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Hopf instantons in Chern-Simons theory
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We study an Abelian Chern-Simons and fermion system in three dimensions. In the presence of a fixed
prescribed background magnetic field we find an infinite number of fully three-dimensional solutions. These
solutions are related to Hopf maps and are, therefore, labeled by the Hopf index. Further we discuss the
interpretation of the background field.

PACS number~s!: 11.10.Lm
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I. INTRODUCTION

It is the purpose of this paper to construct an infinite nu
ber of fully three-dimensional solutions to a Chern-Simo
and fermion system that are labeled by the Hopf ind
thereby merging two features — Chern-Simons theory
Hopf maps — that have recently received wide attent
within quantum field theory.

On the one hand, Hopf maps are just mapsS3→S2. These
maps fall into different homotopy classes that are labeled
the integers~the Hopf index, see below for details!. Field
configurations with nontrivial Hopf index have already be
studied for some time in fluid dynamics@1#, in astrophysics
@2,3#, in magnetic solids~magnetic solitons, see e.g.,@4#! and
in classical electromagnetism@5#. Recently, there has been
lot of interest in field theories where static solutions w
nontrivial Hopf index ~Hopf solitons! occur ~see e.g.,
@7–12#!.

On the other hand, Chern-Simons theories with ma
and/or a Maxwell term have been studied intensively si
their introduction@13,14#. When an Abelian Chern-Simon
term in three dimensions is coupled to matter, the magn
field is forced to be proportional to the electric current due
the equations of motion@15–18#. Further, in these model
there exist soliton-like, static~i.e., two-dimensional! solu-
tions that are related to some topological invariants~e.g.,
mapsS2→S2) @15–18#. Usually, these solitons behave lik
vortices, and, because of their topological nature, they
hibit magnetic flux quantization. Therefore these solutio
are physically relevant in situations where the phenome
of magnetic flux quantization occurs and where matter
confined to a plane, the most prominent example being
quantum Hall effect@19,20#.

At this point the question arises whether there exist fu
three-dimensional solutions for such Chern-Simons and m
ter systems, and whether these solutions may be chara
ized by some topological invariants, as well.

In this paper we shall demonstrate that, if the presenc
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a fixed, prescribed background magnetic field is assum
then there indeed exist solutions to the Chern-Simons
fermion system defined below. Further, these solutions
related to Hopf maps and are, therefore, labeled by the H
index. Hence we find, on one hand, a three-dimensional
sion of the phenomenon of magnetic flux quantizatio
namely topologically quantized magnetic knots~Hopf maps
are related to magnetic knots, see@5,6#!. On the other hand, a
Chern-Simons term is well known to be induced in thre
dimensional QED (QED3) ~see e.g.@14,21–24#!. Further, a
Chern-Simons term is used for topological generation
mass in some three-dimensional QFTs@13,14#. Whenever
fermions are included in such theories, our solutions~the
Hopf instantons! should be relevant for the study of non
perturbative features of these QFTs~as well as of QED3).

In the main section of this paper we define the model a
construct solutions to its equations of motion, as well as
Hopf maps that provide these solutions. In the final sect
we give two possible interpretations for the background fi
that is present in our solutions.

II. CONSTRUCTION OF THE HOPF INSTANTONS

We start with the action (i , j ,k51 . . . 3)

S5E d3xS C†~2 i ] j2Āj !s jC1
1

2
AW BW D ~1!

where C is a two-component spinor~fermion!, s j are the
Pauli matrices andAW is an Abelian gauge potential. Furthe

SCS5
1

2E d3xAW BW 5
1

4E d3xe i jkAiF jk ~2!

is the Chern-Simons~CS! action, where the Chern-Simon
coupling constant is chosen equal to one; and

Āi5Ai1Ai
B ~3!

where the background gauge fieldAi
B and its magnetic field

Bi
B5e i jk] jAk

B are
©2000 The American Physical Society18-1
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AW B52
1

11r 2
NW , BW B52

4

~11r 2!2
NW ~4!

and we have introduced the unit vector

NW 5
1

11r 2 S 2x1x322x2

2x2x312x1

12x1
22x2

21x3
2
D ~5!

(NW 251) for later convenience. Observe that the~fixed, non-
dynamical! background field is coupled to the fermion, but
is absent in the CS term. The equations of motion resul
from the action~1! are

~2 i ] j2Āj !s jC50, ~6!

~the Dirac equation! and

SW ªC†sW C5BW . ~7!

Observe that for any pair (C,Āj ) that solves the Dirac equa
tion ~6! the spin densitySW related toC has to obey

]WSW 50, ~8!

therefore, Eqs.~6! and ~7! are consistent.
The simplest solution to this system is~see@25,26#!

C5
4

~11r 2!3/2
~11 ixWsW !S 1

0D ~9!

AW 5
4

11r 2
NW ~10!

SW 5BW 5
16

~11r 2!2
NW ~11!

@NW is given in Eq.~5!#. Here the dynamical gauge field
proportional to the background field, therefore one could fi
a solution without background field by choosing either a d
ferent normalization of the fermion~9! or by choosing a
Chern-Simons coupling constant in Eqs.~2!, ~7! different
from 1. However, this will not be true for the solutions b
low, for which the background field~4! is crucial.

Concerning the geometrical behavior of the magnetic fi
BW in Eq. ~11!, it is important to note that it is related to
Hopf map, and, therefore, the value of the CS action~2! is
topologically quantized by the Hopf index. This we want
explain now.

Generally, a complex functionx:R3→C with the addi-
tional property limr→`x5x05const defines a Hopf ma
x:S3→S2, where the coordinates inR3 and C are stereo-
graphic coordinates of theS3 andS2, respectively. The pre
images inR3 of points x5const are closed curves inR3

~circles in S3), and any two different circles are linked ex
10501
g

d
-

d

actly N times, whereN is the Hopf index. Further, a mag
netic fieldBW ~the Hopf curvature! is related to the Hopf map
x via

BW 5
2

i

~]W x̄ !3~]Wx!

~11x̄x!2
54

S~]WS!3]Ws

~11S2!2
~12!

wherex5Seis is expressed in terms of its modulusS and
phases at the right-hand side~RHS! of Eq. ~12!.

Mathematically, the curvatureF5 1
2 Fi j dxidxj , Fi j

5e i jkBk , is the pullback under the Hopf map,F5x* V, of
the standard area two-formV on the targetS2 with radius 1
~in stereographic coordinates! @5,7,10#,

V[
2

i

dz̄dz

~11zz̄!2
. ~13!

Geometrically,BW is tangent to the closed curvesx5const.
The Hopf indexN of x may be computed fromBW via

N5
1

16p2E d3xAW BW ~14!

whereBW 5]W3AW .
The simplest~standard! Hopf mapx (1) with Hopf index

N51 is

x (1)5
2~x11 ix2!

2x32 i ~12r 2!
~15!

~a Hopf map has to be single valued, but may well be sin
lar, asx5` is just the south pole of the targetS2). Thisx (1),
Eq. ~15!, leads to a Hopf curvatureBW (1) via Eq. ~12! that is
just the magnetic field~11!. Here the question arises wheth
there are more solutions to Eqs.~6!, ~7! that are characterized
by higher Hopf maps, and we will find that this is indeed t
case.

@Remark: there is some arbitrariness in the choice of
normalization factor in front of the area two-form~13!. We
chose it for a target two-sphere of radius one. Conseque
the magnetic field~11! is the Hopf curvature of the standar
Hopf map~15! with Hopf index 1, and the background fiel
~4! is minus 1/4 the Hopf curvature of the standard map~15!.
There are other choices in the literature, e.g. for target tw
spheres with radius 1/A2 or 1/2. E.g., for radius 1/A2 the
magnetic field~11! is twice the Hopf curvature of the stan
dard Hopf map~15! „and the background field~4! is minus
1/2 the Hopf curvature of the standard map~15!…. Such
higher ~integer! multiples of BW (1) may be expressed b
higher Hopf maps as follows. Rewritex (1) as x (1)

5Sexp(is), whereS and s are the modulus and phase
x (1) respectively. ThennBW (1) may be computed via Eq.~12!
from xn

(1)5Sexp(ins). Here only integern are allowed, be-
cause for a Hopf map with nonzero Hopf index the phases
necessarily is multiply valued~see@5# for details!. It follows
8-2
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that the background field~4! is not a Hopf curvature~but a
fraction thereof! in our choice of conventions.#

Next we should provide some more Hopf maps that w
give rise to more solutions to Eqs.~6!, ~7!. We will produce
these Hopf maps by composing the standard Hopf map w
some mapsS2→S2, i.e.,

xR :S3→
x(1)

S2→
R

S2. ~16!

In fact, as we use stereographic coordinates onS2, we will
use rational maps forR,

R:z→R~z!5
P~z!

Q~z!
~17!

which are well known to produce mapsS2→S2 ~hereP, Q
are polynomials! @27,28#. The winding number of the map i
equal to the degree of the rational map, deg(R),

deg~R!5max~p,q! ~18!

wherep andq are the degrees of the polynomialsP andQ. In
fact, we want to restrict to the simplest maps

Rn~z!5zn ~19!

i.e., we map

x (n)5~x (1)!n ~20!

or, for modulusS5:T1/2 and phases of x (1),

~S,s!→~Sn,ns!, ~21!

where the modulus and phase of the standard Hopf map~15!
are

TªS25
4~r 22x3

2!

4x3
21~12r 2!2

s5s (1)1s (2), s (1)5arctan
x2

x1
, s (2)5arctan

12r 2

2x3
.

~22!

Hopf maps that are composed like Eq.~16! lead to a Hopf
indexN5n2, wheren is the winding number~i.e., degree! of
the rational map~see e.g.@6#, where these Hopf maps hav
been discussed!.

For the Hopf curvature this implies

Bi
(n)52e i jk

~Tn! , jns ,k

~11Tn!2
5n2

Tn21~11T!2

~11Tn!2
Bi

(1) , ~23!

where Bi
(1) is just the standard Hopf curvature~11!. The

logarithm of the factor in front ofBi
(1) at the RHS of Eq.

~23!, when viewed as a function ofT,

Mn~T![ ln n2
Tn21~11T!2

~11Tn!2
~24!
10501
l

th

obeys the following nonlinear differential equatio
(8[]/]T):

M 81TM9522
eM21

~11T!2
~25!

for all n, as may be checked easily.
Next we need some facts about the Dirac equation~6!.

Suppose a pair (C,Āi) is given that solves Eq.~6!, thenĀi
may be expressed in terms of the zero modeC as

Āi5
1

uSW u
S 1

2
e i jk] jSk1Im C†] iC D5

1

2
e i jk~] j lnuSW u!Nk

1
1

2
e i jk] jNk1Im Ĉ†] iĈ ~26!

where we have expressedĀi in terms of the general uni
vector and unit spinor

NW 5
SW

uSW u
, Ĉ5

C

uC†Cu1/2
. ~27!

Now we introduce the zero modes

C (M )5eiLeM /2C ~28!

whereC is the zero mode~9! and M is an ~at the moment
arbitrary! function of T. The pure gauge factorL will be
determined accordingly below. Due to the fact thatT,iS i

[T,iBi
(1)50 @whereBi

(1) is given in Eq.~11!#, which is ob-
vious from Eq.~12!, it is still true thatS i ,i

(M )50, i.e., C (M )

really is a zero mode. The corresponding gauge fieldĀi
(M )

that solves the Dirac equation together withC (M ) reads@we
use Eq.~26!#

Āi
(M )5Āi

(0)1
1

2
e i jk~] jM !Nk1L ,i ~29!

whereĀi
(0) is the gauge field~10! plus the background gaug

field ~4!, andNW is the specific unit vector~5!. For the corre-
sponding magnetic fieldB̄i

(M ) we find

B̄l
(M )5B̄l

(0)1
1

2
@M 8~T,lkNk1T,lNk,k2T,kkNl2T,kNl ,k!

2M 9~T,k!
2Nl # ~30!

where we have usedM ,k5M 8T,k , T,kNk50 and (NW 2),k50.
After some tedious algebra, we arrive at the expression

B̄l
(M )5B̄l

(0)2
8~11T!2

~11r 2!2
~M 81TM9!Nl . ~31!
8-3
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Now we want to insert this into the second equation, Eq.~7!
~the Chern-Simons equation!. Therefore, we have to subtra
the background field~4!, B̄i

(0)2Bi
B5Bi

(1)516(11r 2)22Ni .
We find that

B̄l
(M )2Bl

B5
16

~11r 2!2
Nl2

8~11T!2

~11r 2!2
~M 81TM9!Nl5

!

S l
(M )

5
16eM

~11r 2!2
Nl ~32!

or, after multiplication byNl , precisely Eq.~25!. Hence, we
have shown that, in the presence of the fixed prescri
background magnetic field~4!, there exists an infinite num
ber of fully three-dimensional solutions to the system
equations~6!, ~7!.

Here we still should explain whyn is restricted to integer
values, which is related to the pure gauge factorL in Eq.
~28!. The problem is that the gauge potential~29! without the
pure gauge term is singular. For the explicit expressionsMn ,
Eq. ~24!, the gauge potential Eq.~29! may be rewritten as

Aj
(Mn)

5Aj2
~n21!~12Tn11!1~n11!~T2Tn!

~11T!~11Tn!
s , j

1~n21!L , j ~33!

where

L5s (1)2s (2) ~34!

is chosen such that Eq.~33! is regular everywhere@s (1) and
s (2) are defined in Eq.~22!#. This implies thatn has to be
integer, because only for integern exp„i (n21)L… @and con-
sequently the spinor~28!# will be single-valued. Further, we
may compute the resulting Chern-Simons density

AW (Mn)
•BW (Mn)5

64n3

~11r 2!3

Tn21~11T!2

~11Tn!2
~35!

which, when expressed in spherical polar coordina
(r ,q,w) depends onr ,q only. By integrating Eq.~35! we
can explicitly verify the relationN5n2 for the Hopf indexN.
We have not succeeded in integrating Eq.~35! analytically
so far, but Eq.~35! may easily be integrated inr ,q,w coor-
dinates numerically with the help of mathematica. The in
grand is so well behaved that the numerical integration
produces the integer resultN5n2 without showing even a
small numerical deviation. The only technicality is that f
large n one has to subdivide the range of integration forq
P@0,p#, because the integrand~35! becomes rather oscilla
tory for largen.

III. DISCUSSION

We have shown that, in the presence of the fixed p
scribed background magnetic field~4!, there exists an infinite
number of fully three-dimensional solutions to the system
Eqs. ~6!, ~7!. Further, these solutions~i.e., the magnetic
10501
d

f
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f

fields! are the Hopf curvatures of the Hopf maps~16!, ~20!
and are, therefore, labeled by the corresponding Hopf in
N5n2, nPZ.

Here the background field~4! was crucial, because it de
termines the inhomogeneous part of the non-linear differ
tial Eq. ~25!, and, because of this non-linearity, the inhom
geneous part of Eq.~25! crucially affects the nature of the
solutions of Eq.~25!. Differently stated, the Hopf instanto
solutions~24! uniquely determine the background field~4!.

Before closing, we want to briefly discuss whether it
possible to further interpret the background field~4!, beyond
just stating that its presence is crucial for the existence of
solutions~16!, ~20!. Indeed, there are~at least! two interpre-
tations that we want to describe now.

First, let us study the following zero modesC l5exp(iL
1Ml/2)C, analogous to Eq.~28!, where we now choose

Ml5 l ln
T

11T
~36!

~andL5 lw5 ls (1) to achieve a non-singular gauge potent
for Ml). It follows easily that

C l5
2l 12r l

~11r 2! l
~11 ixWsW !S Yl ,l~q,w!

0 D ~37!

whereYl ,l are spherical harmonics. In other words,C l is just
a higher angular momentum zero mode~with magnetic quan-
tum numberm5 l 11/2) that can be constructed from th
simplest zero mode~9!, see@25,26#. The gauge fieldĀj

( l ) that
solves the Dirac equation~6! together withC l may be com-
puted easily, and its magnetic field is

B̄j
( l )5

1218l

~11r 2!2
Nj ~38!

i.e., adding one unit of angular momentum toC l changes the
corresponding magnetic field by 8(11r 2)22NW , which is pre-
cisely minus two times the background magnetic field~4!. It
is, therefore, tempting to conjecture that the background fi
~4! is somehow related to the half-integer intrinsic angu
momentum~i.e., spin! of the fermion. Of course, this is jus
an observation at this point, because a mechanism that
erates this background field is still missing.

Second, it is possible to re-interpret the background fi
AW B, ~4!, as a spin connectionv in the Dirac equation~6! on
a conformally flat manifold with torsion. Generally, th
Dirac operator with spin connection reads~see e.g.@29# for
details!

D5gaEa
mS ]m1Am1

1

4
@gb ,gc#v

bc
mD ~39!

wherega ([sa in our case! are the usual Dirac matrices
Ea

m is the inverse vielbein andvbc
m is the spin connection

~herem,n are Einstein~i.e., space time! indices anda,b,c
are Lorentz indices!. Our Dirac equation~6! may be rewrit-
ten in the form of Eq.~39! provided that the vielbein is
8-4
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conformally flat,Ea
m5 f da

m , wheref is an arbitrary function.
Using @sb ,sc#52i ebcds

d we find

i

2
da

kebcds
asdvbc

k5
!

da
ksaAk

B ~40!

~herek is an Einstein index in three dimensions!. The left-
hand side~LHS! of Eq. ~40! has to be antisymmetric ina,d,
i.e., the quantityṽdaªda

kebcdv
bc

k obeysṽda52ṽad . This

leads to ṽab5eabcdc
kAk

B . If we further assumevab
k5

2vba
k ~i.e., covariant constancy of the metric! then we find

that

vabk5dkaAb
B2dkbAa

B ~41!

~whereAa
B[da

kAk
B , i.e., it is not the Lorentz vectorEa

kAk
B).

Finally, we find for the torsionT ~expressed in Lorentz indi
ces only!

2Tabc5~dabdc
k2dacdb

k!]kf 2~vabc2vacb! ~42!
p.

v.

10501
where

vabc5Ec
kvabk5 f dc

kvabk . ~43!

Hence, withvabk given by Eq.~41!, we may freely choose a
conformally flat metric~i.e., conformal factorf ) and com-
pute the resulting torsion via Eq.~42!. Due to the form of
vabk ~i.e., AW B) it is, however, not possible to choose a co
formal factor such that the torsion is zero. On the other ha
it is possible to choose the flat metricf 51, so that~the
anti-symmetric part of! the spin connection is given just b
the torsion.
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