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Flat-space scattering and bulk locality in the AdS-CFT correspondence

Steven B. Giddings*

Department of Physics, University of California, Santa Barbara, California 93106-9530
~Received 14 October 1999; published 27 April 2000!

The large radius limit in the AdS-CFT correspondence is expected to provide a holographic derivation of
flat-space scattering amplitudes. This suggests that questions of locality in the bulk should be addressed in
terms of properties of theS matrix and their translation into the conformal field theory. There are, however,
subtleties in this translation related to generic growth of amplitudes near the boundary of anti–de Sitter space.
Flat space amplitudes are recovered after a delicate projection of CFT correlators onto normal-mode frequen-
cies of AdS. Once such amplitudes are obtained from the CFT, possible criteria for approximate bulk locality
include bounds on growth of amplitudes at high energies and reproduction of semiclassical gravitational
scattering at long distances.

PACS number~s!: 11.25.Sq
e
re

s
e
f
e-
e
pe
a

.
ry

d

ts

it

il

d
fr
b
cr
in
, i
re

sid
th

t
t
m

in

ore
par-

uch
uss

has
to-
n-
ces.
ead

if
his
pli-
. An
pli-
ing

eld
ur
at
of

ible

ace
nd

te
y
g
x-

s.

de-
n

.

all
ter
an
le is
hese
dS,
I. INTRODUCTION

Maldacena’s proposed correspondence@1# between string
~or M! theory on AdS53S5 andN54 supersymmetric gaug
theory in four dimensions has stimulated a great deal of
cent excitement.1 A particularly fascinating aspect of thi
correspondence is that it apparently serves as a concret
alization of holographic ideas@3,4#. Although a great deal o
work has been done to deduce properties of the largN
Yang-Mills conformal field theory from this correspondenc
an even more interesting question is how to deduce pro
ties of string or M theory from the the boundary conform
field theory.

Several steps have recently been taken in this direction
particular, in Refs.@5,6# the relationship between bounda
correlators and an AdS analogue of theS matrix ~called the
boundarySmatrix in Ref.@6#! was described. This work ha
been closely preceded by related work@7,8# which sketched
a prescription to derive flat spaceS-matrix elements in the
infinite radiusR limit of AdS space; one naturally expec
this S-matrix to be an appropriateR→` limit of the bound-
ary S matrix of Refs.@5,6#.

This paper will investigate this question: in particular,
will address the issue of how flat-spaceS-matrix elements
can be obtained from conformal field theory data. As we w
find, this is somewhat nontrivial.

A useful analogy to bear in mind is that between anti–
Sitter space and a resonant cavity. If one quantizes a
field in AdS, generic frequencies produce non-normaliza
states, and the normalizable states correspond to a dis
set of frequencies and are analogous to cavity modes. S
there are no true asymptotic states among these modes
not a priori clear how to formulate scattering problems. He
the example of a resonant cavity serves as a guide. Con
for example two atoms at diametrically opposite ends of
cavity, and suppose one is in an excited state, and one in
ground state. Even when the transition energy is no
normal-mode frequency of the cavity, it is possible for ato
one to decay to its ground state with atom two transition

*Email address: giddings@physics.ucsb.edu
1For a recent review and extensive set of references, see Ref@2#.
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to the corresponding excited state. Or one may have m
atoms, acting as emitters and detectors, and the emitted
ticles may mutually scatter before being detected. S
Gedanken experiments give a framework to disc
scattering.2

This analogy is not perfect. For one thing, AdS space
much more volume at infinity than flat space, and this
gether with growth at infinity of the wave functions at no
normalizable frequencies can have important consequen
In particular, as we will see, these combined effects can l
to growth of interaction strengths near the AdS boundary
we work with states at non-normalizable frequencies. T
poses a difficulty for extracting flat-space scattering am
tudes in the center of a large radius anti–de Sitter space
obvious retort is that one should project scattering am
tudes onto normalizable frequencies, with a correspond
projection on the correlators of the boundary conformal fi
theory ~CFT!. However, this is not made any easier by o
lack of knowledge of the spectrum of normalizable states
the multiloop or nonperturbative levels, except in the case
protected states. We will discuss this problem and poss
resolutions in more detail.

If we assume that it is indeed possible to extract flat-sp
S-matrices from the conformal field theory, another profou
question arises. If the correspondence of Ref.@1# is correct,
the theory in the bulk should exhibit approxima
(d11)-dimensional locality, in an appropriate low-energ
limit. Although the bulk theory is conjectured to be strin
theory, which is manifestly nonlocal, this nonlocality is e
pected to only be apparent ‘‘at the string scale’’~in some
appropriate sense!, or perhaps in black hole experiment
The theory should bemacroscopically local, namely, it
should give low-energy, weak field amplitudes that are
rivable from a local low-energy effective field theory. A

2Another possibility in the resonant cavity case is to cut sm
holes in the wall of the cavity through which particles may en
and exit. This clearly more difficult for AdS space, although
analogous construction exists for the case where an AdS bubb
embedded in a space with asymptotic particle states, and t
states must penetrate a potential barrier to reach the interior of A
as described in Refs.@5,6#.
©2000 The American Physical Society08-1
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STEVEN B. GIDDINGS PHYSICAL REVIEW D61 106008
important question is what property of the boundary C
implies macroscopic bulk locality in the large radius limit
anti–de Sitter space? Also, one would like to better char
terize and understand the nonlocalities, and their poss
quite important implications.

To address this question we need a way to diagnose
cality. From at least two view-points~gauge invariance, ho
lography! it was expected that the AdS-CFT corresponde
would only yield S-matrix elements—not off-shel
amplitudes—and direct study has partially confirmed t
@5–8#. Therefore we need a way of inferring from th
S-matrix whether—or to what extent—the underlying theo
is local. Various bounds exist forS-matrices derived from
local theories, or even from generalizations to theories w
nonlocal behavior above a definite energy scale. Howe
derivation of these bounds becomes problematic in the c
of theories with massless particles, and particularly for th
ries with gravity. There is some related information about
high-energy structure of string scattering amplitudes, bu
present nothing that serves as a definitive test of locality n
the string scale. At macroscopic scales, one important te
locality is that the theory correctly produce semiclassi
gravity amplitudes or other coulombic behavior, at long d
tances or equivalently small momentum transfer.

Yet another question that can be addressed is tha
whether, or to what extent, the underlying bulk theory can
reconstructed from complete knowledge of theS-matrix ele-
ments. This is a difficult problem, and in general the solut
is not unique. A few comments about this problem will al
be made.

The paper will begin with a brief review of the Maldacen
conjecture, as formulated by Gubser, Klebanov, Polyak
and Witten. The next section will then describe the ba
properties of the large radius limit for AdS. Section IV w
then turn to the question of whether, and how, bulk flat-sp
S-matrix elements can be extracted from boundary confor
field theory correlators in the large radius limit. If the latt
are written in frequency space, an important distinction
curs between frequencies corresponding to normalizable
non-normalizable modes; at frequencies corresponding
non-normalizable modes, boundary correlators receive
portant contributions from regions near the boundary
anti–de Sitter space. This behavior poses some difficulty
extracting the flat-spaceS-matrix, although outlines of a pro
cedure will be given. Section V contains some discussion
the problem of investigating the bulk locality properties
the theory, as well as on the problem of reconstructing
bulk theory. Following the conclusion is a rather lengt
Appendix containing a number of useful properties
anti–de Sitter space, its propagators, and the large ra
limit. Many of these appear previously in the literature,
though there are some new results.

II. REVIEW OF THE GKPW CORRESPONDENCE

We begin by recalling the precise form of the correspo
dence for local correlators, as formulated by Gubser, Po
kov, Klebanov, and Witten@9,10#, and extended to Lorentz
ian signature in Refs.@11,12#. This paper will use globa
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coordinatesx5(t,r,V) for the cover of anti–de Sitte
space,

ds25
R2

cos2 r
~2dt21dr21sin2 rdVd21

2 !. ~2.1!

The boundary has topologySd213R, or alternatively can be
represented as the conformally equivalent infinite-shee
cover of Minkowski space. A point on the boundary sphe
can be specified by ad-dimensional unit vectorê; boundary
points are parametrized asb5(t,ê).

The basic statement of this correspondence is

Z@f~f0!#5^Tei *]dbf0~b!O~b!&. ~2.2!

In this formula labels for different fields and their corr
sponding operators have been suppressed. On the left
side is the bulk partition function for string theory o
AdS53S5 with both radii set toR. This is evaluated with bulk
fields f constrained to obey the boundary condition

f ——→
r→p/2

~cosr!2h1f0~b!, ~2.3!

where the constantsh6 andn, defined by

4h65d6Ad214m2R25d62n, ~2.4!

for a field of massm, govern the asymptotic behavior of th
field. The right side is the corresponding generating fu
tional for CFT correlation functions inN54SU(N) Yang-
Mills theory. The operatorO corresponding tof has confor-
mal weight D52h1 . The parameters of the theories a
related bygs5gYM

2 for the couplings, andR5(gYM
2 N)1/4 for

the AdS53S5 radius.
At the level of correlation functions, the corresponden

~2.2! may be rewritten as

^T@O~b1!O~b2!¯O~bn!#&

5E )
i 51

n

@dxiGB]~bi ,xi !#GT~x1 ,...,xn!.

~2.5!

In this expressionGB](bi ,xi) denotes the full~multiloop!
bulk-boundary propagator, andGT(x1 ,...,xn) denotes a bulk
n-point Green function with its external legs truncated. So
properties of bulk and bulk-boundary propagators will
reviewed in the Appendix.

In particular, the basic issues will be illustrated using t
relation between four-point functions,

^TO1~b1!¯O4~b4!&

5E )
i 51

4

@dxiGB]~bi ,xi !#GT~x1 ,...,x4!.

~2.6!
8-2
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FLAT-SPACE SCATTERING AND BULK LOCALITY IN . . . PHYSICAL REVIEW D61 106008
As a concrete example, consider truncating string the
down to a scalar sector with a three-point coupling, as in R
@13#, and suppressing dependence on theS5 coordinates:

S52E dVF1

2
~¹F!21

m2

2
F21gF3G . ~2.7!

To leading order in the coupling, the CFT correlator is giv
by a term of the form

^TO1~b1!¯O4~b4!& tree,t

52g2E dVdV8@KB]~b1 ,x!KB]~b3 ,x!KB~x,x8!

3KB]~b2 ,x8!KB]~b4 ,x8!# ~2.8!

plus s and u channel contributions, whereKB is the bulk
Feynman propagator for theF field, andKB] is the tree-level
bulk-boundary propagator.

III. THE LARGE- R LIMIT

Our goal is to recover flat-spaceS-matrix elements from
boundary correlators. In order to extract these we must c
sider the regime of largeR, where the AdS geometry has
large region@of sizeO(R)# that is approximately flat.

The relation between the large-R geometry of AdS and
flat space is easily exhibited in the global coordinates~2.1!.
An arbitrary point P of AdS space can be moved to th
origin ~t,r!5~0,0! by an SO(2,d) transformation. For large
R, we can readily recover the nearly flat metric in the vicin
of P in spherical polar coordinates by defining

t5Rt; r 5Rr. ~3.1!

Then the metric~2.1! becomes

ds25
1

cos2~r /R! F2dt21dr21R2 sin2S r

RD 2

dV2G .
~3.2!

For r !R, this clearly reduces to the flat metric.
Since the spacetime in the vicinity ofP is approximately

flat, one expects to recover flat-space physics in this reg
For example, consider the bulk Feynman propagator, wh
appeared in the amplitude~2.8!. This has been given in
closed form in terms of a hypergeometric function@14,15#,
and the largeR limit of this expression is derived in th
Appendix. The result is, for particles3 of masses&O(1/R),

iK B~x,x8!5
C̃

@s2~x,x8!1 i e#~d21!/2 , ~3.3!

whereC̃ is a constant given in the Appendix, ands(x,x8) is
the geodesic distance between the pointsx andx8. This is the
standard flat-space propagator for a massless field.

3The case of massive particles,m@O(1/R), can also be treated.
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IV. S-MATRICES AT LARGE R?

We would like to determine whether the flat-spa
S-matrix can be extracted from the conformal correlato
such as Eq.~2.8!, in the limit of large R. To begin with,
recall the form of the flat-spaceS-matrix for the process cor
responding to that of Eq.~2.8!. This is simply the tree-level
t-channel contribution to the flat-spaceS-matrix, which is
given by a Fourier transform of the Feynman propagator

SMink, t~s,t !52g2E dd11xdd11x8ei ~k11k3!xei ~k21k4!x8

3KF~x,x8!

52 ig2d~d11!~k11k21k31k4!
1

t
. ~4.1!

The general question at hand is how to extract
S-matrix, for example Eq.~4.1!, directly from the corre-
sponding contribution to the CFT correlation function, f
example Eq.~2.8!. Note that these formulas appear ve
similar. By the LSZ prescription, the flatS-matrix consists of
truncated flat-spacen-point functions, convoluted against on
shell wave functions; this should be compared to Eq.~2.8!,
which has the identical structure with bulk-boundary prop
gators replacing flat-space wave functions. This served
central observation behind the interpretation of the conf
mal correlators as providing a ‘‘boundaryS-matrix’’ for
anti–de Sitter space@5,6#.

In searching for a general prescription to extract the fl
spaceS-matrix from the AdS-CFT correspondence, we w
begin by ‘‘reverse engineering’’ the expression~2.8! to see
how the corresponding piece of theS-matrix could be ex-
tracted from this contribution to the conformal correlato
This will allow us to infer some lessons for the more gene
problem of the completeS-matrix.

We have just seen that at largeR the contribution fromKB
to the correlator reduces to the expected flat-space exp
sion. Therefore, the remaining task is to understand whe
the contributions from the factorsKB] can be related to on
shell, flat-space wave functions in the Minkowski regio
Some properties ofKB] are reviewed in the Appendix. Give
the relationship~3.1!, it is convenient to work with the fre-
quency conjugate to the global AdS timet, as this also cor-
responds to definite Minkowski energy;

v5ER. ~4.2!

In frequency space, the relation~2.8! becomes

^TO~v1 ,ê1!¯O~v4 ,x̂4!& tree,t

52g2E dVdV8@KB]~v1 ,ê1 ;x!KB]~v3 ,ê3 ;x!

3KB~x,x8!KB]~v2 ,ê2 ;x8!KB]~v4 ,ê4 ;x8!#.

~4.3!

It will turn out that there is an important distinction betwee
the cases where the frequency of the external state is gen
8-3
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STEVEN B. GIDDINGS PHYSICAL REVIEW D61 106008
corresponding to a non-normalizable mode, and where
that of one of the normalizable modes. We will consid
these in turn.

A. Generic frequencies

In the case where thev i do not correspond to norma
mode frequencies, the bulk-boundary propagator must b
non-normalizable solution of the scalar wave equation. O
can most easily explore the consequences of this by wor
in a partial-wave basis; as seen from Eq.~3.2! ~and also
shown in terms of generators in the Appendix!, AdS angular
momentum is directly identified with Minkowski angula
momentum in the large-R limit. In an angular momentum
basis and at arbitrary frequency, the bulk-boundary propa
tor has asymptotic behavior

KB]~v,l ,mW ;x!→eivtYlmW
* ~cosr!2h2. ~4.4!

From this we immediately see a problem in extracting
flat-spaceS-matrix, ~4.1!, directly from Eq.~4.3!. In order to
do so, we would likeKB to be convolved with wave func
tions that have their support concentrated in the flat reg
r !R. However, the behavior~4.4! ensures that all linea
combinations of the non-normalizable modes grow
(cosr)2h2 at infinity, and thus are concentrated in the regi
r @R instead. Indeed, consider the behavior of the integ
over x in Eq. ~4.3!. The volume element is

dV5
Rd11~sinr!d21

~cosr!d11 dtdrdd21V, ~4.5!

and so nearr5p/2 ther part of the integral takes the form

;E dr
~sinr!d21

~cosr!d11 ~cosr!4h2KB~x,x8!

;E dr
1

~cosr!2n11 KB~x,x8!. ~4.6!

Thus the wave function factor convolving the bulk Gre
function has its main support in the vicinityr'p/2.4 For
non-normalizable frequencies, there is no apparent wa
obtain a limit in which one recovers the desired asympto
falloff of flat-space wavefunctions forr large butr !R with-
out also encountering this growth at infinity.

Evidence for this behavior can also be seen directly
position space. As shown in the Appendix, the position sp
bulk-boundary propagator takes the form

KB]~b,x8!5CB]F cosr8

cos~t2t8!2sinr8ê•ê8G
2h1

~4.7!

up to thei e prescription~see the Appendix!. This is singular
for points on the boundary light cone: at points such t

4This is directly connected to the fact that in the more general c
of scalar fields of unequal masses, the integral~4.6! only converges
for certain values of the scalar masses@13#.
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cos(t2t8)2ê•ê850, it has behavior;(r2p/2)22h1 at
r→p/2. In Eq. ~2.8!, the product of the first two bulk-
boundary propagators will be singular on the intersection
their boundary light cones; this behavior is exacerbated
the growth of the volume element. These arguments, sug
that for generic frequencies AdS holography is in a se
only ‘‘skin deep.’’

B. Normalizable frequencies

We now turn to the case where all the external frequ
cies v i correspond to those of normalizable modes. To
vestigate this case, recall that the bulk-boundary propag
can be found as a limiting case of the bulk propagator,5

GB]~b,x8!52n iRd21 lim
r→p/2

~cosr!22h1GB~x,x8!,

~4.8!

and that the Feynman propagator can be written in the fo

iK B~x,x8!5E dv

2p (
nlmW

eiv~t2t8!
fnlmW

* ~r,ê!fnlmW ~r8,ê8!

vnl
2 2v22 i e

.

~4.9!

The normalizable wave functionsfnlmW (r,ê) have
asymptotic behavior

fnlmW ~r,ê! ——→
r→p/2

knl~cosr!2h1YlmW ~ ê! ~4.10!

for certain constantsknl ~see the Appendix!. The frequency-
space form ofKB] is thus

KB]~v,ê;x8!52nRd21eivr 8 (
n,l ,mW

KnlYlmW
* ~ ê!fnlmW ~r8,ê8!

vnl
2 2v22 i e

.

~4.11!

From Eq.~4.11! we see that extracting the normalizabl
frequency piece is rather delicate. We want only the con
bution corresponding precisely to the normalizable-mo
frequency, in order to eliminate the above non-normaliza
behavior. The Green function is divergent at this frequen
one must extract the residue at the pole. Once one takes
account higher-loop corrections, these frequencies are na
priori known ~though they should be determined by know
edge of the exact conformal weights!, and the frequency-
space behavior of the amplitude may be more complica
These factors pose significant difficulties. Nevertheless,
us assume that we are able to perform these steps, and
where they lead.

Thus, we define a modified bulk-boundary propagator

se

5For more details, see the Appendix.
8-4
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FLAT-SPACE SCATTERING AND BULK LOCALITY IN . . . PHYSICAL REVIEW D61 106008
K̂~n,l ,mW ,x!5 lim
v→vnl

~v22vnl
2 !KB]~v,l ,mW ,x!

52vnl R dv

2p i
KB]~v,l ,mW ,x!

~4.12!

522nRd21eivnltknlfnlmW
* ~x!.

The corresponding operations can be performed directly
CFT correlators, where they are the operations neede
project onto a definitestateof the CFT.

The modified propagator~4.12! does reproduce on-she
wave functions in flat space. Indeed, in the Appendix it
shown that in ther !R limit, the modesfnlmW go over into
the flat-space wave functions

fnlmW ~xW ! ——→
R→`

A2E
1

r d/221 Jl 1d/221~Er !YlmW ~eW !.

~4.13!

Likewise, the coefficientsknl can be worked out, with the
result

K̂~n,l ,mW ,x! ——→
R→`

C~E,R!i l
1

~Er !d/221 Jl 1d/221~Er !

3YlmW
* ~ ê! ~4.14!

with coefficient function

C~E,R!52
222n

G~n!
~21!ER/22h1~ER!2h1. ~4.15!

In fact, this can easily be transformed back to position sp
on the boundary, giving6

K̂~E,ê;x!5(
l ,mW

YlmW ~ ê!K̂~n,l ,mW ,x! ——→
R→`

C~E,R!

~2p!d/2 eikW•xW,

~4.16!

a plane wave withkW5Eê.
Putting all of this together suggests tree-level presc

tions for extracting flat-spaceS-matrix elements from bound
ary correlators

6Note that the following is valid to the extent that contributio
from very large l do not contribute to the sum over alll. Such
contributions give AdS corrections to the plane waves. These
be suppressed by consideration of wavepackets with spatial sp
,R.
10600
n
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S@k1 ,¯ ,kn#5)
i 51

n F ~2p!d/22EiRC~Ei ,R!21 R
EiR

dv

2p i G
3^TO~v1 ,ê1!¯O~vn ,ên!&

5)
i 51

n

@~2p!d/2C~Ei ,R!21 lim
v i→vni l i

~v i
22vni l i

2 !#

3^TO~v1 ,ê1!¯O~vn ,ên!& ~4.17!

where vni l i
5EiR is a normal mode frequency, andki

5Ei(1,êi).
However, at the multiloop level these expressions are

tentially problematical. In particular, one does nota priori
know the frequencies to tunev i to in order to sit on a nor-
malizable mode, and the analytic structure inv may contain
more than just simple poles at these frequencies. One
sible approach to this problem–given complete knowledge
the Yang-Mills correlators—would be to take a correlat
and look for the frequencies where poles appear, extract
residues at these poles, and then use the result to cons
the flat-spaceS-matrix along the above lines. These freque
cies are approximately given by locating the poles in
boundary two-point function, which at tree level takes t
form ~see the Appendix!

K]~b,b8!} lim
r,r8→p/2

~cosr cosr8!22h1KB~x,x8!

5k]E dv

2p
eiv~t2t8!(

nlmW

knl
2 YlmW

* ~ ê!YlmW ~ ê8!

vnl
2 2v2 .

~4.18!

However, interactions will in general shift the energy of t
two-particle state relative to twice the single-particle ener
causing added difficulty in precisely identifying the releva
frequencies.

Another approach, advocated in Refs.@7,8#, is to convolve
the boundary correlators with appropriately chosen wa
packets. This appears to have some difficulty, as we can
from Eq.~4.11!. If f (v,ê) is the wave packet profile for on
of the external states, then it is connected to the rest of
diagram through a factor of the form

E dvdd21V f ~v,ê!KB]~v,ê,x8!

5E dvdd21V f ~v,ê! (
n,lmW

2nRd21

3
knlYlmW

* ~ ê!fnlmW ~r8,ê8!

vnl
2 2v22 i e

eivt8. ~4.19!

For any regularf this receives contributions from non
normalizable frequencies even iff is sharply peaked near
specific normalizable frequency. This in turn implies sen
tivity to contributions from interactions atr @R, as described
in Sec. IV A. It is not clear how to make wave packets f
cussed in the Minkowski region from these modes.

n
ad
8-5
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STEVEN B. GIDDINGS PHYSICAL REVIEW D61 106008
A modification of this procedure would be tofirst extract
the amplitudes restricted to normalizable frequencies, as
lined above. Then wave packets can be built by taking lin
combinations of those with different normal mode freque
cies. These results suggest that while it may be possibl
derive flat-spaceS-matrix elements from the AdS-CFT co
respondence, the procedure is not so simple as it first
peared.

V. LOCALITY

Let us assume that it is possible to infer the full flat-spa
S-matrix from the conformal field theory correlators, throu
some variant of the above procedure or some other pr
dure. This would provide an even more concrete realiza
of the holographic proposal. A profound question underly
this proposal is how it is possible for the boundary theory
produce a bulk theory that is an approximately local the
in one higher dimension.

One piece of the answer appears to be that the boun
theory is a conformal field theory. In a conformal fie
theory, there is no mass-shell condition on the states, s
there are no masses. Correspondingly, one can have s
with fixed boundary momenta and a spectrum~discrete in
global coordinates, continuous in Poincare coordinates! of
frequencies. This statement is made manifest in the Kal
Lehman representation for the boundary two-point functi
which can be found from that of AdS given in Ref.@16#. In
the bulk theory this spectrum is interpreted as arising fr
the different values of the momentum in the extra radial
rection.

Thus, in this sense the boundary theory contains eno
states to represent a bulk theory. However, this is no g
antee that the interactions have the correct properties to
duce a sensible and approximately local bulk theory. O
other key property is bulk momentum conservation, wh
has been the subject of one recent discussion@17#. This
seems assured by the correspondence between the sy
tries of the two theories: the conformal group SO(2,d) is also
the group of isometries of anti–de Sitter space, and in
large-R limit reduces to the Poincare group. However, th
does not imply locality—there is an infinite variety of mo
mentum conserving but nonlocal interactions.

One would like to investigate the possible presence
such nonlocality in the bulk theory. Of course, the bu
theory is not expected to be a local theory, but rather to h
nonlocalities present on a scale of order the string scale.
this is to be contrasted with the situation where there
macroscopic nonlocalities, for example on scales of order
~large! AdS radius. One could imagine an observer living
an approximately Minkowski region in a very large Ad
space without ever knowing about the large-scale curvat
and to such observers the only nonlocalities present sh
be very subtle and difficult to measure effects not easily s
at long distances. Such an AdS observer should not be
to exploit macroscopic nonlocality to win the lottery. Wh
property is it of the boundary conformal theory that ensu
preservation of locality at the macroscopic level? How do
one characterize the amount of nonlocality present? W
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experiments could be performed to measure it? And is
sufficient to resolve the black hole information paradox
solve the cosmological constant problem? These are all q
tions of considerable importance.

As expected on grounds of both holography and ga
invariance, it appears that one can at best compute
S-matrix of the bulk theory from full knowledge of the CF
correlators. Therefore conventional tests of locality—such
the commutativity of field operators at spacelik
separations—are not available. One must find ways of d
nosing locality directly from theS-matrix.

This is a difficult problem.7 First consider theories with a
mass gap. Here one test of locality for theS-matrix is that it
respect various bounds that can be derived as a resu
locality. Amplitudes must satisfy both upper and low
bounds. For example, the Froissart bound@18# states that for
four-point scattering at arbitrary angle, the amplitude m
obey

uA~s,u!u,Cs log2 s, ~5.1!

whereC is a constant; there are more stringent bounds
fixed angle, 0,u,p. Polynomial boundedness also implie
the Cerulus-Martin bound@19,20#, which states that ampli-
tudes at arbitrary angles cannot fall too rapidly at fix
angle:

uA~s,u!u>s2cAs. ~5.2!

Similar bounds have also been found in nonlocal theor
One way of producing a nonlocal theory is to construc
theory with an exponentially increasing density of stat
such as string theory. This leads to the definition of quas
calizable theories,8 which are theories with nonlocality oc
curring below a definite length scalel. These theories are
characterized for example by densities of states that grow

r~m!;e~ lm!g
, ~5.3!

for some powerg, and satisfy bounds of the form

uA~s,u!u,C8s2 logr~s1/2!. ~5.4!

This suggests the possibility of reading off the scale of n
locality from the behavior of the four-point scattering amp
tude.

However, derivation of these bounds assumes the e
tence of a gap. The requisite analyticity properties
spoiled by massless particles; gravity is particularly proble
atical. Here of course the usual IR divergences imply tha
four dimensions one must study inclusive cross sectio
summing over soft particles below some energy resolut
relevant to the experiment in question. TheS-matrix can be
defined in higher dimensions.9 One might hope that simila

7I thank K. Bardakci for several conversations on this issue.
8For more discussion of these and their bounds, see Ref.@21#, and

references therein.
9I thank T. Banks for a conversation on this point.
8-6
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FLAT-SPACE SCATTERING AND BULK LOCALITY IN . . . PHYSICAL REVIEW D61 106008
bounds could be derived for either the four-dimensional~4D!
inclusive rates or for higher-dimensionalS-matrices, provid-
ing a way of quantifying the degree of nonlocality of th
theory.10 This is an important problem for the future.

We have some partial information about high-ener
string scattering@22,23# that might be considered as a sta
dard of comparison. For example, Ref.@22# investigated the
large s, fixed angle regime, and found perturbative amp
tudes of the form

uAG~s,u!u;e2~s ln s1t ln t1u ln u!/4G ~5.5!

at genusG. It would be very interesting to see whether t
CFT reproduces this and other stringy behavior. Moreov
there are a number of open questions about the large o
and nonperturbative completion of results such as Eq.~5.5!
for high-energy string scattering, and one hope is that
boundary CFT could teach us something new about this

So far the discussion has focussed on locality in the la
s regime. However, it is not evena priori clear how the
AdS/CFT correspondence produces bulk locality at the m
roscopic level. We would like to find appropriate criteria f
this.

One possibility is to for example consider fixed ener
scattering of physical particles11 at large distances, o
equivalently smallt. One very rough criterion is that we hav
interactions falling at least as fast as 1/r d22 at long distances
since the only long range forces are expected to be gra
and other coulombic interactions. This corresponds to s
tering amplitudes that grow like 1/t as t decreases. In the
AdS context, one of course expects this growth to be tr
cated at the AdS radiust;(1/R)2, but for R@1 there is a
clean separation of scales and one can study growth of
plitudes in the regime 1@t@(1/R)2 to see if they satisfy this
crude criterion. Indeed, taking this one step further, o
could also ask whether the boundary theory reproduces
correct structure for gravitational~or other Coulombic! scat-
tering for a wide variety of semiclassical states. This wo
be an important test, sensitive to bulk locality and more,
any independent calculation of the CFT correlators. It wo
be very interesting to go beyond to understand what prop
of the boundary theory ensures recovery of the correct se
classical limit.

One might inquire whether locality properties are encod
nicely in the operator product expansion of the bound
theory. To investigate this, one first needs a translation of
kinematical variables—the Mandelstam invariants—into
AdS and CFT contexts. This is provided by considering
quadratic Casimir of SO(2,d), which in the large-R limit
reduces to the Poincare invariantP2 as shown in the Appen
dix. Thus if we wish to combine two states in representatio

10Also, in AdS the radius supplies an intrinsic IR cutoff, whic
may be useful in circumventing the usual IR problems.

11These must in particular be neutral under any non-Abe
gauge groups.
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of SO(2,d), the analogue ofs is now provided by the con-
formal weightD of the resulting states in the product repr
sentation.

First consider the problem of large-s scattering. This for
example should be governed by fusion of two high ene
states into a third state with largeD. The operator produc
expansion~OPE! takes the general form

fD i
~x!fD j

~y!;(
k

ci jk

fDk
~y!

ux2yuD i1D j 2Dk
. ~5.6!

Thus largeDk corresponds to very high order terms in th
OPE, rather than the leading behavior. One can see a sim
effect by considering scattering of two particles with m
mentaE(1,ê1) andE(1,ê2). For these,s5E2(12ê1•ê2). In
the OPE limit, ê1→ê2 ,s;E2u2 where u is the angle be-
tween the unit vectors. Small boundary distance only co
sponds to larges if we simultaneously take very largeE.

However, this suggests that behavior of amplitudes at
→0 could be explored in the OPE limit in thet channel. I
hope to return to the implications for CFT in future work.

Finally, related to this discussion is the question
whether one can reconstruct the entire bulk theory giv
complete data in the boundary theory. In general reconst
tion of a theory given theS-matrix is not unique, but one
may try to reconstruct evenonebulk theory that reproduce
the correct amplitudes. Consider first three-point functio
A problem here is that the CFT three-point function
uniquely determined by conformal symmetry, up to a co
stant; in the example of scalars, both interactions

g1E dVf3 and g2E dVf2]2f ~5.7!

give identical three-point functions up to this constant@13#.
Of course the dependence of this constant onR for the two
different cases will be different; this will help in decodin
the different interactions. But in general the program w
involve considering four- and higher-point functions, wi
their nontrivial dynamics. The problem of reconstruction
an interesting one for the future.

VI. CONCLUSION

This paper has attempted a modest beginning of an in
tigation of bulk locality in the AdS-CFT correspondence.
first problem is to extract the flat spaceS-matrix from the
boundary correlators. Ideas for how to do this have be
previously presented in Refs.@7,8,5,6#, but there are subtle
ties. In particular, it was showed that at arbitrarynon-
normalizablefrequencies, the boundary correlators are s
sitive to interactions in the ‘‘skin’’ of AdS, at radiir .R,
due to growth of the wave functions and of the volume
anti–de Sitter space. It appears that only by a delicate p
cedure of extracting the residues of poles at the normaliza
frequencies may we find the flatS-matrix. There are bound to
be wrinkles in this procedure when all-order perturbative
nonperturbative amplitudes are considered.

We would like to know what form locality takes in th
n

8-7
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STEVEN B. GIDDINGS PHYSICAL REVIEW D61 106008
bulk theory. There is no known procedure to extract off-sh
data about this theory—in accord with holography as wel
gauge invariance—and so information about locality prop
ties must be derived directly from theS-matrix. In theories
with a gap, locality or even nonlocality on a definite sca
implies certain bounds for theS-matrix, but the presence o
massless particles and particularly gravity complicates
story. Nonetheless, some information is known about the
havior of high-energy string scattering amplitudes, and o
might as a first test try to investigate this behavior from
CFT and even to go beyond to new results. Furthermore,
bulk theory should exhibit macroscopic locality, namely bu
observers should find an approximately local theory at lo
distances. One very rough criterion for this is falloff of p
tentials ~thus growth of amplitudes! bounded by Coulomb
behavior. Indeed, another important test is reproduction
semiclassical gravitational scattering. We would like
know whether the CFT reproduces such behavior, and
particular what properties of the boundary theory allow
surprising result that an approximately local highe
dimensional theory emerges from it.
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APPENDIX: BASIC AdS TOOLS

This appendix will review some basic properties of t
geometry of anti–de Sitter space and its boundary, and
wave functions and propagators on AdS, as well as deriv
some new and useful results. In particular, an explicit tre
ment of the largeR limit will be given.

1. Geometry

AdSd11 can be represented as the solution of the equa

~XM !252R2 ~A1!

in flat (2,d) signature Minkowski space with coordinate
(X21,X0,Xi) and with metric

dS25hMNdXMdXN52~dX21!22~dX0!21~dXi !2.
~A2!

Global coordinates (t,r,ê), whereê is a d-dimensional unit
vector, are defined by

X215R
cost

cosr
, X05R

sint

cosr
, Xi5R tanrêi , ~A3!
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and in these coordinates the metric takes the form

ds25
R2

cos2 r
~2dt21dr21sin2 rdVd21

2 !. ~A4!

Typically we will work on the universal cover of anti–d
Sitter space, which in an abuse of notation will also be
noted AdSd11 . The R3Sd21 boundary of this cover corre
sponds tor5p/2 and is parametrized asb5(t,ê).

There are two related notions of invariant distance
AdSd11 . The first isgeodeticdistance, defined with respec
to the embedding space metric:

s~X1 ,X2!5
1

2
hMNDXMDXN; ~A5!

in global coordinates it can be shown that

s~x1 ,x2!52R21
R2

cosr1 cosr2
@cos~t12t2!

2sinr1 sinr2ê1•ê2#. ~A6!

The second isgeodesicdistance, as measured in the Ad
metric ~A4!. This can be shown to be given by

s~x1 ,x2!5R cosh21Fcos~t12t2!2sinr1 sinr2ê1•ê2

cosr1 cosr2
G
~A7!

in global coordinates. Geodesic and geodetic distances
related by

coshS s

RD511
s

R2 . ~A8!

There is of course no conformally-invariant notion of i
terval on the boundary. When working in Poincare´ coordi-
nates for AdSd11 ,

ds25R2S dU2

U2 1U2dx2D , ~A9!

where

U5
X212Xd

R
; xa5Xa/RU, a50,1, . . . ,d21,

~A10!

one frequently uses the nonconformally invariant inter
x12

2 5ux12x2u2. In global coordinates this becomes

x12
2 5

2@cos~t12t2!2ê1•ê2#

~cost12ê1
d!~cost22ê2

d!
; ~A11!

thus the definition

s12
2 5cos~t12t2!2ê1•ê2 ~A12!
8-8
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FLAT-SPACE SCATTERING AND BULK LOCALITY IN . . . PHYSICAL REVIEW D61 106008
gives an analogous nonconformally invariant interval in
global frame. In order to form conformal invariants, o
must have four or more points, allowing the definition
cross ratios such as

s12
2 s34

2

s13
2 s24

2 5
@cos~t12t2!2ê1•ê2#@cos~t32t4!2ê3•ê4#

@cos~t12t3!2ê1•ê3#@cos~t22t4!2ê2•ê4#
.

~A13!

2. Wave functions

In many respects anti–de Sitter space behaves as a
nant cavity. In particular, solutions of the scalar wave eq
tion

~h2m2!f50 ~A14!

are for generic frequencies non-normalizable, hav
asymptotic behavior

f}~cosr!2h2, ~A15!

where

4h65d6Ad264m2R25d62n, ~A16!

near the boundary atr5p/2.
Only for special frequencies,

vnl52h112n1 l ~A17!

do normalizable solutions exist. Explicit forms for these s
lutions are given in Refs.@14,11#,

fnlmW ~xW ,t!5xnl~r!YlmW ~ ê!
e2 ivnlt

A2vnl

, ~A18!

where the radial wave functionsxnl(r) are written in terms
of the Jacobi polynomials12

xnl~r!5Anl~cosr!2h1~sinr! l Pn
l 1d/221,n~cos 2r!.

~A19!
10600
e
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Here Anl is a normalization constant. If thefnlmW are given
the conventional Klein-Gordon normalization

~fnlmW ,fn8 l 8mW 8!5E dSmfnlmW
* i ]Jmfn8 l 8mW 85dnn8d l l 8dmW mW 8

~A20!

with respect to surfaces of constantt, then these constant
are

Anl
2 5

2vnl

Rd21

n!G~n12h11 l !

GS n1 l 1
d

2DG~n1n11!

. ~A21!

The normalizable solutions have asymptotic behav
given by

xnl~r! ——→
r→p/2

knl~cosr!2h1, ~A22!

with constantsknl given by

knl5~21!nAnl

G~n1n11!

n!G~n11!
. ~A23!

3. Green functions

The bulk Feynman Green function is defined by solvin

~h2m2!iK B~x,x8!52d~x,x8! ~A24!

with Feynman boundary conditions. It can be represente
an infinite sum over the normalizable modes,

iK B~x,x8!5E dv

2p (
nlmW

eiv~t2t8!
fnlmW

* ~xW !fnlmW ~xW8!

vnl
2 2v22 i e

.

~A25!

The sum has been explicitly performed to yield@14,15#
iK B~x,x8!5
CB

@cosh2~s/R!#h1
FS h1 ,h11

1

2
;n11;

1

cosh2~s/R!
2 i e D , ~A26!
whereCB is a constant,

CB5
1

Rd21

G~2h1!

22h111pd/2G~n11!
, ~A27!

andF is the hypergeometric function.
The bulk-boundary propagatorKB] is designed to provide

12The conventions of Ref.@24# will be followed.
a solution to the free wave equation~A14! satisfying the
boundary condition

f ——→
r→p/2

~cosr!2h2 f ~b!. ~A28!

This solution is given by

f~x!5E db f~b!KB]~b,x!. ~A29!
8-9
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STEVEN B. GIDDINGS PHYSICAL REVIEW D61 106008
A simple Green’s theorem-type argument@6# shows that

KB]~b,x8!52nRd21 lim
r→p/2

~cosr!22h1iK B~x,x8!.

~A30!

We can therefore find two equivalent expressions forKB] ,
the first from the limit of Eq.~A25!,

KB]~b,x8!52nRd21E dv

2p (
nlmW

eiv~t2t8!

3
knlYlmW

* ~ ê!fnlmW ~xW8!

vnl
2 2v22 i e

, ~A31!

and the second from the limit of Eq.~A26!,

KB]~b,x8!5CB]F cos2 r8

@cos~t2t8!2sinr8ê•ê8#21 i eGh1

,

~A32!

where

CB]5
G~2h1!

22h1pd/2G~n!
. ~A33!

Finally, the boundary two-point function can be obtain
by taking the second point to the boundary,

G]~b,b8!} lim
r8→p/2

~cosr8!22h1GB]~b,x8!. ~A34!

This gives

K]~b,b8!5k]E dv

2p (
nlmW

eiv~t2t8!
knl

2 YlmW
* ~ ê!YlmW ~ ê8!

vnl
2 2v22 i e

~A35!

and

K]~b,b8!5C]

1

~@cos~t2t8!2ê•ê8#21 i e!h1
, ~A36!

where k] and C] are constants. Note thatK] is naturally
written in terms of the boundary interval~A12!.

4. Large-R limits

It was shown in Sec. III that for largeR, in a patch of
proper sizeO(R), anti–de Sitter space may be approximat
by Minkowski space. This can be explicitly seen in the c
ordinates

t5Rt; r 5Rr, ~A37!

where the metric takes the form

ds25
1

cos2~r /R! F2dt21dr21R2 sin2S r

RD 2

dV2G .
~A38!
10600
d
-

This subsection will discuss other aspects of the relations
between AdSd11 andMd11 at largeR.

First consider the relation between the symmetry gene
torsJMN of SO(2,d) and those of the Poinca´re group. In the
vicinity of ~t,r!5~0,0!, the connection can be made throug
the identification

pm5
J21m

R
, Mmn5Jmn ; ~A39!

the SO(2,d) algebra clearly goes over to the Poincare alg
bra in the limitR→`. Also useful is the quadratic Casimi
which is important for the classification of the represen
tions of the conformal group. It is given by

C25
1

2
JMNJMN5

1

2
MmnMmn2R2PmPm ~A40!

and takes valueC252D(d2D) in a representation of con
formal weight D. From the relationshipD52h1 and Eq.
~A16!, we see that

C25m2R2, ~A41!

which combined with Eq.~A40! gives the correct mass-she
relation in the large-R limit. The quadratic Casimir may be
used to find analogues of the Mandelstam invariants.

Next consider wave functions. The relations~4.2!,~A17!
imply that

ER52h112n1 l , ~A42!

so for fixed Minkowski energy and angular momentum, a
m&O(1/R), largeR corresponds to largen. A useful relation
for large order Jacobi polynomials is

lim
n→`

1

na Pn
ab@cos~x/n!#5S 2

xD a

Ja~x!. ~A43!

For r !R this gives

lim
R→`

cos2h1~r /R!sin1~r /R!Pn
~ l 1d/221,n!@cos~2r /R!#

5~ER!d/221
1

~Er !d/221 Jl 1d/221~Er !, ~A44!

which is, up to the overall power ofER, the standard flat
space radial wave function. We also needAnl , which from
Eq. ~A21! via Sterling’s approximation is

Anl ——→
R→`

A2vnl

Rd21. ~A45!

Combining this with Eq.~A44! then gives the desired wav
functions at largeR:

fnlmW ~xW ! ——→
R→`

A2Ed21
1

~Er !d/221 Jl 1d/221~Er !YlmW ~ ê!,

~A46!
8-10
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wherer !R is understood. Atr→p/2, corresponding to large
r, one still finds behavior}(cosr)2h1, and in fact the large-R
limit of the coefficientsknl of Eq. ~A22! is

knl ——→
R→`

~21!n

G~n11!

A2E

Rd/221 S ER

2 D n

. ~A47!

Finally consider the large-R behavior of the Green func
tions. The asymptotics of the bulk propagator immediat
follows from Eq.~A26!. Geodesic distance on AdSd11 trivi-
ally becomes the Minkowski interval. The hypergeomet
function must therefore be evaluated with argument n
one, which is done via the formula

FS h1 ,h11
1

2
;n11;zD

5

G~n11!GS 12d

2 D
G~12h2!GS 1

2
2h2D FS h1 ,h11

1

2
;
d11

2
;12zD

1~12z!~12d!/2

G~n11!GS d21

2 D
G~h1!GS h11

1

2D
3FS 12h2 ,

1

2
2h2 ;

32d

2
;12zD . ~A48!

Taking

z5
1

cosh2~s/R!
'12

s2

R2 , ~A49!
Oz
’’

’

ig

’

’

v.

d

10600
y

r

and assuming thatn stays finite asR→`, we find

iK B~x,x8! ——→
R→`

C̃

@s2~x,x8!1 i e#~d21!/2 , ~A50!

where

C̃5

GS d21

2 DG~2h1!

pd/222h111G~h1!GS h11
1

2D . ~A51!

This is the expected massless flat-space propagator.
As we saw in Sec. IV, for generic frequencies the bu

boundary propagatorKB] grows as (cosr)2h2 at the bound-
ary, and so in the large-R limit is not concentrated in the
Minkowski region. This can be remedied by restricting
normalizable frequencies, as in Eq.~4.12!. The large-R be-
havior of the resulting functionK̂ is readily inferred from
Eqs.~A46! and ~A47!, and gives

K̂~n,l ,mW ,x! ——→
R→`

C~E,R!~21! l /2

3
1

~Er !d/221 Jl 1d/221~Er !YlmW
* ~ ê!,

~A52!

where the coefficient functionC(E,R) is given by

C~E,R!5
222n

G~n!
~21!ER/22h1~ER!2h1. ~A53!
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