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Compactified little string theories and compact moduli spaces of vacua
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and School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540*
~Received 12 October 1999; published 25 April 2000!

It is emphasized that compactified little string theories have compact moduli spaces of vacua, which globally
probe compact string geometry. Compactifying various little string theories onT3 leads to three-dimensional
~3D! theories with an exact, quantum Coulomb branch given by an arbitraryT4 of volumeMs

2, an arbitraryK3
of volumeMs

2, and moduli spaces ofG5SU(N), SO(2N), or E6 , E7 , E8 instantons on an arbitraryT4 or K3
of fixed volume. Compactifying instead on aT2 leads to 4D theories with a compact Coulomb branch base
which, when combined with the exact photon gauge coupling fiber, is a compact, elliptically fibered space
related to the above spaces.

PACS number~s!: 11.25.Mj, 12.60.Jv
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I. INTRODUCTION

Over the past few years there have been a variety of c
nections between the moduli spaces of supersymme
gauge theories and stringy geometry. For example, sing
background geometry or gauge bundles can lead to
hanced, nonperturbative, gauge theories, whose mo
spaces reproduce the local singularity@1,2#. Another connec-
tion is via branes, whose world-volume supersymme
gauge theory has a moduli space which ‘‘probes’’@3,4# the
geometry in which the branes live. In an extreme form of t
connection@5#, we perhaps actually live in the moduli spa
of a supersymmetric theory. It is thus interesting to consid
generally, what types of geometry can be reproduced
moduli spaces of vacua.

A basic issue is whether moduli spaces of vacua can
compact. Moduli spaces of vacua of standard gauge theo
are generally noncompact cones: if a given set of scalar
pectation valueŝf i& is a D-flat vacuum, so isl^f i& for
arbitrary scaling factorl→`. @This is slightly modified by
Fayet-Iliopoulos terms for U~1! factors.# An exception is the
Coulomb branch moduli, associated with the Wilson lines
gauge theories which are compactified on tori; these mo
live on dual tori, modded out by the Weyl group.

The present note is devoted to emphasizing that toroid
compactified ‘‘little string theories’’@6,7#1 can have a variety
of interesting, compact, moduli spaces of vacua. The pre
discussion is an elaboration of a footnote which appeare
@11#. The basic message is that, while world-volume gau
theories onlylocally probe the geometry transverse to t
brane, little string extensions canglobally probe compact
geometry. While this fact is perhaps well known to som
experts, it is hoped that some readers will find it of intere

For example, the basicN5(1,0) heterotic little string
theory, when compactified onT3, is argued to have a Cou

*Present address.
1The extent to which these 6D theories decouple from the 1

bulk, for energies above some gap value, is subtle@8,9,10#; we will
ignore these issues and only discuss the vacuum manifold.
0556-2821/2000/61~10!/106005~6!/$15.00 61 1060
n-
ic
ar
n-
uli

c

s

r,
ia

e
ies
x-

f
li

ly

nt
in
e

t.

lomb branch moduli space of vacua which is aK3 of volume
Ms

2. ~Since a 3D scalar has mass dimension 1/2, this
the correct dimensions.! The Coulomb branch is a nonlinea
s model with an exact, quantum metric equal to the Ric
flat metric of K3. The K3 is an arbitrary metric of fixed
volume, whose parameter space coincides with that of theT3

compactified heterotic little string theory; the map betwe
these parameter spaces is the same as enters in the d
between the 10D heterotic string onT3 andM theory onK3.
Geometric symmetries of theK3 Coulomb branch map to
nontrivial T dualities of theT3 compactified little string
theory.

More generally, it will be argued that the little string the
ries obtained in@11# from K heterotic ~or type-II! Neveu-
Schwarz~NS! branes at a transverseC2/GG singularity, when
compactified onT3, have a compact Coulomb branch modu
space of vacua given by the moduli space ofK G instantons
on K3 ~or T4!. HereG is an arbitraryA, D, E group andGG

is the corresponding SU~2! subgroup. TheK3 or T4 appear-
ing here is precisely that ofM theory duality, which the
compactified little string theory globally probes. The volum
of the compact Coulomb branch is again set byMs . In each
case, the Coulomb branchs model metric must be the
unique one which is Ricci flat.

Similarly, it will be argued that little string theories, whe
compactified to 4D on aT2, have Coulomb branches whic
globally probeF theory. The Coulomb branch is the ba
space ofF theory, and the photon kinetic terms are the ell
tic fibration. For example, compactifying the basicN
5(1,0) little string theory onT2 leads to a 4D theory whos
total space of Coulomb branch base and Seiberg-Wi
curve is an elliptically fiberedK3 of volumeMs

2. The map
between theT2 compactification data and the parame
space of fixed volume, elliptically fibered,K3 spaces is the
same as in the duality between the 10D heterotic theory
T2 andF theory on an elliptically fiberedK3 @12#.

The next section will review little string theories and the
compactification, with several new minor comments
cluded. Section III outlines classicalT3 dimensional reduc-
tion of ordinary 6D U~1! and SU~2! gauge fields. This al-
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ready leads to compact Coulomb branches, of fixed volu
g6

22; the Coulomb branch for U~1! is T4, while that of SU~2!
is K3. Section IV extends the probe argument of@13# to
argue for our main message: that compactifying little str
theories onT3 leads to theories whose exact Coulomb bran
is compact and globally probes theT4 or K3 of M theory
duality. Section IV discussesT2 compactification of little
string theories, which similarly have compact Coulom
branches that globally probe compactification ofF theory,
e.g., on elliptically fiberedK3’s.

The proposed relation of@11# between compactified
type-II little string theories and moduli spaces of instanto
on T4 also entered in@14,15,16#, where it was extended to
moduli spaces of instantons on a noncommutativeT4 by in-
troducingR-symmetry twists in the compactification. A rela
tion between the twisted, compactified~2,0! theory andK3
was proposed in@15#; this appears to be unrelated to th
presently discussed appearance ofK3 in the context of the
untwisted, compactified, heterotic little string theories. Mu
as in @15,16#, it should also be possible to introduc
R-symmetry twists for the compactified heterotic little strin
theories, perhaps leading to moduli spaces of instantons
noncommutativeK3, though this will not be done here.

II. REVIEW OF LITTLE STRING THEORIES
AND THEIR COMPACTIFICATION

Four classes of 6D little string theories were obtained
@7# via the world-volume of five branes in the limitgs→0
with Ms held fixed:

~iia! N5(1,1) supersymmetric, viaK IIB NS five-branes
@7# or via type-IIA orM theory with aC2/TG asymptotically
locally euclidion singularity@17,18#.

~iib! N5(2,0) supersymmetric, viaK-type-IIA five
branes@7# or type-IIB with aC2/GG singularity @17#.

~o! N5(1,0) supersymmetric, viaK SO~32! heterotic
small instantons.

~e! N5(1,0) supersymmetric, viaK heterotic E83E8

small instantons.
Cases~iia! and ~o! contain gauge fields with couplin

g6
225Ms

2 and are IR free. Instantons in the 6D gauge th
ries are fundamental strings, with tensiong6

225Ms
2. Cases

~iib! and~e! instead contain tensor multiplet two-form gau
fields, with self-dual field strength, and lead to interacti
renormalization-group fixed point field theories in the IR.

N5(1,0) tensor multiplet theories@of which N5(2,0) is
a special case# always have an associated groupG. For cases
~iib! it is SU(K) or theADE singularity groupG, while for
~e! it is Sp(K). There is ar 5rank(G) dimensional, compac
Coulomb branch moduli space, with the real scalars in
N5(1,0) tensor multiplets taking valueŝF& in the ‘‘G-
Coxeter box’’ (S1) ^ r /WG , where theS1 is of radiusMs

2 and
WG is the Weyl group ofG. The theory is interacting at th
boundaries of the Coxeter box but, in the bulk, behaves
the IR as r free self-dual tensor multiplets. Strings a
charged under ther two-form gauge fields of these tens
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multiplets, with charge vectorsa in theG root lattice.2 Via a
Bogomol’nyi-Prasad-Sommerfield~BPS! formula, a string
with chargesa has tensionZ5a•F, becoming tensionless
at the origin of the Coulomb branch. Reducing to 5D leads
a gauge theory with non-Abelian gauge groupG at the ori-
gin, so the 6D theory can be regarded as a non-Abel
self-dual, two-form gauge theory with groupG ~whatever
that means!.

Each of the four above classes has either vector or te
multiplets, but not both. Theories containing both vector a
tensor multiplets were discussed in@11# by combining five
branes withC2/GG orbifold singularities in the transvers
dimensions, using results obtained in@19–22#. In this way,
new theories can be obtained for each of the four classe
branes, type-IIA, IIB, SO~32! heterotic, andE83E8 het-
erotic, atC2/GG singularities. All of these theories general
haveN5(1,0) supersymmetry.

For example,K-type-IIB NS five branes at aC2/GG sin-
gularity @21# has a quiver gauge theory, based on the
tended Dynkin diagram of theADE singularity groupG, with
gauge group U~1!D3Pm50

r SU(Knm) and bifundamental
matter.nm are theG Dynkin indices andr 5rank(G). There
are r N5(1,0) tensor multiplets, which are associated,
described above, with the singularity groupG. Via an
anomaly cancellation mechanism, SU(Knm) has gauge cou-
pling gm,eff

22 5Ms
2dm,01am•F and an SU(Knm) instantion,

which is a string in 6D, has tensor-multiplet chargesam and
BPS tensionZm5gm,eff

22 . Here theam are theG root vectors
(a0 is the extending root! and the condition that allgm,eff

22

>0 is precisely that the Coulomb branch^F& is theG Cox-
eter box, of side lengthMs

2. The SU(Knm) instanton string
charges span theG root lattice.

The instanton string for a diagonal SU(K)D

,Pm50
r SU(Knm), with index of embedding nm in

SU(Knm), has tensionnmZm5Ms
2, and is identified with the

fundamental IIB string. The otherr-independent instanton
strings inPm50

r SU(Knm) are to be identified with the string
obtained@23# by wrapping the type-IIB three brane on th
r-independent, fully collapsed, two-cycles of theC2/GG sin-
gularity; m51...r of these strings become tensionless for^F&
at a codimensionm boundary of the Coulomb branch Cox
eter box.

The simplest heterotic case isK SO~32! five branes at a
C2/GG singularity @19–22#. The theories are associated@11#
with a subgroupH of the singularity groupG, with G→H as
SU(2P)→Sp(P), SO(4P12)→SO(4P11), SO(4P)
→SO(4P), E6→F4 , E7→E7 , E8→E8 . The gauge group

2Because of the self-duality, these strings can be regarded a
ther ‘‘electrically’’ or ‘‘magnetically’’charged. The Dirac quantiza
tion condition thus implies that the latticeL must be aninteger
lattice, i.e., the dot product of any two lattice vectors is an integ

so L,L̃, whereL̃ is the dual lattice. This is, of course, a weak
condition than self-duality of the lattice. For example, the root l
tice of a simple groupG is generally not self-dual but, rather,
subgroup, of degree given by the center ofG, in the dual lattice,
which is the weight lattice.
5-2
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and matter content is given by a quiver diagram, which is
extendedH Dynkin diagram, with SO, Sp, and SU groups
various nodes, e.g., the group at them50 node is Sp(K).
There arer 5rank(H) N5(1,0) tensor multiplets, which ar
associated with the groupH. Via an anomaly cancellation
mechanism, the gauge group at nodem50 . . . r of the
quiver diagram has couplinggm,eff

22 5Ms
2dm,01am•F, and an

instantons string in this group has tensor multiplet char
am and BPS tensionZm5gm,eff

22 . Heream are the simple and
extending roots ofH, so the instanton strings span theH root
lattice. Instantons in a diagonal Sp(K)D are identified with
the fundamental heterotic string, of tensionMs

2. The other
r-independent instanton strings can again be identified w
three branes wrapped on collapsed two cycles;m51...r of
these become massless at a codimensionm boundary of the
Coulomb branch~the H Coexter box!.

The other heterotic case,K E83E8 five branes at aC2/GG
singularity, leads to little string theories with a more i
volved spectrum of tensor multiplets, gauge groups, and m
ter content@22,11#.

Compactifying on a circle, 6D vector and tensor multi
lets both lead to 5D vector multiplets. A 6DN5(1,0) theory
with a gauge group of rankr V andnT tensor multiplets, when
compactified, leads to a 5D theory with a Coulomb bran
moduli space of vacua of dimensiondC5r V1nT . Compac-
tifying to 4D, the Coulomb branch has real dimension 2(r V
1nT) and in 3D, upon dualizing thedC photons, there is a
Coulomb branch of real dimension 4(r V1nT).

Little string theories exhibitT duality when compactified
on a circle@7#, with the ~iia! theory on a circle of radiusR
identical to the~iib! theory on a circle of radius 1/Ms

2R.
Similarly, the ~o! heterotic theory, on a circle of radiusR,
and with a Wilson line around the circle breaking SO~32! to
SO~16!3SO~16!, is identical to the~e! heterotic theory on a
circle of radius 1/Ms

2R, again with a Wilson line breaking
E83E8 to SO~16!3SO~16!. ~See@24# for the heteroticT
duality with general Wilson lines.! In these cases,T-duality
exchanges 6D tensor and vector multiplets,r V↔nT . This is
nice because the 5D classical kinetic terms for the sca
coming from 6D tensor multiplets,Ms

4R(dF)2, is indeed
exchanged with the kinetic term,g6

22R(R21dF)2, of a vec-
tor multiplet on a circle of radiusR. In both casesF is a
compact scalar, normalized soFP@0,1#, and the two kinetic
terms are exchanged byR↔(Ms

2R)21 upon settingg6
22

5Ms
2.

More generally, there is an expectedT duality, with
R↔(Ms

2R)21 exchanging the theories coming from type-II
and type-IIB or SO~32! and E83E8 heterotic branes a
C2/GG singularities.T-dual theories must haver V1nT5 r̃ V
1ñT . As was noted in@25,11#, this is the case for the
SO~32! andE83E8 branes at singularities: both cases ha
r V1nT5C2(G)K2uGu, whereC2(G) is the dual Coxeter
number of the singularity groupG and uGu is its dimension.
This formula will be important in what follows. A point o
concern mentioned in@11# is that a stronger condition,r V
5ñT andnT5ñV , needed forT duality to exchange the clas
sical kinetic terms as above, is not satisfied. The pres
situation is, in fact, closely connected to that of@26#, where it
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was argued thatT duality can fail. Here, however, there is
simpler resolution: the Coulomb branch metric can get qu
tum corrections and, while the quantum-corrected met
are expected to agree, the classical metrics need not.
stronger condition is thus unnecessary.

All little string theories, when compactified onTD, have
the parameter space@7#

O~D1y,D;Z!\O~D1y,D !/O~D1y!3O~D !, ~2.1!

wherey50 for the type-II cases andy516 for the heterotic
cases. These are theTD metric andBNS fields ~D2 real pa-
rameters!, and also the SO~32! or E83E8 Wilson lines in the
heterotic cases~16D real parameters!. O(D1y,D;Z) is the
full T-duality group.

III. COMPACTIFICATION PRELIMINARIES

We first consider the classical dimensional reduction o
6D U~1! gauge field,

E d6xS 2
1

4g6
2 FmnFmn1BNS∧F∧F D , ~3.1!

on aT3 to three dimensions.BNS is an external, background
two-form gauge field. We take the space to beR33T3, with
R3 coordinatesxi , i 51,2,3, and periodic coordinatesra

P@0,1#, a51,2,3, for theT3; the metric isds25d i j dxidxj

1habdradrb. Taking all fields to be independent of theT3

coordinatesra, Eq. ~3.1! becomes

S5E d3xFAdeth

g6
2 @2 1

4 Fi j F
i j 1 1

2 ~h21!ab] ifa] ifb#

1uae i jkFi j ]kfaG , ~3.2!

where BNS5eabcu
adrb∧drc for some constantsua, a

51,2,3. The three real scalarsfa are associated with the
Wilson lines of the gauge field around the cyclesdra of the
T3 and are periodic, normalized so thatfaP@0,1#.

The 3D U~1! gauge field can be dualized to another re
scalar, which also lives on a circle. This is done as in@27#:
we replaceFi j →Fi j 2Hi j in Eq. ~3.2! and introduce an ad
ditional terme i jkHi j ]kf4 , with the scalarf4 periodic, nor-
malized so thatf4P@0,1#. First integrating outf4 leads
back to the original theory. First integrating outH setsFi j
50 and leads tof4 kinetic terms. Combining with thefa
kinetic terms in Eq.~3.2!, the upshot is aT4 Coulomb branch
moduli space of vacuâfA&, A51, . . . 4,with metric

ds25
Adeth

g6
2 ~h21!abdfadfb1

g6
2

Adeth
~df42uadfa!2

[GABdfAdfB , ~3.3!

wherea runs over 1, 2, 3 andA51, . . . ,4.This metricGAB

has ten real components, which depend on the nine rea
rametershab and ua, and thus satisfies one constraint. T
5-3
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KENNETH INTRILIGATOR PHYSICAL REVIEW D 61 106005
relation is that theT4 of Eq. ~3.3! has fixed volume, inde-
pendent of thehab and theua:

Volume~T4!5Adet~GAB!5
1

g6
2 5Ms

2. ~3.4!

Although the above discussion was purely classical,
map ~3.3! between theT3 metric hab andB fields ua is ex-
actly the relevant one for relating type-IIB string theory
T3 to M theory onT4, to be discussed in the next sectio
Indeed, the map~3.3! was also obtained in@16# in the context
of the compactified~2,0! theory via a chain of string duality
gymnastics.

We pause to note that the metric~3.3! nicely exhibits
properties to be expected based on its connection toM
theory. In particular, the obvious, geometricSL(4;Z) dis-
crete symmetries of theT4 correspond to nontrivialT duali-
ties, in a subgroup of theT-duality group appearing in Eq
~2.1!. For example, consider the obvious requirement that
T4 be invariant under the relabeling exchangef3↔2f4 .
Taking, for simplicity, T3 with hab5La

2dab and ua50, it
follows from Eq.~3.3! that this operation corresponds to th
operation

L1→~Ms
2L2!21, L2→~Ms

2L1!21, L3→L3 , ~3.5!

where we setg6
225Ms

2. This is aT duality in two circles,
which is nontrivial but, nevertheless, a symmetry taking
IIA or IIB theory back to itself. The generalization of theT
duality ~3.5! for generalhab andua is quite complicated, see
e.g.,@28#; remarkably, it is indeed reproduced from Eq.~3.3!
by simply requiring thef3↔2f4 symmetry.

On the other hand,T duality in an odd number of cycles
such as theO(3,3;Z) element taking allLi→(Ms

2Li)
21, for

i 51,2,3, is not a geometricSL(4;Z) symmetry of Eq.~3.3!.
This is sensible, since such operations are not symmetrie
type-IIA or type-IIB string compactifications but, rather, e
change types IIA and IIB.

In particular, starting instead from a 6D tensor multipl
dimensional reduction on aT3 leads to aT4 Coulomb branch
moduli space, with metric related to Eq.~3.3! by T duality in
an odd number of theT3 cycles, corresponding to the ex
change of types IIA and IIB.

Now considerT3 reduction of a 6D SU~2! gauge theory.
The above discussion for U~1! carries over to this case wit
almost no changes. The only difference is that the real s
lars fA must be modded out by the Weyl group actionfA
;2fA . Modding out theT4 by thisZ2 action leads to aK3.
Thus the Coulomb branch of a 6D SU~2! gauge theory re-
duced to 3D on aT3 is given by^fA& in a compactK3. The
volume of theK3 is again set byg6

22, and equal toMs
2. The

full parameter space ofK3 metrics of fixed volume is 57
dimensional and given by Eq.~2.1! with D53 andy516,
while that obtained here only depends on the ni
dimensional subspace given by Eq.~2.1! with D53 andy
50. The remaining parameters will come from three r
masses for each of 16 SU~2! fundamental matter flavors
these enter as the Wilson loop parameters in Eq.~2.1!.
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IV. THE PROBE ARGUMENT, CHECKS,
AND COMMENTS

The parameter space~2.1! for T3-compactified heterotic
~or type-II! little string theories coincides with the geometr
parameter space of aK3 ~or T4! of fixed volume. These are
of course, the standard miracles which enter in the dua
between the 10D heterotic~or type-II! string onT3 and M
theory onY5K3 ~or T4!. The fundamental string arises a
the M5 brane wrapped onY, so M p

6 Vol(Y)5Ms
2. We will

here extend the probe argument of@13# to argue that these
M-theory dualities provide the solution for the exact, qua
tum, Coulomb branch metric of theT3 compactified little
string theories.

Recall that the argument of@13# started with 3DN54
supersymmetric~eight supercharges! SU~2! gauge theory
with fundamental matter, which is the world-volume fie
theory in a D2 brane in type-I’ string theory onT3. This
maps to aM2 brane inM theory ofK3, which can be at an
arbitrary point in the transverseR43K3. TheR4 corresponds
to a decoupled hypermultiplet in the world-volume theo
TheK3 factor is more interesting: it was thus argued in@13#
that the full, quantum-corrected metric on the Coulom
branch of the D2 brane world-volume field theory must be
local piece of the correspondingK3; this was confirmed in
@27# purely in the context of 3D field theory.

The D2 brane world-volume field theory onlylocally
probes theK3 because of the particular limit taken to d
couple the bulk dynamics:gs→0 andMs→`. On the other
hand, we can takegs→0, but withMs held fixed. This theory
is precisely the 6D heterotic little string theory~o!, compac-
tified to 3D on the sameT3 as the 10D heterotic or type-I
bulk theory. TheT3-compactified little string theory~o! glo-
bally probes the fixed volumeK3 of M theory, and must thus
have a Coulomb branch moduli space of vacua which is
sameK3. The geometricK3 has volumeMs

2M p
26 and, taking

into account how the properly normalized Coulomb mod
scalars probe geometry, the volume of the Coulomb bra
K3 is Ms

2. This matches with the result of the previous se
tion. This compact Coulomb branch properly becomes n
compact in the field theory limitMs

2→`.
The K3 Coulomb branch can have singularities, depe

ing on the choice of parameters in Eq.~2.1!. As in @13#, these
singularities mark the intersection of the Coulomb bran
with a Higgs branch, with an interacting 3D infrared confo
mal field theory at the intersection.

Unfortunately, both sides in the present equivalence,
tween the quantum Coulomb branch of theT3 compactified
little string theory on the one hand, and the metric ofK3 on
the other, are presently not well understood. Perhaps
present equivalence will eventually be useful for using o
of the two sides to learn about the other.

A direct generalization of the above is to consider aT3

compactification of the little string theory~o! associated with
the K SO~32! heterotic small instanton. This maps toK M2
branes at points onR43K3. The Coulomb branch is, corre
sponding, the symmetric product (K3)^ K/SK , where each
K3 is again of fixed volumeMs

2.
The geometric symmetries~see, e.g.,@29#! of the Cou-
5-4
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lomb branchK3 correspond to nontrivialT dualities in Eq.
~2.1! though, as in Eq.~3.5!, only the subgroup which take
the SO~32! heterotic theory back to itself. An additionalZ2
component ofT dualities inO(19,3;Z) reflects the fact that
instead compactifying theE33E8 heterotic little string~e!,
with T-dual T3 compactification data, also yields the sam
3D theory, with thesame K3 compact Coulomb branch a
described above.

Each of the little string theories reviewed in Sec. II can
compactified to 3D on aT3, and each has an exact quantu
Coulomb branch which globally probes the dualM theory
compactification. In each case, there is a compact Coulo
branch component, with unit volume in units ofMs . The 3D
field theory limit is recovered by takingMs→`.

The N5(1,1) little string theories with group U(K),
when compactified onT3, have a Coulomb branch which i
(R43T4) ^ K/SK @more generally, (R43T4)rank(G)/
Weyl(G)#, which probes the duality between type-II strin
on T3 and M theory onT4. The Coulomb branchT4 has
metric GAB which is given exactly in terms of theT3 com-
pactification date by Eq.~3.3!, with volumeMs

2. There is a
similar statement for theN5(2,0) little string theory onT3,
differing from theN5(1,1) case by aT duality in one of the
T3 cycles; the fixed volumeT4 in this context was also dis
cussed in@15,16#.

The N5(1,0) little string theories associated withK
type-II or heterotic five branes at anXG[C2/GG singularity,
when compactified onT3, similarly probeM theory geom-
etry. In the heterotic~or type-II! cases, theM theory dual is
given byK M2 branes with a transverse spaceXG3K3 ~or
XG3T4!. In both cases,M theory with aXG singularity has
an enhancedG gauge symmetry andM2 branes, when sitting
directly on top of theG singularity ofXG , can be interpreted
as smallG instantons. In the heterotic~or type-II! cases,
theseK G instantons have the fixed volumeK3 ~or T4! as
their four spatial coordinates. There is a moduli space
these instantons given by their positions in these four spa
coordinates, as well as their moduli for fattening up and
tating in G.

Thus, by the probe argument, the little string theory as
ciated withK heterotic~or type-II! branes at aC2/GG singu-
larity, when compactified on aT3, has a compact Coulom
branch moduli space of vacua which is exactly given by
moduli space ofK G instantons on aK3 ~or T4! of volume
Ms

2. A quick check is that the dimension of the Coulom
branch of theT3 compactified little string theories indee
agrees with the dimension of the moduli space ofK G
instantons3 on T4 or K3: the type-II cases indeed hav
4(r V1nT)54KC2(G) and the heterotic cases indeed ha
4(r V1nT)54(KC2(G)2uGu). This latter fact also played a
role in the mirror symmetry of@25#.

Another check is to consider the limitMs
2→`, where

T4→R4 or K3 becomes a noncompact piece ofK3, and

3For a general four manifold with Euler characterx and signature
s, the dimension is 4KC2(G)2

1
2uGu(x1s). For T4, x5s50

and, forK3, x524 ands5216.
10600
e

b

r
al
-

-

e

where the compactified little string theory goes over to its
field theory limit. In the type-II cases, the resulting 3D fie
theory has the quiver gauge groupPm50

r U(Knm), based on
the extendedG-Dynkin diagram, which was indeed argued
@30,31# to have a quantum Coulomb branch which is t
moduli space ofK G instantons onR4. This theory was
argued in@30# to have a hidden, globalG symmetry. Because
M theory hasG gauge symmetry even for finiteMs , the full
compactified little string theory is expected to also have t
hidden global symmetry. Similar statements should hold
the heterotic cases.

Moduli spaces of instantons onT4 or K3 have made a
variety of appearances in physics and mathematics, tho
usually withG5U(N) as the gauge group. In that case, t
moduli space also depends onva5*Sa

TrF, whereSa is a

basis for the two cycles ofT4 or K3. In the present case,G is
a simpleA, D, E group so TrF50. ~B fields can possibly
still contribute tovaÞ0, e.g., as in@21#.!

The moduli spaces of the instantons obtained above h
many interesting singularities. At these Coulomb branch s
gularities, there is an attached Higgs branch, with an in
acting 3D IR conformal field theory~CFT! at the intersec-
tion.

All of the above compact Coulomb branches are hyp
Kähler type, with c150, and thes model metric is the
unique one which is Ricci flat.

V. T2 COMPACTIFICATION: PROBING F THEORY

Compactifying the heterotic~or type-II! little string theo-
ries to 4D on aT2 leads to quantum Coulomb branch
which globally probeF theory compactifications on a fixe
volume, elliptically fiberedK3 ~or T4!. For example, con-
sider theK51 case of the heterotic little string theory~o!,
whose low-energy field theory content is that of the wor
volume ofD3 branes in type I’ onT2. This latter theory has
a noncompact, quantum Coulomb branch which was arg
@32,4# to locally probe the duality toF theory on an ellipti-
cally fiberedK3. The Coulomb branch in the 4D field theor
is the noncompact complexu plane, over which the photon
coupling teff(u) is fibered according to the Seiberg-Witte
curve @33#; the total space of theu plane base andteff(u)
fiber is a local, noncompact piece ofK3. This is theMs
→` limit of the T2 compactified little string theory.

Considering now theT2 compactified little string theory
for finite Ms

2, the u-plane base is a compact box of volum
Ms

2 ~this is the correct mass dimension for 4D scalars!. As in
Sec. III, reducing a 6D U~1! gauge field on aT2 with metric
habdradrb leads to scalars living on a dualT2, with metric
g6

22Adeth(h21)abdfadfb , which has volumeg6
225Ms

2 for
all hab . For SU~2! rather than U~1!, we mod out by the Weyl
groupfa;2fa , yielding a 2D box of volumeMs

2. Consid-
ering the elliptic fibert(u) over the compact base as a d
mensionless coordinate, the total space of base and fiber
elliptically fibered K3 of volume Ms

2. This elliptically fi-
beredK3 of fixed volume is that of theF theory dual to the
10D heterotic string onT2. As was the case there, the p
rameter space~2.1! of data in theT2 compactification of the
5-5
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heterotic string matches that of the fixed volume, elliptica
fiberedK3’s. This can be regarded as a special case of theT3

compactification considered in the previous sections, wh
one of the radii is taken to infinity. It is thus good that w
again get aK3 of volumeMs

2, since that was the case in th
previous sections for all radii.

More generally,T2 compactifying the little string theorie
associated withK type-II five branes at aC2/GG singularity
leads to a compact Coulomb branch which is a 2(r V1nT)
52KC2(G) dimensional torus of unit volume in units o
Ms . Including theKC2(G) complex dimensional elliptic fi-
ber, associated with the kinetic terms of theKC2(G) pho-
tons, the total space is the moduli space ofK G instantons on
a T4 of volume Ms

2, where both theT4 and the resulting
instanton moduli space are regarded as an elliptic fibrati
y

,

10600
re

.

Compactifying on aT2 the little string theories associate
with K heterotic five branes at aC2/GG singularity leads to a
compact Coulomb branch which is a 2(r V1nT)
52@KC2(G)2uGu# dimensional box, of unit volume in
units of Ms . Including the fiber associated with the photon
the total space is an elliptically fibered space which is
actly the moduli space ofK G instantons on an elliptically
fiberedK3 of volumeMs

2.
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