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The large radius limit in the AdS-CFT correspondence is expected to provide a holographic derivation of
flat-space scattering amplitudes. This suggests that questions of locality in the bulk should be addressed in
terms of properties of th& matrix and their translation into the conformal field theory. There are, however,
subtleties in this translation related to generic growth of amplitudes near the boundary of anti—de Sitter space.
Flat space amplitudes are recovered after a delicate projection of CFT correlators onto normal-mode frequen-
cies of AdS. Once such amplitudes are obtained from the CFT, possible criteria for approximate bulk locality
include bounds on growth of amplitudes at high energies and reproduction of semiclassical gravitational
scattering at long distances.

PACS numbsds): 11.25.Sq

I. INTRODUCTION to the corresponding excited state. Or one may have more
atoms, acting as emitters and detectors, and the emitted par-

Maldacena’s proposed correspondefitebetween string ticles may mutually scatter before being detected. Such
(or M) theory on Ad$XS® and A'=4 supersymmetric gauge Gedanken experiments give a framework to discuss
theory in four dimensions has stimulated a great deal of rescattering’
cent excitement. A particularly fascinating aspect of this ~ This analogy is not perfect. For one thing, AdS space has
correspondence is that it apparently serves as a concrete f@uch more volume at infinity than flat space, and this to-
alization of holographic ideds,4]. Although a great deal of gether with growth at infinity of the wave functions at non-
work has been done to deduce properties of the Iarge-normalizable frequencies can have important consequences.
Yang-Mills conformal field theory from this correspondence, In particular, as we will see, these combined effects can lead
an even more interesting question is how to deduce propeto growth of interaction strengths near the AdS boundary if
ties of string or M theory from the the boundary conformalwe work with states at non-normalizable frequencies. This
field theory. poses a difficulty for extracting flat-space scattering ampli-

Several steps have recently been taken in this direction. Ifudes in the center of a large radius anti—de Sitter space. An
particular, in Refs[5,6] the relationship between boundary obvious retort is that one should project scattering ampli-
correlators and an AdS analogue of tRenatrix (called the tudes onto normalizable frequencies, with a corresponding
boundaryS matrix in Ref.[6]) was described. This work had projection on the correlators of the boundary conformal field
been closely preceded by related wék8] which sketched theory (CFT). However, this is not made any easier by our
a prescription to derive flat spa@matrix elements in the lack of knowledge of the spectrum of normalizable states at
infinite radiusR limit of AdS space; one naturally expects the multiloop or nonperturbative levels, except in the case of
this Smatrix to be an appropriate— limit of the bound-  protected states. We will discuss this problem and possible
ary S matrix of Refs.[5,6]. resolutions in more detail.

This paper will investigate this question: in particular, it  |f we assume that it is indeed possible to extract flat-space
will address the issue of how flat-spaBamatrix elements Smatrices from the conformal field theory, another profound
can be obtained from conformal field theory data. As we willquestion arises. If the correspondence of Re&f.is correct,
find, this is somewhat nontrivial. the theory in the bulk should exhibit approximate

A useful analogy to bear in mind is that between anti—de(d+ 1)-dimensional locality, in an appropriate low-energy
Sitter space and a resonant cavity. If one quantizes a freémit. Although the bulk theory is conjectured to be string
field in AdS, generic frequencies produce non-normalizabléheory, which is manifestly nonlocal, this nonlocality is ex-
states, and the normalizable states correspond to a discreaected to only be apparent “at the string scal@fi some
set of frequencies and are analogous to cavity modes. Sin@ppropriate sengeor perhaps in black hole experiments.
there are no true asymptotic states among these modes, itT®e theory should bemacroscopicallylocal, namely, it
nota priori clear how to formulate scattering problems. Hereshould give low-energy, weak field amplitudes that are de-
the example of a resonant cavity serves as a guide. Considéivable from a local low-energy effective field theory. An
for example two atoms at diametrically opposite ends of the
cavity, and suppose one is in an excited state, and one inthe
ground state. Even when the trgnS|_t|(_)n energy 1S Ot a2pnqther possibility in the resonant cavity case is to cut small
normal-mode frequency of the cavity, it is possible for atomygjes in the wall of the cavity through which particles may enter
one to decay to its ground state with atom two transitioningang exit. This clearly more difficult for AdS space, although an

analogous construction exists for the case where an AdS bubble is

embedded in a space with asymptotic particle states, and these
*Email address: giddings@physics.ucsb.edu states must penetrate a potential barrier to reach the interior of AdS,
For a recent review and extensive set of references, sedRef. as described in Ref§5,6].
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important question is what property of the boundary CFTcoordinatesx=(r,p,Q}) for the cover of anti-de Sitter

implies macroscopic bulk locality in the large radius limit of space,

anti—de Sitter space? Also, one would like to better charac-

terize and understand the nonlocalities, and their possibly R? ) ” . 5

quite important implications. dg:@_p(_dT +dp?+sif pdQg_p). (2.1
To address this question we need a way to diagnose lo-

cality. Frqm at least two view-pointgauge invariance, ho- The boundary has topolog?~ X R, or alternatively can be
lography it was expected that the AdS-CFT correspondencganresented as the conformally equivalent infinite-sheeted

would —only yield Smatrix elements—not off-shell ., er of Minkowski space. A paint on the boundary sphere
amplitudes—and direct study has partially confirmed this. e specified by d-dimensional unit vectoe; boundary
[5—8]. Therefore we need a way of inferring from the points are parametrized &s=(7,8).

Smatrix whether—or to what extent—the underlying theory The basic statement of this correspondence is
is local. Various bounds exist fd&matrices derived from
local theories, or even from generalizations to theories with _ /i [ ,dbda(D)O(b)
' . Z =(Te/ PP . 2.2
nonlocal behavior above a definite energy scale. However, [¢(d0)]=( ) 2.2

derivation of these bounds becomes prOblematIC in the Caﬁﬁ this formula labels for different fields and their corre-

?Ltshegmesr;/vﬁth n{"?\zsrf'ssss%ﬂ]técilsétzgqnl?g:g]ce:jt!g::ya{;)or tthglcgsponding operators have been suppressed. On the left hand
1es with gravity. ' ! : u ide is the bulk partition function for string theory on

high-energy structure of string scattering amplitudes, but af s . 5 \ith hoth radii set tR. This is evaluated with bulk
present nothing that serves as a definitive test of locality ne Ids ¢ constrained to obey the boundary condition
the string scale. At macroscopic scales, one important test o
locality is that the theory correctly produce semiclassical
gravity amplitudes or other coulombic behavior, at long dis-
tances or equivalently small momentum transfer.

Yet another question that can be addressed is that of

whether, or to what extent, the underlying bulk theory can bé/vhere the constants.. and, defined by

reconstructed from complete knowledge of Benatrix ele- B =y il
ments. This is a difficult problem, and in general the solution 4h. =d=yd*+4m°R°=d=2v, (2.4

is not unique. A few comments about this problem will also ] ] )
be made. for a field of massn, govern the asymptotic behavior of the

The paper will begin with a brief review of the Maldacena fi€ld- The right side is the corresponding generating func-
conjecture, as formulated by Gubser, Klebanov, Polyakowtional for CFT correlation functions ilV=4SU(N) Yang-
and Witten. The next section will then describe the basidVills theory. The operato© corresponding ta has confor-
properties of the large radius limit for AdS. Section IV will Mal We|ghtA:22h+. The parameters of thez theories are
then turn to the question of whether, and how, bulk flat-spacé&elated bygs=g¥,, for the couplings, an®= (g%,,N)"* for
S-matrix elements can be extracted from boundary conformaihe AdSXS; radius.
field theory correlators in the large radius limit. If the latter At the level of correlation functions, the correspondence
are written in frequency space, an important distinction oc{2.2 may be rewritten as
curs between frequencies corresponding to normalizable and

p—ml2

¢ —— (cosp)*"+¢o(b), (2.3

non-normalizable modes; at frequencies corresponding to (TLO(by)O(by)---O(by)])
non-normalizable modes, boundary correlators receive im- n

portant contributions from regions near the boundary of _ ~ h oy

anti—de Sitter space. This behavior poses some difficulty for i]:'[l [dxGes(bi X)) 1Gr(Xs... Xn)

extracting the flat-spac@matrix, although outlines of a pro-
cedure will be given. Section V contains some discussion of
the problem of investigating the bulk locality properties of

the theory, as well as on the problem of reconstructing th
bulk theory. Following the conclusion is a rather lengthy ulk-boundary propagator, air(x, ..., denotes a bulk

Appendix containing a number of useful properties Ofn-point Green function with its external legs truncated. Some

anti—de Sitter space, its propagators, and the large radid%roperties of bulk and bulk-boundary propagators will be

limit. Many of these appear previously in the literature, al_rewewed.m the Appenmx._ . . .
though there are some new resuilts. In particular, the basic issues will be illustrated using the

relation between four-point functions,

(2.9

n this expressiorGg,(b;,%;) denotes the fullmultiloop)

Il. REVIEW OF THE GKPW CORRESPONDENCE (TO1(by) -+ O4(by))
We begin by recalling the precise form of the correspon- 4
dence for local correlators, as formulated by Gubser, Polya- = _Hl [dxiGpa(bi ;X)) ]GT(X1,... Xg).
kov, Klebanov, and Wittef9,10], and extended to Lorentz- =
ian signature in Refs[11,12. This paper will use global (2.6
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As a concrete example, consider truncating string theory IV. SMATRICES AT LARGE R?
down to a scalar sector with a three-point coupling, as in Ref.

[13], and suppressing dependence on$heoordinates: We would like to determine whether the flat-space

Smatrix can be extracted from the conformal correlators,
1 m2 such as Eq(2.8), in the limit of largeR. To begin with,
S= —f dV[E(V(D)Z‘F 7<I>2+g<1>3 . (2.7 recall the form of the flat-spac@matrix for the process cor-
responding to that of Eq2.8). This is simply the tree-level,
t-channel contribution to the flat-spa&@matrix, which is

To leading order in the coupling, the CFT correlator is given' . :
"9 ; upiing 'S gV given by a Fourier transform of the Feynman propagator:

by a term of the form

<Tol(b1)"'04(b4)>treei SMink,t(S!t): _ng dd+lxdd+1xlei(k1+k3)xei(k2+k4)Xr
= _ng dVdV'[Kgy(by,X)Kgs(bs,X)Kg(X,X") XKE(X,x")
/ / 1
X Kgy(b,X")Kpy(bs,x")] (2.8 =—igzé(d+1)(k1+k2+k3+k4)?. (4.1)
plus s and u channel contributions, wherkg is the bulk _ _
Feynman propagator for the field, andK g, is the tree-level The general question at hand is how to extract the
bulk-boundary propagator. Smatrix, for example Eq(4.1), directly from the corre-

sponding contribution to the CFT correlation function, for

example Eq.(2.8). Note that these formulas appear very

similar. By the LSZ prescription, the fl&matrix consists of
Our goal is to recover flat-spac@matrix elements from truncated flat-space-point functions, convoluted against on-

boundary correlators. In order to extract these we must corshell wave functions; this should be compared to &98),

sider the regime of larg& where the AdS geometry has a which has the identical structure with bulk-boundary propa-

large regionof size O(R)] that is approximately flat. gators replacing flat-space wave functions. This served as a
The relation between the larg@-geometry of AdS and central observation behind the interpretation of the confor-

flat space is easily exhibited in the global coordindg). mal correlators as providing a “boundarg-matrix” for

An arbitrary pointP of AdS space can be moved to the anti—de Sitter spackb,6].

Ill. THE LARGE- R LIMIT

origin (7,p)=(0,0) by an SO(2]) transformation. For large In searching for a general prescription to extract the flat-
R, we can readily recover the nearly flat metric in the vicinity spaceS-matrix from the AdS-CFT correspondence, we will
of P in spherical polar coordinates by defining begin by “reverse engineering” the expressith8) to see
how the corresponding piece of ttf&®matrix could be ex-
t=R7, r=Rp. (3.D)  tracted from this contribution to the conformal correlators.
) This will allow us to infer some lessons for the more general
Then the metrid2.1) becomes problem of the complet&matrix.
2 We have just seen that at larBehe contribution fronKg

24+ dr2+R2 sird I doz2l. to the correlator reduces to the expected flat-space expres-
R sion. Therefore, the remaining task is to understand whether

(32 the contributions from the factoi§g, can be related to on-

. : shell, flat-space wave functions in the Minkowski region.

Forr<R, this clearly reduces to the flat metric, Some properties g, are reviewed in the Appendix. Given

Since the spacetime in the vicinity 8fis a.ppr.OX|m'ater' the relationship3.1), it is convenient to work with the fre-
flat, one expects to recover flat-space physics in this region

For example, consider the bulk Feynman propagator, Whicﬁ;:ngg dgotrgl:j%?}r?it'te() I:/tl}ﬁk%\?vk;ili g‘gesr tlrl?reas this also cor-
appeared in the amplitud€.8). This has been given in P ay:

2o 1
d " coZ(r/R) —d

closed form in terms of a hypergeometric functidt,15, w=ER. 4.2
and the largeR limit of this expression is derived in the
Appendix. The result is, for particlé®f massess O(1/R), In frequency space, the relati¢®.8) becomes
C TO(wy,81) O w4, %
iKB(X,X’)I (3.3) < (wl 1) (w4 4)>treel

[s°(x,x") +ie]l@" D2
_ :_ng dVdV[Kgs(w1,81;X)Kgy(w3,83;X)
whereC is a constant given in the Appendix, asgk,x") is

the geodesic distance between the paiasdx’. This is the XKg(X,X")Kgs(@2,85; X" YKgy(wa,84;X")].
standard flat-space propagator for a massless field. 4.3

It will turn out that there is an important distinction between
3The case of massive particless>O(1/R), can also be treated. the cases where the frequency of the external state is generic,
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corresponding to a non-normalizable mode, and where it igos¢—7)—&.&'=0, it has behavior~(p—77/2)‘2h+ at
that of one of the normalizable modes. We will consider,— /2. In Eq. (2.8), the product of the first two bulk-
these in turn. boundary propagators will be singular on the intersection of
their boundary light cones; this behavior is exacerbated by
A. Generic frequencies the growth of the volume element. These arguments, suggest
that for generic frequencies AdS holography is in a sense

In the case where the; do not correspond to normal- o .
%nly skin deep.

mode frequencies, the bulk-boundary propagator must be
non-normalizable solution of the scalar wave equation. One

can most easily explore the consequences of this by working B. Normalizable frequencies
in a partial-wave basis; as seen from E§.2) (and also
shown in terms of generators in the Appendi&dS angular
momentum is directly identified with Minkowski angular
momentum in the larg& limit. In an angular momentum
basis and at arbitrary frequency, the bulk-boundary propag

tor has asymptotic behavior Gey(b,x')=2wiRI"2 lim (cosp) 2"+ Gg(x,x'),

We now turn to the case where all the external frequen-
cies w; correspond to those of normalizable modes. To in-
vestigate this case, recall that the bulk-boundary propagator
£Lan be found as a limiting case of the bulk propagator,

p—ml2

Kpa(@,1,17x) — €7 E:(cosp) 2. (4.4 4.9

From this we immediately see a problem in extracting the
flat-spaceS-matrix, (4.1), directly from Eq.(4.3). In order to ~ and that the Feynman propagator can be written in the form
do so, we would likeKg to be convolved with wave func-

tions that have their support concentrated in the flat region

. > =(p,@ A(p' &
r<R. However, the behaviof4.4) ensures that all linear K (x,x')= ﬂz elw<f*7’>¢”'m(p2 )¢>2|m(_p )_
combinations of the non-normalizable modes grow as 27 i o
(cosp)®™- at infinity, and thus are concentrated in the region 4.9
r>R instead. Indeed, consider the behavior of the integral
overxin Eqg. (4.3. The volume element is The normalizable wave functions¢,:(p.8) have

asymptotic behavior
dy— RSO a0 4 o
= “(cosp)® T d7dp : (4.5 i
p— T}
and so neap=m/2 thep part of the integral takes the form bri(p.8) —— kni(cosp)®™+Y (&) (4.10
(sinp)® * 4h 1 for certain constantk, ( the Appendix The fr ncy-
~ | dp ———g51(cosp)*-Kg(x,x") or certain constantky, (see the Appe e frequency
(cosp) space form oKg, is thus
~ | do reggpyaKetn). “9 ) e KnYi(® (o’ @)
Kgj(w,&;x")=2vRO " >, R :
Thus the wave function factor convolving the bulk Green nl,m @@ lE 4.19)

function has its main support in the vicinigy~m/2.* For
non-normalizable frequencies, there is no apparent way to
obtain a limit in which one recovers the desired asymptotic From Eq.(4.11) we see that extracting the normalizable-
falloff of flat-space wavefunctions farlarge butr <R with- ~ frequency piece is rather delicate. We want only the contri-
out also encountering this growth at infinity. bution corresponding precisely to the normalizable-mode
Evidence for this behavior can also be seen directly irfrequency, in order to eliminate the above non-normalizable
position space. As shown in the Appendix, the position spacgehavior. The Green function is divergent at this frequency;
bulk-boundary propagator takes the form one must extract the residue at the pole. Once one takes into
account higher-loop corrections, these frequencies ara not
cosp’ priori known (though they should be determined by knowl-
cogr—7')—sinp'@-&’ (4.7) edge of the exact conformal weightsand the frequency-
space behavior of the amplitude may be more complicated.
up to thei e prescription(see the Appendix This is singular These factors pose significant difficulties. Nevertheless, let
for points on the boundary light cone: at points such thatus assume that we are able to perform these steps, and see
where they lead.
Thus, we define a modified bulk-boundary propagator by

2h,

Kgy(b,x")=Cg,

“This is directly connected to the fact that in the more general case
of scalar fields of unequal masses, the inte¢4e8) only converges
for certain values of the scalar mas$&8|. SFor more details, see the Appendix.
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” T 2_ 2 > n
wnhmag= I et endKee L my Sty kil=]1 | 2m*2ERGE R G S
n i=1 ERETI
da X(TO(w1,81)+O(wp ,&y))
=2wn| é Z—ﬂKBH(w,I,rﬁ,X) n
(4.12 =11 [2m**C(E R im (of-wp)]
Wj—= on|,
= — 2RI e “nTky i (X). X(TO(w1,8) Oy ,&y)) (4.17

The corresponding operations can be performed directly off€ré @, =EiR is a normal mode frequency, ankj

CFT correlators, where they are the operations needed to Ei(1&). . _

project onto a definitstateof the CFT. However, at the multiloop level these expressions are po-
The modified propagato.12) does reproduce on-shell tentially problematical. In particular, one does ropriori

wave functions in flat space. Indeed, in the Appendix it isknow the frequencies to tune; to in order to sit on a nor-

shown that in the <R limit, the modese,,; go over into ~ Malizable mode, and the analytic structuresimay contain
the flat-space wave functions more than just simple poles at these frequencies. One pos-

sible approach to this problem—given complete knowledge of
1 the Yang-Mills correlators—would be to take a correlator
i X) J2E =11+ ai—1(ENY,i(6). and look for the frequencies where poles appear, extract the
r residues at these poles, and then use the result to construct
(4.13  the flat-spac&matrix along the above lines. These frequen-
cies are approximately given by locating the poles in the

Likewise, the coefficientk,, can be worked out, with the bPoundary two-point function, which at tree level takes the
result form (see the Appendix

R—

K,(b,b’")= lim (cospcosp’) 2M+Kg(x,x")

. 1 o
K(n,l,m,x)—>C(E,R)|'WJ|+d,2_1(Er) pup! —ml2

R— o0 ~ Al
do o K@ Yia@')
— k() E elw(T T )2 5 5 .
A Im w 1= w

X Y[=(8) (4.19 mim " 4.19
with coefficient function However, interactions will in general shift the energy of the
two-particle state relative to twice the single-particle energy,
P ]E:ausing gdded difficulty in precisely identifying the relevant

C(E.R)=— ~1)ER2-h (ERZN: (4.1 requencies.
(E.R) I'(v) =1 (ER) (4.19 Another approach, advocated in Réf&8], is to convolve

the boundary correlators with appropriately chosen wave
In fact, this can easily be transformed back to position spacBackets. This appears to have some difficulty, as we can see
on the boundary, givirfy from Eq.(4.1). If f(w,&) is the wave packet profile for one
of the external states, then it is connected to the rest of the
diagram through a factor of the form
L S . C(ER)
K(E,e;x)=2 Y w(8)K(n,l,m,x) —>We' X
hm R—o f dwd? 10f(w,8)Kgy(w,8,x")
(4.16
=f dod? 10 f(w,8) >, 2vRI?

a plane wave wittk=E®.
n,Im

Putting all of this together suggests tree-level prescrip-

tions for extracting flat-spac@matrix elements from bound- Kt Yi(8) b0 &)
ary correlators X w2|_ wl—ic e“r. (419
n

For any regularf this receives contributions from non-
éNote that the following is valid to the extent that contributions Normalizable frequencies evenfifs sharply peaked near a
from very largel do not contribute to the sum over dll Such ~ Specific normalizable frequency. This in turn implies sensi-
contributions give AdS corrections to the plane waves. These cafVity to contributions from interactions a&>R, as described
be suppressed by consideration of wavepackets with spatial spre#id Sec. IV A. It is not clear how to make wave packets fo-
<R cussed in the Minkowski region from these modes.
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A modification of this procedure would be fost extract  experiments could be performed to measure it? And is it
the amplitudes restricted to normalizable frequencies, as ousufficient to resolve the black hole information paradox or
lined above. Then wave packets can be built by taking lineasolve the cosmological constant problem? These are all ques-
combinations of those with different normal mode frequen-tions of considerable importance.
cies. These results suggest that while it may be possible to As expected on grounds of both holography and gauge
derive flat-spac&matrix elements from the AdS-CFT cor- invariance, it appears that one can at best compute the
respondence, the procedure is not so simple as it first agmatrix of the bulk theory from full knowledge of the CFT
peared. correlators. Therefore conventional tests of locality—such as

the commutativity of field operators at spacelike
separations—are not available. One must find ways of diag-
V. LOCALITY nosing locality directly from the&smatrix.

Let us assume that it is possible to infer the full flat-space NS is a difficult problen. First consider theories with a
Smatrix from the conformal field theory correlators, through Mass gap. Here one test of locality for tBenatrix is that it
some variant of the above procedure or some other proc&®SPect various bounds that can be derived as a result of
dure. This would provide an even more concrete realizatiofPc@lity. Amplitudes must satisfy both upper and lower
of the holographic proposal. A profound question underlying®ounds. For example, the Froissart bo(ibd] states that for
this proposal is how it is possible for the boundary theory tofour-point scattering at arbitrary angle, the amplitude must
produce a bulk theory that is an approximately local theorf’bey
in one higher dimension.

One piece of the answer appears to be that the boundary

theory is a conformal field theory. In a conformal field \yhereC is a constant; there are more stringent bounds for
theory, there is no mass-shell condition on the states, singggq angle, &¢<. Polynomial boundedness also implies
there are no masses. Correspondingly, one can have staigs cerulus-Martin boun@l19,20], which states that ampli-

with fixed boundary momenta and a spectridiscrete in ¢, qog at arbitrary angles cannot fall too rapidly at fixed
global coordinates, continuous in Poincare coordinatds angle:

frequencies. This statement is made manifest in the Kallen-

Lehman representation for the boundary two-point function, |A(s, 9)|>S—cv‘§. (5.2)

which can be found from that of AdS given in REL6]. In

the bulk theory this spectrum is interpreted as arising from  Similar bounds have also been found in nonlocal theories.

the different values of the momentum in the extra radial di-One way of producing a nonlocal theory is to construct a

rection. theory with an exponentially increasing density of states,
Thus, in this sense the boundary theory contains enougsuch as string theory. This leads to the definition of quasilo-

states to represent a bulk theory. However, this is no guarealizable theorie§ which are theories with nonlocality oc-

antee that the interactions have the correct properties to preurring below a definite length scale These theories are

duce a sensible and approximately local bulk theory. Oneharacterized for example by densities of states that grow as

other key property is bulk momentum conservation, which

has been the subject of one recent discus$ibf]. This p(m)~e<'m>7, (5.3

seems assured by the correspondence between the symme-

tries of the two theories: the conformal group S@(2s also  for some powery, and satisfy bounds of the form

the group of isometries of anti—de Sitter space, and in the

|A(s,0)|<Cslog?s, (5.1

largeR limit reduces to the Poincare group. However, this |A(s,0)|<C’s?log p(s'). (5.4
does not imply locality—there is an infinite variety of mo- _ o )
mentum conserving but nonlocal interactions. This suggests the possibility of reading off the scale of non-

One would like to investigate the possible presence ofocality from the behavior of the four-point scattering ampli-
such nonlocality in the bulk theory. Of course, the bulk Ude: . ,
theory is not expected to be a local theory, but rather to have However, derivation of these bounds assumes the exis-
nonlocalities present on a scale of order the string scale. BJgNCe Of a gap. The requisite analyticity properties are
this is to be contrasted with the situation where there ar§Poiled by massless particles; gravity is particularly problem-
macroscopic nonlocalities, for example on scales of order thgtical- Here of course the usual IR divergences imply that in
(large) AdS radius. One could imagine an observer living in four d_|men3|ons one must study inclusive cross sections,
an approximately Minkowski region in a very large AdS SUmming over soft p'artlcle's belowlsome energy resolution
space without ever knowing about the large-scale curvaturd€lévant to the experiment in question. TBenatrix can be
and to such observers the only nonlocalities present shoufdefined in higher dimensiorisOne might hope that similar
be very subtle and difficult to measure effects not easily seen
at long distances. Such an AdS observer should not be able
to exploit macroscopic nonlocality to win the lottery. What 7| thank K. Bardakci for several conversations on this issue.
property is it of the boundary conformal theory that ensures 8ror more discussion of these and their bounds, see[®Hf.and
preservation of locality at the macroscopic level? How doeseferences therein.
one characterize the amount of nonlocality present? What®l thank T. Banks for a conversation on this point.
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bounds could be derived for either the four-dimensi¢Aal) of SO(2d), the analogue o$ is now provided by the con-

inclusive rates or for higher-dimensior@&matrices, provid-  formal weightA of the resulting states in the product repre-

ing a way of quantifying the degree of nonlocality of the sentation.

theory™® This is an important problem for the future. First consider the problem of largescattering. This for
We have some partial information about high-energyexample should be governed by fusion of two high energy

string scattering22,23 that might be considered as a stan- states into a third state with large The operator product

dard of comparison. For example, REZ2] investigated the expansionOPE takes the general form
large s, fixed angle regime, and found perturbative ampli-

tudes of the form b2, (Y)
¢Ai(x)¢Aj(y)~§k: Cijkwm' (56)
|AG(S, 0)|~ef(slns+tlnt+uln u)/4G (55)

Thus largeA, corresponds to very high order terms in the
OPE, rather than the leading behavior. One can see a similar

at genusG. It would be very interesting to see whether the effect by considering scattering of two_particles with mo-

PN A _ 2 _a .A
CFT reproduces this and other stringy behavior. Moreovermenggél’fl). an dE(Al,ez).EIZ%rzthehses—QE (%h €1 ezl)' Ibn
there are a number of open questions about the large ordg?e Imit, &, — & ,5~ where ¢11S the angle be-
and nonperturbative completion of results such as (66 tween the unit v_ectors._SmaII boundary distance only corre-
for high-energy string scattering, and one hope is that th§POnds to largs if we simultaneously take very large

: : However, this suggests that behavior of amplitudes at
boundary CFT could teach us something new about this. ) S
Y g —0 could be explored in the OPE limit in titechannel. |

So far the discussion has focussed on locality in the Iarg% AT .
s regime. However, it is not even priori clear how the ope to return to the implications for CFT in future work.
' Finally, related to this discussion is the question of

AdS/CFT correspondence produces bulk locality at the mac-

roscopic level. We would like to find appropriate criteria for whether one can reconstruct the entire bulk theory given
this. complete data in the boundary theory. In general reconstruc-

tion of a theory given the&smatrix is not unique, but one
may try to reconstruct eveone bulk theory that reproduces
the correct amplitudes. Consider first three-point functions.
A problem here is that the CFT three-point function is
tyniquely determined by conformal symmetry, up to a con-
gtant; in the example of scalars, both interactions

One possibility is to for example consider fixed energy
scattering of physical particlés at large distances, or
equivalently smalt. One very rough criterion is that we have
interactions falling at least as fast as“/? at long distances,
since the only long range forces are expected to be gravi
and other coulombic interactions. This corresponds to scat?
tering amplitudes that grow like tliast decreases. In the
AdS context, one of course expects this growth to be trun- glf dV¢® and gZJ dVp292p (5.7
cated at the AdS radius~(1/R)?, but for R>1 there is a
clean separation of scales and one can study growth of am- . . . . .
plitudes in the regime 2 t>(1/R)? to see if they satisfy this g;’i;ﬂfgsiﬁétz;ﬁﬁggge?T)?;?]?SS Cuopn;?a;h‘%;?r:ﬁ;mﬁé
gg:ﬁg :Irsltt)eg(s)ﬂ.m:k?gteheedr, trﬁklt?ogur:zlasr O?heeosrteI?emrggﬁg’eg?ediffergnt cases will b_e differen'F; this will help in decoding

. Y y repr rYl?ﬁe different interactions. But in general the program will
correct structure for gravitation&r other Coulombig scat- involve considering four- and higher-point functions, with
tering for a wide variety of semiclassical states. This would heir nontrivial dynamics. The problem of reconstruc’tion is
be an important test, sensitive to bulk locality and more, oft interesting one for thé future
any independent calculation of the CFT correlators. It would™" ™€ g ’
be very interesting to go beyond to understand what property
of the boundary theory ensures recovery of the correct semi- VI. CONCLUSION

classical limit. This paper has attempted a modest beginning of an inves-

One might inquire whether locality properties are encodedgation of bulk locality in the AdS-CFT correspondence. A
nicely in the operator product expansion of the boundanyi oi hroplem is to extract the flat spaGmatrix from the
theory. To investigate this, one first needs a translation of thBoundary correlators. Ideas for how to do this have been
kinematical variables—the Mandelstam invariants—into thepreviously presented in Ref§7,8,5,6, but there are subtle-
AdS and CFT contexts. This is provided by considering thg;eg |n particular, it was showed that at arbitrampn-

quadratic Casimir of SO(@), which in the larger limit o majizaplefrequencies, the boundary correlators are sen-
reduces to the Poincare invarigPt as shown in the Appen- sitive to interactions in the “skin” of AdS, at radii>R,

dix. Thus if we wish to combine two states in representationg e tq growth of the wave functions and of the volume of

anti—de Sitter space. It appears that only by a delicate pro-
cedure of extracting the residues of poles at the normalizable

may be useful in circumventing the usual IR problems. be wrinkles in this procedure when all-order perturbative or
These must in particular be neutral under any non-Abeliannonperturbative amplitudes are considered.
gauge groups. We would like to know what form locality takes in the
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bulk theory. There is no known procedure to extract off-shelland in these coordinates the metric takes the form
data about this theory—in accord with holography as well as
gauge invariance—and so information about locality proper-
ties must be derived directly from tHe@matrix. In theories
with a gap, locality or even nonlocality on a definite scale
implies certain bounds for th&matrix, but the presence of Typically we will work on the universal cover of anti—de
massless particles and particularly gravity complicates th&itter space, which in an abuse of notation will also be de-
story. Nonetheless, some information is known about the benoted AdS, ;. The Rx S ! boundary of this cover corre-
havior of high-energy string scattering amplitudes, and ongponds tgp=/2 and is parametrized ds=(r,8).

might as a first test try to investigate this behavior from the = There are two related notions of invariant distance on

CFT and even to go beyond to new results. Furthermore, thads, . ,. The first isgeodeticdistance, defined with respect
bulk theory should exhibit macroscopic locality, namely bulkto the embedding space metric:

observers should find an approximately local theory at long

distances. One very rough criterion for this is falloff of po- 1

tentials (thus growth of amplitudésbounded by Coulomb o(X1,X2)= E’?MNAXMAXN; (A5)
behavior. Indeed, another important test is reproduction of

semiclassical gravitational scattering. We would like to;, global coordinates it can be shown that

know whether the CFT reproduces such behavior, and in

2

ds’= (—d7P+dp?+sir? pdQ3_)).  (Ad)

cos p

particular what properties of the boundary theory allow the R2
surprising result that an approximately local higher- o(Xq,X)=—R2+ W[cos{ T~ T)
dimensional theory emerges from it. P1E0SP2
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APPENDIX: BASIC AdS TOOLS There is of course no conformally-invariant notion of in-

This appendix will review some basic properties of theterval on the boundary. When working in Poinca@ordi-
geometry of anti—de Sitter space and its boundary, and otates for Adg. ,,
wave functions and propagators on AdS, as well as deriving

. - 2
some new and useful results. In particular, an explicit treat- __,(duU 202
ment of the largeR limit will be given. ds’=R U2 +U%dX7 ), (A9)
1. Geometry where
AdSy, 1 can be represented as the solution of the equation x-1_ d
(XM)ZI—RZ (A1) UZT; x*=X*RU, «=0,1,...d-1,
(A10)

in flat (2d) signature Minkowski space with coordinates
(X1,X°,X" and with metric one frequently uses the nonconformally invariant interval

2 2 . .
i X7,=|X1—X5|*. In global coordinates this becomes
dS= nMNddexN:_(dxfl)Z_(dXO)Z_i_(dxl)z. 12= X1 =% ¢

(A2) W2 — 2[cod 1~ 1) —€1-8;] (A11)
Global coordinates4,p,&), where@ is ad-dimensional unit 12 (costy—&f)(cosT,— &)’
vector, are defined by
thus the definition
x =R xo_p T i Reanpe, (A3 2
“Reosp’ © Neosp’ N nanee, (A3) S1,=COq 71— 7)) — 8- & (A12)
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gives an analogous nonconformally invariant interval in theHere A, is a normalization constant. If thé,,; are given
global frame. In order to form conformal invariants, onethe conventional Klein-Gordon normalization
must have four or more points, allowing the definition of
cross ratios such as gk T
) (Dnims Pariri) = | A2H 0710 udnrirdv = Snnr O S
S15834  [CO 11— 75) — 8- €][COL T3~ 74) —€3-&4] (A20)
553354 [cog( Ty —73) —€1-83][COL T2~ 74) =€, &4]" )

(A13) with respect to surfaces of constantthen these constants

are
2. W functi
ave functions , 2wy  NIT(n+2h, +1)
In many respects anti—de Sitter space behaves as a reso- A= Ra1 d (A21)
nant cavity. In particular, solutions of the scalar wave equa- r( n+l+ > I'(n+v+1)
tion
(O-m?)¢=0 (A14) The normalizable solutions have asymptotic behavior
given by
are for generic frequencies non-normalizable, having
asymptotic behavior p— /2
K, (cosp)?+, A22
¢°<(COSp)2h‘, (A15) Xni(p) — Kni( ) ( )
Where with constants,, given by
_ 2 202 I'(n+v+1
4h,=d+ \d?*+4Am’R?*=d+2v, (A16) ko= (— 1A, nfl"(v-kl))' (A23)

near the boundary at=/2.

Only for special frequencies,
3. Green functions

@n=2h, +2n+l (AL7) The bulk Feynman Green function is defined by solving

do normalizable solutions exist. Explicit forms for these so-

2\ Y — ’
lutions are given in Refd14,11], (=m9)iKg(x.x") oX.x") (A24)

with Feynman boundary conditions. It can be represented as

—lwn T
(X, 7= xm(p)Yim(8) © ; (A18)  an infinite sum over the normalizable modes,
\/Zwm
* v v
where the radial wave functiong, (p) are written in terms iKg(x,x")= J' %E glo(r=1) ¢”"2(X)¢2”'m_(x ).
of the Jacobi polynomiat8 27 A wh—w’—ie

(A25)
Xni(p) = Ani(cosp)®™+(sinp)' Py 42~ M (cos 2p).
(A19)  The sum has been explicitly performed to yi¢ldt, 15

1 1
- N B <. . .
iKg(x,x") [CosR(SIR)™ Flhy,h, + 2,v+ 1’cosf?(s/R) |e>, (A26)
|
whereCg is a constant, a solution to the free wave equatig@Al4) satisfying the
boundary condition
Comr ren.,) A27
B_Rdfl 22h++l7Td/21-*(V+ 1)! ( ) R~

¢ — (cosp)?"-f(b). (A28)
andF is the hypergeometric function.
The bulk-boundary propagatéy, is designed to provide This solution is given by

2The conventions of Ref24] will be followed. ¢(X):f db(b)Kg,(b,x). (A29)
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A simple Green’s theorem-type argumé¢ft shows that

Kgs(b,x")=2vRI"? lim (cosp) 2M+iK g(x,x").
p—ml2

(A30)

We can therefore find two equivalent expressionsKegp,,
the first from the limit of Eq(A25),

eiw(T— ')

Kg,(b,x')=2yRI"1
Bd( ) v 20 &

anYrrﬁ(é) d’nlrﬁ()_(”)
X

wﬁ|—w2—i6 ' (A31)
and the second from the limit of E¢A26),
Kea(b,x')=C il "
8o(b.X")=Ce; [cog7—7')—sinp'@-&']°+ie| ’
(A32)
where
I'(2h
(2h,) (A33)

PHYSICAL REVIEW D61 106008

This subsection will discuss other aspects of the relationship
between Adg,; andMy,, at largeR.

First consider the relation between the symmetry genera-
tors Jyn Of SO(2d) and those of the Poinoagroup. In the
vicinity of (7,p)=(0,0), the connection can be made through
the identification

3,
P.="h

£ M,,=J (A39)

7 nv 1
the SO(24) algebra clearly goes over to the Poincare alge-
bra in the limitR—o. Also useful is the quadratic Casimir,
which is important for the classification of the representa-
tions of the conformal group. It is given by

1 1
sz_JMNJMNZE

v 2
5 M, M#—RP P#

(A40)

and takes valu€,=—A(d—A) in a representation of con-
formal weight A. From the relationshipA =2h, and Eq.
(Al16), we see that

C,=m?R?, (A41)
which combined with Eq(A40) gives the correct mass-shell
relation in the largeR limit. The quadratic Casimir may be

Finally, the boundary two-point function can be obtainedused to find analogues of the Mandelstam invariants.

by taking the second point to the boundary,

G,y(b,b")x lim (cosp’) 2"+Gg,(b,x").

p' —ml2

(A34)

This gives

do« K Y (@)Y m(8")
1y — _ iw(r—1") nl " im Im
Ki(b,b") k’?J 27 %:ﬁ © wi—w’—ie

(A35)

and

1
([cog7—7')—&-&']°+i€)

Ky(b,b")=C, . (A36)

wherek, and C, are constants. Note thdt, is naturally
written in terms of the boundary intervéA12).

4. Large-R limits

It was shown in Sec. Ill that for largR, in a patch of

Next consider wave functions. The relatio(®2),(A17)
imply that

ER=2h, +2n+I, (A42)

so for fixed Minkowski energy and angular momentum, and
m=O(1/R), largeR corresponds to large A useful relation
for large order Jacobi polynomials is

1 2\ @
I|mFPﬁB[cos(x/n)]=(;) J(X). (A43)

n—o
For r<R this gives

lim cog"+(r/R)sin'(r/R)P!|* 921" cog 2r/R)]

R—o

1
Z(ER)d/27lWﬂJl+d/271(Er)v (A44)

which is, up to the overall power dER the standard flat
space radial wave function. We also ne&g, which from
Eqg. (A21) via Sterling’s approximation is

proper sizeD(R), anti—de Sitter space may be approximated

by Minkowski space. This can be explicitly seen in the co-

ordinates
t=R7; r=Rp, (A37)
where the metric takes the form
r2
dszz—cosz(r/R) —dt?+dr?+R? sin2<§) dﬂz}.
(A38)

2wn|

R T (A45)

Anl -
R— o

Combining this with Eq(A44) then gives the desired wave
functions at largeR:
- —1 l A
bnim(X) ——— V2E (E_r)d7ﬂ3|+d/2—1(Er)Y|nﬁ(e),
R—
(A46)
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wherer <R is understood. Ap— /2, corresponding to large and assuming that stays finite aiR— o, we find
r, one still finds behaviox (cosp)?'+, and in fact the larg® 5
limit of the coefficientsk,,| of Eq. (A22) is C

(—-1)" 2E [ER}” el Row [S7(XX))Fie] @D (ASD)
Kl T(r 1) R (7) ' (A47)
where

Finally consider the larg& behavior of the Green func- _
tions. The asymptotics of the bulk propagator immediately r(_)r(zm)
follows from Eq.(A26). Geodesic distance on AgS, trivi- o 2 (A51)
ally becomes the Minkowski interval. The hypergeometric A2eoh . 41 '
function must therefore be evaluated with argument near 2t (h )T h++§
one, which is done via the formula

1 This is the expected massless flat-space propagator.
Flhehy+ Zivtliz As we saw in Sec. IV, for generic frequencies the bulk-

boundary propagatdg, grows as (cop)?™ at the bound-
1-d ary, and so in the largB-limit is not concentrated in the
F(V+1)F(T> 1 d+1 Minkowski region. This can be remedied by restricting to
= 1 F(h+ g+ 5 T;l— ) normalizable frequencies, as in E@.12. The largeR be-
F(l—h)F(E—h) havior of the resulting functioi is readily inferred from
Eqgs.(A46) and(A47), and gives

d-1
I'(v+ l)F<—) K(n,I,m,x) — C(E,R)(—1)"?
+(1_Z)(l—d)/2 2 R—
1
I'h)I'fh + > 1
X(E_r)c|7ﬂ3|+d/2—1(Er)ana(é),
1 3—d
X F 1—h,§—h;T;1—z). (A48) (A52)
Taking where the coefficient functio€(E,R) is given by
1 SZ 2271/
z= ~1- =, (A49) C(E,R)= (—1)ERZ"h(ER)?"+.  (A53)
cosH(s/R) R I(v)
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