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Hopf instantons in Chern-Simons theory
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We study an Abelian Chern-Simons and fermion system in three dimensions. In the presence of a fixed
prescribed background magnetic field we find an infinite number of fully three-dimensional solutions. These
solutions are related to Hopf maps and are, therefore, labeled by the Hopf index. Further we discuss the
interpretation of the background field.

PACS numbd(s): 11.10.Lm

[. INTRODUCTION a fixed, prescribed background magnetic field is assumed,
then there indeed exist solutions to the Chern-Simons and
It is the purpose of this paper to construct an infinite num-fermion system defined below. Further, these solutions are
ber of fully three-dimensional solutions to a Chern-Simonsrelated to Hopf maps and are, therefore, labeled by the Hopf
and fermion system that are labeled by the Hopf indexindex. Hence we find, on one hand, a three-dimensional ver-
thereby merging two features — Chern-Simons theory angion of the phenomenon of magnetic flux quantization,
Hopf maps — that have recently received wide attentiornamely topologically quantized magnetic kngksopf maps
within quantum field theory. are related to magnetic knots, §8¢6]). On the other hand, a
On the one hand, Hopf maps are just m&ps-S2. These ~ Chern-Simons term is well known to be induced in three-
maps fall into different homotopy classes that are labeled bglimensional QED (QEB) (see e.g[14,21-24). Further, a
the integersthe Hopf index, see below for detgilsField ~ Chern-Simons term is used for topological generation of
configurations with nontrivial Hopf index have already beenmass in some three-dimensional QFs3,14. Whenever
studied for some time in fluid dynami¢4], in astrophysics fermions are included in such theories, our solutigtie
[2,3], in magnetic solidgmagnetic solitons, see e.g4]) and  Hopf instantons should be relevant for the study of non-
in classical electromagnetisf]. Recently, there has been a perturbative features of these QFEs well as of QEL).
lot of interest in field theories where static solutions with ~ In the main section of this paper we define the model and
nontrivial Hopf index (Hopf solitong occur (see e.g., construct solutions to its equations of motion, as well as the
[7-12). Hopf maps that provide these solutions. In the final section
On the other hand, Chern-Simons theories with mattekve give two possible interpretations for the background field
and/or a Maxwell term have been studied intensively sincdhat is present in our solutions.
their introduction[13,14. When an Abelian Chern-Simons
t-erm-in three dimensions |S COUpled to matt-er, the magnetic II. CONSTRUCTION OF THE HOPF INSTANTONS
field is forced to be proportional to the electric current due to
the equations of motiofil5—-18. Further, in these models  We start with the actioni(j,k=1...3)
there exist soliton-like, stati¢i.e., two-dimensional solu-
tions that are related to some topological invariafgg., 3
mapsS?— S?) [15-18. Usually, these solitons behave like ZI dx
vortices, and, because of their topological nature, they ex-
hibit magnetic flux quantization. Therefore these solutiongN
are physically relevant in situations where the phenomenon
of magnetic flux quantization occurs and where matter i
confined to a plane, the most prominent example being the L L
quantum Hall effec{19,20. B 3073 3
At this point the question arises whether there exist fully SCS_EI d°xAB= Zf d*xeijAiFjk 2
three-dimensional solutions for such Chern-Simons and mat-
ter systems, and whether these solutions may be charact§g the Chern-Simon¢CS) action, where the Chern-Simons

In this paper we shall demonstrate that, if the presence of

R 1..
Vi(=ig = Aoy P+ B) 1

here ¥ is a two-component spinaffermion), o; are the
auli matrices and is an Abelian gauge potential. Further,

A=A +AP 3)
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- 1 . R 4 -
AB=— N, Bf=————N (4
1+r? (1+r2)2
and we have introduced the unit vector
2X1X3— 2%,
N= 2XoX3+ 2% (5)

1-X7—X5+X35

(N?=1) for later convenience. Observe that tfized, non-
dynamica) background field is coupled to the fermion, but it
is absent in the CS term. The equations of motion resultin
from the action(1) are

(—idg;—A)a;¥=0, (6)
(the Dirac equationand
S=vlew=B. (7)

Observe that for any pair‘l(,Kj) that solves the Dirac equa-
tion (6) the spin density, related to¥ has to obey
J% =0, (8)

therefore, Eqs(6) and(7) are consistent.
The simplest solution to this system (see[25,26)

v 4 .1
= +
(1+r2)3/2(1 iXo) 0 9
. 4
A= 1+r? (10
. 16 .
=B= a9

[N is given in Eq.(5)]. Here the dynamical gauge field is
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actly N times, whereN is the Hopf index. Further, a mag-

netic fieldB (the Hopf curvaturgis related to the Hopf map
X via

2 (dx)%(dx)  S(3S)Xda

i (1+5)?

B= — 2
1+ xx)

(12

where y=Sé€ is expressed in terms of its modul@sand
phaseos at the right-hand sidéRHS) of Eq. (12).
Mathematically, the curvatureF= %Fijdxidxj » Fij
= ¢€;jk B, is the pullback under the Hopf map=x* (1, of
the standard area two-ford on the targe$? with radius 1

9in stereographic coordinategs,7,10,

2 dzdz

O=—-———.
I (1+z2)?

(13

GeometricallyE is tangent to the closed curvgs=const.
The Hopf indexN of y may be computed frorB via

1

N =
1672

f d®xAB (14)

whereB=gxA.
The simplest(standardl Hopf map x> with Hopf index
N=1is

2(X1+iX5)
2x3—i(1—r?)

x= (15

(a Hopf map has to be single valued, but may well be singu-
lar, asy = is just the south pole of the targgt). This y(*),

Eq. (15), leads to a Hopf curvaturB® via Eq. (12) that is
just the magnetic field11). Here the question arises whether
there are more solutions to Ed6), (7) that are characterized
by higher Hopf maps, and we will find that this is indeed the
case.

[Remark: there is some arbitrariness in the choice of the

proportional to the background field, therefore one could find?ormalization factor in front of the area two-for(®3). We
a solution without background field by choosing either a dif-CNoSe it for a target two-sphere of radius one. Consequently,

ferent normalization of the fermiof9) or by choosing a
Chern-Simons coupling constant in Ed®), (7) different
from 1. However, this will not be true for the solutions be-
low, for which the background fiel#) is crucial.

Concerning the geometrical behavior of the magnetic field®

B in Eq. (1), it is important to note that it is related to a
Hopf map, and, therefore, the value of the CS acti@nis
topologically quantized by the Hopf index. This we want to
explain now.

Generally, a complex functioy:R®*—C with the addi-
tional property lim_..x=xo=const defines a Hopf map
x:S3—S?, where the coordinates iR® and C are stereo-
graphic coordinates of th®® and S?, respectively. The pre-
images inR® of points y=const are closed curves iR®
(circles inS%), and any two different circles are linked ex-

the magnetic field11) is the Hopf curvature of the standard
Hopf map(15) with Hopf index 1, and the background field
(4) is minus 1/4 the Hopf curvature of the standard riE.
There are other choices in the literature, e.g. for target two-
pheres with radius {2 or 1/2. E.g., for radius 42 the
magnetic field(11) is twice the Hopf curvature of the stan-
dard Hopf map(15) (and the background fielh) is minus
1/2 the Hopf curvature of the standard mé&fb)). Such
higher (intege) multiples of B) may be expressed by
higher Hopf maps as follows. Rewritge® as x®
=Sexp(o), whereS and o are the modulus and phase of
V) respectively. ThemB™) may be computed via E12)
from x{=Sexp(no). Here only integen are allowed, be-
cause for a Hopf map with nonzero Hopf index the phase
necessarily is multiply valuetsee[5] for details. It follows
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that the background fiel@4) is not a Hopf curvaturébut a  obeys the following nonlinear differential equation

fraction thereof in our choice of conventionk. ("=aloT):
Next we should provide some more Hopf maps that will
give rise to more solutions to Eq&), (7). We will produce eM_1q
these Hopf maps by composing the standard Hopf map with M +TM"=-2 5 (25
some maps?—S2, i.e., (1+T)
P for all n, as may be checked easily.
xr:S*— =S (16) Next we need some facts about the Dirac equaf@)n

Suppose a pair¥,A;) is given that solves Eq6), thenA,

In fact, as we use stereographic coordinatesSanwe will may be expressed in terms of the zero madas

use rational maps foR,

_ P(2) — 11 ; 1 -
RZ—>R(Z): @ (17) Al:@ Efljkﬁ12k+|mq’ (?qu = Efljk(ﬁjln|2|)/\/’k
which are well known to produce ma@—S? (hereP, Q 1 SR
are polynomials[27,28. The winding number of the map is + Efijkﬁj/\fﬁ ImW¥ o (26)
equal to the degree of the rational map, d&g(
deg R)=maxp,q) (18) where we have expressd_kj in terms of the general unit
vector and unit spinor
wherep andq are the degrees of the polynomi@&ndQ. In
fact, we want to restrict to the simplest maps .3 A W
N= = \P:T—ZL/Z' (27)
Rn(2)=2" (19 2| W
.e., we map Now we introduce the zero modes
(N = (y(1)yn
X0=() (20 M) Az 08

or, for modulusS=:T*? and phaser of V),
whereV is the zero modé9) andM is an(at the moment
(S,0)—=(S"no), (21)  arbitrary function of T. The pure gauge factok will be
determined accordingly below. Due to the fact tAat;

where the modulus and phase of the standard Hopf (h3)p _T iBi(l):O [whereBi(l) is given in Eq.(11)], which is ob-

are vious from Eq.(12), it is still true that="=0, i.e., ¥
) 4(r2—x§) really is a zero mode. The corresponding gauge f@l’?ﬁ)
=S'=——— - that solves the Dirac equation together with") reads/we
Xzt (1-r) use Eq.(26)]
Wy g = X2 o aretar " 1
o=o0\"'to\“, o arctanx—l, o arctaﬂﬁ. Ki(M)ZKi(O)-F Efijk(ﬁjM)Nk"'A,i 29
(22)

Hopf maps that are composed like H36) lead to a Hopf  hereAl? is the gauge field10) plus the background gauge

|ndexl\_l=n , wheren is the winding numbei.e., degreof field (4), andN is the specific unit vectof5). For the corre-

the rational magsee e.g[6], where these Hopf maps have . T _

been discussed sponding magnetic fiel&;"’ we find
For the Hopf curvature this implies

1
B"=B{"+ E[M (TNt T N TN = T Ny )

™) jno TN 1+T)?
B§“>=2e”k( ) ¥ =n? ( - 2) B, (23
(1+T ) (1+T ) _M”(T,k)ZNI] (30)

where Bi(l) is just the standard Hopf curvatufd@l). The ) -
logarithm of the factor in front oB(? at the RHS of Eq. Where we have used ,=M'T ., T (N,=0 and N%) \=0.

(23), when viewed as a function df After some tedious algebra, we arrive at the expression
T 1+T)2 8(1+T)?

M(T)=In nZ(—z) (24) E(M)=§|(°)—¥(M’+TM”)N|. (31)
(1+Tn) (1+r2)2
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Now we want to insert this into the second equation, [&J.
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fields) are the Hopf curvatures of the Hopf mafis), (20)

(the Chern-Simons equatiprTherefore, we have to subtract and are, therefore, labeled by the corresponding Hopf index

the background field4), B/ —BF=B"=16(1+r?) N;.
We find that

16 8(1+T)* | o
B™ -BP=——— N~ ——— (M + TM")N; =3 ("
(1+7r9) (1+r9)
_ leeM
T >

or, after multiplication byN,, precisely Eq(25). Hence, we

N=n2neZ.

Here the background fiel@!) was crucial, because it de-
termines the inhomogeneous part of the non-linear differen-
tial Eq. (25), and, because of this non-linearity, the inhomo-
geneous part of Eq25) crucially affects the nature of the
solutions of Eq.(25). Differently stated, the Hopf instanton
solutions(24) uniquely determine the background figl).

Before closing, we want to briefly discuss whether it is
possible to further interpret the background fiedd, beyond
just stating that its presence is crucial for the existence of the
solutions(16), (20). Indeed, there ar@at least two interpre-

have shown that, in the presence of the fixed prescribeghtions that we want to describe now.

background magnetic fiel(#), there exists an infinite num-

First, let us study the following zero modds =exp(A

ber of fully three-dimensional solutions to the system of 4\ /2)¥, analogous to E¢(28), where we now choose

equationg6), (7).

Here we still should explain why is restricted to integer

values, which is related to the pure gauge factoin Eg.
(28). The problem is that the gauge potenti2®) without the
pure gauge term is singular. For the explicit expressins
Eq. (24), the gauge potential E§29) may be rewritten as

g

My (n—D(A-T""YH+(n+1)(T-T")
AR (1+T)(1+T")

+(N—1)A (33
where

A=cV—g (39

is chosen such that E¢33) is regular everywherps(*) and
o are defined in Eq(22)]. This implies tham has to be
integer, because only for integeexp(i(n—1)A) [and con-

sequently the spinai28)] will be single-valued. Further, we

may compute the resulting Chern-Simons density

64n3
(1+r2)3

T H1+T)?
(1+T")2

AM) . BMp) — (35)

which, when expressed in spherical
(r,9,¢) depends omr,d only. By integrating Eq(35) we
can explicitly verify the relatio™N = n? for the Hopf index\.
We have not succeeded in integrating E8p) analytically
so far, but Eq(35) may easily be integrated inJ,¢ coor-

dinates numerically with the help of mathematica. The inte-_

M=IIn—— (36)

(andA=1¢=10®" to achieve a non-singular gauge potential
for M)). It follows easily that

2|+2r| .

T (1412

Yl,l(ﬁysv)) @7

0

whereY, | are spherical harmonics. In other wordls, is just

a higher angular momentum zero mdgéth magnetic quan-
tum numberm=1+1/2) that can be constructed from the
simplest zero mod¢9), see[25,26]. The gauge field\|" that

solves the Dirac equatioi6) together with¥’, may be com-
puted easily, and its magnetic field is

12+ 8|
Bl'=——2N, (39)
b4y

i.e., adding one unit of angular momentumtp changes the
corresponding magnetic field by 8¢Ir2) ~2N, which is pre-
cisely minus two times the background magnetic figld It

polar coordinateds: therefore, tempting to conjecture that the background field

(4) is somehow related to the half-integer intrinsic angular
momentum(i.e., spin of the fermion. Of course, this is just

an observation at this point, because a mechanism that gen-
erates this background field is still missing.

Second, it is possible to re-interpret the background field

grand is so well behaved that the numerical integration reA”, (4), as a spin connectioa in the Dirac equatiori6) on
produces the integer resuit=n? without showing even a @ conformally flat manifold with torsion. Generally, the
small numerical deviation. The only technicality is that for Dirac operator with spin connection reagee e.g[29] for

largen one has to subdivide the range of integration #or
e[0,7], because the integran85) becomes rather oscilla-

tory for largen.

Ill. DISCUSSION

detaily
a 1 bc
D=yE " d,tA,+ Z[yb,yc]w f (39

where y* (=0¢? in our casg are the usual Dirac matrices,

We have shown that, in the presence of the fixed preE,* is the inverse vielbein anabbcﬂ is the spin connection
scribed background magnetic figl), there exists an infinite (here u,v are Einstein(i.e., space timeindices anda,b,c
number of fully three-dimensional solutions to the system ofare Lorentz indices Our Dirac equatior{6) may be rewrit-

Egs. (6), (7). Further, these solution§.e., the magnetic

ten in the form of Eq.(39) provided that the vielbein is
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conformally flat,E,#=f &% , wheref is an arbitrary function.
Using[ oy, ,0¢]=2i €,cq0° we find

i
a_d bc _
§5§€bcdff g0 K=

SKo?Al (40)
(herek is an Einstein index in three dimensign3he left-
hand sidgLHS) of Eq. (40) has to be antisymmetric ia,d,
i.e., the quantitywy,:= 6% €, 0beySwya= — waq. This
leads 10 wap= €apcOAE. If we further assumew?® =

— w3 (i.e., covariant constancy of the meirthen we find
that

®abk= OkaPb — SkpAa (41
(where AB=sXAB  i.e., it is not the Lorentz vectoE *AS).
Finally, we find for the torsiom (expressed in Lorentz indi-
ces only

2T apc=( 5ab5|é_ 53(:5@ f = (wapc— ®acp) (42)

PHYSICAL REVIEW B1 105018

where

Waphc™ Ec:kwabk= f 5léwabk- (43
Hence, withw 4, given by Eq.(41), we may freely choose a
conformally flat metric(i.e., conformal factorf) and com-
pute the resulting torsion via E¢42). Due to the form of

wapk (i.€., AB) it is, however, not possible to choose a con-
formal factor such that the torsion is zero. On the other hand,
it is possible to choose the flat metrfc=1, so that(the
anti-symmetric part 9fthe spin connection is given just by
the torsion.
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