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It is emphasized that compactified little string theories have compact moduli spaces of vacua, which globally
probe compact string geometry. Compactifying various little string theorieE>deads to three-dimensional
(3D) theories with an exact, quantum Coulomb branch given by an arbT[faoj'volumeMi, an arbitraryk 3
of vqumeMg, and moduli spaces @=SU(N), SO(2N), or Eg, E;, Eg instantons on an arbitraf* or K3
of fixed volume. Compactifying instead onT& leads to 4D theories with a compact Coulomb branch base
which, when combined with the exact photon gauge coupling fiber, is a compact, elliptically fibered space
related to the above spaces.

PACS numbsds): 11.25.Mj, 12.60.Jv

I. INTRODUCTION lomb branch moduli space of vacua which iKa of volume
M2. (Since a 3D scalar has mass dimension 1/2, this has

Over the past few years there have been a variety of corthe correct dimensionsThe Coulomb branch is a nonlinear
nections between the moduli spaces of supersymmetrig model with an exact, quantum metric equal to the Ricci-
gauge theories and stringy geometry. For example, singuldfat metric of K3. The K3 is an arbitrary metric of fixed
background geometry or gauge bundles can lead to eRpjume, whose parameter space coincides with that of the
hanced, nonperturbative, gauge theories, whose modulismpactified heterotic little string theory; the map between
spaces reproduce the local singulafity2]. Another connec-  yhege parameter spaces is the same as enters in the duality

tion is via branes, whosg world-vol.ume supersymmetricbetween the 10D heterotic string @1 andM theory onK 3.
gauge theory has a moduli space which “prob¢s;4] the Geometric symmetries of thk3 Coulomb branch map to

geometry in which the branes live. In an extreme form of this - o 3 e . i
connection 5], we perhaps actually live in the moduli space ?hoen(;[:l))nal T dualities of theT* compactified little string

of a supersymmetric theory. It is thus interesting to consider, L . .
persy y g More generally, it will be argued that the little string theo-

enerally, what types of geometry can be reproduced vi ) ; X
?noduli sypaces of)(/r:;cua. g y P aﬁes obtained in11] from K heterotic(or type-ll) Neveu-

A basic issue is whether moduli spaces of vacua can bechwarzNS) branes at a transvers&/T' singularity, when .
compact. Moduli spaces of vacua of standard gauge theori€9mpactified or®, have a compact Coulomb branch moduli
are generally noncompact cones: if a given set of scalar expace of vacua given by the moduli space&ko® instantons
pectation valueg ¢;) is a D-flat vacuum, so is\(¢;) for ~ onK3 (or T%). HereG is an arbitraryA, D, E group andl'g
arbitrary scaling factoh—cc. [This is slightly modified by is the corresponding S®@) subgroup. The&3 or T* appear-
Fayet-lliopoulos terms for (1) factors] An exception is the ing here is precisely that o¥ theory duality, which the
Coulomb branch moduli, associated with the Wilson lines, ofcompactified little string theory globally probes. The volume
gauge theories which are compactified on tori; these modulf the compact Coulomb branch is again set\by. In each
live on dual tori, modded out by the Weyl group. case, the Coulomb branchh model metric must be the

The present note is devoted to emphasizing that toroidallynique one which is Ricci flat.
compactified “little string theories’6,7]* can have a variety Similarly, it will be argued that little string theories, when
of interesting, compact, moduli spaces of vacua. The presespmpactified to 4D on &2, have Coulomb branches which
discussion is an elaboration of a footnote which appeared iglobally probeF theory. The Coulomb branch is the base
[11]. The basic message is that, while world-volume gaugepace ofF theory, and the photon kinetic terms are the ellip-
theories onlylocally probe the geometry transverse to thetic fibration. For example, compactifying the basi¢’
brane, little string extensions caglobally probe compact = (1,0) little string theory ofiT? leads to a 4D theory whose
geometry. While this fact is perhaps well known to sometotal space of Coulomb branch base and Seiberg-Witten
experts, it is hoped that some readers will find it of interestcurve is an elliptically fiberedk 3 of vqumeMﬁ. The map

For example, the basid/=(1,0) heterotic little string between theT? compactification data and the parameter
theory, when compactified ofi®, is argued to have a Cou- space of fixed volume, elliptically fibere#3 spaces is the

same as in the duality between the 10D heterotic theory on
T2 andF theory on an elliptically fibered3 [12].

*Present address. The next section will review little string theories and their

The extent to which these 6D theories decouple from the 10Dcompactification, with several new minor comments in-
bulk, for energies above some gap value, is sy@&)@,10; we will cluded. Section 1l outlines classicaf dimensional reduc-
ignore these issues and only discuss the vacuum manifold. tion of ordinary 6D U1) and SU2) gauge fields. This al-
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ready leads to compact Coulomb branches, of fixed volumenultiplets, with charge vectors in the G root lattice? Via a
ggz; the Coulomb branch for (1) is T#, while that of SU2) Bogomol'nyi-Prasad-SommerfielBPS formula, a string

is K3. Section IV extends the probe argument[®8] to  with chargesa has tensiorZ = a- ®, becoming tensionless
argue for our main message: that compactifying little stringat the origin of the Coulomb branch. Reducing to 5D leads to
theories onl® leads to theories whose exact Coulomb branctg gauge theory with non-Abelian gauge gra@mt the ori-

is compact and globally probes tA& or K3 of M theory  gin, so the 6D theory can be regarded as a non-Abelian,
duality. Section IV discusse¥? compactification of littte ~ Self-dual, two-form gauge theory with group (whatever
string theories, which similarly have compact Coulombthat means

branches that globally probe compactification Fotheory, Each of the four above classes has either vector or tensor
e.g., on elliptically fiberek 3’s. multiplets, but not both. Theories containing both vector and

The proposed relation of11] between compactified tensor multiplets were discussed [itil] by combining five

. ~2 . . e .
type-Il little string theories and moduli spaces of instantonééirr?lg?]‘zi;\’r:;mué irnG ?éts)gﬁlsdosb'tnaﬁwg’g'[ﬁs_ éna IT: tggn\?v\;erse
on T* also entered if14,15,16, where it was extended to > 9 . : Y,
moduli spaces of instantons on a noncommutalidy in- new theories can be obtained for eagh of the four classes of
troducinaR trv twists in th tification. A rel branes, type-llA, 1IB, S@2) heterotic, andEgX Eg het-
roducingr-symmetry Wists In the compactiiication. A rela- o e atC?/T g singularities. All of these theories generally
tion between the twisted, compactifi¢®,0) theory andK3

) . have N'=(1,0) supersymmetry.
was proposed iff15]; this appears to be unrelated to the For exampleK-type-IIB NS five branes at ﬁz/re sin-

presently discussed appearanceK in the context of the gularity [21] has a quiver gauge theory, based on the ex-
untwisted, compactified, heterotic little string theories. Muchtended Dynkin diagram of th&DE singularity groupG, with
as in [15,16, it should also be possible to introduce gauge group W)pxI',_,SUKnN,) and bifundamental
R-symmetry twists for the compactified heterotic little string matter.n = are theG Dynﬁin indices#and=rank(G). There
theories, perhaps leading to moduli spaces of instantons onge ¢ N=#(1,0) tensor multiplets, which are associated, as
noncommutativeK 3, thOUgh this will not be done here. described above, with the Singu|arity group. Via an
anomaly cancellation mechanism, 3U{(,) has gauge cou-
pling g,%¢=M23,0+a, -® and an SUKn,) instantion,
Il. REVIEW OF LITTLE STRING THEORIES which is a string in 6D, has tensor-multiplet charggsand
AND THEIR COMPACTIFICATION BPS tensior*zﬂ=g;’2eﬁ. Here thea,, are theG root vectors
(ag is the extending rogtand the condition that algl;;?eff
=0 is precisely that the Coulomb bran¢®) is the G Cox-
eter box, of side lengtMZ. The SUKn,) instanton string
charges span th@ root lattice.
The instanton string for a diagonal SK)p
HL:OSU(KnM), with index of embeddingn, in
SU(Kn,), has tensiom*Z ,= Mg, and is identified with the
fundamental 1B string. The other-independent instanton
strings inH;FOSU(Kn#) are to be identified with the strings
obtained[23] by wrapping the type-IIB three bglame on the
. . . r-independent, fully collapsed, two-cycles of the/T" 5 sin-
© .N:(l’o) supersymmetric, vi& heterotic EgX Eg gularity; m=1..r of these strings become tensionless(fby
small instantons. _ , _ _at a codimensiom boundary of the Coulomb branch Cox-
Cases(iia) and (o) contain gauge fields with coupling gter pox.
gs >=M3 and are IR free. Instantons in the 6D gauge theo- The simplest heterotic case ks SO32) five branes at a
ries are fundamental strings, with tensig@2=M§. Cases (%I'g singularity[19—22. The theories are associatgtl]
(iib) and(e) instead contain tensor multiplet two-form gauge with a subgrougH of the singularity grougs, with G—H as
fields, with self-dual field strength, and lead to interactingSU(2P)— Sp(P), SO(4P+2)—SO(4P+1), SO(4P)
renormalization-group fixed point field theories in the IR.  —SO(4P), Es—F,, E;—E;, Eg—Eg. The gauge group
N=(1,0) tensor multiplet theorig®f which A’'=(2,0) is
a special cagealways have an associated grdBpFor cases
(”b,) '_t is SU(K) or th_eADE 5'”9U'a“t¥ grou_pG, while for Because of the self-duality, these strings can be regarded as ei-
() itis Sp(K). There is a =rank(G) dimensional, compact ' her “electrically” or “magnetically”charged. The Dirac quantiza-
Coulomb branch moduli space, with the real scalars in thgion condition thus implies that the lattick must be arinteger
N=(1,0) tensor multiplets taking valueb) in th92 “G- Jattice, i.e., the dot product of any two lattice vectors is an integer,
Coxeter box” §') /W, where theS; is of radiusMg and g5 Ak, whereX is the dual lattice. This is, of course, a weaker
W is the Weyl group ofG. The theory is interacting at the condition than self-duality of the lattice. For example, the root lat-
boundaries of the Coxeter box but, in the bulk, behaves ifice of a simple grougs is generally not self-dual but, rather, a
the IR asr free self-dual tensor multiplets. Strings are subgroup, of degree given by the centerGfin the dual lattice,
charged under the two-form gauge fields of these tensor which is the weight lattice.

Four classes of 6D little string theories were obtained in
[7] via the world-volume of five branes in the limit,—0
with Mg held fixed:

(ila) N=(1,1) supersymmetric, vig [IB NS five-branes
[7] or via type-lIA or M theory with aC?/Tg asymptotically c
locally euclidion singularity{17,18§.

(iib) N=(2,0) supersymmetric, viaK-type-lIA five
braneg 7] or type-11B with aC?/T g singularity[17].

(0) N=(1,0) supersymmetric, vik SO(32) heterotic
small instantons.
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and matter content is given by a quiver diagram, which is thavas argued that duality can fail. Here, however, there is a
extendedH Dynkin diagram, with SO, Sp, and SU groups at simpler resolution: the Coulomb branch metric can get quan-
various nodes, e.g., the group at the=0 node is SpK).  tum corrections and, while the quantum-corrected metrics
There are =rank(H) N=(1,0) tensor multiplets, which are are expected to agree, the classical metrics need not. The

associated with the group. Via an anomaly cancellation
mechanism, the gauge group at noge=0...r of the
quiver diagram has coupling, %4=M38, o+ a,,-®, and an

instantons string in this group has tensor multiplet charges

a, and BPS tensionzﬂzg;’zeﬁ. Here e, are the simple and
extending roots oH, so the instanton strings span tHeoot

lattice. Instantons in a diagonal 3)p are identified with
the fundamental heterotic string, of tensid€. The other

stronger condition is thus unnecessary.

All little string theories, when compactified ofP, have
the parameter spad@]
O(D+vy,D;Z)\O(D+y,D)/O(D+y)*x0O(D), (2.1
wherey=0 for the type-Il cases angl=16 for the heterotic
cases. These are tfié metric andBs fields (D? real pa-
rametery and also the S@2) or EgxX Eg Wilson lines in the

r-independent instanton strings can again be identified with oterotic casegl6D real parametersO(D+y,D:7) is the

three branes wrapped on collapsed two cyctes;1..r of
these become massless at a codimensidyoundary of the
Coulomb branchthe H Coexter box

The other heterotic cask,EgX Eg five branes at &2/T' g
singularity, leads to little string theories with a more in-

full T-duality group.

IIl. COMPACTIFICATION PRELIMINARIES

We first consider the classical dimensional reduction of a

volved spectrum of tensor multiplets, gauge groups, and magD U(1) gauge field,

ter conten{22,11].

Compactifying on a circle, 6D vector and tensor multip-

lets both lead to 5D vector multiplets. A 6B= (1,0) theory
with a gauge group of rank, andn tensor multiplets, when

1
f dﬁx(—4—ggFWF“”+BNSDFDF , (3.)

compactified, leads to a 5D theory with a Coulomb branchon aT? to three dimension®s is an external, background,

moduli space of vacua of dimensialz=r,+n;. Compac-

tifying to 4D, the Coulomb branch has real dimensiom\2 (
+ny) and in 3D, upon dualizing thd- photons, there is a
Coulomb branch of real dimension4(+ny).

Little string theories exhibif duality when compactified
on a circle[7], with the (iia) theory on a circle of radiuR
identical to the(iib) theory on a circle of radius MﬁR.
Similarly, the (0) heterotic theory, on a circle of radiu®
and with a Wilson line around the circle breaking 89 to
SO(16)XSO(16), is identical to thee) heterotic theory on a
circle of radius 1IX/I§R, again with a Wilson line breaking
EgXEg to SO16)XSO(16). (See[24] for the heteroticT
duality with general Wilson lines.In these cased-duality
exchanges 6D tensor and vector multipletgs—ns. This is

two-form gauge field. We take the space tolte< T3, with
R® coordinatesx', i=1,2,3, and periodic coordinates®
€[0,1], a=1,2,3, for theT?; the metric isds’= ;;dx'dx’
+h,,dp2dpP. Taking all fields to be independent of tHé
coordinates?, Eq.(3.1) becomes

ydeth
S=J d3x °

—
96
+ 0a€iijij ak¢a:|,

— 3 FiF+ 3 (h™ )29 ¢p.d dp]

(3.2

where Bys= €,,.0%dpP0dp® for some constantsh?, a
=1,2,3. The three real scalags, are associated with the

nice because the 5D classical kinetic terms for the scalargyjison lines of the gauge field around the cyctgs® of the

coming from 6D tensor muItipIetsMiR(d(I))z, is indeed
exchanged with the kinetic terrgg R(R™1d®)?, of a vec-
tor multiplet on a circle of radiufk. In both casesb is a
compact scalar, normalized doe[0,1], and the two kinetic
terms are exchanged bR—(M2R)™! upon settinggg 2

=M2.

More generally, there is an expectdd duality, with
R<—>(M§R)*1 exchanging the theories coming from type-IIA
and type-lIB or S@32) and EgXEg heterotic branes at
(2/T s singularities.T-dual theories must have,+ nt=Ty
+%r. As was noted in[25,11], this is the case for the

SO32) andEgX Eg branes at singularities: both cases have

ry+ny=C,(G)K—|G|, whereC,(G) is the dual Coxeter
number of the singularity grou@ and |G| is its dimension.
This formula will be important in what follows. A point of
concern mentioned ifll] is that a stronger conditiom,,
=Tt andny=",,, needed foil duality to exchange the clas-

T2 and are periodic, normalized so thage[0,1].

The 3D U1) gauge field can be dualized to another real
scalar, which also lives on a circle. This is done a$2an]:
we replaceF;;—Fj;—Hj; in Eqg. (3.2 and introduce an ad-
ditional term e'JkHijak¢4, with the scalarg, periodic, nor-
malized so that¢,e[0,1]. First integrating out¢, leads
back to the original theory. First integrating odtsetsF;;
=0 and leads tap, kinetic terms. Combining with thep,
kinetic terms in Eq(3.2), the upshot is &4 Coulomb branch
moduli space of vacuép,), A=1, .. .4,with metric

Jdeth T

ds?= h™ 12 . d oy, + ——(dd,— 62d ., )?
gé ( ) ¢a ¢b \/m( ¢4 ¢a)
EGABd¢Ad¢B, (33)
wherea runs over 1, 2, 3 and=1, . . . ,4.This metricGAP

sical kinetic terms as above, is not satisfied. The preserias ten real components, which depend on the nine real pa-

situation is, in fact, closely connected to tha{ ®6], where it

rametersh®” and 62, and thus satisfies one constraint. The
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relation is that theT* of Eq. (3.3 has fixed volume, inde- IV. THE PROBE ARGUMENT, CHECKS,
pendent of théh,, and thed™: AND COMMENTS
1 The parameter spad@.1) for T3-compactified heterotic
Volume T4) = Jde( G*B) = — = Mg. (3.4 (or type-ll) little string theories coincides with the geometric

9% parameter space ofka3 (or T%) of fixed volume. These are,
of course, the standard miracles which enter in the duality

Although the above discussion was purely classical, théetween the 10D heterotior type-I)) string on T3 and M
map (3.3) between thel® metric h,, and B fields 6% is ex-  theory onY=K3 (or T#). The fundamental string arises as
actly the relevant one for relating type-lIB string theory onthe M5 brane wrapped ol, so MSV0|(Y):M§, We will
T3 to M theory onT#, to be discussed in the next section. here extend the probe argument[@B] to argue that these
Indeed, the mag3.3) was also obtained ifL6] in the context  M-theory dualities provide the solution for the exact, quan-
of the compactified2,0) theory via a chain of string duality tum, Coulomb branch metric of th&® compactified little
gymnastics. string theories.

We pause to note that the metr{8.3) nicely exhibits Recall that the argument ¢fi3] started with 3DA=4
properties to be eXDECted based on its connectiorMto Supersymmetric(eight Supercharg¢ssu(2) gauge theory
theory. In particular, the obvious, geomet&d(4;7) dis-  with fundamental matter, which is the world-volume field
crete Symmetries of the* correspond to nontrivial’ duali- theory in a D2 brane in type-I’ string theory OFf. This
ties, in a subgroup of th&-duality group appearing in Eq. maps to aM2 brane inM theory of K3, which can be at an
(2.1). For example, consider the obvious requirement that thrpitrary point in the transverde® x K3. TheR* corresponds
T* be invariant under the relabeling exchangg——¢4.  to a decoupled hypermultiplet in the world-volume theory.
Taking, for simplicity, T® with h,,=L38., and 6,=0, it ~ TheK3 factor is more interesting: it was thus arguedis]
follows from Eq.(3.3) that this operation corresponds to the that the full, quantum-corrected metric on the Coulomb
operation branch of the D2 brane world-volume field theory must be a

local piece of the corresponding3; this was confirmed in
Li—(M2Ly) 7%, Ly—(M2L,) "%, Ly—Ls, (3.5  [27] purely in the context of 3D field theory.

The D2 brane world-volume field theory onlgpcally
where we seggzzmg_ This is aT duality in two circles, probes theK3 because of the particular limit taken to de-
which is nontrivial but, nevertheless, a symmetry taking thecouple the bulk dynamicgjs—0 andMg—o. On the other
IIA or IIB theory back to itself. The generalization of tHie ~ hand, we can takgs— 0, but withMg held fixed. This theory
duality (3.5) for generah,;, and , is quite complicated, see, is precisely the 6D heterotic little string theoly), compac-
e.g.,[28]; remarkably, it is indeed reproduced from E8.3 tified to 3D on the sam@? as the 10D heterotic or type-I’
by simply requiring thep;«— — ¢, symmetry. bulk theory. TheT3-compactified little string theoryo) glo-

On the other handT duality in an odd number of cycles, bally probes the fixed volumié3 of M theory, and must thus
such as th@(3,3;Z) element taking a||_i_>(|\/|§|_i)*1, for have a Coulomb branch moduli space of vacua which is the
) . ) ; 2pg —6 ;
i=1,2,3, is not a geometri§L(4;7) symmetry of Eq(3.3.  sameK3. The geometri&3 has volumeMM ,° and, taking
This is sensible, since such operations are not symmetries #to account how the properly normalized Coulomb moduli
type-1IA or type-1IB string compactifications but, rather, ex- scalars probe geometry, the volume of the Coulomb branch
change types IIA and IIB. K3 is MZ. This matches with the result of the previous sec-

In particular, starting instead from a 6D tensor multiplet, tion. This compact Coulomb branch properly becomes non-
dimensional reduction on&® leads to a* Coulomb branch  compact in the field theory Iimilvlg—m.

moduli space, with metric related to E®.3) by T duality in The K3 Coulomb branch can have singularities, depend-
an odd number of th@2 cycles, corresponding to the ex- ing on the choice of parameters in Ef.1). As in[13], these
change of types IIA and IIB. singularities mark the intersection of the Coulomb branch

Now considerT? reduction of a 6D S(2) gauge theory. with a Higgs branch, with an interacting 3D infrared confor-
The above discussion for() carries over to this case with mal field theory at the intersection.
almost no changes. The only difference is that the real sca- Unfortunately, both sides in the present equivalence, be-
lars ¢ must be modded out by the Weyl group action tween the quantum Coulomb branch of ffi& compactified
~ — ¢ . Modding out theT* by thisZ, action leads to &3. little string theory on the one hand, and the metrid& on
Thus the Coulomb branch of a 6D &) gauge theory re- the other, are presently not well understood. Perhaps the
duced to 3D on &3 is given by(¢,) in a compacK3. The  present equivalence will eventually be useful for using one
volume of theK 3 is again set bgg ?, and equal tt2. The  of the two sides to learn about the other.
full parameter space dk3 metrics of fixed volume is 57 A direct generalization of the above is to considet
dimensional and given by E¢2.1) with D=3 andy=16, compactification of the little string theoKyp) associated with
while that obtained here only depends on the ninetheK SQ(32) heterotic small instanton. This maps koM 2
dimensional subspace given by E@.1) with D=3 andy  branes at points of*xK3. The Coulomb branch is, corre-
=0. The remaining parameters will come from three realsponding, the symmetric produck8)“¥/Sy, where each
masses for each of 16 $2) fundamental matter flavors; K3 is again of fixed volumévZ.
these enter as the Wilson loop parameters in(Bd). The geometric symmetrietsee, e.g.[29]) of the Cou-
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lomb branchK 3 correspond to nontrivial dualities in Eq.  Where the compactified little string theory goes over to its 3D
(2.1) though, as in Eq(3.5), only the subgroup which takes field theory limit. In the type-Il cases, the resulting 3D field
the SA32) heterotic theory back to itself. An additiondj  theory has the quiver gauge grollg,_,U(Kn,), based on
component ofl dualities inO(19,37Z) reflects the fact that, the extended-Dynkin diagram, which was indeed argued in
instead compactifying th&;x Eg heterotic little string(e), ~ [30,31 to have a quantum Coulomb branch which is the
with T-dual T® compactification data, also yields the samemoduli space ofK G instantons onR*. This theory was
3D theory, with thesame K3 compact Coulomb branch as argued if30] to have a hidden, glob& symmetry. Because
described above. M theory hass gauge symmetry even for finitd ¢, the full
Each of the little string theories reviewed in Sec. Il can becompactified little string theory is expected to also have this
compactified to 3D on &3, and each has an exact quantumhidden global symmetry. Similar statements should hold in
Coulomb branch which globally probes the ddltheory — the heterotic cases.
compactification. In each case, there is a compact Coulomb Moduli spaces of instantons of* or K3 have made a
branch component, with unit volume in unitsMf,. The 3D  Variety of appearances in physics and mathematics, though
field theory limit is recovered by takiniyl — . usually withG=U(N) as the gauge group. In that case, the
The N'=(1,1) little string theories with group W),  Moduli space also depends og=[s TrF, whereZ, is a
when compactified off, have a Coulomb branch which is basis for the two cycles 6F* or K3. In the present cas& is
(R*XT4®K/S,  [more generally, R*xT#™2%C);  a simpleA, D, E group so TF=0. (B fields can possibly
WeyKG)], which probes the duality between type-Il strings still contribute tov,#0, e.g., as if21].)
on T* and M theory onT#. The Coulomb branci* has The moduli spaces of the instantons obtained above have
metric GAB which is given exactly in terms of th€® com-  many interesting singularities. At these Coulomb branch sin-
pactification date by Eq3.3), with vqumeMg. There is a  Qularities, there is an attached Higgs branch, with an inter-
similar statement for th/=(2,0) little string theory orr3, ~ acting 3D IR conformal field theoryCFT) at the intersec-
differing from the/N/=(1,1) case by & duality in one of the  tion.
T3 cycles; the fixed volum&? in this context was also dis- _All of the above compact Coulomb branches are hyper-
cussed if15,16. Kahler type, withc;=0, and theoc model metric is the
The N'=(1,0) little string theories associated witk  Unique one which is Ricci flat.
type-Il or heterotic five branes at atg=C?/T g singularity,

g 3 . .
when compactmed. o>, similarly probeM theory geom- V. T2 COMPACTIFICATION: PROBING F THEORY
etry. In the heteroticor type-Il) cases, théV theory dual is
given byK M2 branes with a transverse spaXgx K3 (or Compactifying the heterotitor type-Il) little string theo-

XX T%). In both casesM theory with aXg singularity has ries to 4D on aT? leads to quantum Coulomb branches
an enhance( gauge symmetry anlll 2 branes, when sitting which globally probeF theory compactifications on a fixed
directly on top of theG singularity ofXg, can be interpreted volume, elliptically fiberedk3 (or T#). For example, con-
as smallG instantons. In the heterotitor type-ll) cases, sider theK=1 case of the heterotic little string theofp),
theseK G instantons have the fixed volum&3 (or T4) as  whose low-energy field theory content is that of the world-
their four spatial coordinates. There is a moduli space fovolume of D3 branes in type I o2, This latter theory has
these instantons given by their positions in these four spatia@ noncompact, quantum Coulomb branch which was argued
coordinates, as well as their moduli for fattening up and ro{32,4] to locally probe the duality té- theory on an ellipti-
tating in G. cally fiberedK3. The Coulomb branch in the 4D field theory
Thus, by the probe argument, the little string theory assois the noncompact complex plane, over which the photon
ciated withK heterotic(or type-l) branes at &2/T'g singu-  coupling 7.4(u) is fibered according to the Seiberg-Witten
larity, when compactified on &°, has a compact Coulomb curve [33]; the total space of the plane base and.x(u)
branch moduli space of vacua which is exactly given by thdiber is a local, noncompact piece &f3. This is theMg
moduli space oK G instantons on &3 (or T#) of volume  —o limit of the T2 compactified little string theory.
M2. A quick check is that the dimension of the Coulomb  Considering now th&? compactified little string theory
branch of theT® compactified little string theories indeed for finite M2, the u-plane base is a compact box of volume
agrees with the dimension of the moduli space KofG M§ (this is the correct mass dimension for 4D scalaAs in
instantond on T* or K3: the type-ll cases indeed have Sec. IIl, reducing a 6D (1) gauge field on &2 with metric
4(ry+ng)=4KC,(G) and the heterotic cases indeed haveh,,dp?dp® leads to scalars living on a du@f, with metric
4(ry+ny)=4(KC,(G)—|G|). This latter fact also played a g, 2\/deth(h~%)2°d¢,de,, which has volumegg 2=M? for
role in the mirror symmetry of25]. all h,y,. For SU2) rather than 1), we mod out by the Weyl
Another check is to consider the Iimmgﬂoo, where  group¢,~ — ¢,, yielding a 2D box of volumeMg. Consid-
T*—R* or K3 becomes a noncompact piece K8, and  ering the elliptic fiberr(u) over the compact base as a di-
mensionless coordinate, the total space of base and fiber is an
elliptically fibered K3 of volume Mﬁ. This elliptically fi-
3For a general four manifold with Euler characjeand signature  beredK3 of fixed volume is that of th& theory dual to the
o, the dimension is KCy(G)— 3/G|(x+a). For T4, y=o=0 10D heterotic string oiT2. As was the case there, the pa-
and, forK3, y=24 ando=—16. rameter spac€.1) of data in theT? compactification of the
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heterotic string matches that of the fixed volume, elliptically ~Compactifying on a2 the little string theories associated

fiberedk 3’s. This can be regarded as a special case of the

compactification considered in the previous sections, whereompact

with K heterotic five branes at@/T" g singularity leads to a
Coulomb branch which is a rgfny)

one of the radii is taken to infinity. It is thus good that we =2[KC,(G)—|G|] dimensional box, of unit volume in
again get &3 of vqumeMg, since that was the case in the units of M. Including the fiber associated with the photons,

previous sections for all radii.

More generallyT? compactifying the little string theories
associated withk type-Il five branes at &2/T g singularity
leads to a compact Coulomb branch which is a2{n+)
=2KC,(G) dimensional torus of unit volume in units of
Ms. Including theKC,(G) complex dimensional elliptic fi-
ber, associated with the kinetic terms of tK€,(G) pho-
tons, the total space is the moduli spac&ds instantons on
a T* of volume M2, where both theT* and the resulting

the total space is an elliptically fibered space which is ex-
actly the moduli space ok G instantons on an elliptically
fiberedK3 of volumeM?2.

ACKNOWLEDGMENTS

| would like to thank M. Douglas, D. Morrison, R.
Plesser, and N. Seiberg for discussions. This work was sup-
ported by UCSD Grant No. DOE-FG03-97ER40546 and IAS

instanton moduli space are regarded as an elliptic fibrationGrant No. NSF PHY-9513835.

[1] E. Witten, Nucl. PhysB443 85 (1995.

[2] E. Witten, Nucl. PhysB460, 541 (1996.

[3] M. R. Douglas, hep-th/9512077.

[4] T. Banks, M. Douglas, and N. Seiberg, Phys. Let8&, 278
(1996.

[18] E. Witten, Adv. Theor. Math. Phy®, 61 (1998.

[19] P. S. Aspinwall, Nucl. PhysB496, 149 (1997).

[20] K. Intriligator, Nucl. Phys.B496, 177 (1997.

[21] J. D. Blum and K. Intriligator, Nucl. Phy€3506, 223 (1997);
B506, 199 (1997.

[5] T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, Phys[22] P. S. Aspinwall and D. R. Morrison, Nucl. PhyB503 533

Rev. D55, 5112(1997).
[6] M. Berkooz, M. Rozali, and N. Seiberg, Phys. Lett488 105
(1999.
[7] N. Seiberg, Phys. Lett. B08 98 (1997).
[8] J. Maldacena and A. Strominger, J. High Energy Plgs008
(1997.
[9] A. Peet and J. Polchinski, Phys. Rev.5B, 065011(1999.
[10] S. Minwalla and N. Seiberg, J. High Energy Ph@§, 007
(1999.
[11] K. Intriligator, Adv. Theor. Math. Physl, 271 (1997.
[12] C. Vafa, Nucl. PhysB469, 403(1996.
[13] N. Seiberg, Phys. Lett. B84, 81 (1996.
[14] O. J. Ganor and S. Sethi, J. High Energy Plfs.007(1998.
[15] Y. K. Cheung, O. J. Ganor, and M. Krogh, Nucl. Phg&36,
175(1998.
[16] Y. E. Cheung, O. J. Ganor, M. Krogh, and A. Y. Mikhailov,
hep-th/9812172.
[17] E. Witten, seminar at Aspen Center for Physics, Aug. '97.

(1997.

[23] E. Witten, in Future Perspectives in String Theory
(Strings’'95) Proceedings of the Conference, Los Angeles,
California, edited by |. Barset al. (World Scientific, Sin-
gapore, 1995 hep-th/9507121.

[24] P. Ginsparg, Phys. Rev. Bb, 648(1987).

[25] E. Perevalov and G. Rajesh, Phys. Rev. L&%.2931(1997).

[26] P. S. Aspinwall and M. R. Plesser, J. High Energy Pl9&.
001 (1999.

[27] N. Seiberg and E. Witten, hep-th/9607163.

[28] A. Giveon, M. Porratti, and E. Rabinovici, Phys. Red4, 77
(19949.

[29] P. S. Aspinwall and D. R. Morrison, hep-th/9404151.

[30] K. Intriligator and N. Seiberg, Phys. Lett. 887, 513(1996.

[31] J. de Boer, K. Hori, H. Ooguri, and Y. Oz, Nucl. Phy493
101 (1997.

[32] A. Sen, Nucl. PhysB475, 562 (1996.

[33] N. Seiberg and E. Witten, Nucl. PhyB431, 484 (1994).

106005-6



