesting to generalize the present disc
sion to other D-brane systems. The extension to Dp-branes
ending on orthogonal D(p12)-branes would follow trivially
by the application ofT duality. A more interesting extensio
would be to consider a D-string ending on an orthogo
Dp-brane withpÞ3. From the lowest order equation of mo
tion ~10!, a static configuration would still have to satisfy

]s
2F i5†F j ,@F j ,F i #‡. ~75!

With the ansatzF i5R̂(s)Gi for some constant matricesGi ,
this equation can still only yield a differential equation of th
form

R̂95aR̂3, ~76!

with some constanta, and one will again find solutions of th
form R}s21. Hence this type of profile is universal for a
funnels on the D-string in any situation, and the only diffe
ence from the D3-brane funnel will be in the overall consta
coefficient. This result is slightly surprising since from th
dual Dp-brane formulation, one would generically expe
that for largeR, solutions will essentially be harmonic func
tions behaving likes}R2(p22) or R}s21(p22). The resolu-
tion of this puzzle seems to be that the two profiles apply
distinct regimes, the first for smallR and the second for large
R. However, there is the possibility that solutions of the f
Born-Infeld action will display a transition from one kind o
behavior to another. In fact, we have begun analyzing
case of a D-string ending on an orthogonal D5-brane in
tail, and we find that funnel solutions do indeed make t
kind of transition@43#.
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