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We examine noncommutative solutions of the non-Abelian theory on the world-volumkcoincident
D-strings. These solutions can be interpreted in terms of noncommutative geometry as funnels describing the
non-Abelian D-string expanding out into an orthogonal D3-brane. These configurations are “dual” to the bion
solutions in the Abelian world-volume theory of the D3-brane. In the latter, a chdng@gnetic monopole
describesN D-strings attached to the D3-brane with a spike deformation of the world volume. The noncom-
mutative D-string solutions give a reliable account of physics at the core of the monopole, where the bion
description is expected to break down. In the lakbkémit, we find good agreement between the two points of
view, including the energy, couplings to background fields, and the shape of the funnel. We also study
fluctuations traveling along the D-string, again obtaining agreement in theNHliget. At finite N, our results
give a limit on the number of modes that can travel to infinity alongNHe-strings attached to the D3-brane.

PACS numbd(s): 11.25.Hf

[. INTRODUCTION understood in light of the fact that the basic BPS spike is a
solution to the full derivative-corrected equations of motion
D-braneq1,2,3] have become important tools in the questfollowing from string theory[10]. Even the dynamics of the
to develop a full understanding of string theory. The lowspike, as probed through small fluctuations, agree with ex-
energy action describing the dynamics of test D-branes corpected string behavig¢d1,12,13. However, Kastor and Tra-
sists of two parts: the Born-Infeld actigd] and the Chern- schen[13] showed that certain fluctuation modes that are
Simons actior{5,6]. This nonlinear action reliably captures inherently three-dimensional also appear to propagate to in-
the physics of D-branes with great accuracy. One interestin§nity in this picture, and hence the spike seems to retain its
aspect of this story is that one finds that the D-brane actiofhree-brane character even at large distances.
supports  solitonic  configurations  describing lower- ~ The purpose of this paper is to study the “dual” descrip-
dimensional branes protruding from the original D-branetion of a system oN D-strings attached to a D3-brane. This
[7,8,9. system has been analyzed previouslyi4,15,16,17,18,19
For instance, in the case of a D3-brane, one finds spik&ising the connectiofil4] between the Nahm equations for
solutions corresponding to fundamental strings and D-stringBogomol'nyi-Prasad-SommerfieldBPS monopoles [20]
(as well as stringsattached to the D3-brane. These configu-and the BPS condition for the non-Abelian D-string theory.
rations have both the world-volume gauge fields and transThis theory contains noncommutative solutions describing
verse scalar fields excited. The gauge field corresponds f&ie D-strings expanding out in a funnel-like geometry to be-
that of a point charge arising from the end-point of the at-come an orthogonal D3-brane. These solutions are valid in a
tached string, i.e., an electric charge for a fundamental stringegime complimentary to the bion spikes discussed above.
and a magnetic monopole charge for a D-string. The scalathat is, the solutions will accurately describe the physics
field on the other hand, represents a deformation of the gec€ry close to the center of the spike, or alternatively very far
ometry of the D3-brane, caused by attaching the strings. from the D3-brane. The two approaches, i.e., the D3-brane
Naively, the range of validity of this analysis is limited to Spikes and the D-string funnels, turn out to agree exactly in
a range far from the core of the spike where the fields on théhe largeN limit, while we get new insights into the physics
D3-brane world-volume are slowly varying. This range canat finite N near the core of the spike from the D-string fun-
be increased by increasing the numbiof attached strings. nels.
(Although N cannot be too large if we are to ignore gravita-  In the next section we will quickly review the full non-
tional effects) However, the results obtained seem to have g\belian D-brane action, followed by an outline of the re-
larger regime of validity, maybe even all the way to the mainder of this paper.
center of the spike where it protrudes an infinite distance
from the original position of the D3-brane. This can partly be Il NON-ABELIAN BRANE ACTION

Our starting point is the non-Abelian world-volume action

*Email address: constabl@hep.physics.mcgill.ca describingN coincident D-strings, whose complete form was
TEmail address: rem@hep.physics.mcgill.ca recently discussed by Myef21], as well as Taylor and Van
*Email address: tafjord@physics.mcgill.ca Raamsdonk22]. The action consists of two parts: the Born-
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Sgi= _TlJ’ d?oSTile™ ?\/—de(P[Egp+ Eqi(Q 1= 6)" Ejp]+ AFap)det(Q))], 1)
|
with Using the same manipulations as in R&f1], assuming=®)
constant(in spacg, this term produces a new contribution to
\=2n/%, E,,=G,,+B,,, and the scalar potential of the form
=51 i PKIE, . i o
Q=0 FIN[ PP 1By, @ §>\2M1f dtdoTHIDIDKFLS) (1), (©)

and the Chern-Simons action
As in Ref.[21], one can find solutions fob' in terms ofN
AF) 3) dimensional representations of ti84J(2) algebra, describ-
e ing a D-string with anR'x S? structure. The energy and
radius of this solution can also be calculated from a dual
Implicitly, Egs. (1) and (3) employ static gauge where the perspective from the D3-brane action with appropriate world
two worldsheet coordinates are identified with two spacetimezolume gauge fields excited, corresponding to dissolved
coordinates. We have chosert=x° ando=x°. In these D-strings. The two approaches exactly agree in the latge
expressionsP[---] denotes the pullback of the enclosed limit. Similar calculations in the dual D3-brane theory appear
spacetime tensors to the worldsheet. THei=1, ...,8, are in Ref.[23].
the transverse scalars, which a@e< N matrices in the ad- In this paper we consider similar solutions of the non-
joint representation of th&)(N) worldsheet gauge symme- Abelian D-string theory. The scalar field configuration again
try. The notationiy denotes the interior product b)' re-  has a similar interpretation in terms of noncommutative ge-
garded as a vector in the transverse space, e.g., acting orpgetry such that spatial slices have the topoldy S?.
two-form C(Z)Z%CLZV)dXﬂdXv, we have However, now the®d' matrices depend on the worldsheet
coordinates, and so the radius of the two-sphere can vary
1 along the length of the D-string. In Sec. lll A, we study pos-
iq,iq)C(”:E[(D',(I)J]C}iZ). (4)  sible solutions in a flat space background, and we obtain
configurations corresponding td D-strings attached to a
D3-brane. We compare features of this solution—such as
total energy, couplings to background fields, and the shape of
e configuration—to the corresponding aspects in the D3-

eixi(pi(p(z c(meB

Scs= le ST"(P

In both Eqgs(1) and(3), the gauge trace indicated by %Fr)
is a symmetrized trace. The precise prescription proposed

Ref.[21] was that inside the trace one takes a symmetrize rane spike. In the largs limit, there is an exact correspon-

average over ‘T"” ordt?rlngs of ﬂﬁﬁb D&, '[q)_l’q)]]’ and  gence. Note that there are no nontrivial background fields
also the individual®' appearing in the functional depen- pore and so these constructions are quite distinct from the
dence of the background supergravity fields. We refer th%ielectric effect discussed above and in Hefl].

reader to Ref[21] for more detail§ on the;e ac_tions. Following the initial papers on the D3-brane spjie8,d,

In Ref.[21], the D-particle version of this action was used g6 has been a considerable literature studying various gen-
to analyze the behavior dl D-particles when plgg:ed N @ eralizations. This includes the construction of dyonic spikes
constant background Ramond-RamdRR) field F*™”. This  jegcribing(p,g)-strings[15], analysis of double-funnel solu-
RR four-form is _the .f|eld strength associated wnh Dz'bra”etions[7,8,24, solutions in an additional D3-brane supergrav-
charge, and ordinarily DO-branes would be considered Nty background[25,26, and solutions with fundamental
tral with res_pect to this fie_ld. However, new couplings tp thestrings dissolved in the D3-brafig7]. We give a sample of
corresponding RR potentiag(® appear in the non-Abelian poy these situations can be described from the dual D-string
Chern-Simons actio(B) of the D-particles. As a result, the pictyre, In Sec. 111B, we show the existence of the double-
D-particles are “polarized” by the external field into a non- fynnel solutions describing D-strings stretched between a
commutative two-sphere, which can be interpreted as &3.prane and an anti-D3-brarfer another D3-brane In
spherical D2-D0 bound state. This analysis can readily b&eac. |11C, we give a brief description of how to construct
generalized to P-branes in a background of constant  g)-string configurations, while Sec. [lID demonstrates
F(P*4). Starting with a flat [p-brane with spatial geometry how the BPS funnels survive even when the system is put in
RP, it will be energetically favorable for the brane to expanda supergravity background corresponding to a collection of
into a noncommutativlkP X S? structure. For instance, in the D3-pranes.
case of D-strings, the Chern-Simons acti@ involves a A D-string stretched between two D3-branes is repre-
coupling sented as a non-Abelian BPS monopole in the D3-brane

theory. The “dual” D-string description provides a physical
. T realization[14] of the Nahm equation0]. This interpreta-
'MLlf TrPligiaC]. ®) tion has already received extensive attention in the literature
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[14,15,16,17,18,19 In this paper we consider the primarily cant discrepancies with the D3-brane analy4i3] for the

the case of the D-string funnel, in which one of the D3-higher| modes. In particular, due to the noncommutative
branes has moved off to infinity. Our focus is on the lakje character of the funnel, the spectrum is truncateld,gt=N

limit at the point in monopole moduli space where all the —1. This suggests a resolution of the puzzle appearing in
monopoles coincide. This allows us to make a direct comRef.[13], which was mentioned above.

parison with the bion spikes in thg(1) theory on the re- We conclude in Sec. V with some further discussion and
maining D3-brane. In particular, using the new terms in thecomments on our results.

non-Abelian Chern-Simons actiof3) [21,27, we can ex-

plicitly show that the funnel has couplings corresponding to . D3-BRANES FROM D-STRINGS

a D3-brane. . . . . . . .

The dynamics of the D3-brane spike has also been con- In th|s.sect|on we will describe various §o|ut|ons in the
sidered[11,12,13. In Sec. IV, we analyze small fluctuations non-Abelian world-volume theory of a D-string correspond-
propagating along the D-string in the funnel configuration.Nd © the D-string opening up into a D3-brane.
We study both modes that are transverse and parallel to the
D3-brane. Again, in the largd limit, we obtain exact agree- A. The BPS funnel
ment with the D3-brane analysi41,12,13, in spite of the In flat background, the Chern-Simons pd& of the
fact that the present calculation involves noncommuting mab-string action plays no role, while the Born-Infeld action
trices and looks rather different. At finité, we find signifi- (1) reduces td28,21*

S= —le d2oSTry—de( 75+ \29,8'Q;; "9y ®)) de(QY), 7

where where thea' give someNx N matrix representation of the
L o SU(2) algebra
Q=8"+iN[D' D] (8) o
o _ [a',aJ]ZZisijkak. (12
Implicitly here, we have set the world-volume gauge field to
zero. This is consistent with the equations of motions for theyow at fixedo, this ansatz for non-Abelian scalars describes

scalar field configurations considered here. However, thg noncommutative two-sphere with a physical radius given
gauge field will play an essential role in Sec. Il C below. by

Recall that we are using static gauge and have chosen the

world-volume coordinates to be=t=x° and o=x°. Ex- \23

panding this action7) to leading order(in \), yields the R(o)2=— > Ti[®'(5)?]=\2CR(0)% (13
usual non-Abelian scalar action N =1

A2 , . HereC is the quadratic Casimir of the particular representa-
SZ—Tlf d?o|N+ - Tr| 7P, tion of the generators under consideration, defined by the
identity
1 S
+ 5[0 I[P],01] +) ) 3
2‘,1 (a')2=Cly, (14)

Varying this action yields the following equation of motion:

o e Co wherely is the NXx N identity matrix. For exampleC=N?2

I, @' =[®),[ D!, D']]. (10 —1 for the irreducibleNx N representation.
i ) ) Now given the ansatl1), the matrix equations of motion
Now we are looking for solutions which represent the(lo) reduce to a single scalar equation

D-string expanding into a D3-brane, analogous or “dual” to
the bion solutions of the D3-brane thedr¥,8]. The corre-
sponding geometry would be a long funnel where the cross
section at fixedo has the topology of a two-sphere. Hence o ) . )
motivated by the noncommutative two-sphere construction&onsidering a trial solutiorRRxo®, yields
of Refs.[29,21], we consider the spherically symmetric an-
satz

R’(o)=8R(o)3. (15)

o _ lIn these expressions, the transverse space indices are raised and
®'=R(0)a', =123, (11)  lowered withg;;=&; andg'=&'".
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1 (9). From Ref.[24], we can infer that BPS solutions of the
2o—0.) (16)  leading order theory9) are also BPS solutions of the full
non-Abelian Born-Infeld actioii7). That is, the funnel solu-
where we have used the translation invariance of(Eﬁ) to tions will also solve the full equations of motion, as we will
introduce the integration constant, . Since the second or- explicitly demonstrate below. In a related discussion, Ref.
der equation(15) should have a general solution with two [15] showed, in the context of the full non-Abelian D-string
integration constants, it is clear that E@6) is not the most ~ theory(7), that supersymmetric configurations satisfying Eq.
general solution—we will leave this solution to the next sec-(21) minimize the energy of the system.
tion. However, this solutio16) indeed describes the desired ~ We begin by substituting our ansa(i) directly into the
funnel, with the D-string opening up into a three-brane ataction(7), and find that it becomes
o=o0.,, Where the radius of the funnel diverges. As it stands
Egs. (11) and (16) only represent a solution of the leading
order equations of motiofil0), and so naively one expects

ﬁ((r)Z +

S= —Tlf d2oSTr/ (14120l o (R')2)(1+ 4\ 2ad ol RY),

that it should only be valid for smalR or small radius. (23
However, we will find that this configuration also solves the
full equations of motion extremizing the actidn). where bothi andj are summed over 1,2,3. In deriving this

Before plunging into the full equations of motion, let us result, we have eliminated certain combinations of matrices
investigate the supersymmetry of the funnel configuratiorfrom the determinant&@nd inverseswhich will cancel under
above. Following the analysis of Callan and MaldacEfla  the symmetrized trace. In the remaining expression, symme-
we investigate the linearized supersymmetry conditionstrization applies to each of the individual generatatsap-
which strictly speaking would only apply for the leading pearing there. Now extremizing this acti@2B) with respect

order action(9).> We may write the linearized conditions as to variations ofR yields an equation of motion which may be

IHF,,e=0, 17 written as
where u,v are ten-dimensional indices ardis some con- 1 d 1+4020 I R4
stant spinor. The latter world-volume supersymmetry param- — —STr\/———=0. (24
eter also satisfies the usual D-string projecti@): I'% R’ do 1+N\2%d'@'(R")?

= €. Note thate transforms a spinor under both tB&X1,1)

Lorentz transformations of the D-string world-volume |f the radius profile satisfies the supersymmetry constraint
theory, and theSQ(8) rotations of the transverse space.(22), then the expression under the square root is simply the
Hence it is reasonable to multipby ten-dimensional Dirac  jdentity and it follows that the equation of motion is satisfied.
matrices, such ak#"=[I"#,I""]/2. Following the standard Hence the supersymmetric funnel solutions are in fact solu-
notation(see, e.g., Ref§31]), whereF ,,, denotes the world-  tions of the full non-Abelian equations of moti¢84). Note
volume gauge field strength which vanishes in the presenthat we were able to derive this result without making an
case, one also has expansion(in A) of the matrix expression in Eq24) and
explicitly implementing the symmetric trace on the indi-

Fai=Da®', Fjj=i[®',®]. (18 yidual terms in this expansion.
: It is clear that the funnel solution, Eqéll) and (16),
H Eq.(l Id ; . . . .
ence Eq(17) yields describes the non-Abelian D-string opening up into a three-
(209D, &' +iTK &I, dK])e=0. (190  brane on thex*,x?,x3) hypersurface at=o.,. While the

natural intuition is that the latter is actually a D3-brane, it
This condition can be solved by spinors satisfying the protemains to be demonstrated. We begin by comparing our
jection funnel solution to the D3-brane monopole or spjkeé. For
o123 _ these purposes, we will focus on the funnel wheredhare
I =6 (200 chosen as the irreduciblx N representation, witlC=N?

provided that the scalars satisfy the Nahm equatid4s —1. In this case, the radiud.3) becomeg16)

: [ : Nl 2
R T L) (21) R=—— —VI-1N2 25

O~ 0y

Now inserting our ansatel1) this implies To leading order for larg&\, this yields preciselyincluding

A, _ 25 numerical coefficient the corresponding formula for the
R'=+2R" (22 height of D3-brane spikg7], i.e.,

However, the solution of this equation is precisely that given

in Eq. (16). Hence, we conclude that the funnel configura-

tions given by Eqgs(11) and (16) are in fact BPS solutions  2Supersymmetry conditions for the full non-Abelian Born-Infeld

preserving 1/2 of the supersymmetry of the D-string theoryaction(7) would be expected to be more complicafe8,30.
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2
_N7T|s

- 26 e | THPLigoC]

O~ 0y

i)\zllLl 2 . .
== (4) krepl @l
This remarkable agreement is perhaps more than one should 2 f d o Cii(7,0)Tr(9, DD, PI]) +

expect, since the D3-brane analysis is strictly speaking only

valid for R large, while the current calculations will be reli- ~_. N 5 4)

able for smallR. We will comment more on this in the dis- - +"“3\/_Ef dt4mRIARCIALR).
cussion section.

To further corroborate the fact that our funnel yields a B -
D3-brane, let us compare the energy and some couplings Mere !ve hf\ée used the ?n}s(aiz) andRTj)\\/@ R|, as well
those obtained from the dual D3-brane action. Given oufSH#1=47 lsus and Trl@'a’) =(N/3)C4". In the dual D3-
static solution, the energy is easily derived from the D-stringbrane formulation, _essentlally the same expression arises in
action (23). Note that using the supersymmetry condition th€ standard coupling to the RR four-form
(22), the two expressions under the square root are equal and
hence the action is “linearized['15]. We are then left with Msf P[C(4)]:/-L3f dthd0d¢C(4) ﬁvxiang%kar,_,

(30

tijk
E=T1f doSTH1+4\%a o' RY| :M3J dt4mR*dRGHYt,R). (3D)
o do\? So once again if we chose the irreducible representation, we
:2NT1J doR?|R'|| | —| +\%C|, (270 would haveN//C=(1—-1/N?) %2 and for largeN Egs.
dR (30) and (31) agree up toN~? corrections. It is interesting

that in deriving this agreement for the RR coupling, we only
used the basic ansatz1), but not the details of the funnel

where we have repeatedly appliBd==2R? in producing  solution(16). Hence this result will hold more generally, and
the second expression. We can further manipulate this resul§ particular it still holds in the following sections. In Eq.

by introducing the physical radiu=\C|R|, as well as (30, the minus(plus sign arises ifR is positive (negativé.
using Ty =4723T; to put this expression in the form Hence this calculation shows that the minus solution in Eq.
(16) corresponds to the D-string opening up into a D3-brane
(assuming we approach from>o.,), while the plus solu-
tion has the opposite orientation and corresponds to an anti-
D3-brane.

To summarize this section, we have shown that by allow-
ing for suitable boundary conditions in the non-Abelian
In the dual D3-brane picture, the energy of aspherically  D-string theory, the latter can “grow” into a D3-brane. This
symmetrid BPS configuratiohis simply given by[7,15] construction is a dual formulation of the BPS magnetic

monopole in the Abelian D3-brane theory which describes a
) D-string spike growing out of the three-brane surface. In the
1+ d_“) present calculation, we see that the geometry at the core of
drR/ |’ the spike is noncommutative, with the level of discreteness
(290 set byN, the number of D-strings. In these last few calcula-
tions, we have focused on using the irreducillg N repre-
, , , sentation of theSU(2) generatorg12), and we found good
If we choge_tlge ireducible representation, we haw/e/C guantitative agreement at lar§ebetween the two formula-
=(1-1/N°) "7 and hence thfz energy calculated in thesions These calculations indicate that the funnel solution de-
two formulations agrees up ®~“ corrections for largN.  gqrihes theN D-strings expanding into a single fundamental
_ IfaD3-brane is emerging in the funnel solution, this con-p3 prane. Using reducible representations would correspond
figuration should act as a source for the RR four-form poteng, creating severaindependentD3-branes from the sarié
tial, C®. Such a coupling arises in the Chern-Simons actior_gtrings. Paralleling the constructions in Ré1], one

(3) because of the non-Abelian expectation value of the scasqid then construct multicenter funnels located at different
lars in this solution. To leading order, we can focus on thepositions in the %,x2,x3) hypersurface.

interaction given in Eq(5), which yields

2
+1

ag
47R%d R[(—

E=T, . (28)

d
dR

g

E=T3f d3x[1+(va)2]=T3f 47R%dR

B. Double funnels

SNote that this expression holds regardless of whether electric With the ansatz11), the leading-order matrix equations

fields, magnetic fields, or both are excited on the D3-brane. HencbecameR” =8R? in Eq. (15). As a first step to generating the
the agreement found here is more generally applicable. most general solution, we integrate this equation as
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(R')2=4(R*—RY) (32) the noncommutative funnel stops contracting wieaR,.
o The obvious solution to continue past this poinf7s8]
where Iig is an arbitrary integration constant. In principle 1 (= N2C 1 AR%
then, integrating once more yields the general solution o=0,+t2Ao— EJ dR A /~R4—R40' (39)
R —

0
1= dR
U=0'wi—f —_— (33 whereAo=0(Rg)—0.. Hence beyond the minimum ra-
2Jr \/~R4—f{g dius, the solution reexpands into an anti-D3-branecat
=0..+2Ac.* Thus we have reproduced the wormhole solu-
This solution looks remarkably similar to those describingtions of Refs[7,8] from the point of view of the non-Abelian
double funnels or wormholes in dual D3-brane frameworkD-string theory.
[7,8]. In integrating Eq.(34), one could also choose a negative
However, before examining the details of these configuintegration constant, in which case it is natural to write
rations, let us consider the analogous solutions of the full
equation of motion(24). The symmetrized prescription 2 N2 1+(R6)2 4
[32,2]] instructs us to expand the square root expression and (R")"=(Ryo) +4_)\2C_R ' (39)
symmetrize over all permutations of the generaterin the
trace of each term in the expansion. For examplewhereR; is a new dimensionless integration constant. The
STr(@'@')=NC, STr(a'a'a'a’)=N(C?-4C/3), and general solution then becomes
STr(a'a'alal a®aX)=N(C3—4C?+ 16C/3). Unfortunately,
we have not been able to find a systematic construction for 1 fm )\\/Equ

the general term in this expansion. However, observing that o=0,+ >

(40)

at leading order, STe('@')™=NC™, we can construct an
approximate equation by replacing théa' by Cly in Eq.
(24). For largeN, this keeps the leading order contribution at In this case, the funnel collapses all the way down to zero
every order(in N\) in the expansion of the square roots. radius, which is approached with a finite slope, i.e., from Eq.
Within this approximation the equation of motion becomes (39) R’(R=0)= R, . The integrand has no singularity &t

R @+ (RYDRI+NC(RY) 24

- =0, and so one can continue the solution beyond this point if
N d 1+4\°CR one allows the radius to become negative. Alternatively,
N =50 (34 keeping the radius positive, we would match E40) onto
R do ¥V 14+)\2C(R)

Integrating this equation is trivial, and the result may be
expressed as

1 (= \VCdR
a'=a'oc+2A(T——J = ,
2R @+ (R HR -+ N2C(RY) 24

L ReR (41)
(R’)2=4—A4- (35  where nowAo=0(R=0)—0.,. Hence in this solution, the
1+4\°CR, funnel collapses down to zero size and then reexpands into
) ) another D3-brarfeat o= 0.+ 2A 0. These general solutions
In terms of the physical radiud.3), we have again match, for largé\, the analogous cusp configurations
R_RA constructed in the D3-brane framewd@d]. For comparison
(R')2=4 0 (36) purposes, it may be simpler to think of these solutions in the
)\2C+4R3' form given in Eqs(37) and(38), but with Rg<0. Note that

in this case, we must choose\?C/4<Rj to produce a real

where we have also rescaled the integration constant in thg)|ution. This lower bounR’— — \2C/4 corresponds to the
obvious way. The solution of this equation is then implicitly singular limit Ry — .

given by These cusp solutions describeD-strings stretched be-
5 7 tween two parallel D3-branetor anti-D3-branes which
o=o } deﬁ [A"C+4R, 37) should be a supersymmetric configuration. However, the su-
“ 2 JR RY—R? ' persymmetry conditioii22) is only satisfied wheiiRy=0, in

which case the D-string extends off to infinity before reach-
With C=N2—1 for the irreducible representation, Eq. N9 Z€ro size. In the dual D3-brane framework, Hashimoto

(37) precisely reproduces the general solutions constructed in

Refs.[7,8] for largeN. For Ry;=0 we recover the supersym-

metric funnel solutior(25). For largeR, the general solution  “Verifying that the emergence of a D3-brane or an anti-D3-brane
approximates this funnel and so given our previous discusat either end of these double funnel solutions actually requires ex-
sion the nonabelian D-string is again expanding into a D3amining the sign oR aso =0, ando.,+2A0, as per the discus-
brane ab=o0,. AssumingRé> 0, we see from Eq.36) that  sion in Sec. Il A.
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[24] identified the correct supersymmetric solution f§r C. (p,g)-strings

=1 as a BPS monopole of the non-Abelian world-volume  The previous analysis is readily generalized (mo)-
theory describing the two D3-branes. To find the correspondstrings, i.e., bound states of D-strings and fundamental
ing BPS solutions in the D-string theory, one must beginstrings [35]. This is done by simply introducing a back-
with an ansatz more general than E#jl) when solving the  groundU(1) electric field on the D-strings, corresponding to
Nahm equation$21). Such solutions are known, see for ex- fundamental strings dissolved on the worldsheet. Denoting
ample Refs[33,18. We leave a discussion of these solutionsthe electric field as=,,=&ly, the D-string action23) be-

for future work[34]. comes

S= —Tlf d2oSTH (L -2+ N\ (R)D)(1+4\2al R, (42

where we have inserted the noncommutative anddiz Ex-

- N
tremizing with respect to variations & yields E:Tlf do N2+ 92N?+T3\/—6j 4m7RdR,  (47)
1 d 1+4N2al ol R? whereg is the string coupling, and we remind the reader that
— —STr —=0. (43)  T,=(M\g) L. Here the first term comes from collecting the
R’ do 1_)\252+)\2ala,l(R/)2

contributions independent d?, and correctly matches the
energy of the K,N;)-string bound stat¢35]. The second
contribution involves the terms containifigyand as in Sec.
A, Eq. (44) is used to put these in the forR?|R’|. The

. N final result corresponds to the expected energy of an orthogo-
R'=221-\E°R%, (44) nal D3-brane, at I[I)argdal. Our eprr)essior(47) a%}.}s/o matches ’
the expectation&or largeN) from the similar calculations in

Now assuming€ constant, a simple rescaling of E(R2)
yields an exact solution, i.e.,

Hence the funnel solution for th@,g)-string becomes the D3-brane theorj15]. Equation(29) still applies in this
case, and in this formulation théV ¢-)? term provides the
B(o) 1 1 45 contribution of the N,N;)-string. In the D3-brane formula-
o)= _ T . ST
> 1N 0— 0. tion, it is straightforward to show that the dyonic spike is still

supersymmetric. However, in the D-string formulation, intro-
ducing a constant background electric field moves the theory
to a new superselection sector where the supersymmetry is
nonlinearly realized.By the SL(2,2) duality of the type Ilb
superstring theory, it is clear that & (N)-string has pre-
cisely the same amount of supersymmetry as an ordinary

[For simplicity, we will only consider the positive root of Eq.
(44) in the following ] It is also useful to consider the electric
displacement D, conjugate &6

165 1 \/ 14+ 4N2a /R4 D-string. Similarly the dyonic funnel will be a BPS configu-
=——=—STr ———\?T,& ration preserving 1/2 of the world-volume supersymmetries.
Née N 1-N2E2+\2alad(R')? This supersymmetry is reflected in that these configurations
\2T,E (44) satisfy the full equations of motiof43), and that the

_ (46) corresponding energy7) splits into a sum of string and

Ji—n2e2’ three-brane contributions.
There are also various other solutions known in the litera-
where we have used E¢4) to derive the final result. One (U involving(p,g)-strings(see, for example, Ref26]), and
can verify that the equations of motion for the world-volume these should presumably also follow from the full equations

gauge field specify D to be a constant, and so our assumptio‘?{ motion (43) in a straightforward manner. For related dis-

of constant is consistent for any solutioR(c) obeying Eq. cussion on string junctions, see Ref£8,19.

(43). For N; fundamental strings, one obtains the correct

(p, 0)-string tension by quantizin® =N /N, remembering , i ,

that the fundamental string tension is simply-4/see below. We now consider constructing a noncommutative funnel
To determine the energy of the system, we must evaluatf®r @ non-Abelian D-string sitting in the background of a set

the Hamiltonian,/da(DE- L), for the dyonic funnel solu-

tions. Manipulating this expression in a manner similar to the

analogous calculations in Eq27),(28), the final result may  Swe would like to thank Amanda Peet for a discussion on this

be expressed as a sum of two terms point.

D. Embedding in a D3-brane background
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of orthogonal D3-branes. According to Ref&5,26, when A2 o
working with a test D3-brane sitting in such a supergravity + ?Cfffith)'Da¢k[q)',@'] : (52)
background, the BPS Born-Infeld spike solutions are un-
changed by the background fields. Hence one might expect
that the funnel solutiong11),(16) will also appear un- In the solution which we will construct, we assume tkiat
changed in the modified world-volume theory of the there are no background gauge fields so the covariant deriva-
D-strings. tives in the pullbacks are simply ordinary partial derivatives,
An extremal D3-brane background can be writteri26§ (i) the solution is static so th@,®'=,®'=0, and(iii ) for
_ later purposes, that only th@' in the x' directions are rel-
42 —dt*+(dx)? evant, i.e., we only consider “deformations” of the D-string
N JH in its transverse directions which are parallel to the world-
volume directions of the background D3-brane. Further,
F) = 2125, HAtADEADRADEAdX™ from Eqgs.(48) or (50), we know thatC{3) =0. Hence the
only relevant interaction above is

+\H(dx™)?,

+ 3 Higm(dX*A\dXxAdXEAdx AdxEAdX®),

(48) i
. o =\? fdz STHC{. 9, D', dI7). 52
where thex!, i=1... 3, directions are parallel to the D3- 2 M1 oSTHCu g1 D %2
brane, and th&™, m=4 ... 9,directions are transverse. The
function H satisfies the Laplace equatiosd,,/{=0. The

single center harmonic function is In the background RR potential and the metric, we have

the harmonic functior(49) which is only a function of the

I\4 non-Abelian radius
H=1+4ng3(7) (49
, 2= g2+ \N2[(®H2+ (D52 +---]=02. (53
for N3 D3-branes, where?=3? _,(x™?2. The potential for
the five-form field strength has an electric component which
may be written In the last step, in keeping with the assumptions listed above,
we have ignored the fluctuations of the D-string in tH&
Cil=*(H 1= 1)dtdxtdx?dx. (50)  directions. This simplifies the calculation since we have

. . . . o =H(o), however, we might expect some smearing of the
The magnetic panrjt of the potential will only involve indices p_giring in thex™ directions at higher order. With this sim-
in the transverse™ directions, and we will argue below that ification, the Chern-Simons interaction becomes
it is irrelevant for the present calculation.
Now considerN D-strings extending into the transverse

space along the®-axis. We again choose static gauge for the i, ) 1 K i
D-string action with7=t and o=x°. In the non-Abelian M uy | d%o(H(o) "= Dey; Tr(d,P [, ]),
Chern-Simons actiof3), we have the interactions (54)

le INSTP[igieC™] where for definiteness, we have chosen the plus sign for the

potential in Eq.(50). This choice corresponds to a back-
ground of D3-branegas opposed to anti-D3-branes
The Born-Infeld part of the action is only slightly modi-

@) i @ i fied by the background metric. For our usual ansatfy, the
FACyiD P[P, D' ]-NCyi D D[ D', D] Born-Infeld action now reads

i o
- E"“lf dzaSTr{ Cigh[ @', @]

N a\t
Spi=—Tyi | d?0STr\/| 1+~ a'a'(R")?|| 1+ —-a'a'R*|. (55)
H H
Similarly inserting Eq.(11) into the Chern-Simons interactigb4) yields
“n 2 R
Scs= 2)\2NCTlf d?c(H(0) 1= 1)R’°R' =— §A2NCTIJ d?0d,(H(o) HR3, (56)

Since the functiort{ depends orer, the full equations of motion following from this action are considerably more complicated
than in the flat space case. The full equations of motion may be written as
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2
1+ —dlalR4
H

N
1+ —da'a'(R)?
H

N20,(H(o) " HR =2\2NCa,(H(o) HRZ. (57)

In the second term on the left hand Siaiéao denotes that the analogous solutions found in the D3-brane formulation.
the o derivative only acts on the harmonic functié The As afinal note here, we observe that this configuration solves

right hand side of this equation is the contribution from thethe full equations of motiort57) regardlessof the detailed

Chern-Simons term in E456). Now if as in Eq.(22), we set functional form of. In particular, the position of the end of
’ the funnel, i.e.g= 0., is still an independent parameter, not

BN\2_ 1P4 3 . .
(R")"=4R", the first two terms vanish and the entire expres-qqrejated to the positids) of the background D3-branes.

sion reduces to simply Further, one could consider multicenter solutions %ar
R =2R?, (58 IV. FLUCTUATIONS OF THE D-STRING FUNNEL
with the standard solution In this section, we analyze the dynamics of the BPS fun-
nel solution(16) (in a flat background That is, we examine
R _ 1 (59 the linearized equations of motion for small, time-dependent
- 2(0—0.)’ fluctuations of the transverse scalab$, around the exact

backgroundd' = (1/20)«'.® There are two types of fluctua-
Hence the background picks out the noncommutative funnejons to consider: The first, in the language of Haf3], are
which corresponds to the D-string expanding into a D3-the “overall transverse” excitations given by the scalars
brane, but not the one where an anti-D3-brane emerges. Thﬁbm which are transverse to both the D-String and the non-
should have been expected because an anti-D3-brane wowW@mmutative two-spheréor D3-brang. The second are the
be unstable in the D3-brane background. Choosing the opporelative transverse” fluctuations of the coordinate fietis
site sign of the RR potential in E¢54) would correspond to  which lie in the two-sphere directions. Our notation in the
putting the D-string in the supergravity background generfollowing will be that indicesi,j=1. .. 3 denote the direc-
ated by a collection of anti-D3-branes. This would alsotions para”e| to the D3_branm,n:4 ...8 represent direc-
change the sign of the Chern-Simons contribution in thejons transverse to both the D-string and the D3-brane, and
equation of motion(57) to produceR’ = —2R? in place of finally r,s=1... 8 include all of these directions.
Eq. (58). Hence in this case, the non-commutative funnel We start with the overall transverse fluctuations. The sim-
corresponding to an anti-D3-brane would be picked out. Irplest type of fluctuation is just proportional to the identity
any event, the BPS funnel solution consistent with the supematrix, say 6®™(o,t)=f"(o,t)ly. For these modes it is
symmetry of the background survives unchanged, just as fastraightforward to plug into the actioi¥), and we find

)\2
1+ —4aiai
4o

A2
1+ Faj aJ)(1—)\2(&I5<I>m)2)+)\2(&g5q)m)2
g

S=-T, f dZUSTr\/

z—NTlf d?o

A2 A2

H= 5 H@E) 24— (3,87 24, (60

SFor simplicity, we have sat,=0. We will also choose the generators for the background solution to NexitV irreducible represen-
tation. HenceC=N?—1.
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where we introduced keeping in mind the symmetrization procedure. We find that
the resulting action is the same as in the first line of ©&)

up to the addition of an extra commutator term

N[ D', 60™][ 60™ d'] in the second factor under the square

root. The quadratic action then becomes

In the final action, we have only kept the terms quadratic in
the fluctuations as this is sufficient to determine the linear-
ized equations of motion:

A\2C

H(U):l+4—0_4. (61)

A2 A2
S~ —T1J dzaTr( H- 7H((9t5c1>m)2+ 7((905@”“)2

2 2\ fm_ 2

(Hof—a2)fM=0. (62) +%[®i’5¢m][5¢m'¢i]
This is precisely the equation of motion found for the trans-
verse fluctuations of the DBI spike soliton in Refs.
[7,11,13. The identification of the functiofl with the cor-
responding functions in Refs[7,11,13 requires \?C/4
:szz/f, which again holds up to W? corrections for where the last term arises from taking care to expand the
largeN. Note that this equation was also found to agree withsymmetrized trace in the kinetic term. Now the linearized
the equation of motion for a fluctuating test string in the equation of motion becomes
supergravity background of a D3-brahEl], after identify-

A . :
+1—2[(90(1)',at5q)m][at5¢)m,(90(1)'] 1 (65)

ing parameters on both sides in a specific Way. (Hdf— %) 60™+[@',[ @', 60™]]
In the detailed analysis of Ref13], the fluctuations in X
Eq. (62 correspond to the¢’=0 modes, i.e., modes constant — E[(ga(pi,[%(pi,,yfg(pm]]:o_ (66)

on the two-sphere. We will now show that, up to an impor-
tant modification, similar agreement also holds for the higher . . L
/" modes. To describe th€>0 modes we first note, follow- In ortder t? nlakti contact thtrt1 thte dlscqsstlr:)_n in F{éfl V\:ce h

ing Refs.[29,37], that the fluctuationgd™ can be expanded must evajuate the commutator terms in this equation forthe

. I _ I e . .
on the noncommutative two-sphere as a polynomial series iR2ckground solutio>'=(1/20) '. To facilitate this we will
the matricesy' as follows: make use of the expansion in E¢(3). Specifically, we

evaluate
N—-1
5<I)m(0',t)=/20 lpirrllizmi/(o.,t)allalz. a7, (63 [ai,[ai,5¢m]]:/2N w{ziz...i/[ai’[aiaailaiz' . ai/]]

where the coefficients,l/i“;__i/ are completely symmetric and

traceless in the lower indices. Also note that the series must
terminate afteN— 1 terms since there are at most this many 67
linearly independent matrices which can be formed from an

. . . l

N>N irreducible representation of the'. In the largeN 1 quing yse of the fact that™, |, is completely symmetric
limit this expansion is analogous to expanding the fluctua- q | 1h2"' /h doubl b
tions in spherical harmonics on a commutative two-sphere.2nd traceless. So we see that the double commutator above

Substituting this form of the fluctuations into the action &SSentially acts like the Laplacian on the noncommutative
(7) is now slightly more involved, and it is more straightfor- two-sphere. Hence restricting the quctuatlop to contain p_rod—
ward to use an alternative form of the action, given in term&!CtS With a fixed number of generators, i.e., to contain a
of Eq. (26) in Ref.[21]. In flat space, this form of the action SPecific spherical harmonic on the two-sphere, we have
(7) readsS=—T,f V—D, with A(/+1)

[¢i,[®i,5®T]]=%5¢T
~ d 7ab )\‘“7acl)S o
D=de —NGp®" SS+HIN[D, D))’ €4 and (68)

where®" includes the backgroun®' and the overall trans- i o eem A7+ L,
verse fluctuations’®™. In general, this leads to a ¥10 [0,®",[0,P", 0 6@"]]= — 7 3 6@
determinant, which, however, is straightforward to evaluate
Thus we see that the equation of motion for each mode be-
comes

=> 4/(/+ 1)1//{Tlli2_,‘i/ai1ai2~ cal’,

/<N

"More precisely, the functional forms of the equations agree, /(s
while the parameters undergo some form of renormalization be- T2 2 m, ~ (/+1) m_
) . i (H, 97— 9,) 0P/ + > 0P ,=0, (69
tween the two pictures. Exact matching occurs only at a specific '
point in a parameter space, on the border between the two regimes
of validity. where
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2

- A 2 ‘ suggests that this is not the case, and that the propagation of
H/(O’):1+ m C— §/(/‘|’1)

: (70 high ~ modes is significantly modified. We will comment
more on this point in the discussion section.

Again for largeN and/ <N, this reproduces the equation ~ We finally briefly discuss the case of relative transverse
of motion for overall transverse fluctuations found from thefluctuations,6®'. From the D3-brane point of view these are
D3-brane spik¢13]. However, for large” the coefficientin  considerably more complicated to analyze, because of the
ﬁ/ is significantly modified compared to the D3-brane interplay between the scalar field and the gauge field. In the
analysis. Another important difference is that in the noncom-D-string picture, an increased complication arises in evaluat-
mutative D-string analysis, the spectrum of modes is truning the symmetrized trace. Unfortunately, we do not have an
cated at/,,,,=N—21. Note that given this truncation, the co- exact treatment of the quadratic action. Instead we use the
efficient of 16 in Eq. (70) cannot be negative—such a same approximation as in Sec. Il B, replacing in the action
negative coefficient would have caused drastic changes iaverywherex'a' by Cly . For largeN, this keeps the leading
the mode propagation. Thus for finité, there are a finite contribution at every order iR in an expansion of the action.
number of modes propagating in the core of the bion. NoteAs above, first let us consider the=0 mode, and for con-
that this number is2Y_5(2/+1)=N2 Of course, this creteness consider a fluctuation in the direction,
counting is precisely what is expected for the adjoint scalar$®>(o,t)=f(o,t)Iy. One can show that fluctuations in dif-
in the U(N) theory on the world-volume of thl D-strings.  ferent directions decouple at linear order, using afe(’)

A puzzle was raised in the D3-brane analyi8], where it =NC/38". The determinant in Eq64) now involves a 5
appeared that modes with arbitrarily highwould propagate X5 matrix which again is straightforward to calculate. We
out along the D-string spike. The present D-string analysidind

L1
s:—Jgfcﬂasn\/H(H—f1+ﬁ{1+a§mqﬁ]ﬁw2+agva2, (71

whereH is given in Eq.(61). Using Trez=0 in an expansion shown that the world-volume action foN coincident
in the amplitudef, the terms nicely arrange into D-strings hagxactBPS solutions which describe a D3-brane
) growing out of the noncommuting transverse coordinates of
f2 (f")? the collection of D-strings. We generalized this construction
H- §+ 2H to describe(p,0)-strings by considering the case where there
are a number of fundamental strings dissolved on the world-
The equations of motion follow immediately, and againsheet of the D-string. We have also considered the case
agree, for largeN, with the results from the D3-brane spike where the D-string is embedded in the supergravity back-
and from supergravity11,13. ground of a collection of D3-branes, and shown that the su-
Higher/ modes can be treated similarly. For instance, thepersymmetric funnel remains a solution with its form un-
/=1 “breathing” mode considered in Refl13] is imple- changed. In all these cases we have found, in the large
mented by the fluctuationd®'(o,t)=f(o,t)a'. The result-  limit, precise agreement with the earlier literature on the DBI
ing action is found most easily by substitutifg-R+f in ~ Spike soliton[7,8,9,15,2% _ .
the Born-Infeld actior(23), adding the obvious term involv- _ AS commented before, in these constructiéescept in

ing time-derivatives. The resulting equation of motion readsSec- 11 D), there are no nontrivial supergravity fields in the
ambient spacetime. Hence these solutions are quite distinct

from the configurations arising from the dielectric effect dis-
+ g2,z (4-H)f=0. (73 cussed in Ref[21]. The latter involves a collection of B
branes being “polarized” into a noncommutative configura-

The corresponding equation is only given indirectly in Ref.tion by an external field. As well as using the non-Abelian
[13], but through a bit of algebra one can verify that the twocharacter of the D-string theory, the essential new feature of
approaches agree, again up tdl4orrections. the present constructions is the introduction of unusuel,
singulay boundary conditions in the world-volume theory
[16,17. For example, in the BPS funnéll6) the scalars
diverge ato=o,. To comment on these boundary condi-
Making use of the recently proposed non-Abelian exten+tions further, let us consider the solution for different repre-
sion of the Born-Infeld action describing the world-volume sentation of the generatows'. Throughout the paper, we
physics of Op-braned 21,22, we have found a description of emphasized the irreducibld X N representation, for which
a D-string ending on a D3-brane “dual” to that obtained we found that the funnel corresponded precisely to khe
from the Abelian D3-brane action. Specifically we haveD-strings expanding into a single D3-brane. One could re-

+0(fYH . (72

S=——NT{fd20

g

H

o2f — ag<

V. DISCUSSION
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consider the analysis when the are chosen as the direct restriction derived in the previous discussion. A better re-
sum ofq copies of theN/qxX N/q representation. In this case, striction for avoiding the higher commutator corrections is
one would find that the BPS funnél6) describes an expan- that the Taylor expansion of the square root in the adta
sion into g coincident D3-branes at=o-.. Using energy should converge rapidly. This requirement leads to the more
considerations as in Ed28), naively one might conclude restrictive condition thaR<\N/s. However, for largeN,
that it is favorable for this configuration to decay into the there is still overlap with the D3-brane approach over a large
original ‘funnel.”O.f course, this is incorrect—th®3-branes  rggion. We should add, however, that this discussion applies
cqnnot decay” into a single DS-brane. Rather one shouldy, generic field corrections. There are some indications that
think of the new solution as a different superselection sectorg,, supersymmetric configurations, the higher commutator
‘év,h't_Ch tIS dtlst|fn%wsh§d in ou(rj.:;onstr;tctlon by |mI[;)osmg acorrections may vanisf88,39, and so the less conservative
t'ls :nc t;e SO oundary conditions at— o, (or alterna- restriction above may be the correct one for the BPS funnel.
Ively at R—c2). . . . , We should also remember that we have neglected gravi-
Actually from the D-string point of view, the scalar fields __.. L )

. . " tational effects, which is justified whegpN<1. Since none

start to vary extremely rapidly as— o, and so our descrip- L ! . . )
of our analysis involves the string couplirtg this require-

tion in terms of the low energy world-volume acti¢n will . i isfied b . K i
break down before this point is reached. On the other hand"€"t IS €asily satisfied by going to very weak coupling.
In Sec. IV, we also found remarkable agreement for the

as o— the world-volume scalars are both slowly varying ) . i
and small, and so our formulation should give a very reliabléynamics of small fluctuations on the D-string funnel and

description of the physics. This behavior is complementaryhose on the D3-brane spike, for lafyeand also”<N. Our

to the D3-brane analysis. From this point of view, the world-analysis begins to show significant discrepancies for higher
volume fields are slowly varying and small for largeand # modes. In particular, the spectrum of modes on the non-
rapidly varying for smalR. Thus these two approaches give commutative funnel is truncated &f,,,=N—1. This brings
complementary descriptions for the DBI spike. We note that!s to the puzzle arising from Reff13]. There the detailed

this complementarity arises because of the “dualfty” analysis of the fluctuations on the D3-brane spike showed
that there was no suppression of the highenodes near the
N/2 core. Hence modes with arbitrarily largé appeared to

R= p (74 propagate out to infinity, and the spike would seem to retain

its three-dimensional character arbitrarily far out rather mak-

bet h ld-vol dinates in the two diff ting a transition to stringlike behavior. Since our D-string
fo’arr:/vaIZ?ionse world-volume coordinates in the two ditteren analysis provides a reliable description of physics at the core

Let us trv o b . bout th £ validit of the spike, we conclude that this result cannot be correct.
etus try to be more precise about the ranges of Valiitiye paye found that only a finite number of modes propagate
where we think we can trust the Born-Infeld analysis in each., "« the D3-brane. Note. however. that 19D-strings

of these app.roaches'. Essen.tially, we must determipe whe[ is number iN?, not justN, due to the nonabelian character
we can confidently ignore higher derivative corrections toOf the coinciden,t D-strings1

the action arising from the usual’ egpanzsion in string Above we considered in detail in what regimes the D3-
theory. Schematically we would requir,s“®<ad. For brane and D-string descriptions would be trustworthy. How-

the; spike §0I|t(|)5n (;2 the El?;brzla:ne, tht:s Itjrans_late]:s 'Rt(? ever, this analysis was only for the spike or funnel solution
>/ c;r using q(74), o< oSt ;om ‘h?h -string urlme itself, which plays the role of a background in the calcula-
point of view, we must require> /s, which Is equivalent s of the linearized fluctuations. Hence we should repeat

K_) R,<.< N/s. So we See that in a Iargﬁ'hmn, there s & this preceding analysis for the fluctuations themselves. In
significant overlap region, and this explains, at least partially articular, a fluctuation on the D3-brane with angular mo-

the good agreement we find between the two approaches [ienwm number” oscillates on spheres of constant radius

this regime. with an effective wavelength =R//". Hence for higher de-

: 3 ) dditional hiah " rivative corrections to the D3-brane action to be negligible,
action (1),(3) requires additional higher order commutator - oot require thak//>1. HenceR>// or from Eq.

correctiony 38,39,40—see also the discussion in RE21]. (74), 0<(NI/)/ . Therefore even if we assunéis large,

lee_n this I|r_n|tat|on, we might con(_:lude that our non- we can only trust the linearized equations of motion to accu-
Abelian D-string calculations are reliable Qn'y for small rately describe the propagation of fluctuations far out on the
commutators. For the BPS funnel, we requiigR| <1 since  gpike for /<N. Similarly the regime of validity of the
the commutators of the scalar fields are characterized by thghalysis for fluctuations on the D-string funnel is more re-
dimensionless quantity;R. In terms of the physical radius, strictive for the higher” modes. In this case, we require that
this restriction becomeBR<N/;, which coincides with the higher commutator corrections to the non-Abelian Born-
Infeld action remain negligible. Given the commutators in
Eq. (68), it appears the relevant quantity to characterize the
8 or simplicity, we seto,,=0 here. Further we assume the irre- COMmutators is”/ {R. Thus our calculations would be trust-
ducibleNX N representation with largh, so thatC=N2. Both of ~ worthy for R<(N//)/s or 0>//s. Hence we conclude

these assumptions will apply throughout the remainder of the disthat we should not expect the two approaches to agree on the
cussion. dynamics of the linearized fluctuations f6r- /N or higher.
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Therefore it seems that the resolution of the conflict be-of the metric relevant to describing the geometry. This would
tween the results of Reff13] and the present paper is that the be somewhat similar to the difference between the closed
dynamics of the high” modes is significantly altered in a and open string metrics in situations where noncommutative
transition region between regimes where either of the twayeometry is relevarfd1]. However, we will leave this ques-
formulations can be trusted. In particular, higher derivativetion for future work.
corrections to the D3-brane action must play an important It would be interesting to generalize the present discus-
role near the core of the spike, and cause the very High sion to other D-brane systems. The extension pbiEanes
modes to be reflected back out to the region of large radiugending on orthogonal O+ 2)-branes would follow trivially
Unfortunately, beyond the observations made above, we caty the application off duality. A more interesting extension
not provide a detailed account of this suppression mechawould be to consider a D-string ending on an orthogonal
nism. Dp-brane withp+# 3. From the lowest order equation of mo-

To summarize, we have again seen that the Born-Infeldion (10), a static configuration would still have to satisfy
action is a remarkably powerful tool in describing the low A S
energy dynamics of pbranes. On the one hand, with the D =[D),[®),0']. (75)
D3-brane action one can construct spike configurations cor-
responding to D-strings attached to the D3-brane, and thwyith the ansatzb' = R(o)G' for some constant matric&,
validity of these solutions seems to go far beyond naive exthis equation can still only yield a differential equation of the
pectations. In this paper, we have shown how these configderm
rations also emerge from the D-string action in terms of non-
commutative geometry. This formulation provides a reliable R'=aR?, (76)
description of the central core of the DBI spike, but is also
reliable to a very large radius when the number of D-stringswith some constard, and one will again find solutions of the
is large. Hence we find surprising agreement with the origiform Rxo 1. Hence this type of profile is universal for all
nal D3-brane theory point of view. Combining these twofunnels on the D-string in any situation, and the only differ-
approaches presents an intriguing picture of D-strings atence from the D3-brane funnel will be in the overall constant
tached to an orthogonal D3-brane. At large radius we have aoefficient. This result is slightly surprising since from the
continuous D3-brane being smoothly deformed into the spikelual Dp-brane formulation, one would generically expect
geometry. However, near the core far out along the spikethat for largeR, solutions will essentially be harmonic func-
there is a metamorphosis to a discrete structure, namely tions behaving liker«cR™(P~2) or Rez o~ 1(P~2) The resolu-
noncommutative funnel geometry. One can begin to gain intion of this puzzle seems to be that the two profiles apply in
sight into this transition from the recent observations in Refdistinct regimes, the first for smai and the second for large
[41]. In the D3-brane analysis, the spike is a magnetic monoR. However, there is the possibility that solutions of the full
pole. Thus there is also a constant flux of magnetic field orBorn-Infeld action will display a transition from one kind of
the spheres of constant radius surrounding the spike. As thgehavior to another. In fact, we have begun analyzing the
radius shrinks the local flux density becomes very large, andase of a D-string ending on an orthogonal D5-brane in de-
hence we can expect to enter a regime where noncommutaail, and we find that funnel solutions do indeed make this
tive geometry provides an efficient description of the systemkind of transition[43].

Despite the striking agreement in the shape of the D3-
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