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Slowing out of equilibrium near the QCD critical point
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The QCD phase diagram may feature a critical end point at a tempefiaanéd baryon chemical potential
w which is accessible in heavy-ion collisions. The universal long wavelength fluctuations which develop near
this Ising critical point result in experimental signatures which can be used to find the critical point. The
magnitude of the observed effects depends on how large the correlation &ebgtiomes. Because the matter
created in a heavy-ion collision cools through the critical region of the phase diagram in a finite time, critical
slowing down limits the growth of, preventing it from staying in equilibrium. This is the fundamental
nonequilibrium effect which must be calculated in order to make quantitative predictions for experiment. We
use universal nonequilibrium dynamics and phenomenologically motivated values for the necessary nonuni-
versal quantities to estimate how much the growtl¥ & slowed.

PACS numbse(s): 12.38.Mh, 05.70.Jk, 25.75q, 64.60.Ht

I. INTRODUCTION class[11,17. Although the pions remain massive, the corre-
lation length in thes channel diverges due to universal long
wavelength fluctuations of the order parameter. This results
One goal of relativistic heavy-ion collision experiments is i characteristic signatures, analogues of critical opalescence
to explore and map the QCD phase diagram as a function gf the sense that they are unique to collisions which freeze
temperature and baryon chemical potential. Recent theoretiyt near the critical point, which can be used to discdzer
cal developments suggest that a key qualitative feature 7).
namely, a critical point which in a sense defines the land- The position of the critical point is, of course, not univer-
scape to be mapped, may be within reach of discovery anga|. Furthermore, it is sensitive to the value of the strange

analysis by the CERN Super Proton Synchrotf8RS or by quark massue decreases am, is decreasefil], and at some
the BNL Relativistic Heavy lon CollidefRHIC), if data are ¢

: ) <, it reachesug=0 and the transition becomes entirely
taken at several different energids2]. The discovery of the first order[15]. The value ofmS is an open question, but
critical point would in a stroke transform the map of the °

CD oh di f based onl bl “lattice simulations suggest that it is about half the physical
Q phase diagram from one based only on reasonable "}'trange quark ma$46,17, although these results are not yet

ference from universality, lattice gauge theory and mocjel%onclusive[lS]. Of course, experimentalists cannot vany.

into one with a solid experimental bas(]. They can, however, varyg. The BNL Alternating Gradient

In QCD V\./i.th two mr_;\ssles_s quarkm(,,dzp; ms=°) .the. Synchrotron(AGS), with a beam energy of 11 A GeV cor-
phase transition at which chiral symmetry is restored is I|kerres onding ta/S=5 GeV, creates fireballs which freeze out
second order and belongs to the universality clas®@f) P g !

spin models in three dimensiof4]. Below T., chiral sym- rlef;“g ?/OOb—GOO MeV[19%é¥V2egtheltSPS rt'unsf.wiLkE”
metry is broken and there are three massless pionsl At eV (beam energy Vit creates fireballs

=T,, there are four massless degrees of freedom: the pioﬁ@h'Ch freeze out neg~200 MeV [19] RHIC will make
and the sigma. Abov&=T,, the pion and sigma correlation even smaller values qf accessible. By dialing/s and thus

A. The critical point

lengths are degenerate and finite. M, experimenters can find the critical poi&t
In nature, the light quarks are not massless. Because of _ N _
this explicit chiral symmetry breaking, the second-order B. Detecting the critical point

phase transition is replaced by an analytical crossover: phys- pregictingue, and thus suggesting thés to use to find

ics changes dramatically but smoothly in the crossover reg s heyond the reach of present theoretical methods because
gion, and no correlation length diverges. This picture is con-

. . . . _ : me is both nonuniversal and sensitively dependent on the
sistent with present lattice simulatio§], which suggest ass of the strange quark. Crude models suggest that

T~140-190 MeV[6]. i o could be ~600-800 MeV in the absence of the strange
Arguments based on a variety of modgfs-14 indicate  q,ark[11,12]; this in turn suggests that in natuge: may
that the transition as a function dfis first order at largg:.  have of order half this value, and may therefore be accessible
This suggests that the phase diagram features a critical poiat the SPS if the SPS runs witfs<17 GeV. However, at
E at which the line of first order phase transitions present forpresent theorists cannot predict the value .of even ’to
. . l .
p=> ug €nds, as shown in Fig. 1At ug, the phase ransi- \yimin 4 factor of 2. The SPS can search a significant fraction
tion atT=Te is second order and is in the Ising universality ¢ o parameter space: if it does not fiicit will then be up
to the RHIC experiments to map the-<200 MeV region.
Locating E on the phase diagram can only be done con-
41t the up and down quarks were massléssyould be a tricritical ~ vincingly by an experimental discovery. Theorists can, how-
point, at which the first order transition becomes second order. ever, do reasonably well at describing the phenomena that
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occur neaig, thus enabling experimenters to locate it. This is
the goal of Ref[2]. The signatures proposed there are based
on the fact thak is a genuine thermodynamic singularity at
which susceptibilities diverge and the order parameter fluc-
tuates on long wavelengths. The resulting signatures@me
monotonicas a function ofy/s: as this control parameter is
varied, we should see the signatures strengthen and then
weaken again as the critical point is approached and then
passed.

The simplest observables to use are the event-by-event
fluctuations of the mean transverse momentum of the
charged particles in an evept and of the total charged
multiplicity in an eventN. One analysis described in detail in
Ref.[2] is based on the ratio of the width of the true event-
by-event distribution of the meap; to the width of the
distribution in a sample of mixed events. This ratio was FIG. 1. Sketch of the QCD phase diagram as a function of
called VF. NA49 has measuredF =1.002+0.002[20,2], temperaturd and baryon chemical potential. Chiral symmetry is
which is consistent with expectations for noncritical thermo-broken at lowT and u. As T is increased, chiral symmetry is
dynamic fluctuationg. Critical fluctuations of thes field,  approximately restored via a smooth crossover to the lef of a
i.e., the characteristic long wavelength fluctuations of théirst-order phase transition to the right Bf The symmetry is only
order parameter nedE, influence pion momenta via the approxim_a_ltely re_stored bepause the Iight_quarks are not mass_less.
(large omm coupling and increase/E [2]. The effect is A_d the critical pomtE_a_lt whlch the line of flrst-quer phas_e tran§|-
proportional t0§f2reezeoup Where eeeouis the o-field corre- tions ends, the transition is second order and is in the Ising univer-

- . ality class(At large u and smallT, there are color superconduct-
lation length of the Iong-wavelength quc.tuatlons at freezeouf‘ng phases which we do not discuss in this pagne Ising model
[2]. If &qeezeou=6 fm, the ratio \F increases by 10

T ) - : r axis andh axis and the trajectories a, b, and c will be discussed in
—20%, fifty times the statistical error in the present mea-ggc_ .

suremen{?2]. This observable is valuable because data on it

has been analyzed and presented by NA49, and it can there-

fore be used to learn that Pi#b collisions at 158 A GeV do  unusually low momentum pions will be comparable in num-
not freeze out neak. ber to that of the “direct” piongi.e., those which were pions

OncekE is located, however, other observables which areat freezeoytand will result in a large signature.
more sensitive to critical effects will be more useful. For  The variety of observables which should all show non-
example, aJF 4y, defined using only the softest 10% of the monotonic behavior near the critical point is sufficiently
pions in each event, will be much more sensitive to the critigreat that if it were to turn out thate<200 MeV, making
cal long wavelength fluctuations. The highef pions are E inaccessible to the SPS, all four RHIC experiments could
less affected by ther fluctuations[2], and these relatively play a role in the study of the critical point.
unaffected pions dominate the megapof all the pions in the
event. This is why the increase iff near the critical point
will be much less than that ofF . C. How large can & grow?

The multiplicity of soft pions is an example of an observ-
able which may be used to detect the critical fluctuations
without an event-by-event analysis. The post-freezeout deca
of sigmas, which are copious and light at freezeout riear
and which decay subsequently when their mass increas
above twice the pion mass, should result in a population o
pions with pt~m_/2 which appears only for freezeout near
the critical point[2]. If &qeezeoiel/m,;, this population of

i

Our purpose in this paper is to estimate how la§g&cout
an become, thus making the predictions of R2f.for the
agnitude of various signatures more quantitative. In an
é%eal system of infinite size which was held B&ETg; w«
- ME for an infinite time, the correlation lenghwould be
Infinite. Referencé2] estimated that finite size effects lindit
to be about 6 fm at most. We will argue in this paper that
limitations imposed by the finite duration of a heavy-ion col-
lision are more severe, preventirdggfrom growing larger

than about ZF~3 fm.
2In an infinite system made of classical particles which is in ther-
mal equilibrium, VF=1. Bose effects increasgF by 1—2%

[21,2]; an anticorrelation introduced by energy conservation in a D.T- T and T
finite system — when one mode fluctuates up it is more likely for - By reezeout 0
other modes to fluctuate down — decreasés by 1—2 % [2]; We will do the calculation in the next section in the three-

two-track resolution also decreas¢b by 1—2 % [20]. The con-  dimensional Ising model, as appropriate for describing the
tributions due to correlations introduced by resonance decays andniversal dynamics of the long wavelength fluctuations near
due to fluctuations in the flow velocity are each significantly smallerthe critical point. However, in order to relate a calculation in
than 1%[2]. the Ising model to experiments which explore the QCD
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phase diagram, we will need numerical values for three temlocal thermal equilibrium is achieved at a higher temperature
perature scales. Several other nonuniversal quantities witluring the earlier evolution of the plasma created in the col-
also enter our calculation; we will discuss them in the nextlision. We assume early thermé&hlthough not necessarily
section as they arise. We will see that in the end, only onehemica) equilibration, and ask how the system evolves out
combination of nonuniversal quantities plays a role in ourof equilibrium as it passes. More precisely, we will assume
estimates. that when the system has cooledTte T;=180 MeV, itis
We expectTe to be slightly less than the temperature in equilibrium, with §(Tg) = é&.((To)=&,. For the present,
range at which the crossover occurspat 0. We therefore assume that the system cools through the critical pBjrats
take Te.=140 MeV, at the low end of lattice estimates for sketched in trajectorya) of Fig. 1. If it were to cool arbi-
the u=0 crossover temperature. trarily slowly, £=§., would be maintained at all tempera-
As we have discussed at length, we know very little aboutures, and would diverge afl . However, it would take an
me . Fortunately, we will not need a numerical value fog infinite time for & to grow infinitely large. Indeed, near a
below. critical point, the long correlation length results in long
Pb+Pb collisions at 158 A GeV freeze out at about 120equilibration times, a phenomenon known as critical slowing
MeV, and NA49 datd20] demonstrate clearly that they do down. This means that the correlation length cannot grow as
notfreeze out neak [2]. We also know 1] that if the matter fast asé.q, and the system cannot stay in equilibrium.
produced in a heavy-ion collision comes négrthe large We describe the effects of critical slowing down on the
specific heat characteristic Bfwill cause the system to “lin- time development of the correlation leng#ft) using the
ger” — the expansion will cause the energy density to de-following equation form,(t)=1/£(t):
crease as usual, but this will result in an unusually slow
temperature decrease. The freezeout temperature is therefore
expected to be unusually close to the critical temperature for —m,(t)= —F[mo(t)]( m,(t)
collisions which have the appropriateto pass neak. For dt
concreteness, we Wil tak@ eezeoi=130 MeV2 (If the
freeze-out temperature in P#Pb collisions at 158 A GeV is  Here,I' parametrizes the rate at which an out-of-equilibrium
closer to 100 MeV, as some authors estimd4], then it value ofm, approaches its equilibrium value. i, is close
may be better to estimate that collisions which pass Bear to its equilibrium value, the theory of dynamical critical phe-
freezeout allfee o= 120 MeV.) nomend 25] tells us that
Finally, we need to estimafg,, the temperature at which
we can begin an Ising model treatment. The three-

: . ) . . A
dimensional Ising model is only valid close enougtEtthat r(m,)=—
the correlation lengtké>1/Tg. In this critical region, the o
long wavelength fluctuations of the order parameter become

effectively three dimensiona{We will find that £ is never  \yherez is a universal exponent and we have uggdo set
>1/Te. This means that our estimates are not precidé&e  the scale, making a dimensionless constant. Knowing that
need to know how far abovég the equilibrium correlation e are interested in a system which is in the same static
length is larger than T . The model of Ref[11] suggests unijversality class as the three-dimensional Ising modebts
that {e> L/Te for (T—Tg)/Tg=0.2-0.4. This estimate is enough to tell usz. There are in general several different
based on a mean field analysis of a toy model, and so shoulgynamical universality classes corresponding to a given
not be taken too seriously. For concreteness we shall assunggatic universality class. However, knowing in addition that
that £oq=1/Te=¢p at To=180 MeV, 40 MeV aboveTe (i) the chiral order parameter is not a conserved quaritity,
~140. We will usefo=1.4 fm to set the scale below, in the there are other conserved quantities in the system, such as
sense that we will estimate the factor by whiglg, grows as  the baryon number density, arii) there are no Poisson
the system coolsf,=1.4 fm is simply a definitionT,, the  bracket relations between the order parameter and the con-
temperature at which the equilibrium correlation length  served quantities, tells us that our system belongs in the dy-
=&y, Is a quantity which must be estimated and which will namical universality class named model C in Halperin and
affect our results. Hohenberg's classificatiof25] of dynamical critical phe-
nomena, and has

_L> 21
iqn) @Y

(mU§0)ZI (22)

II. SLOWING OUT OF EQUILIBRIUM 7=2+ alv~2.17 (2.3

The nonequilibrium dynamics which we analyze in this
paper is fundamental in the sense that igisaranteedio  where we have taken=0.11 andv=0.630 from Ref[26].
occur in a heavy-ion collision which passes néaeven if  The dimensionless constaAtis nonuniversal. We have no
way to estimate it other than to guess that it is of order 1. We
will explore the sensitivity of our results to different choices
3Note that experimenters do have some control GUgl,eou of A below.

Using smaller ions results in a fireball which freezes out earlier, at We will use the differential equatiof2.1) to analyze how
a largerTheezeoutl 22,23, critical slowing down prevents the correlation lengtlfrom
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“tracking” & T(t)]. Critical slowing down guarantees that smoothly through zero as goes from negative to positive.
the system falls out of equilibrium. Note that the differential For r=0, the order parameter & =sgn()|h|*?, with &
equation has only been derived for small departures fron4.80[26].
equilibrium; oncem,_ — ggql is not small, its use is not quan- We can now discuss how the Ising modelindh axes are
titatively justified? mapped onto theT,x) plane. Ther axis is the direction
We have initial conditions for the differential equation tangential to the line of first order phase transitions ending at
(2.2), namelym,(0)=1/¢,. Therefore, all we need in order E. This is shown in Fig. 1. There is no guarantee thathhe
to solve it is a description of(t). This requiresée(T),  axis is perpendicular to the axis when both are mapped
which we discuss below, and also requires a description ofnto the {T,x) plane. This mapping will in general deform
the coolingT(t). This can be estimated using hydrodynamicthe |sing axes, but we have no way of estimating this
and cascade model calculations, although these desifibe  deformatior? For simplicity, we draw thér axis perpendicu-
assuming the plasma fot cooling near the critical poirE. 3¢ to ther axis in Fig. 1. In thinking through the mapping
Hydrodynamic models(see, e.g., Refs[23,27) describe pepyeen QCD and the Ising model even qualitatively, it is

T(t) at central rapidity in the center of mass frame via important to note that the QCD order parametée chiral
condensatdqq)) is offset with respect to the Ising model

daT 17T order parametefthe magnetizatiotM). In the Ising model,
T e ts (2.4 M =0 at the critical point and along the first-order line one

a B K to '
has phase coexistence between phases wkdseare equal
) ) . . in magnitude and opposite in sign. In QC{yg)+0 at the
Since we are only interested in a relatively small range of " : - .
temperatures arountk, it will suffice for us to tread T/dt critical pointE, because of the explicit breaking of tK4)

as constant in time. We discuss the effects of the time deSymmetry by quark mass terms. NéaKqq) corresponds to
pendence ofi T/dt below. The expressiof2.4) assumes that M plus an offset, and the phase coexistence is between
the T dependence of the energy densityeis T as in a phases with differing values dfgq) which both have the
resonance gas, for whick~6 [28]. The timescald, is not  same sign. In Fig. 1, we take theh side of the Ising coex-
constant over the whole history of the collision. A simplified istence line to correspond to the higher-temperature side of
estimate(made by equating, with the scattering timesug-  the QCD coexistence line, so that increasMgorresponds
gests that in P Pb collisions at 158 A GeM, is between 4 increasing the magnitude (ﬁq}.

and 10 _fm at times Off intere_st to yg7]. This fSLl’ggeTtS The matter created in heavy-ion collisions at SPS energies
—dT/dt=(2—-6) MeV/fm atT=140 MeV. Careful analy- i tojiow a trajectory in the [T, 1) plane which is approxi-

SIS favprsto closer to 4.fm[24]' T.h's agrees with a recent mately vertical as it coolgSee, for example, Ref29].) We
ana(;y|5|s ofh_tr;]ese CO”'S'tonf dL£|'S/I(l;|]tg~t5h(|3/| "{'/I/QfQMD tca_f_cad(%herefore begin by considering trajectdsy of Fig. 1, which
model, ~which = suggests — eviim =~ & follows theh axis, as this is likely not a bad approximation to
=140 MeV[29]. These estimates are all for cooling thr_o_ugh cooling at almost constant.® We have analyzed trajectories
T=140 MeV at au such that one is not near the critical which pass througlE at a variety of angles, for example,

point. As we discussed above, the cooling rate is likely to b&;inia v the trajectoryb) in Fig. 1. The results do not differ

unusually low neaE because of the large specific heat there; - - ; ;
X ) 'qualitatively from those we present in detail for a trajector
we will therefore take-dT/dt~4 MeV/fm as our estimate, q y P y y

. _ ) » along theh axis, unless the trajectory passes throlghl-
noting also that the cooling rate at RHIC will be slower still. .\« naraliel to the axis. At the end of this section, we will
We wish to use the three-dimensional Ising model to de

scribe&e(T,u) nearE. In the Ising model, the order param- ﬂ:ic—.;sseé]tbL(tas(:lgﬁef%rlot;j?gtﬁries such(@sin Fig. 1, which
eterM (the magnetizationand the correlation lengtti are Let us take the initial témperature in our calculatidn
functions of the reduced temperaturand the magnetic field _+ _ 139 meV. to correspond th=hy=—0.2. Along the’

h. [In the Ising modelr is defined as T—T.)/T. and is 0 ’ 0 o

usually called; we reserve the symbolfor time, however

The critical point is atr=h=0; at this point, M=0 and . _ _ _
£eq— . Forr<o, there is a first order phase transition as a "I the electroweak phase diagram as a functio @ind Higgs
function of h at h=0 betweenM :|r|B for h=0+ andM massm , the_rt_e is als_o a line of first ord_er phase_transmons end_mg
_ _|r|ﬁ for h=0—. The exponent i$=0.326 for the three- at an Ising critical point. Here, the explicit mapping between Ising

dimensional Ising model[26]. For r>0, M increases axes and theT,my) plane has been constructgD]. This is pos-
’ sible only because there are reliable numerical methods for analyz-

ing the full, nonuniversal theory in thel(m,) plane. Universality
arguments alone, which is all that we have at our disposal in the
“For example, one might try the equatiog/dt=—T"(¢— €ed) absence of lattice simulations at nonzerpdo not tell us how the
instead of Eq(2.1) for dm,/dt. These two equations give the same Ising axes should be deformed in thE, ) plane of Fig. 1.
results for small departures from equilibrium, but they do not agree ®Note that ther direction, corresponding to the reduced tempera-
in all circumstances. For example, in a system which is not coolingure direction in the Ising model, is almost perpendicular toThe
and which had = Tg andé.4= for all time, only Eq.(2.1) yields direction in QCD. This is another reason why we have labeled it by
the correct result, namelyn, (t)~t~# at late time. a letter other than.
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h axis,’ as in trajectorya), the equilibrium correlation length
is a power law inh;

Eedh)= (2.9

h —vIBS
o
where we have normalizegiby settingé.{(ho)=1. That is,
we measuré in units of §,=1.4 fm. With units chosen, we
can now rewrite Eq(2.1) which describes the dynamics of
the growth of the correlation length=1/m, in terms of
Ising model variables as

L) 26
G 29

where the nonuniversal constamnis related to the other non-
universal parameters we have discussed by

dh| =t hy dT| !
dt)  \To-Te dt) -

d
o) =—alm,(h)] (m,,<h>—

a=A

(2.7

Nonuniversal parameters appear in E@.6) only in the
single combinatiora. Taking the nonuniversal constant from
Eq. (2.2 to beA~1, using T;—Tg)=40 MeV, dT/dt=
—4 MeV/fm, andhy=—0.2 yields the estimate
a~50. (2.9

In fact, becausé.(h) is a power law irh, if one changes,
and then redefines the units §fso thaté.(ho) is again set

PHYSICAL REVIEW D61 105017

Eh)
131

-0.2 -0.15 -0.1 -0.05

FIG. 2. Behavior of the correlation length for cooling through
the critical point along thé axis of Fig. 1. The equilibrium corre-
lation length is shown as a dashed line. The true correlation length
is shown for(bottom to top a=25,50,100. Our units, described in
the text, are such thah=-0.2-0.1,0,0.1 corresponds td
=180,160,140,120 MeV, and is measured in units of¢,
=14 fm.

Third, since previous work2] suggests that finite size
effects limit ¢ to £<6 fm, we conclude that slowing out of
equilibrium (i.e., the combination of finite time and critical
slowing dowrn imposes the more stringent constraint &in
We have analyzed this nonequilibrium effect as if the system
were spatially homogeneous. Had we found correlation
lengths growing beyond 6 fm, we would have to do a much

to one, Eq.(2.6) is unaffected. Our results are therefore de-,qre complicated analysis, taking both the finite time and

termined solely byA, (To—Tg) and dT/dt in the single

the inhomogeneous spatial dynamics into account. Since we

combinationa, together with the assumption that the systemsiq that¢£ only grows to about 3 fm, this is not necessary.

begins in equilibrium af =T,.

We can now use Eq2.6) to learn how muché grows
relative toy,=1.4 fm. Given the uncertainties in the deter-
mination ofa, in Fig. 2 we showé(h) obtained by solving
Eq. (2.6 for a=25,50,100. Four lessons are apparent.

First, critical slowing down has a large effect. Although
by assumption we begin in thermal equilibrium wigh- £
at T=T,, the fact that the dynamics slows down in the vi-
cinity of E prevents¢ from tracking é.q and growing very
large.

Fourth, just as critical slowing down preven{sfrom
growing as fast ag.,does, it also preventsfrom shrinking
as fast asg, does afterE has been passed. Whether we
estimateT jeezeout- 130 MeV (corresponding tdv=0.05) or
~120 MeV (h=0.1) for trajectories passing ne&; one
finds &qreezeout-2&0- We can also argue that even if aras
large as 1000 were possible, our conclusions would be little
affected: Ifa=1000, and follows & closely enough that it
increases to &,, & also tracksf.q more closely as it de-
creases belowg. If a=1000, it turns out that is quite

Second, our results do not depend sensitively on the pgjoge t0éeq by the timeh=0.05. Thus, although increasiag
rametera. This is fortunate, since there are so many unceryq 3 ridiculous extent does increase the maximum valug of

tainties involved in estimatinga. For a=25,50,100, the
maximum correlation length which is achieved is
1.8, 2.1&,, 2.5¢,, correspondingto 2.6, 3.0, 3.4 fm. This

it has little effect on&geezeoune ThiS IS further evidence that
although our estimatéeeseoii-2£0~3 fm is qualitative, it
is robust.

means that although our estimate is only qualitative, it is  pq 5 dependence of the maximum value attainedéby

clear that¢ cannot grow as large as 6 fifT.o obtain a maxi-
mum value ofé=4¢, would requirea= 1000. Althougha is
uncertain, this large a value seems out of the questidie
estimate that grows to about twicet,, corresponding to
approximately 3 fm.

"Along ther axis, o1 ", along theh axis, £~h~ /A2, for
trajectories such a&) of Fig. 1 which pass througk at generic
angles, the larger exponent/(36) is the relevant one. Our-axis
analysis is therefore a good guide to the generic case.

can be understood analytically at large For largea, m,
tracks its equilibrium valuen®= |h/hg|*#? well until |h/h|
is quite small. If we definee=m,—mZ?, we can use Eq.
(2.6) to show thate<m¢ as long as

h 1/(1+2v/ B5)

he

v 1

Boa (2.9

If we assume that oncé begins to drop out of equilibrium

105017-5



BORIS BERDNIKOV AND KRISHNA RAJAGOPAL PHYSICAL REVIEW D61 105017

(i.e., oncee begins to grow comparable oY, little further E(h)
growth of ¢ occurs beforé reaches its maximum, we predict
that ¢ will peak at

gma&(ca)vlﬂél(l+zvlﬂ5):(Ca)0.215, (21@

for some constant. The maxima of solutions to Eq2.6)
obtained numerically follow this scaling relatiofwith c
=0.65) quite accurately onaa>1000 or so. Even at much
smallera, as in Fig. 2,£™is within a few percent of that in
Eqg. (2.10. This scaling relation explains why our results are
so weakly dependent om Note that even with the scaling
relation in hand, full solutions as in Fig. 2 are of value be- h
cause they allow us to estimaggee cou@Nd NOt jUSEE ax. -0.2 -0.15 -0.1 -0.05 0.05 0.1

We have to this point assumed thdl/dt is approxi- FIG. 3. The dashed curves shdyh) for trajectories withtop
mately constant as the system cools throdgh This is an to bottom) r=0.12, 0.19, 0.33. The solid curves show the corre-

oversimplification. It is more reasonable to assume tha&ponding nonequilibrium correlation lengtiés assuminga=50.

ds/dt is approximately constant, whesds the entropy den-  cyrves with differentr have each been normalized to begin at
sity. Since &(hg)=1.

d_T: i d_s (2.11) sion for &q(r,h) near the critical point. We use this expres-
dt Cydt sion to evaluatet(h) for trajectories parallel to thé axis
. ) with r=0.12, r=0.19, andr =0.33, for which¢., peaks at

and the specific healy is peaked afle, we expect that 4. 3¢ and 2,. The results are shown in Fig. 3 in which
dT/dt is unusually small neafg. As we discussed above, \yao have takera=50. Note that in plotting Fig. 3 we have
this “lingering” results in a Tfeezeout Which is unusually definedé,= £(r,ho) = 1 anew for each. We see that as long
close toTg [1]. Here, we estimate the effect of I.irllgering near as.qpeaks at J, or higher, the dynamics afis almost the
E on the growth of. Along theh axis, the specific heat due game a5 for the trajectory of Fig. 2 which goes precisely
to the long wavelength sigma fluctuations divergesCas  hroughE. Even for a trajectory which missé&by enough
~h™#2~ 1" in thermal equilibrium{1]. The exponenty  that ¢ peaks at only 2, the actual correlation lengtt
=1.240[26]. We takeCy=c;+¢,£""", wherec is the Spe-  grows by a factor which is within 20% of that for trajectories
cific heat due to all the degrees of freedom other than thghich pass arbitrarily close tB. Just as the growth of is
sigma and is smooth nedk . Note thatCy depends on the (opust with respect to changesanit is robust with respect
actual correlation lengti, and not onéeq. In our dynamical o how close the trajectory comes o for those trajectories
nonequilibrium setting, therefor€,, peaks but does not di- \yhich come close enough.

verge. We can implement lingering in our calculation by  Qur analysis is not sufficient to describe the dynamics for

replacing the constart in Eq. (2.6) by those trajectories which pass to the first order sideEpf
e because we do not treat the dynamics of bubble nucleation
a(h)=a[(1—b)+b[m,(h)]" "], (212 and phase coexistence. Near enougtEtdhough, the first

order transition is so weak that it will not have detectable
effects given the finite length and time scales in a heavy-ion
collision, and the physics is likely qualitatively similar to
hat we have analyzed on the crossover siddc.ofarther
om E on the first order side, this is not the case. Farther
from E, though, the correlation length is never large.

Here, a is the same constant as before and the condtant
=c,/(c,+Cy) is the fraction of the specific heat &t=T,
which is due to sigma fluctuations. This fraction is perhap
about 0.1 and is surely less than 0.25. As the system coo
from T,y to Tg, the sigma contribution t&C,, grows and
peaks. We find that changing constanto a(h) as in Eq.
(2.12 with b=0.25 increases§,,, by about 10% beyond that
shown in Fig. 2, and increas&geeseoutby SOMewhat less.
For b=0.1, the increase i, is about 5%. We conclude Our results have a number of consequences which should
that because&C,, receives contributions from all degrees of be taken into account both in planning experimental searches
freedom and not just from the sigma fluctuations, and befor the QCD critical point, and in planning future theoretical
causeCy, similar to ¢, peaks but does not diverge, the re- work.
duction indT/dt nearE is not large enough to significantly Because of critical slowing down, the correlation length
increase beyond our previous estimates. in a heavy-ion collision cannot grow as fast as it would in
We now ask how much our results change if we consideequilibrium; this means thacezcoudS likely about 3 fm for
trajectories such a&) in Fig. 1 which come close to, but trajectories passing ne&t Although finite size effects alone
miss, E. Our analysis can easily be extended to cover thosevould allow a correlation length as large as 6 fm, this is
trajectories which pasg& on the crossover sider£0; T unrealistic to expect in a heavy-ion collision. This effect
<Tg). In an appendix, we present the Ising model expresarises due toguaranteednonequilibrium physics: even if

Ill. CONSEQUENCES
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heavy-ion collisions achieve local thermal equilibrium abovesions and the analysis of data from these collisions proceed.
the transition, as we have assumed, if they cool through th# seems, though, that the uncertaintyAnvill prevent a fully
transition near the critical point they must “slow out of equi- quantitative calculation o& for the foreseeable future. Our
librium.” By this we mean that the correlation length cannotresults are sufficiently insensitive @ that they suffice to
grow as it would in equilibrium, because the long wave-estimate the magnitude of signatures; when these signatures
length dynamics are slow nebr are found, perhaps they will give us more quantitative infor-
Critical slowing down also prevents the correlation lengthmation about the nonuniversal quantities which go iato
from decreasing quickly after passing the critical point. One Knowing that we are looking fo&;eezeq=3 fm is very
therefore need not worry about decreasing significantly helpful in suggesting how to employ the signatures described
between the phase transition and freezeout. in detail in Ref.[2]. The excess of pions witpr~m_/2
One need not hiE precisely in order to find it. The results arising from post-freezeout decay of sigmas is large as long
shown in Fig. 3 demonstrate that if one were to do a scams &qeezeoui-1/M,;, and does not increase much further if
with collisions at many finely spaced values of the energyéeeseoutlS longer. This makes it an ideal signature. The in-
and thusu, one would see signatures &f with approxi-  crease in the event-by-event fluctuations in the mean trans-
mately the same magnitude over a broad range.ofThe  verse momentum of the charged pions in an eyeescribed
magnitude of the signatures will not be narrowly peaked ay the ratio\F of Ref.[2]) is proportional t0£2.q,e0,s The
w is varied. As long as one gets close enouglEtthat the  results of Ref[2] suggest that foEeeseoir3 M, this will
equilibrium correlation length is (23)¢&,, the actual corre- pe a 3—5 % effect. This is ten to twenty times larger than the
lation lengthé will grow to ~2&,. There is no advantage to statistical error in the present NA49 data, but not so large as
getting closer tde, because critical slowing down preverts to make one confident of using this alone as a signature for
from getting much larger even if., does. Data at many E. The solution is to use signatures which focus on the event-
finely spaced values qi is not called for® by-event fluctuations of only the low momentum pions. Un-
Only one combination of the nonuniversal quantitiesusual event-by-event fluctuations in the pion momenta arise
(called a above plays an important role in estimating the via the coupling between the pions and the sigma order pa-
dynamics of¢. The uncertainty ira is the sum of that in its rameter which, at freezeout, is fluctuating with correlation
three factorsA [the nonuniversal constant in the dynamical length &qee,600: This interaction has the largest effect on the
scaling law(2.2)], dT/dt andT,— T Itis already fortunate  softest piong2]. \Fs. described in the Introduction, is a
that only one combinatioa matters; it is even more fortu- good example of an observable which takes advantage of
nate that our results are not very sensitive to the value of this. Depending on the details of the cuts used to define it, it
This means that although our results are not completelghould be enhanced by many tens of percent in collisions
quantitative, they are robust. In addition to the uncertainty inpassing neaE. Referencd2] suggests other such observ-
a, however, our results cannot be treated as precise becaugbles, and more can surely be found. Together, the excess
the QCD dynamics are precisely described by the threemultiplicity at low momentum(due to post-freezeout sigma
dimensional Ising model dynamics only§®1/T¢, and we  decay$ and the excess event-by-event fluctuation of the mo-
have found that does not grow beyond-2/T¢. menta of the low momentum pioridue to their coupling to
There are a number of steps that could be taken in futuréhe order parameter which is fluctuating with correlation
work to refine our estimate. One could do a more completéength &;.0,000 Should allow a convincing detection of the
job of analyzing the universal dynamics of a system whichgritical pointE. Both should behave nonmonotonically as the
passes near an lIsing critical point. For example, instead ddollision energy, and henge, are varied. Both should peak
simply writing a differential equation fo, one could follow  for those heavy-ion collisions which freeze out n&awith
the full (3+1)-dimensional dynamics in a Langevin simula- & ..,coic3 fm.
tion, from which one would measuée Doing this, however,
would still leave one facing the same nonuniversal uncertain-
ties which we face in our treatment. If we simply ask how to ACKNOWLEDGMENTS
reduce the uncertainty ia, perhaps the hardest part of this . .
task would be a reliable calculation &f as that would re- \Il\/e _acknowlec_ige helpﬂ;}l con\liersagons with JH Bower_?_,hB.
quire a reliable calculational method for QCD dynamics atHa perin, U. Heinz, E Shuryak, and M. Stephanov. This
nonzerol andw. The other two ingredients iaare likely to work was supported in part by the U.S. Department of En-

. P . ergy(D.O.E) under cooperative research agreement No. DF-
become better known as the modeling of heavy-ion colli FC02-04ER40818. The work of K.R. was supported in part

by the DOE OJI program and by the Alfred P. Sloan Foun-
dation.
8Analysis within the toy model of Ref11] suggests that in the
absence of the strange quark, the rangeuofover which &g

>2 fm is aboutAu~120 MeV for ug~800 MeV. Similar re- APPENDIX: EQUILIBRIUM CORRELATION LENGTH
sults can be obtaind@1] within a random matrix modgl2]. It is ) . ]
likely overoptimistic to estimaté\ x~120 MeV when the effects In this appendix we present the equations that we used to

of the strange quark are included apng itself is reduced. A con- calqulate the equi_librium correlation lenggh, in the critical
servative estimate would be to use the models to estimate th&egion as a function of reduced temperaturand external
Apl pe~15%. magnetic fieldh. We use Widom'’s scaling forri82]
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FIG. 4. Order parametémagnetizationin the 3D Ising model
as a function of reduced temperaturand applied fielch.

r]

2 20— 218
£5{r.m) =122l L

; (A1)

in which M is the magnetization and=0.630 and g

PHYSICAL REVIEW D61 105017

FIG. 5. Equilibrium correlation length as a function of reduced
temperature and applied fielch.

and we therefore construct a functigx) which smoothly
interpolates betweegy,4{X) at largex andg,(x) at smaller
X. The only remaining difficulty is at=0, M=0. Although

the scaling form(Al) with Eq. (A3) is well-behaved in the

=0.326 are the three-dimensional Ising model critical expoM—0 limit, and yields

nents[26]. Thee expansion ofy(x) is given in Ref[32] to
ordere?

g(x)=g£(x)=6‘2”z[ 1- 316[(5+6 In3)z—6(1+2)Inz]

1+272
72

2

z 1
2 R _
+e In z+(18(z 2)(1 In3)

1 1622 47 56 |
216 13732

ol 2| 6In?3+4In3-10|22
+Z6?+§+ n“3+4In3— z

! (6| 23+44| 3+ 137+8|) ]
—=—|6In = In3+—+ 31z,
216 3 9 3 (A2)

where

2 1n[x(1—x
ZE—X and IEJ de~—2.344.

0 1—Xx(1—x)
1+§

Eed r=0M—0)=f|r| ",

at M=0 the scaling form is indeterminate and one must
impose the conditioe((r=0,M =0)=§&.(r=0M—0).

We wantée{r,h). With &.(r,M) in hand, we must now
obtain the magnetizatioM (r,h). The most convenient form
for our purposes is the parametric equation of steée Refs.
[26,32,33):

M =M R?4,
h=hoR??h(6) =hyRP%(6—0.76208H°+ 0.00804°),

r=R(1- 6?). (Ad)

HereM, r, andh are parametrized in terms of the “radius”
R=0 and “polar angle” 8. =0 corresponds t@d>0, h
=0; #=*1 corresponds to=0 with positive and negative
h, respectively.h(6) is zero até=+1.154, which corre-
sponds tor<Oh=+0. The functionh(6) in Eq. (A4) is
from Ref.[26], where it is constructed to be consistent with
all that is known from thes expansion, from perturbation

fin Eg. (Al) is a nonuniversal normalization constant, oftentheory, and from resummations thereof. We choose the nor-

set to 1. Our choice df and thus of units fog is described

in Sec. Il. The expressiofA2) is valid everywhere on the
(r,M) plane except the region of large(or, equivalently,

r>|M|YF). The correct result at largeis

2v
: (A3)

1

glarge(x) = m

malization constantM, and hy so thatM(r=—-1h=0)
=1 andM(r=0h=1)=1. This guarantees that along the
negativer axis M(r,h=0)=|r| # and along theh axis

M (r=0,h)=sgn()|h|~%. Numerically solving the last two
equations of Eq(A4) for Rand g in terms ofr andh, we use
the first one to comput®(r,h), shown in Fig. 4. This al-
lows us to obtairg.(r,h), shown in Fig. 5.
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