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Creation and evolution of magnetic helicity
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Projecting a non-AbelianSU(2) vacuum gauge field—a pure gauge constructed from the group element
U—onto a fixed~electromagnetic! direction in isospace gives rise to a nontrivial magnetic field, with nonva-
nishing magnetic helicity, which coincides with the winding number ofU. Although the helicity is not con-
served under Maxwell~vacuum! evolution, it retains one-half its initial value at infinite time.

PACS number~s!: 11.10.Ef
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I. INTRODUCTION

It has been suggested that primordial magnetic fields
develop large correlation lengths provided they carry a n
vanishing ‘‘magnetic helicity’’*d3ra•b, a quantity known
to particle physicists as the Abelian, Euclidean Che
Simons term. Herea is an Abelian gauge potential for th
magnetic fieldb5“3a. If there exists a period of decayin
turbulence in the early universe, which can occur afte
first-order phase transition, a magnetic field with nonvani
ing helicity could have relaxed to a large-scale configurati
which enjoys force-free dynamics~source currents for the
magnetic fields proportional to the fields themselves! thereby
avoiding dissipation@1#.

In this paper we accomplish two things. First we sho
that configurations of (a,b), with quantized helicity, arise
from vacuum configurations of a non-AbelianSU(2) vector
potential. The quantization occurs because (a,b) wind and
intertwine in an intricate manner. We relate this ‘‘windin
number’’ of our Abelian fields to the topological propertie
of the structures in a non-AbelianSU(2) gauge group. Our
construction is based onP3(S3), which is relevant to a non
Abelian gauge theory in 3-space.@The construction can als
be described in terms of Hopf maps andP3(S2), which have
already appeared in the literature@2#; we show how our ex-
pressions appear in that formalism.# Only integer winding
numbers occur in the mathematical setting ofP3(S3) or
P3(S2); yet we find that half-integer windings also lead
interesting Abelian gauge fields.

Second, we study the time evolution of the magnetic
licity. Since

d

dtE d3ra•b522E d3rE•b,

as a consequence of the definition for the electric field,E,
time variation is determined by the specific physical situat
that fixesE•b. For plasma physics or magnetohydrodyna
ics the projection ofE ontob is proportional to the resistivity
of the medium, and vanishes for infinite conductivity~zero
resistivity!; see Sec. IV. In that approximation, helicity
conserved. However, cosmological electromagnetic fie
can be expected also to experience evolution in vacu
0556-2821/2000/61~10!/105015~7!/$15.00 61 1050
n
-

-

a
-
,

-

n
-

s
,

whereE•bÞ0. Therefore, it is interesting to determine wh
happens to the magnetic helicity under Maxwell evolutio
Specifically, we posit that att50 there are magnetic field
with quantized helicity, and no electric fields. With this in
tial data, we solve the Maxwell equations and find that at
5` the helicity is precisely half its initial value. The calcu
lation is carried out explicitly for two interesting cases~inte-
ger and half-integer quanta! and then a general argument
given, which requires a regularity hypothesis.

In Sec. II, we describe how to construct from non-Abeli
vacuum fields Abelian gauge fields with quantized helici
In Sec. III, we study time evolution. Concluding remar
comprise Sec. IV, where we also speculate on the applica
ity of these mathematical considerations to theSU(2)
3U(1) ‘‘standard model,’’ before and after its electrowea
phase transition.

II. HELICITY OF GAUGE FIELDS

A. Chern-Simons structures

The Chern-Simons number of a non-Abelian gauge pot
tial Ai

a is given by

CS~A!5
1

16p2E d3r e i jk~Ai
a] jAk

a1 1
3 f abcAi

aAj
bAk

c!

52
1

8p2E d3r e i jk tr~Ai] jAk1 1
3 Ai@Aj ,Ak# !

52
1

8p2E tr~AdA1 2
3 A3!. ~2.1!

In the second equality, theAi are elements of the Lie algebr
with generatorsTa,

Ai5Ai
aTa, @Ta,Tb#5 f abcT

c, tr TaTb52dab/2,

while form notation is used in the third equality:A[Aidxi .
The normalization factor 1/16p2 is chosen for later conve
nience, and is also maintained in the Abelian limit, whe
only the bilinear part of Eq.~2.1! survives. Thus our Chern
Simons quantity is 1/16p2 times the magnetic helicity
©2000 The American Physical Society15-1
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which entered physics in the work of Woltier@3# and was
subsequently further elaborated by many workers, includ
Moffatt @4# and Berger and Field@4#, as well as Arnold and
Khesin@4#. Particle physicists have considered both Abel
and non-Abelian Chern-Simons terms on 3-dimensio
Minkowski space in studies of (211)-dimensional gauge
theories@5#.

To show how Abelian fields with nonvanishing and qua
tized helicity arise from non-Abelian vacuum configuration
we recall first that under a gauge transformation

A→AU[U21AU1U21dU, ~2.2!

whereU is an element of the gauge group, the Chern-Sim
term transforms as

CS~AU!5CS~A!1
1

8p2E d~ tr dUU21A!

1
1

24p2E tr~U21dU !3. ~2.3!

With sufficiently regularA and U, the second term on th
right side integrates to zero@6#. However, the last term, als
a total derivative—although that is not apparent from its f
mula ~but see below!—depends only on the group elemen
and is not damped by any falloff ofA. Indeed its value is the
winding number ofU, which effects a mapping from 3-spac
into the group:

W~U !5
1

24p2E tr~U21dU !3. ~2.4!

W(U) is an integer whenU is nonsingular for finiter and
tends to6I at infinity, for then 3-space can be compactifi
to the 3-sphere, and we assume that the gauge group con
SU(2). Thus we are relying onP3„SU(2)…5P3(S3)5 in-
tegers. It follows therefore that the Chern-Simons numbe
a non-Abelian vacuum gauge potential, that is, one whic
a pure gauge

A5U21dU, ~2.5!

is the winding number ofU.
Let us now specialize toSU(2). Then U involves the

Pauli matricesTa5sa/2i ,

U5evaTa
5cosf /22 isav̂asin f /2, ~2.6!

and the winding number is explicitly seen to involve a to
derivative@7#,

W~U !52
1

16p2E d„eabcv̂
adv̂bdv̂c~ f 2sin f !… ~2.7!

wherev̂a is a unit vector in isospace:va5v̂af .
10501
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B. Constructing an Abelian gauge field

Consider next the Abelian gauge potential 1-forma, con-
structed from a non-Abelian vacuum configurationU21dU
by projecting the latter on a fixed direction in isospac
specified by a constant unit vectorn̂a

a5 i tr n̂asaU21dU. ~2.8a!

In components, this reads

ai5n̂aA i
a ~2.8b!

whereA i
a is the vacuum~pure gauge! non-Abelian potential,

U21] iU5A i
a sa

2i
, ~2.9!

which satisfies

e i jk] jA k
a52 1

2 e i jkeabcA j
bA k

c ~2.10!

and carries the winding number

W~U !52
1

96p2E d3r e i jkeabcA i
aA j

bA k
c . ~2.11!

Note thata is not an Abelian pure gauge.
We now show that the magnetic helicity ofa coincides

with W(U). The magnetic helicity, with our normalization
is given by

H~a!5
1

16p2E d3r e i jkai] jak

5
1

16p2
n̂an̂bE d3r e i jkA i

a] jA k
b

52
1

32p2
n̂an̂bE d3rA i

ae i jkebcdA j
cA k

d

~2.12a!

where Eqs.~2.8! and ~2.10! have been used. But

e i jkA i
aA j

cA k
d5 1

6 eacde
i jkea8b8c8A i

a8A j
b8A k

c8 .

Thus

H~a!52
1

96p2E d3r e i jkeabcA i
aA j

bA k
c5W~U !

~2.12b!

and we conclude that the magnetic helicity is quantized
the winding number of the non-Abelian vacuum configu
tion.

The form of the Abelian potentiala may be given explic-
itly. Parametrizing the unit vectorv̂a as

v̂a5~sinQ cosF, sinQ sinF, cosQ! ~2.13!
5-2
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CREATION AND EVOLUTION OF MAGNETIC HELICITY PHYSICAL REVIEW D 61 105015
and takingn̂a to point in the third~electromagnetic! direc-
tion, we find

a5cosQdf 2~sin f !sinQdQ2~12cosf !sin2QdF.
~2.14a!

An alternate formula presents Eq.~2.14a! in ‘‘Clebsch’’
form, which will be useful later~the Clebsch form for an
arbitrary 3-vectorV is V5“g1a“b where g,a,b are
three scalar functions!:

a5d~22F!12@12~sin2f /2!sin2Q#

3d„F1tan21@~ tanf /2!cosQ#…. ~2.14b!

The magnetic field is determined by the 2-form obtain
from Eq. ~2.14a!,

da5sinQ@~12cosf !df dQ22~12cosf !cosQdQdF

1~sin f !sinQdFdf #, ~2.15a!

or from the Clebsch expression~2.14b!:

da522d„~sin2f /2!sin2Q…d„F1tan21@~ tanf /2!cosQ#….
~2.15b!

Finally the magnetic helicity becomes, according to E
~2.14a! and ~2.15a!,

H~a!52
1

8p2E ~12cosf !sinQdf dQdF ~2.16a!

or, from Eqs.~2.14b! and ~2.15b!,

H~a!5
1

4p2E dFd„~sin2f /2!sin2Q…

3d„tan21@~ tanf /2!cosQ#…. ~2.16b!

In the Clebsch parametrization, the magnetic helicity is s
to involve integration of a total derivative and is therefo
given by a surface integral.

The explicit Clebsch expressions fora and da demon-
strate that one may find two magnetic surfaces,Sn (n
51,2), which satisfy dadSn5b•“Sn50:

S15~sin f /2!sinQ5c

S25F1tan21@~ tanf /2!cosQ#5f0

c,f0 constants. ~2.17!

The intersection of these surfaces forms magnetic lines,
is, integral curves ofb that solve the dynamical system

dr ~t!

dt
5b„r ~t!… ~2.18!

wheret is an evolution parameter for the dynamical syste
Evidently, for our configuration this problem is integrab
leading to curves given by
10501
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cosf /25A12c2cos~F2f0!

sinQ5
c

Asin2~F2f0!1c2cos2~F2f0!
.

~2.19!

C. Hopf mapping

It is known that the Abelian Chern-Simons term can
related to the degree of the Hopf map, which is quantiz
according toP3(S2) @2#. The construction of the relevan
vector potential proceeds in the following manner. Consi
a complex spinor

u5S u1

u2
D

with u* u5uu1u21uu2u251. ThenNa[u* sau is a unit vec-
tor and the Hopf curvature is defined by

bi5
1

4
e i jkeabcN

a] jN
b]kN

c. ~2.20!

Becausebi is divergence free, it can be written as the curl
a potentialai given by 2 iu* ] iu. By comparison with Eq.
~2.14b! we find that our potential arises whenu is chosen as

u5S A12~sin2f /2!sin2Qe2i tan21[(tan f /2)(cosQ)]

~sin f /2!sinQe22iF D
~2.21!

and the Hopf index coincides with the helicity of the her
constructed (a,b).

Evidently, the present expressions are awkward wh
compared to those based onP3(S3), presumably because th
latter construction is directly related to gauge fields.

D. Explicit expressions

Henceforth we work with explicit expressions obtained
identifying v̂a in Eq. ~2.6! with the radial unit vectorr̂ a and
taking f to depend only onr. This further means thatQ in F
in Eq. ~2.13! are identified with polar and azimuthal angle
of spherical coordinatesu andf, with ranges 0<u<p and
0<f<2p respectively.~A simple generalization would be
to identify Q andF with integer multiples ofu andf.! The
magnetic helicity~2.16! then becomes

H52
1

2pE0

`

dr
d

dr
~ f 2sin f !52

1

2p
~ f 2sin f !U

r 5`
~2.22!

where we have takenf (0) to vanish. Observe that whe
sin f(`) is nonvanishingH is an irrational and transcendent
number. Whenf (`) is an even integer multiple ofp,
sin f(`) vanishes andH is an integer. But note that also a
odd integer multiple ofp for f (`) leads to vanishing
sin f(`) and a half-integer value forH. Therefore it appears
to us that configurations with half-integer magnetic helic
5-3
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R. JACKIW AND SO-YOUNG PI PHYSICAL REVIEW D61 105015
are also singled out. The half-integer fields share furt
good properties with the integer-valued configurations:
shall show below that only for these two the winding numb
does not change under the gauge transformation to the C
lomb gauge.

When reference is made back to the non-Abelian vacu
configuration, which determinesa, we see from Eq.~2.6! that
for the integer windingsU→ r→`6I , as expected. For th
half-integer ones, a ‘‘hedgehog’’ asymptote is attained:U

→ r→`6 i s• r̂ .
The vector potentiala and the magnetic fieldb5“3a are

neatly described by spherical components, which aref in-
dependent:

ar5~cosu! f 8 ~2.23a!

au52~sinu!
1

r
sin f ~2.23b!

af52~sinu!
1

r
~12cosf ! ~2.23c!

br522~cosu!
1

r 2
~12cosf ! ~2.24a!

bu5~sinu!
f 8

r
sin f ~2.24b!

bf5~sinu!
f 8

r
~12cosf !. ~2.24c!

~The prime denotes differentiation with respect tor.! The
Clebsch representation~2.14b!, ~2.15b! and ~2.16b! gives a
clear picture of the helicity. From Eq.~2.16b! we have

H52
1

8p2E d3r ] ifbi52
1

8p2E d3r
1

rsinu S ]

]f
f Dbf .

~2.25a!

Sincebf is f independent, thef integration is trivial, leav-
ing

H52
1

4pE0

p

duE
0

`

rdrbfuf52p . ~2.25b!

The integral is over the positive-x (x,z) half-plane andbf is
the toroidal magnetic field, perpendicular to that plane. SH
measures the flux of the toroidal magnetic field through
half-plane.

Note that the functions occurring in our Clebsch para
etrization are multivalued, owing to the presence of the
ked azimuthal anglef and the tan21. This is as it must be
because the helicity is nonvanishing@8#. Indeed the multival-
uedness off is responsible for the nonzero value of thef
‘‘surface’’ integral ~2.25!, which reproduces the helicity.

When usinga in a description of electromagnetic field
we are effectively in thea050, Weyl gauge. But also the
vector potential must be transverse since there are
10501
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sources. However, the potential in Eq.~2.23! is not trans-
verse for generalf. Transversality may be achieved in one
two ways. We may perform a gauge transformation, tra
forming a to a transverse expressionaT. Alternatively, we
may choose the functionf so thata is transverse. We discus
these two possibilities in turn.

The transversality condition affects only the poloid
components ofa (ar and au), because the toroidal compo
nent (af) is f independent. By using a gauge function pr
portional to cosu times a function ofr, one can choose tha
function so that the resulting, gauge equivalent potentia
transverse. The components of the transverse potential
read

ar
T5~cosu!F

au
T52~sinu!

1

2r
~r 2F !8

af
T52~sinu!

1

r
~12cosf !

F~r ![ 2
3 E

r

`dr 8

r 82
~ f 2sin f !2

4

3r 3E0

r

dr 8r 8~ f 2sin f !.

~2.26!

Of course the magnetic field remains unchanged, but
must still check the helicity integral: while the integrand
gauge dependent, the integral changes only be a sur
term. It may be that the above gauge transformation cont
utes from the surface. Indeed this happens for generalf: one
finds

H~aT!5H~a!1
1

6p
~12cosf !sin fU

r 5`

~2.27!

and the helicity of the gauge equivalent, transverse confi
ration differs from the original expression. However, if, an
only if, f goes at infiniter to an even or odd multiple ofp,
the gauge variance vanishes. Thus both integer and h
integer windings are stable against this gauge transforma
which renders the potential transverse, but for other, irra
nal windings, the ‘‘winding number’’ loses its meaning b
cause it is gauge dependent@9#.

The other way to achieve transversality is to impose t
condition on the original configuration~2.23!, thereby deter-
mining f. Transversality requires thatf satisfy

r 2f 912r f 822 sinf 50. ~2.28!

Although this equation cannot be solved by elementary fu
tions, it is easily analyzed by analogy to a mechanical pr
lem where ‘‘time’’ is lnr/r0. One finds two solutions that ar
regular at the origin, vanishing linearly withr, and tending to
6p in an oscillatory manner for larger. Moreover, the scale
of r is arbitrary: the solutions are a universal function ofr /r 0
and its negative; the positive solution is plotted in Fig.
Evidently this transverse potential necessarily correspond
half-integer winding@10#.
5-4
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III. TIME EVOLUTION

According to Maxwell’s vacuum equations the transvers
vector potential satisfies the wave equation, which we int
grate subject to the initial condition thata is given at time
t50 by Eq. ~2.26!, with a definite choice forf, and that
(d/dt)a is zero. Thus, at initial time, there is no electric field
and only the magnetic field~2.24! is present, maintained for
t,0 by a steady currentj5“3b,

j r52~cosu!
1

r 2
~ f 2sin f !8

j u52~sinu!
1

r
~ f 2sin f !9

j f5~sinu!S 1

r 2
@r ~12cosf !#8D 8

,

~3.1!

and carrying energyE5 1
2 *d3rb2:

E5E
0

`dr

r 2
sin2f /2E

0

p

sinudu@~sin2f /21r 2f 82/4!

1cos 2u~sin2f /22r 2f 82/4!#

5
8p

3 E
0

pdr

r 2
~12cosf !~12cosf 1r 2f 82!. ~3.2!

We determine the time asymptote for the helicity in two
cases

f 52 tan21r /r 0 ~3.3a!

f 54 tan21r /r 0 . ~3.3b!

FIG. 1. Profile of regular solution to~2.28! ~solid line! and
profile of 2 tan21x/2, which possesses the samex50 and x5`
asymptotes~dashed line!.
10501
e
-

The former, with f→ r→`p, corresponds to half-intege
winding; for the latterf→ r→`2p, one has integer winding
and also the energy density is spherically symmetric; see
~3.2! @10,11#. The corresponding magnetic fields are

half-integer windingbr524~cosu!
1

r 21r 0
2

bu54~sinu!
r 0

2

~r 21r 0
2!2

bf54~sinu!
rr 0

~r 21r 0
2!2

~3.4a!

integer winding br5216~cosu!
r 0

2

~r 21r 0
2!2

bu516~sinu!
r 0

2~r 0
22r 2!

~r 21r 0
2!3

bf532~sinu!
rr 0

3

~r 21r 0
2!3

.

~3.4b!

The time-evolved fields are obtained by standard Fou
transform techniques, and the helicity integral is evaluated
a function of time. We find, for the two cases,

H52 1
2 1 1

4

t2

r 0
21t2 S 11 2

3

r 0
2

r 0
21t2D ~3.5a!

H5211 1
2

t2

r 0
21t2 S 11

r 0
2

r 0
21t2

1
8r 0

6

~r 0
21t2!3D .

~3.5b!

It is seen that fort→`, H attains one-half its value att50.
While one would like to have an understanding how t

localization of the helicity changes with time, it does n
seem possible to pose such a question in a meaningful w
because the helicity density, namely, the integrand that
finesH, is gauge dependent and without invariant meani
Indeed, as we have noted earlier, even the integrated hel
can be gauge dependent when the fields and the gauge
tion survive on the surfaces bounding the integration regi
~This points to an analogy with the energy in general rela
ity, whose density is diffeomorphism dependent. Only t
integrated quantity is invariant and a unique value is de
mined only after asymptotic conditions are prescribed. F
thermore, the energy may be presented as a surface int
and so also can the helicity, when the Clebsch parametr
tion is used for the gauge potential.!

The result that under Maxwell evolutionH decreases to
half its value at infinite time can also be understood from
general argument. In the Weyl-Coulomb gauge, which
5-5
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are using, the vector potential satisfies the wave equa
which is uniquely solved with our posited initial condition
by

aT~ t,r !5E d3k

~2p!3
coskte2 ik•r ãT~k!. ~3.6!

HereãT(k) is Fourier transform of the initial data~2.26! and
(d/dt)aT(t,r )52E(t,r ) vanishes att50. It follows that

H52 i E d3k

~2p!3
cos2kte i jkki ã j

T~k!ãk
T* ~k! ~3.7!

5
1

2i E d3k

~2p!3
~11cos 2kt!e i jkki ã j

T~k!ãk
T* ~k!.

~3.8!

By appealing to the Riemann-Lebesgue lemma, we can a
that the term involving the cosine disappears at larget, ow-
ing to destructive interference, leaving half the value at
50. However, this step is justified provided the rest of t
integrand is well behaved atk50, which in turn depends on
the behavior ofaT(r ) at large r. A dimensional estimate
shows that a large-distance decrease ofaT faster than 1/r is
sufficient, which would mean thatb should decrease faste
than 1/r 2. But Eq.~3.4a! exhibits a larger behavior forb of
order 1/r 2, modulated by an angular factor. Since our expli
calculation supports the general argument, the angular fa
evidently provides sufficient large-r damping.

IV. CONCLUSION

Our investigation is based on the connection between
winding number of non-Abelian gauge group elements a
the Chern-Simons number of Abelian gauge fields that
obtained from the former by projection. This mathemati
fact suggests the following speculation for the electrowe
model: Before its symmetry breaking transition, there co
be presentSU(2) vacuum configurationsU21dU, which
carry nonvanishing winding numbers; after the phase tra
tion, one direction in isospace is identified with electroma
netism, and the projection of the vacuum configuration
comes a magnetic field with nonvanishing helicity. Wheth
such a scenario is energetically viable and whether the
sulting fields can contribute to an effect that is significa
K,

. D
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over long distances remains to be understood.
Another problem deserving further study concerns n

trivial evolution of an initial configuration with magnetic he
licity. Rather than using the free Maxwell equations, o
would rely on the magnetohydrodynamical ones, wh
make use of Ohm’s law to expressE in terms ofb and j . Its
nonrelativistic form is

j5h~E1v3b! ~4.1!

whereh is conductivity andv is the fluid velocity, taken to
be divergenceless in a fluid of constant density. Inserting
in the Maxwell equation

]b

]t
1“3E50 ~4.2!

produces an evolution equation forb

]b

]t
2“3~v3b!52

1

h
“3 j . ~4.3!

Further, approximatingj by “3b, that is, ignoring]E/]t
because it is negligible on the relevant time scales, conv
the above into

]b

]t
2“3~v3b!5

1

h
¹2b ~4.4!

which can be analyzed either withv prescribed externally or
determined self-consistently by its Euler equation, with i
tial b of the form ~2.24!. An interesting choice for an exter
nal v could be a transverse form that carries nonvanish
‘‘kinetic helicity’’ *d3rv•(“3v); for example, what one
gets by takingv in the forma of Eq. ~2.23! with f solving Eq.
~2.28!. For zero resistivity~infinite conductivity! the right
side of Eq.~4.4! is absent—there is no dissipation. ThenE
52v3b and magnetic helicity is conserved, sinceE•b van-
ishes.
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