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Slowing out of equilibrium near the QCD critical point

Boris Berdnikov and Krishna Rajagopal
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 10 December 1999; published 26 April 2000!

The QCD phase diagram may feature a critical end point at a temperatureT and baryon chemical potential
m which is accessible in heavy-ion collisions. The universal long wavelength fluctuations which develop near
this Ising critical point result in experimental signatures which can be used to find the critical point. The
magnitude of the observed effects depends on how large the correlation lengthj becomes. Because the matter
created in a heavy-ion collision cools through the critical region of the phase diagram in a finite time, critical
slowing down limits the growth ofj, preventing it from staying in equilibrium. This is the fundamental
nonequilibrium effect which must be calculated in order to make quantitative predictions for experiment. We
use universal nonequilibrium dynamics and phenomenologically motivated values for the necessary nonuni-
versal quantities to estimate how much the growth ofj is slowed.

PACS number~s!: 12.38.Mh, 05.70.Jk, 25.75.2q, 64.60.Ht
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I. INTRODUCTION

A. The critical point

One goal of relativistic heavy-ion collision experiments
to explore and map the QCD phase diagram as a functio
temperature and baryon chemical potential. Recent theo
cal developments suggest that a key qualitative feat
namely, a critical point which in a sense defines the la
scape to be mapped, may be within reach of discovery
analysis by the CERN Super Proton Synchrotron~SPS! or by
the BNL Relativistic Heavy Ion Collider~RHIC!, if data are
taken at several different energies@1,2#. The discovery of the
critical point would in a stroke transform the map of th
QCD phase diagram from one based only on reasonable
ference from universality, lattice gauge theory and mod
into one with a solid experimental basis@3#.

In QCD with two massless quarks (mu,d50; ms5`) the
phase transition at which chiral symmetry is restored is lik
second order and belongs to the universality class ofO(4)
spin models in three dimensions@4#. Below Tc , chiral sym-
metry is broken and there are three massless pions. AT
5Tc , there are four massless degrees of freedom: the p
and the sigma. AboveT5Tc , the pion and sigma correlatio
lengths are degenerate and finite.

In nature, the light quarks are not massless. Becaus
this explicit chiral symmetry breaking, the second-ord
phase transition is replaced by an analytical crossover: p
ics changes dramatically but smoothly in the crossover
gion, and no correlation length diverges. This picture is c
sistent with present lattice simulations@5#, which suggest
Tc;140– 190 MeV@6#.

Arguments based on a variety of models@7–14# indicate
that the transition as a function ofT is first order at largem.
This suggests that the phase diagram features a critical p
E at which the line of first order phase transitions present
m.mE ends, as shown in Fig. 1.1 At mE , the phase transi
tion atT5TE is second order and is in the Ising universal

1If the up and down quarks were massless,E would be a tricritical
point, at which the first order transition becomes second order.
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class@11,12#. Although the pions remain massive, the corr
lation length in thes channel diverges due to universal lon
wavelength fluctuations of the order parameter. This res
in characteristic signatures, analogues of critical opalesce
in the sense that they are unique to collisions which fre
out near the critical point, which can be used to discoveE
@1,2#.

The position of the critical point is, of course, not unive
sal. Furthermore, it is sensitive to the value of the stran
quark mass.mE decreases asms is decreased@1#, and at some
ms

c , it reachesmE50 and the transition becomes entire
first order @15#. The value ofms

c is an open question, bu
lattice simulations suggest that it is about half the physi
strange quark mass@16,17#, although these results are not y
conclusive@18#. Of course, experimentalists cannot varyms .
They can, however, varym. The BNL Alternating Gradient
Synchrotron~AGS!, with a beam energy of 11 A GeV cor
responding toAs55 GeV, creates fireballs which freeze o
nearm;500– 600 MeV@19#. When the SPS runs withAs
517 GeV ~beam energy 158 A GeV!, it creates fireballs
which freeze out nearm;200 MeV @19#. RHIC will make
even smaller values ofm accessible. By dialingAs and thus
m, experimenters can find the critical pointE.

B. Detecting the critical point

PredictingmE , and thus suggesting theAs to use to find
E, is beyond the reach of present theoretical methods bec
mE is both nonuniversal and sensitively dependent on
mass of the strange quark. Crude models suggest thamE
could be ;600– 800 MeV in the absence of the stran
quark @11,12#; this in turn suggests that in naturemE may
have of order half this value, and may therefore be access
at the SPS if the SPS runs withAs,17 GeV. However, at
present theorists cannot predict the value ofmE even to
within a factor of 2. The SPS can search a significant fract
of the parameter space; if it does not findE, it will then be up
to the RHIC experiments to map themE,200 MeV region.

LocatingE on the phase diagram can only be done co
vincingly by an experimental discovery. Theorists can, ho
ever, do reasonably well at describing the phenomena
©2000 The American Physical Society17-1
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occur nearE, thus enabling experimenters to locate it. This
the goal of Ref.@2#. The signatures proposed there are ba
on the fact thatE is a genuine thermodynamic singularity
which susceptibilities diverge and the order parameter fl
tuates on long wavelengths. The resulting signatures arenon-
monotonicas a function ofAs: as this control parameter i
varied, we should see the signatures strengthen and
weaken again as the critical point is approached and t
passed.

The simplest observables to use are the event-by-e
fluctuations of the mean transverse momentum of
charged particles in an eventpT and of the total charged
multiplicity in an eventN. One analysis described in detail
Ref. @2# is based on the ratio of the width of the true eve
by-event distribution of the meanpT to the width of the
distribution in a sample of mixed events. This ratio w
called AF. NA49 has measuredAF51.00260.002 @20,2#,
which is consistent with expectations for noncritical therm
dynamic fluctuations.2 Critical fluctuations of thes field,
i.e., the characteristic long wavelength fluctuations of
order parameter nearE, influence pion momenta via th
~large! spp coupling and increaseAF @2#. The effect is
proportional toj freezeout

2 , wherej freezeoutis thes-field corre-
lation length of the long-wavelength fluctuations at freeze
@2#. If j freezeout;6 fm, the ratio AF increases by 10
220 %, fifty times the statistical error in the present me
surement@2#. This observable is valuable because data o
has been analyzed and presented by NA49, and it can th
fore be used to learn that Pb1Pb collisions at 158 A GeV do
not freeze out nearE.

OnceE is located, however, other observables which
more sensitive to critical effects will be more useful. F
example, aAFsoft, defined using only the softest 10% of th
pions in each event, will be much more sensitive to the cr
cal long wavelength fluctuations. The higherpT pions are
less affected by thes fluctuations@2#, and these relatively
unaffected pions dominate the meanpT of all the pions in the
event. This is why the increase inAF near the critical point
will be much less than that ofAFsoft.

The multiplicity of soft pions is an example of an obser
able which may be used to detect the critical fluctuatio
without an event-by-event analysis. The post-freezeout de
of sigmas, which are copious and light at freezeout neaE
and which decay subsequently when their mass incre
above twice the pion mass, should result in a population
pions withpT;mp/2 which appears only for freezeout ne
the critical point@2#. If j freezeout*1/mp , this population of

2In an infinite system made of classical particles which is in th
mal equilibrium, AF51. Bose effects increaseAF by 122%
@21,2#; an anticorrelation introduced by energy conservation in
finite system — when one mode fluctuates up it is more likely
other modes to fluctuate down — decreasesAF by 122 % @2#;
two-track resolution also decreasesAF by 122 % @20#. The con-
tributions due to correlations introduced by resonance decays
due to fluctuations in the flow velocity are each significantly sma
than 1%@2#.
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unusually low momentum pions will be comparable in nu
ber to that of the ‘‘direct’’ pions~i.e., those which were pions
at freezeout! and will result in a large signature.

The variety of observables which should all show no
monotonic behavior near the critical point is sufficient
great that if it were to turn out thatmE,200 MeV, making
E inaccessible to the SPS, all four RHIC experiments co
play a role in the study of the critical point.

C. How large can j grow?

Our purpose in this paper is to estimate how largej freezeout
can become, thus making the predictions of Ref.@2# for the
magnitude of various signatures more quantitative. In
ideal system of infinite size which was held atT5TE ; m
5mE for an infinite time, the correlation lengthj would be
infinite. Reference@2# estimated that finite size effects limitj
to be about 6 fm at most. We will argue in this paper th
limitations imposed by the finite duration of a heavy-ion co
lision are more severe, preventingj from growing larger
than about 2/TE;3 fm.

D. TE , T freezeout, and T0

We will do the calculation in the next section in the thre
dimensional Ising model, as appropriate for describing
universal dynamics of the long wavelength fluctuations n
the critical point. However, in order to relate a calculation
the Ising model to experiments which explore the QC
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FIG. 1. Sketch of the QCD phase diagram as a function
temperatureT and baryon chemical potentialm. Chiral symmetry is
broken at lowT and m. As T is increased, chiral symmetry i
approximately restored via a smooth crossover to the left ofE or a
first-order phase transition to the right ofE. The symmetry is only
approximately restored because the light quarks are not mass
At the critical pointE at which the line of first-order phase trans
tions ends, the transition is second order and is in the Ising uni
sality class.~At large m and smallT, there are color superconduc
ing phases which we do not discuss in this paper.! The Ising model
r axis andh axis and the trajectories a, b, and c will be discussed
Sec. II.
7-2
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SLOWING OUT OF EQUILIBRIUM NEAR THE QCD . . . PHYSICAL REVIEW D61 105017
phase diagram, we will need numerical values for three te
perature scales. Several other nonuniversal quantities
also enter our calculation; we will discuss them in the n
section as they arise. We will see that in the end, only
combination of nonuniversal quantities plays a role in o
estimates.

We expectTE to be slightly less than the temperatu
range at which the crossover occurs atm50. We therefore
take TE5140 MeV, at the low end of lattice estimates f
the m50 crossover temperature.

As we have discussed at length, we know very little ab
mE . Fortunately, we will not need a numerical value formE
below.

Pb1Pb collisions at 158 A GeV freeze out at about 1
MeV, and NA49 data@20# demonstrate clearly that they d
not freeze out nearE @2#. We also know@1# that if the matter
produced in a heavy-ion collision comes nearE, the large
specific heat characteristic ofE will cause the system to ‘‘lin-
ger’’ — the expansion will cause the energy density to d
crease as usual, but this will result in an unusually sl
temperature decrease. The freezeout temperature is ther
expected to be unusually close to the critical temperature
collisions which have the appropriatem to pass nearE. For
concreteness, we will takeTfreezeout5130 MeV.3 ~If the
freeze-out temperature in Pb1Pb collisions at 158 A GeV is
closer to 100 MeV, as some authors estimate@24#, then it
may be better to estimate that collisions which pass neaE
freezeout atTfreezeout5120 MeV.)

Finally, we need to estimateT0, the temperature at which
we can begin an Ising model treatment. The thr
dimensional Ising model is only valid close enough toE that
the correlation lengthj.1/TE . In this critical region, the
long wavelength fluctuations of the order parameter beco
effectively three dimensional.~We will find that j is never
@1/TE . This means that our estimates are not precise.! We
need to know how far aboveTE the equilibrium correlation
length is larger than 1/TE . The model of Ref.@11# suggests
that jeq.1/TE for (T2TE)/TE&0.220.4. This estimate is
based on a mean field analysis of a toy model, and so sh
not be taken too seriously. For concreteness we shall ass
that jeq51/TE[j0 at T05180 MeV, 40 MeV aboveTE
;140. We will usej051.4 fm to set the scale below, in th
sense that we will estimate the factor by whichj/j0 grows as
the system cools.j051.4 fm is simply a definition;T0, the
temperature at which the equilibrium correlation lengthjeq
5j0, is a quantity which must be estimated and which w
affect our results.

II. SLOWING OUT OF EQUILIBRIUM

The nonequilibrium dynamics which we analyze in th
paper is fundamental in the sense that it isguaranteedto
occur in a heavy-ion collision which passes nearE, even if

3Note that experimenters do have some control overTfreezeout.
Using smaller ions results in a fireball which freezes out earlier
a largerTfreezeout@22,23#.
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local thermal equilibrium is achieved at a higher temperat
during the earlier evolution of the plasma created in the c
lision. We assume early thermal~although not necessarily
chemical! equilibration, and ask how the system evolves o
of equilibrium as it passesE. More precisely, we will assume
that when the system has cooled toT5T05180 MeV, it is
in equilibrium, with j(T0)5jeq(T0)5j0. For the present,
assume that the system cools through the critical pointE, as
sketched in trajectory~a! of Fig. 1. If it were to cool arbi-
trarily slowly, j5jeq would be maintained at all tempera
tures, andj would diverge atTE . However, it would take an
infinite time for j to grow infinitely large. Indeed, near
critical point, the long correlation length results in lon
equilibration times, a phenomenon known as critical slow
down. This means that the correlation length cannot grow
fast asjeq, and the system cannot stay in equilibrium.

We describe the effects of critical slowing down on t
time development of the correlation lengthj(t) using the
following equation forms(t)[1/j(t):

d

dt
ms~ t !52G@ms~ t !#S ms~ t !2

1

jeq~ t ! D . ~2.1!

Here,G parametrizes the rate at which an out-of-equilibriu
value ofms approaches its equilibrium value. Ifms is close
to its equilibrium value, the theory of dynamical critical ph
nomena@25# tells us that

G~ms!5
A

j0
~msj0!z, ~2.2!

wherez is a universal exponent and we have usedj0 to set
the scale, makingA a dimensionless constant. Knowing th
we are interested in a system which is in the same st
universality class as the three-dimensional Ising model isnot
enough to tell usz. There are in general several differe
dynamical universality classes corresponding to a giv
static universality class. However, knowing in addition th
~i! the chiral order parameter is not a conserved quantity,~ii !
there are other conserved quantities in the system, suc
the baryon number density, and~iii ! there are no Poisson
bracket relations between the order parameter and the
served quantities, tells us that our system belongs in the
namical universality class named model C in Halperin a
Hohenberg’s classification@25# of dynamical critical phe-
nomena, and has

z521a/n'2.17, ~2.3!

where we have takena50.11 andn50.630 from Ref.@26#.
The dimensionless constantA is nonuniversal. We have no
way to estimate it other than to guess that it is of order 1.
will explore the sensitivity of our results to different choice
of A below.

We will use the differential equation~2.1! to analyze how
critical slowing down prevents the correlation lengthj from
t

7-3
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BORIS BERDNIKOV AND KRISHNA RAJAGOPAL PHYSICAL REVIEW D61 105017
‘‘tracking’’ jeq@T(t)#. Critical slowing down guarantees tha
the system falls out of equilibrium. Note that the different
equation has only been derived for small departures fr
equilibrium; oncems2jeq

21 is not small, its use is not quan
titatively justified.4

We have initial conditions for the differential equatio
~2.1!, namelyms(0)51/j0. Therefore, all we need in orde
to solve it is a description ofjeq(t). This requiresjeq(T),
which we discuss below, and also requires a description
the coolingT(t). This can be estimated using hydrodynam
and cascade model calculations, although these describeT(t)
assuming the plasma isnot cooling near the critical pointE.
Hydrodynamic models~see, e.g., Refs.@23,27#! describe
T(t) at central rapidity in the center of mass frame via

dT

dt
52

1

k

T

t0
. ~2.4!

Since we are only interested in a relatively small range
temperatures aroundTE , it will suffice for us to treatdT/dt
as constant in time. We discuss the effects of the time
pendence ofdT/dt below. The expression~2.4! assumes tha
the T dependence of the energy density ise;Tk as in a
resonance gas, for whichk'6 @28#. The timescalet0 is not
constant over the whole history of the collision. A simplifie
estimate~made by equatingt0 with the scattering time! sug-
gests that in Pb1Pb collisions at 158 A GeV,t0 is between 4
and 10 fm at times of interest to us@27#. This suggests
2dT/dt5(226) MeV/fm at T5140 MeV. Careful analy-
sis favorst0 closer to 4 fm@24#. This agrees with a recen
analysis of these collisions using the URQMD casca
model, which suggests 2dT/dt'5 MeV/fm at T
5140 MeV@29#. These estimates are all for cooling throu
T5140 MeV at am such that one is not near the critic
point. As we discussed above, the cooling rate is likely to
unusually low nearE because of the large specific heat the
we will therefore take2dT/dt;4 MeV/fm as our estimate
noting also that the cooling rate at RHIC will be slower st

We wish to use the three-dimensional Ising model to
scribejeq(T,m) nearE. In the Ising model, the order param
eter M ~the magnetization! and the correlation lengthj are
functions of the reduced temperaturer and the magnetic field
h. @In the Ising model,r is defined as (T2Tc)/Tc and is
usually calledt; we reserve the symbolt for time, however.#
The critical point is atr 5h50; at this point,M50 and
jeq5`. For r ,0, there is a first order phase transition as
function of h at h50 betweenM5ur ub for h501 and M
52ur ub for h502. The exponent isb50.326 for the three-
dimensional Ising model@26#. For r .0, M increases

4For example, one might try the equationdj/dt52G(j2jeq),
instead of Eq.~2.1! for dms /dt. These two equations give the sam
results for small departures from equilibrium, but they do not ag
in all circumstances. For example, in a system which is not coo
and which hasT5TE andjeq5` for all time, only Eq.~2.1! yields
the correct result, namely,ms(t);t21/z at late time.
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smoothly through zero ash goes from negative to positive
For r 50, the order parameter isM5sgn(h)uhu1/d, with d
54.80 @26#.

We can now discuss how the Ising modelr andh axes are
mapped onto the (T,m) plane. Ther axis is the direction
tangential to the line of first order phase transitions ending
E. This is shown in Fig. 1. There is no guarantee that thh
axis is perpendicular to ther axis when both are mappe
onto the (T,m) plane. This mapping will in general deform
the Ising axes, but we have no way of estimating t
deformation.5 For simplicity, we draw theh axis perpendicu-
lar to ther axis in Fig. 1. In thinking through the mappin
between QCD and the Ising model even qualitatively, it
important to note that the QCD order parameter~the chiral

condensatê q̄q&) is offset with respect to the Ising mode
order parameter~the magnetizationM ). In the Ising model,
M50 at the critical point and along the first-order line o
has phase coexistence between phases whoseM ’s are equal

in magnitude and opposite in sign. In QCD,^q̄q&Þ0 at the
critical pointE, because of the explicit breaking of theO(4)

symmetry by quark mass terms. NearE, ^q̄q& corresponds to
M plus an offset, and the phase coexistence is betw

phases with differing values of̂q̄q& which both have the
same sign. In Fig. 1, we take the2h side of the Ising coex-
istence line to correspond to the higher-temperature sid
the QCD coexistence line, so that increasingM corresponds

to increasing the magnitude of^q̄q&.
The matter created in heavy-ion collisions at SPS ener

will follow a trajectory in the (T,m) plane which is approxi-
mately vertical as it cools.~See, for example, Ref.@29#.! We
therefore begin by considering trajectory~a! of Fig. 1, which
follows theh axis, as this is likely not a bad approximation
cooling at almost constantm.6 We have analyzed trajectorie
which pass throughE at a variety of angles, for example
similar to the trajectory~b! in Fig. 1. The results do not diffe
qualitatively from those we present in detail for a trajecto
along theh axis, unless the trajectory passes throughE al-
most parallel to ther axis. At the end of this section, we wil
present results for trajectories such as~c! in Fig. 1, which
missE but come close to it.

Let us take the initial temperature in our calculation,T
5T05180 MeV, to correspond toh5h0520.2. Along the

e
g

5In the electroweak phase diagram as a function ofT and Higgs
massmH , there is also a line of first order phase transitions end
at an Ising critical point. Here, the explicit mapping between Is
axes and the (T,mH) plane has been constructed@30#. This is pos-
sible only because there are reliable numerical methods for ana
ing the full, nonuniversal theory in the (T,mH) plane. Universality
arguments alone, which is all that we have at our disposal in
absence of lattice simulations at nonzerom, do not tell us how the
Ising axes should be deformed in the (T,m) plane of Fig. 1.

6Note that ther direction, corresponding to the reduced tempe
ture direction in the Ising model, is almost perpendicular to theT
direction in QCD. This is another reason why we have labeled it
a letter other thant.
7-4
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SLOWING OUT OF EQUILIBRIUM NEAR THE QCD . . . PHYSICAL REVIEW D61 105017
h axis,7 as in trajectory~a!, the equilibrium correlation length
is a power law inh:

jeq~h!5U h

h0
U2n/bd

, ~2.5!

where we have normalizedj by settingjeq(h0)51. That is,
we measurej in units ofj051.4 fm. With units chosen, we
can now rewrite Eq.~2.1! which describes the dynamics o
the growth of the correlation lengthj51/ms in terms of
Ising model variables as

d

dh
ms~h!52a@ms~h!#zS ms~h!2

1

jeq~h! D , ~2.6!

where the nonuniversal constanta is related to the other non
universal parameters we have discussed by

a5AS dh

dt D
21

5AS h0

T02TE

dT

dt D
21

. ~2.7!

Nonuniversal parameters appear in Eq.~2.6! only in the
single combinationa. Taking the nonuniversal constant fro
Eq. ~2.2! to beA;1, using (T02TE)540 MeV, dT/dt5
24 MeV/fm, andh0520.2 yields the estimate

a;50. ~2.8!

In fact, becausejeq(h) is a power law inh, if one changesh0
and then redefines the units ofj so thatjeq(h0) is again set
to one, Eq.~2.6! is unaffected. Our results are therefore d
termined solely byA, (T02TE) and dT/dt in the single
combinationa, together with the assumption that the syste
begins in equilibrium atT5T0.

We can now use Eq.~2.6! to learn how muchj grows
relative toj051.4 fm. Given the uncertainties in the dete
mination of a, in Fig. 2 we showj(h) obtained by solving
Eq. ~2.6! for a525,50,100. Four lessons are apparent.

First, critical slowing down has a large effect. Althoug
by assumption we begin in thermal equilibrium withj5jeq
at T5T0, the fact that the dynamics slows down in the v
cinity of E preventsj from trackingjeq and growing very
large.

Second, our results do not depend sensitively on the
rametera. This is fortunate, since there are so many unc
tainties involved in estimatinga. For a525,50,100, the
maximum correlation length which is achieved
1.8j0 , 2.1j0 , 2.5j0, corresponding to 2.6, 3.0, 3.4 fm. Th
means that although our estimate is only qualitative, it
clear thatj cannot grow as large as 6 fm.~To obtain a maxi-
mum value ofj54j0 would requirea51000. Althougha is
uncertain, this large a value seems out of the question.! We
estimate thatj grows to about twicej0, corresponding to
approximately 3 fm.

7Along the r axis, jeq;r 2n; along theh axis, jeq;h2n/bd; for
trajectories such as~b! of Fig. 1 which pass throughE at generic
angles, the larger exponent (n/bd) is the relevant one. Ourh-axis
analysis is therefore a good guide to the generic case.
10501
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Third, since previous work@2# suggests that finite size
effects limit j to j,6 fm, we conclude that slowing out o
equilibrium ~i.e., the combination of finite time and critica
slowing down! imposes the more stringent constraint onj.
We have analyzed this nonequilibrium effect as if the syst
were spatially homogeneous. Had we found correlat
lengths growing beyond 6 fm, we would have to do a mu
more complicated analysis, taking both the finite time a
the inhomogeneous spatial dynamics into account. Since
find thatj only grows to about 3 fm, this is not necessary

Fourth, just as critical slowing down preventsj from
growing as fast asjeq does, it also preventsj from shrinking
as fast asjeq does afterE has been passed. Whether w
estimateTfreezeout;130 MeV ~corresponding toh50.05) or
;120 MeV (h50.1) for trajectories passing nearE, one
finds j freezeout;2j0. We can also argue that even if ana as
large as 1000 were possible, our conclusions would be l
affected: Ifa51000, andj follows jeq closely enough that it
increases to 4j0 , j also tracksjeq more closely as it de-
creases belowTE . If a51000, it turns out thatj is quite
close tojeq by the timeh50.05. Thus, although increasinga
to a ridiculous extent does increase the maximum value oj,
it has little effect onj freezeout. This is further evidence tha
although our estimatej freezeout;2j0;3 fm is qualitative, it
is robust.

The a dependence of the maximum value attained byj
can be understood analytically at largea. For largea, ms

tracks its equilibrium valuems
eq5uh/h0un/bd well until uh/h0u

is quite small. If we definee[ms2ms
eq, we can use Eq.

~2.6! to show thate,ms
eq as long as

h

h0
.S n

bd

1

aD 1/(11zn/bd)

. ~2.9!

If we assume that oncej begins to drop out of equilibrium

FIG. 2. Behavior of the correlation length for cooling throug
the critical point along theh axis of Fig. 1. The equilibrium corre-
lation length is shown as a dashed line. The true correlation len
is shown for~bottom to top! a525,50,100. Our units, described i
the text, are such thath520.2,20.1,0,0.1 corresponds toT
5180,160,140,120 MeV, andj is measured in units ofj0

51.4 fm.
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~i.e., oncee begins to grow comparable toms
eq), little further

growth ofj occurs beforej reaches its maximum, we predic
that j will peak at

jmax5~ca!n/bd/(11zn/bd)5~ca!0.215, ~2.10!

for some constantc. The maxima of solutions to Eq.~2.6!
obtained numerically follow this scaling relation~with c
50.65) quite accurately oncea.1000 or so. Even at much
smallera, as in Fig. 2,jmax is within a few percent of that in
Eq. ~2.10!. This scaling relation explains why our results a
so weakly dependent ona. Note that even with the scalin
relation in hand, full solutions as in Fig. 2 are of value b
cause they allow us to estimatej freezeoutand not justjmax.

We have to this point assumed thatdT/dt is approxi-
mately constant as the system cools throughTE . This is an
oversimplification. It is more reasonable to assume t
ds/dt is approximately constant, wheres is the entropy den-
sity. Since

dT

dt
5

1

CV

ds

dt
~2.11!

and the specific heatCV is peaked atTE , we expect that
dT/dt is unusually small nearTE . As we discussed above
this ‘‘lingering’’ results in a Tfreezeout which is unusually
close toTE @1#. Here, we estimate the effect of lingering ne
E on the growth ofj. Along theh axis, the specific heat du
to the long wavelength sigma fluctuations diverges asCV

;h2g/bd;jeq
g/n in thermal equilibrium@1#. The exponentg

51.240@26#. We takeCV5c11c2jg/n, wherec1 is the spe-
cific heat due to all the degrees of freedom other than
sigma and is smooth nearTE . Note thatCV depends on the
actual correlation lengthj, and not onjeq. In our dynamical
nonequilibrium setting, therefore,CV peaks but does not di
verge. We can implement lingering in our calculation
replacing the constanta in Eq. ~2.6! by

a~h!5a@~12b!1b@ms~h!#2g/n#. ~2.12!

Here, a is the same constant as before and the constab
5c2 /(c11c2) is the fraction of the specific heat atT5T0
which is due to sigma fluctuations. This fraction is perha
about 0.1 and is surely less than 0.25. As the system c
from T0 to TE , the sigma contribution toCV grows and
peaks. We find that changing constanta to a(h) as in Eq.
~2.12! with b50.25 increasesjmax by about 10% beyond tha
shown in Fig. 2, and increasesj freezeoutby somewhat less
For b50.1, the increase injmax is about 5%. We conclude
that becauseCV receives contributions from all degrees
freedom and not just from the sigma fluctuations, and
causeCV , similar to j, peaks but does not diverge, the r
duction indT/dt nearE is not large enough to significantl
increasej beyond our previous estimates.

We now ask how much our results change if we consi
trajectories such as~c! in Fig. 1 which come close to, bu
miss,E. Our analysis can easily be extended to cover th
trajectories which passE on the crossover side (r .0; T
,TE). In an appendix, we present the Ising model expr
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sion for jeq(r ,h) near the critical point. We use this expre
sion to evaluatej(h) for trajectories parallel to theh axis
with r 50.12, r 50.19, andr 50.33, for whichjeq peaks at
4j0 , 3j0, and 2j0. The results are shown in Fig. 3 in whic
we have takena550. Note that in plotting Fig. 3 we hav
definedj05j(r ,h0)51 anew for eachr. We see that as long
asjeq peaks at 3j0 or higher, the dynamics ofj is almost the
same as for the trajectory of Fig. 2 which goes precis
throughE. Even for a trajectory which missesE by enough
that jeq peaks at only 2j0, the actual correlation lengthj
grows by a factor which is within 20% of that for trajectorie
which pass arbitrarily close toE. Just as the growth ofj is
robust with respect to changes ina, it is robust with respect
to how close the trajectory comes toE, for those trajectories
which come close enough.

Our analysis is not sufficient to describe the dynamics
those trajectories which pass to the first order side ofE,
because we do not treat the dynamics of bubble nuclea
and phase coexistence. Near enough toE, though, the first
order transition is so weak that it will not have detectab
effects given the finite length and time scales in a heavy-
collision, and the physics is likely qualitatively similar t
that we have analyzed on the crossover side ofE. Farther
from E on the first order side, this is not the case. Fart
from E, though, the correlation length is never large.

III. CONSEQUENCES

Our results have a number of consequences which sh
be taken into account both in planning experimental searc
for the QCD critical point, and in planning future theoretic
work.

Because of critical slowing down, the correlation leng
in a heavy-ion collision cannot grow as fast as it would
equilibrium; this means thatj freezeoutis likely about 3 fm for
trajectories passing nearE. Although finite size effects alone
would allow a correlation length as large as 6 fm, this
unrealistic to expect in a heavy-ion collision. This effe
arises due toguaranteednonequilibrium physics: even i

FIG. 3. The dashed curves showjeq(h) for trajectories with~top
to bottom! r 50.12, 0.19, 0.33. The solid curves show the cor
sponding nonequilibrium correlation lengthsj, assuminga550.
Curves with differentr have each been normalized to begin
j(h0)51.
7-6
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SLOWING OUT OF EQUILIBRIUM NEAR THE QCD . . . PHYSICAL REVIEW D61 105017
heavy-ion collisions achieve local thermal equilibrium abo
the transition, as we have assumed, if they cool through
transition near the critical point they must ‘‘slow out of equ
librium.’’ By this we mean that the correlation length cann
grow as it would in equilibrium, because the long wav
length dynamics are slow nearE.

Critical slowing down also prevents the correlation leng
from decreasing quickly after passing the critical point. O
therefore need not worry aboutj decreasing significantly
between the phase transition and freezeout.

One need not hitE precisely in order to find it. The result
shown in Fig. 3 demonstrate that if one were to do a s
with collisions at many finely spaced values of the ene
and thusm, one would see signatures ofE with approxi-
mately the same magnitude over a broad range ofm. The
magnitude of the signatures will not be narrowly peaked
m is varied. As long as one gets close enough toE that the
equilibrium correlation length is (223)j0, the actual corre-
lation lengthj will grow to ;2j0. There is no advantage t
getting closer toE, because critical slowing down preventsj
from getting much larger even ifjeq does. Data at many
finely spaced values ofm is not called for.8

Only one combination of the nonuniversal quantiti
~called a above! plays an important role in estimating th
dynamics ofj. The uncertainty ina is the sum of that in its
three factors:A @the nonuniversal constant in the dynamic
scaling law~2.2!#, dT/dt andT02TE . It is already fortunate
that only one combinationa matters; it is even more fortu
nate that our results are not very sensitive to the value oa.
This means that although our results are not comple
quantitative, they are robust. In addition to the uncertainty
a, however, our results cannot be treated as precise bec
the QCD dynamics are precisely described by the thr
dimensional Ising model dynamics only ifj@1/TE , and we
have found thatj does not grow beyond;2/TE .

There are a number of steps that could be taken in fu
work to refine our estimate. One could do a more comp
job of analyzing the universal dynamics of a system wh
passes near an Ising critical point. For example, instea
simply writing a differential equation forj, one could follow
the full ~311!-dimensional dynamics in a Langevin simul
tion, from which one would measurej. Doing this, however,
would still leave one facing the same nonuniversal uncert
ties which we face in our treatment. If we simply ask how
reduce the uncertainty ina, perhaps the hardest part of th
task would be a reliable calculation ofA, as that would re-
quire a reliable calculational method for QCD dynamics
nonzeroT andm. The other two ingredients ina are likely to
become better known as the modeling of heavy-ion co

8Analysis within the toy model of Ref.@11# suggests that in the
absence of the strange quark, the range ofm over which jeq

.2 fm is aboutDm;120 MeV for mE;800 MeV. Similar re-
sults can be obtained@31# within a random matrix model@12#. It is
likely overoptimistic to estimateDm;120 MeV when the effects
of the strange quark are included andmE itself is reduced. A con-
servative estimate would be to use the models to estimate
Dm/mE;15%.
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sions and the analysis of data from these collisions proce
It seems, though, that the uncertainty inA will prevent a fully
quantitative calculation ofa for the foreseeable future. Ou
results are sufficiently insensitive toa that they suffice to
estimate the magnitude of signatures; when these signa
are found, perhaps they will give us more quantitative inf
mation about the nonuniversal quantities which go intoa.

Knowing that we are looking forj freezeout'3 fm is very
helpful in suggesting how to employ the signatures descri
in detail in Ref. @2#. The excess of pions withpT;mp/2
arising from post-freezeout decay of sigmas is large as l
as j freezeout;1/mp , and does not increase much further
j freezeoutis longer. This makes it an ideal signature. The
crease in the event-by-event fluctuations in the mean tra
verse momentum of the charged pions in an event~described
by the ratioAF of Ref. @2#! is proportional toj freezeout

2 . The
results of Ref.@2# suggest that forj freezeout;3 fm, this will
be a 3 – 5 % effect. This is ten to twenty times larger than
statistical error in the present NA49 data, but not so large
to make one confident of using this alone as a signature
E. The solution is to use signatures which focus on the eve
by-event fluctuations of only the low momentum pions. U
usual event-by-event fluctuations in the pion momenta a
via the coupling between the pions and the sigma order
rameter which, at freezeout, is fluctuating with correlati
lengthj freezeout. This interaction has the largest effect on t
softest pions@2#. AFsoft, described in the Introduction, is
good example of an observable which takes advantag
this. Depending on the details of the cuts used to define i
should be enhanced by many tens of percent in collisi
passing nearE. Reference@2# suggests other such obser
ables, and more can surely be found. Together, the ex
multiplicity at low momentum~due to post-freezeout sigm
decays! and the excess event-by-event fluctuation of the m
menta of the low momentum pions~due to their coupling to
the order parameter which is fluctuating with correlati
length j freezeout) should allow a convincing detection of th
critical pointE. Both should behave nonmonotonically as t
collision energy, and hencem, are varied. Both should pea
for those heavy-ion collisions which freeze out nearE, with
j freezeout;3 fm.
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APPENDIX: EQUILIBRIUM CORRELATION LENGTH

In this appendix we present the equations that we use
calculate the equilibrium correlation lengthjeq in the critical
region as a function of reduced temperaturer and external
magnetic fieldh. We use Widom’s scaling form@32#
at
7-7
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jeq
2 ~r ,M !5 f 2M 22n/bgS ur u

uM u1/bD , ~A1!

in which M is the magnetization andn50.630 and b
50.326 are the three-dimensional Ising model critical ex
nents@26#. The« expansion ofg(x) is given in Ref.@32# to
order«2

g~x!5g«~x!5622nzH 12
«

36
@~516 ln 3!z26~11z!ln z#

1«2F112z2

72
ln2 z1X z

18S z2
1

2D ~12 ln 3!

2
1

216S 16z22
47

3
z2

56

3 D Cln z

1
1

216S 101

6
1

2

3
I 16 ln2 314 ln 3210D z2

2
1

216S 6 ln2 31
44

3
ln 31

137

9
1

8

3
I D zG J ,

~A2!

where

z[
2

11
x

3

and I[E
0

1 ln@x~12x!#

12x~12x!
dx'22.344.

f in Eq. ~A1! is a nonuniversal normalization constant, oft
set to 1. Our choice off and thus of units forj is described
in Sec. II. The expression~A2! is valid everywhere on the
(r ,M ) plane except the region of largex ~or, equivalently,
r @uM u1/b). The correct result at largex is

glarge~x!5S 1

31xD 2n

, ~A3!

FIG. 4. Order parameter~magnetization! in the 3D Ising model
as a function of reduced temperaturer and applied fieldh.
10501
-

and we therefore construct a functiong(x) which smoothly
interpolates betweenglarge(x) at largex andg«(x) at smaller
x. The only remaining difficulty is atr>0, M50. Although
the scaling form~A1! with Eq. ~A3! is well-behaved in the
M→0 limit, and yields

jeq~r>0,M→0!5 f ur u2n,

at M50 the scaling form is indeterminate and one mu
impose the conditionjeq(r>0,M50)5jeq(r>0,M→0).

We wantjeq(r ,h). With jeq(r ,M ) in hand, we must now
obtain the magnetizationM (r ,h). The most convenient form
for our purposes is the parametric equation of state~see Refs.
@26,32,33#!:

M5M0Rbu,

h5h0Rbdh̃~u!5h0Rbd~u20.76201u310.00804u5!,

r 5R~12u2!. ~A4!

HereM, r, andh are parametrized in terms of the ‘‘radius
R>0 and ‘‘polar angle’’ u. u50 corresponds tor .0, h
50; u561 corresponds tor 50 with positive and negative
h, respectively.h̃(u) is zero atu561.154, which corre-
sponds tor ,0,h560. The functionh̃(u) in Eq. ~A4! is
from Ref. @26#, where it is constructed to be consistent wi
all that is known from the« expansion, from perturbation
theory, and from resummations thereof. We choose the
malization constantsM0 and h0 so that M (r 521,h50)
51 and M (r 50,h51)51. This guarantees that along th
negative r axis M (r ,h50)5ur u2b and along theh axis
M (r 50,h)5sgn(h)uhu2d. Numerically solving the last two
equations of Eq.~A4! for R andu in terms ofr andh, we use
the first one to computeM (r ,h), shown in Fig. 4. This al-
lows us to obtainjeq(r ,h), shown in Fig. 5.

FIG. 5. Equilibrium correlation length as a function of reduc
temperaturer and applied fieldh.
7-8



et

o

F.

G

.

.

v

tab-

H.

’

,

e,

.

a

SLOWING OUT OF EQUILIBRIUM NEAR THE QCD . . . PHYSICAL REVIEW D61 105017
@1# M. Stephanov, K. Rajagopal, and E. Shuryak, Phys. Rev. L
81, 4816~1998!.

@2# M. Stephanov, K. Rajagopal, and E. Shuryak, Phys. Rev. D60,
114028~1999!.

@3# For a recent review, see K. Rajagopal, in ‘‘Proceedings
Quark Matter ’99,’’ hep-ph/9908360.

@4# R. Pisarski and F. Wilczek, Phys. Rev. D29, 338 ~1984!.
@5# For reviews, see E. Laermann, Nucl. Phys. B~Proc. Suppl.! 63,

114 ~1998!; A. Ukawa, ibid. 53, 106 ~1997!.
@6# For example, S. Gottliebet al., Phys. Rev. D55, 6852~1997!;

R. Mawhinney, talk at ISMD99, Providence, RI, 1999;
Karsch, hep-lat/9909006.

@7# A. Barducci, R. Casalbuoni, S. DeCurtis, R. Gatto, and
Pettini, Phys. Lett. B231, 463 ~1989!; S. P. Klevansky, Rev.
Mod. Phys.64, 649 ~1992!; A. Barducci, R. Casalbuoni, G
Pettini, and R. Gatto, Phys. Rev. D49, 426 ~1994!.

@8# M. Stephanov, Phys. Rev. Lett.76, 4472~1996!; Nucl. Phys. B
~Proc. Suppl.! 53, 469 ~1997!.

@9# M. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B422,
247 ~1998!.

@10# R. Rapp, T. Scha¨fer, E. V. Shuryak, and M. Velkovsky, Phys
Rev. Lett.81, 53 ~1998!.

@11# J. Berges and K. Rajagopal, Nucl. Phys.B538, 215 ~1999!.
@12# M. A. Halasz, A. D. Jackson, R. E. Shrock, M. A. Stephano

and J. J. M. Verbaarschot, Phys. Rev. D58, 096007~1998!.
@13# R. Pisarski and D. Rischke, Phys. Rev. Lett.83, 37 ~1999!.
@14# G. Carter and D. Diakonov, Phys. Rev. D60, 016004~1999!.
@15# F. Wilczek, Int. J. Mod. Phys. A7, 3911~1992!; K. Rajagopal

and F. Wilczek, Nucl. Phys.B399, 395 ~1993!.
@16# F. Brownet al., Phys. Rev. Lett.65, 2491~1990!.
@17# JLQCD Collaboration, S. Aokiet al., Nucl. Phys. B~Proc.

Suppl.! 73, 459 ~1999!.
10501
t.

f

.

,

@18# Y. Iwasakiet al., Phys. Rev. D54, 7010~1996!.
@19# See, e.g., P. Braun-Munziger and J. Stachel, Nucl. Phys.A606,

320 ~1996!.
@20# NA49 Collaboration, H. Appelshauseret al., Phys. Lett. B

459, 679 ~1999!.
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