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Creation and evolution of magnetic helicity
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Projecting a non-AbeliaisU(2) vacuum gauge field—a pure gauge constructed from the group element
U—onto a fixed(electromagneticdirection in isospace gives rise to a nontrivial magnetic field, with nonva-
nishing magnetic helicity, which coincides with the winding numbetJofAlthough the helicity is not con-
served under Maxwellvacuum evolution, it retains one-half its initial value at infinite time.

PACS numbd(s): 11.10.Ef

I. INTRODUCTION whereE-b+0. Therefore, it is interesting to determine what
happens to the magnetic helicity under Maxwell evolution.
It has been suggested that primordial magnetic fields cagpecifically, we posit that at=0 there are magnetic fields
develop large correlation lengths provided they carry a nonwith quantized helicity, and no electric fields. With this ini-
vanishing “magnetic helicity” fd®ra-b, a quantity known tial data, we solve the Maxwell equations and find that at
to particle physicists as the Abelian, Euclidean Chern-=c the helicity is precisely half its initial value. The calcu-
Simons term. Here is an Abelian gauge potential for the Ilation is carried out explicitly for two interesting casg@ste-
magnetic fieldo=V Xa. If there exists a period of decaying ger and half-integer quantand then a general argument is
turbulence in the early universe, which can occur after ajiven, which requires a regularity hypothesis.
first-order phase transition, a magnetic field with nonvanish- |n Sec. II, we describe how to construct from non-Abelian
ing helicity could have relaxed to a large-scale configurationyacuum fields Abelian gauge fields with quantized helicity.

which enjoys force-free dynamiasource currents for the In Sec. Ill, we study time evolution. Concluding remarks
magnetic fields proportional to the fields themsejtsreby  comprise Sec. IV, where we also speculate on the applicabil-
avoiding dissipatiori1]. ity of these mathematical considerations to tB&J(2)

In this paper we accomplish two things. First we showx U(1) “standard model,” before and after its electroweak
that configurations of & b), with quantized helicity, arise phase transition.
from vacuum configurations of a non-Abeli&i(2) vector

potential. The quantization occurs becauagb) wind and Il. HELICITY OF GAUGE FIELDS
intertwine in an intricate manner. We relate this “winding _
number” of our Abelian fields to the topological properties A. Chern-Simons structures

of the structures in a non-Abelig®U(2) gauge group. Our  The Chern-Simons number of a non-Abelian gauge poten-
construction is based dri3(S;), which is relevant to a non- g A% is given by

Abelian gauge theory in 3-spad@.he construction can also
be described in terms of Hopf maps aid(S,), which have 1 -
already appeared in the literat|t2]; we show how our ex- CSA)= —Zf dr ek (ARG AT+ FTPPARAPAY)
pressions appear in that formalign©nly integer winding 16m
numbers occur in the mathematical setting Ib§(S;3) or 1
I15(S,); yet we find that half-integer windings also lead to =_ _f d3re”ktr(AiajAk+ %Ai[Aj Ad)
interesting Abelian gauge fields. 8?2
Second, we study the time evolution of the magnetic he-

- . 1
licity. Since =— —f tr(AdA+ 2A3). (2.1
8m?

d
— 3 . e 3 .
dtJ dra-b 2J’ d*rE-b, In the second equality, th&, are elements of the Lie algebra

with generatorsr?,
as a consequence of the definition for the electric fiéld,
time variation is determined by the specific physical situation ~ A;=AT2, [T3TP]=f,, T¢, trT3T°=—6,,/2,
that fixeskE- b. For plasma physics or magnetohydrodynam- _
ics the projection oE ontob is proportional to the resistivity while form notation is used in the third equalith=A;dx'.
of the medium, and vanishes for infinite conductivigero  The normalization factor 1/46 is chosen for later conve-
resistivity); see Sec. IV. In that approximation, helicity is nience, and is also maintained in the Abelian limit, where
conserved. However, cosmological electromagnetic fieldsonly the bilinear part of Eq(2.1) survives. Thus our Chern-
can be expected also to experience evolution in vacuunSimons quantity is 1/16° times the magnetic helicity,
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which entered physics in the work of Wolti¢8] and was B. Constructing an Abelian gauge field

subsequently further elaborated by many workers, including ~gnsider next the Abelian gauge potential 1-faameon-
Moffatt [4] and Berger and Fielfd], as well as Amold and  gi,cted from a non-Abelian vacuum configuration 'dU

Khesin[4]. Par'ticle physicis?s have considered bo.th AbglianPy projecting the latter on a fixed direction in isospace,
and non-Abelian Chern-Simons terms on 3-dimensional .

Minkowski space in studies of (21)-dimensional gauge specified by a constant unit vectof
theorieg[5]. a1
To show how Abelian fields with nonvanishing and quan- a=itrniotU-"du. (.83
tized helicity arise from non-Abelian vacuum configurations, |n components, this reads
we recall first that under a gauge transformation
=n2A42
A—AY=U"TAU+U"1dU, 2.2 a=mA (280
whereA? is the vacuun{pure gaugenon-Abelian potential,

whereU is an element of the gauge group, the Chern-Simons A

g
term transforms as U-lg,U :Aia§1 2.9
1
CSAY)=CSA)+ FJ d(trduuU ~*A) which satisfies
ar
k9 A=~ 3 €leapcA DAL (2.10
1 _
+ 4472f tr(U~*du)®. (2.3 and carries the winding number
. - 1 .
With sufficiently regularA and U, the second term on the W(U)=— Zf PBr EukeabOAiaA]bAE_ (2.12)
right side integrates to zef6]. However, the last term, also 96m

a total derivative—although that is not apparent from its for- ) )

mula (but see beloyw—depends only on the group element, NOte thata is notan Abelian pure gauge. o

and is not damped by any falloff & Indeed its value is the W€ now show that the magnetic helicity afcoincides
winding number o, which effects a mapping from 3-space With W(U). The magnetic helicity, with our normalization,

into the group: is given by

1 H(a)= —1 j d*re*a;0a

W(U)= ” zf tr(U~*du)3. (2.4) 1672 %k
T
1 ... .

W(U) is an integer wherJ is nonsingular for finiter and = —znaan d3re”kA?a,-AE
tends to= 1 at infinity, for then 3-space can be compactified 167
to the 3-sphere, and we assume that the gauge group contains 1
SU(2). Thus we are relying 0|]|13(SU(2))=H3(83)= in- - _ﬁaﬁbf dBrA?GijkEbch}:AE
tegers. It follows therefore that the Chern-Simons number of 3272

a non-Abelian vacuum gauge potential, that is, one which is (2.123
a pure gauge :

where Eqgs(2.8) and(2.10 have been used. But
A=U"1du, (2.5
. - fijkA?A}:AE: %facdfijkfa’b’c’A?,A?,Aﬁl .
is the winding number ob.
Let us now specialize t&U(2). Then U involves the Thus
Pauli matricest®=¢?/2i,

1 -
ara R — _ 3, Ajk a, b qc_
U=e“"T*=cosf/2— i adsinf/2, 2.6 H(a) %sz dr € eapcA A ] A=W(U)

(2.12h
and the winding number is explicitly seen to involve a total _ S _
derivative[7], and we conclude that the magnetic helicity is quantized by

the winding number of the non-Abelian vacuum configura-
tion.
W(U)=— ! zf d(€apc0?dwPdo’(f —sinf)) (2.7) The form of the Abelian potentia may be given explic-
167 itly. Parametrizing the unit vectap? as
where®? is a unit vector in isospaces®= »?f. w?=(sin® cos®d, sin® sind, cosO) (2.13
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and takingn? to point in the third(electromagneticdirec-
tion, we find

a=cosOdf — (sinf)sin®d® — (1—cosf)sirrOdd.
(2.143

An alternate formula presents ER.143 in “Clebsch”
form, which will be useful laterithe Clebsch form for an
arbitrary 3-vectorV is V=V y+aV B where y,a,B are
three scalar functions

a=d(—2®)+2[1— (sir?f/2)sir?O ]

Xd(® +tan Y[ (tanf/2)cosO]). (2.14bh

The magnetic field is determined by the 2-form obtained

from Eq. (2.143,
da=sin®[(1—cosf)dfd® —2(1— cosf)cos®dO dd
+(sinf)sin®dddf], (2.15a
or from the Clebsch expressid@.14b:

da= —2d((sir’f/2)sirf®)d(d +tan [ (tanf/2)cosO]).
(2.15h

Finally the magnetic helicity becomes, according to Eqs

(2.143 and(2.153,
H(a)=— ij (1—cosf)sin®dfdedd (2.163
- 872 '
or, from Eqgs.(2.14bH and(2.15b,
H(a)= if dd d((sirtf/2)si’®)
- 472

X d(tan [ (tanf/2)cosO]). (2.16b

In the Clebsch parametrization, the magnetic helicity is seen
to involve integration of a total derivative and is therefore

given by a surface integral.

The explicit Clebsch expressions farand da demon-
strate that one may find two magnetic surfac&s, (n
=1,2), which satisfy ddS,=b-VS,=0:

S;=(sinf/2)sin®=c
S,=® +tan [ (tanf/2)cosO = ¢,

(2.17

C,¢o constants.

The intersection of these surfaces forms magnetic lines, that

is, integral curves ob that solve the dynamical system

dr(7)
dr

=b(r(7)) (2.18
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cosf/2=1—c?cod P — ¢y)

C

VSIRZ(® — ¢pg) + c2coL(D — o)
(2.19

sin® =

C. Hopf mapping

It is known that the Abelian Chern-Simons term can be
related to the degree of the Hopf map, which is quantized
according toll5(S,) [2]. The construction of the relevant
vector potential proceeds in the following manner. Consider

a complex spinor
up
u:
Uz

with u* u=|u,|?+|u,|>=1. ThenN3=u* ¢2u is a unit vec-
tor and the Hopf curvature is defined by

i 1 ijk a b c
b :Zf Each &]N ﬂkN . (22@
Becausé' is divergence free, it can be written as the curl of
a potentiala; given by —iu*g;u. By comparison with Eq.

(2.14b we find that our potential arises whers chosen as

\/1_ (sinzf/2)sin2®e2i tan~ 1[(tan f/2) (cosO)]
u= .
(sinf/2)sin@e~2®

(2.21

and the Hopf index coincides with the helicity of the here-
constructed 4,b).

Evidently, the present expressions are awkward when
compared to those based Hi(S;), presumably because the
latter construction is directly related to gauge fields.

D. Explicit expressions

Henceforth we work with explicit expressions obtained by
identifying w® in Eq. (2.6) with the radial unit vector? and
takingf to depend only om. This further means th& in ®
in Eq. (2.13 are identified with polar and azimuthal angles
of spherical coordinateg and ¢, with ranges 6 <= and
0=< ¢=<2 respectively.(A simple generalization would be
to identify ® and® with integer multiples of# and ¢.) The
magnetic helicity(2.16) then becomes

H= 1Fddf'f—lf'f
__2_” O ra( _Sln )__2_”( _Sln )r:
(2.22

where we have takefi(0) to vanish. Observe that when
sinf(«) is nonvanishindH is an irrational and transcendental
number. Whenf(e) is an even integer multiple ofr,

sinf(«) vanishes andH is an integer. But note that also an

wherer is an evolution parameter for the dynamical systemodd integer multiple ofw for f(e) leads to vanishing
Evidently, for our configuration this problem is integrable, sinf() and a half-integer value fdf. Therefore it appears

leading to curves given by

to us that configurations with half-integer magnetic helicity
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are also singled out. The half-integer fields share furthesources. However, the potential in E@.23 is not trans-
good properties with the integer-valued configurations: weverse for generdl Transversality may be achieved in one of
shall show below that only for these two the winding numbertwo ways. We may perform a gauge transformation, trans-
does not change under the gauge transformation to the Cofsrming a to a transverse expressial. Alternatively, we

lomb gauge.

may choose the functioihso thata is transverse. We discuss

When reference is made back to the non-Abelian vacuunthese two possibilities in turn.

configuration, which determines we see from Eq(2.6) that
for the integer windingdJ —,_..*1, as expected. For the
half-integer ones, a “hedgehog” asymptote is attained:
= etioT.

The vector potentiah and the magnetic field=V X a are
neatly described by spherical components, which ¢ria-
dependent:

a,=(coshH)f’ (2.23a
1
a,=—(sin6) Fsinf (2.23b
1
a,=—(sin G)F(l—cosf) (2.230
1
b,= —2(cos€)—2(1—cosf) (2.243
r
b,=(sino) Tsinf (2.24h
b,=(sin H)T(l—cosf). (2.240

(The prime denotes differentiation with respectrtd The
Clebsch representatio®.14b, (2.15h and (2.16b gives a
clear picture of the helicity. From E¢2.16H we have

e 1fd3 bl 1fd3 1 (a
8 "oi¢ = gx2) “'rsing ﬁ(ﬁ

b¢ .
(2.253

_Sinceb¢ is ¢ independent, the integration is trivial, leav-
ing

H

1 (= (=
- Ejo d@JO rdrb¢|¢:2ﬂ. (225b

The integral is over the positive{x,z) half-plane and,, is
the toroidal magnetic field, perpendicular to that planeHSo

measures the flux of the toroidal magnetic field through a

half-plane.

The transversality condition affects only the poloidal
components of (a, anda,), because the toroidal compo-
nent @,) is ¢ independent. By using a gauge function pro-
portional to cog times a function of, one can choose that
function so that the resulting, gauge equivalent potential is
transverse. The components of the transverse potential then
read

a; =(cosf)F

1
agz—(sine)E(PF)’

. 1
ag=—(sin a)F(l—cosf)

, [~dr’ . 4 (r .
F(r)ng —(f—smf)——3 Sf dr'r’(f—sinf).
r r’2 r 0

(2.26

Of course the magnetic field remains unchanged, but we
must still check the helicity integral: while the integrand is
gauge dependent, the integral changes only be a surface
term. It may be that the above gauge transformation contrib-
utes from the surface. Indeed this happens for geriecale
finds

1 .
H(a")=H(a)+ G(l—cosf)smf (2.27

r=cw

and the helicity of the gauge equivalent, transverse configu-
ration differs from the original expression. However, if, and
only if, f goes at infiniter to an even or odd multiple ofr,
the gauge variance vanishes. Thus both integer and half-
integer windings are stable against this gauge transformation,
which renders the potential transverse, but for other, irratio-
nal windings, the “winding number” loses its meaning be-
cause it is gauge dependg#f.

The other way to achieve transversality is to impose that
condition on the original configuratiof2.23), thereby deter-
mining f. Transversality requires thétsatisfy

r2f”+2rf’ —2 sinf=0. (2.28

Note that the functions occurring in our Clebsch param-Although this equation cannot be solved by elementary func-
etrization are multivalued, owing to the presence of the nations, it is easily analyzed by analogy to a mechanical prob-

ked azimuthal angleb and the tan®. This is as it must be,
because the helicity is nonvanishif&). Indeed the multival-
uedness ofp is responsible for the nonzero value of tie
“surface” integral (2.25), which reproduces the helicity.
When usinga in a description of electromagnetic fields,
we are effectively in thea®=0, Weyl gauge. But also the

lem where “time” is Inr/ry. One finds two solutions that are
regular at the origin, vanishing linearly withand tending to

*+ 77 in an oscillatory manner for large Moreover, the scale

of r is arbitrary: the solutions are a universal functiorr bf,

and its negative; the positive solution is plotted in Fig. 1.
Evidently this transverse potential necessarily corresponds to

vector potential must be transverse since there are nbalf-integer winding 10].
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0.5

FIG. 1. Profile of regular solution t¢2.28 (solid line) and
profile of 2 tar x/2, which possesses the same 0 andx=o
asymptotegdashed ling

Ill. TIME EVOLUTION

PHYSICAL REVIEW D61 105015

The former, with f—,_ _, corresponds to half-integer
winding; for the latterf —,_ .27, one has integer winding,
and also the energy density is spherically symmetric; see Eg.
(3.2 [10,11. The corresponding magnetic fields are

half-integer winding b, = — 4(cos#)

r2+r3

2
b,=4(sin e)r—o
¢ (r’+

According to Maxwell's vacuum equations the transverse
vector potential satisfies the wave equation, which we inte-
grate subject to the initial condition thatis given at time
t=0 by Eq. (2.26, with a definite choice foif, and that
(d/dt)ais zero. Thus, at initial time, there is no electric field

ra)?
b,=4(sin6) —°
=4(sinf) ———
¢ (r2+r3)?
(3.49
r2
integer winding b, = — 16(cos#)
' (r2+r3)?
2.2 2
. ro(rg=r9)
by=16(sin0)—————
o= 18 )(r2+r§)3
b,=32(sin6) o
=32(sinf) ———.
’ (r2+15)?
(3.4b

and only the magnetic fiel(R.24) is present, maintained for The time-evolved fields are obtained by standard Fourier

t<0 by a steady current=V Xb,
. 1 .
Jr:2(cos¢9)—2(f—smf)’
r

1
jo=—(sin6) - (f-sinf)"

!

jp=(sin 0)(%2[r(1—cosf)]’) ,

(3.1
and carrying energy= 3 [ d°rb?:
odr T )
Ezf —25|n2f/2f sin 0do[ (sirff/2+r?f'2/4)
or 0
+cos 20(sirtf/12—r2f'2/4)]
8 (=dr
=—J —(1—cosf)(1—cosf +r?f'?). (3.2
3 Jor?

transform techniques, and the helicity integral is evaluated as
a function of time. We find, for the two cases,

t2 r
H=—-3+3 1+3% (3.53
g2 *r24t2
t2 ra 8rg
H=—-1+3 + :
r2 12 ra+t2  (ra+t?)3
(3.5b

It is seen that fot— o, H attains one-half its value &at=0.
While one would like to have an understanding how the
localization of the helicity changes with time, it does not
seem possible to pose such a question in a meaningful way,
because the helicity density, namely, the integrand that de-
finesH, is gauge dependent and without invariant meaning.
Indeed, as we have noted earlier, even the integrated helicity
can be gauge dependent when the fields and the gauge func-
tion survive on the surfaces bounding the integration region.
(This points to an analogy with the energy in general relativ-
ity, whose density is diffeomorphism dependent. Only the
integrated quantity is invariant and a unique value is deter-
mined only after asymptotic conditions are prescribed. Fur-

We determine the time asymptote for the helicity in two thermore, the energy may be presented as a surface integral

cases
f=2tan r/r,

(3.39

f=4tan r/r,. (3.3b

and so also can the helicity, when the Clebsch parametriza-
tion is used for the gauge potentjal.

The result that under Maxwell evolutiod decreases to
half its value at infinite time can also be understood from a
general argument. In the Weyl-Coulomb gauge, which we
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are using, the vector potential satisfies the wave equatiomver long distances remains to be understood.
which is uniquely solved with our posited initial conditions  Another problem deserving further study concerns non-

by trivial evolution of an initial configuration with magnetic he-
licity. Rather than using the free Maxwell equations, one
T d*k i reT would rely on the magnetohydrodynamical ones, which
a (t,r)=f W)gcoskte a (k). (3.6 make use of Ohm'’s law to expregsin terms ofb andj. Its

nonrelativistic form is

Herea' (k) is Fourier transform of the initial dat@.26) and

j=n(E+vXb 4.1
(d/at)a(t,r)=—E(t,r) vanishes at=0. It follows that j=n(E+vxb) @D

where 7 is conductivity andv is the fluid velocity, taken to

d*k s ; ; . ; . .
He | f cos’-kte”kk'ajT(k)aI (K) 3.7 _be divergenceless in a fluid of constant density. Inserting this
(2m)° in the Maxwell equation
ab
1 dk o P o VxE= _
=— (1+cos Xt)e'*k'a] (k)ay (k). o1 TVXE=0 4.2

S 2i) (2m)3
(3.8 produces an evolution equation for

By appealing to the Riemann-Lebesgue lemma, we can argue b 1 _

that the term involving the cosine disappears at ldrgmw- o~ VX(vXb)=— ;VXJ- (4.3

ing to destructive interference, leaving half the valuet at

=0. However, this step is justified provided the rest of theFurther, approximating by V X b, that is, ignoringdE/dt
integrand is well behaved &t=0, which in turn depends on because it is negligible on the relevant time scales, converts
the behavior ofa’(r) at larger. A dimensional estimate the above into
shows that a large-distance decreasa'ofaster than ¥/ is

sufficient, which would mean thdt should decrease faster

than 1f2. But Eq.(3.43 exhibits a large behavior forb of

order 1f2, modulated by an angular factor. Since our explicit

calculation supports the general argument, the angular factavhich can be analyzed either withprescribed externally or

db 1
— —VX(vXb)=—V?b (4.4
ot n

evidently provides sufficient large-damping. determined self-consistently by its Euler equation, with ini-
tial b of the form(2.24). An interesting choice for an exter-
IV. CONCLUSION nal v could be a transverse form that carries nonvanishing

“kinetic helicity” [d®v-(VXxv); for example, what one
Our investigation is based on the connection between thgets by taking in the forma of Eq. (2.23 with f solving Eq.
winding number of non-Abelian gauge group elements and2.28. For zero resistivity(infinite conductivity the right

the Chern-Simons number of Abelian gauge fields that argjde of Eq.(4.4) is absent—there is no dissipation. Then
obtained from the former by projection. This mathematical— —yx b and magnetic helicity is conserved, sirgeb van-

fact suggests the following speculation for the electroweakgshes.
model: Before its symmetry breaking transition, there could

be presentSU(2) vacuum configurationd) ~*dU, which

carry nonvanishing winding numbers; after the phase transi-
tion, one direction in isospace is identified with electromag- Useful conversations with C. Adam, A. Polychronakos,
netism, and the projection of the vacuum configuration beand D.T. Son are acknowledged. This work is supported in
comes a magnetic field with nonvanishing helicity. Whethermpart by funds provided by the U.S. Department of Energy
such a scenario is energetically viable and whether the rdDOE) under contracts DE-FC02-94ER40818 and DE-FGO02-
sulting fields can contribute to an effect that is significant91ER40676.
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