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Effect of low momentum quantum fluctuations on a coherent field structure
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In the present work the evolution of a coherent field structure of the sine-Gordon equation under quantum
fluctuations is studied. The basic equations are derived from the coherent state approximation to the functional
Schrödinger equation for the field. These equations are solved asymptotically and numerically for three physi-
cal situations. The first is the study of the nonlinear mechanism responsible for the quantum stability of the
soliton in the presence of low momentum fluctuations. The second considers the scattering of a wave by the
soliton. Finally the third problem considered is the collision of solitons and the stability of a breather. It is
shown that the complete integrability of the sine-Gordon equation precludes fusion and splitting processes in
this simplified model. The approximate results obtained are non-perturbative in nature, and are valid for the full
nonlinear interaction in the limit of low momentum fluctuations. It is also found that these approximate results
are in good agreement with full numerical solutions of the governing equations. This suggests that a similar
approach could be used for the baby Skyrme model, which is not completely integrable. In this case the higher
space dimensionality and the internal degrees of freedom which prevent the integrability will be responsible for
fusion and splitting processes. This work provides a starting point in the numerical solution of the full quantum
problem of the interaction of the field with a fluctuation.

PACS number~s!: 03.65.Sq, 02.60.Cb, 12.39.Dc
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I. INTRODUCTION

In the past few years it has been shown that the Sky
model@1# is related to the low energy limit of QCD@2#. This
fact, together with progress in the approximate and num
cal solution of strongly nonlinear equations, has renewed
terest in a detailed study of the quantum mechanics of
Skyrme model. These studies are directed along two m
lines. The first simplifies the model at the classical level
the so-called baby Skyrmion model, which in turn is relat
to the sine-Gordon equation@1,3,4#. In this simplified classi-
cal model extensive numerical studies have led to an
creased understanding of the stability, scattering and inte
tion of coherent structures with radiation@3,4#. On the other
hand, the second line has focused on the quantum effec
the full Skyrme model@5,6#. In these studies the quantizatio
was either obtained by linearization around a field confi
ration@5# or by a finite dimensional approximation to the fu
problem@6#.

Here we take a complementary approach. We study
111 sine-Gordon equation keeping all the degrees of fr
dom and quantize along the lines of@7–10#. This leads to a
field equation which is strongly coupled with the equatio
for the fluctuations. In@10# the formalism for the functiona
coherent state approximation was fully developed and
possible advantages and disadvantages of various appro
designed for numerical purposes were discussed in deta
particular, the closed-time path method with the Hartree f
torization ~see e.g.@11#! was applied in@10# to the static
0556-2821/2000/61~10!/105011~10!/$15.00 61 1050
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sine-Gordon field, and the approximate results obtained
phase transitions and stability were found to compare fav
ably with known exact results. In this same work static
sults were also obtained for more realistic field equatio
Our present work differs from the above cited papers in t
we choose to approximate the Green function~the variance
kernel for the Gaussian ansatz! by a suitable parametrize
trial function. This choice leads to a great simplification
the problem for the case of low momentum fluctuation
Thus, for example, the infinite system of partial different
equations of@7# become ordinary differential equations an
even though the field and the fluctuations in our formali
are strongly coupled, we are able to use some of the s
tions of the classical sine-Gordon equation~since in 111
dimensions it is completely integrable! to construct approxi-
mate solutions to the quantum problem, including the eff
of the radiation generated by the quantum fluctuations.
then solve the equations numerically and these numer
solutions are compared with asymptotic solutions. Note a
that the approach used in the present work is comple
different to that of@12,13# where the wave functionals ar
constructed using Gaussian approximations to the functio
Schrödinger equation for the sine-Gordon field. Howeve
the particles are considered as higher excited states~in func-
tion space! of the linearized field equations. In our treatme
the field equations are nonlinear and dynamic and differ
particles are represented by different nonlinear field confi
rations, not by higher order Hermite functionals as
@12,13#.
©2000 The American Physical Society11-1
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Finally, it must be stressed that the approximate anal
results obtained here are valid in a strongly nonlinear reg
and, in principle, do not depend on the 111 nature of the
model and could be used to study problems related to m
realistic simplifications of the Skyrme model.

The paper is organized as follows. In Sec. II the detai
formulation of the quantum problem is stated, with the fr
parameters adjusted to mimic mesons and baryons. Se
III is devoted to the study of the coherent state approxim
tion and the derivation of the quantum equations for the fi
for low momentum fluctuations. In Sec. IV three problem
are considered. The first is the nonlinear stability of a sin
soliton under the influence of quantum fluctuations. This s
bility is studied both numerically and asymptotically. In pa
ticular the asymptotic solution includes the damping effec
the radiation shed by the soliton due to the fluctuations. T
asymptotic solution explains in detail the mechanism for
nonlinear stability of the soliton. The second problem stud
is the scattering of a meson~wave! by a static soliton. The
numerical solution for this problem shows that in this pr
cess the soliton is also stable. Finally the third problem st
ied concerns the collision of solitons and the quantum e
lution of a bound state~soliton and an anti-soliton!. It is
shown that the complete integrability of the sine-Gord
simplification of the full Skyrme model to just one intern
degree of freedom for the field precludes the processe
fusion and splitting. The processes of fusion and splitting
produced by the influence of all the internal degrees of fr
dom.

II. FORMULATION OF THE PROBLEM

For the basic structure we take the baby Skyrme mo
which is a reduction of the full model with only two field
present@1,3#. This model, in turn, reduces to the sine-Gord
equation which is known to be completely integrable@3#. In
these variables the Hamiltonian takes the form

H5mc2l E F1

2
p21

1

2 S ]w

]x D 2

1 l 22~12cosw!Gdx,

~2.1!

wherew is an angle variable whose momentump is given
by

p5
1

c

]w

]t
, ~2.2!

m is the mass of the particle andl is a typical particle size.
Using dimensionless variablesx̃5x/ l and t̃ 5ct/ l , we ob-
tain, after dropping the tildes,

H5mc2E F1

2
p21

1

2 S ]w

]x D 2

1~12cosw!Gdx, ~2.3!

with p5]w/]t. To mimic a baryon by means of the sin
Gordon soliton, we takel;10213 cm and m;10227 Kg,
which gives an internal time of 10223 sec.

The equation of motion derived from the Hamiltonia
variational principle
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dE
t0

t1
~pẇ2H ! dt ~2.4!

is the sine-Gordon equation

]2w

]t2
2

]2w

]x2
1sinw50. ~2.5!

The one dimensional Skyrmion is the soliton solution

w524 arctan@exp„2~x2vt !/A12v2
…#, ~2.6!

of Eq. ~2.5!, which represents a localized deformation atx
5vt. In this contextv must be taken to satisfyv!1, since
the Skyrme model is only consistent for small energies. T
linear travelling periodic wave solutions of the sine-Gord
equation are interpreted as pions. Notice that the nonlin
model contains linear waves which describe bosons and n
linear structures which describe fermions. In his origin
work Skyrme suggested that the fermionic part of the L
grangian is needed only just to count the number of locali
states of finite amplitude of the bosonic field@1#. In this
interpretation, fermions are just a point approximation
nonlinear localized bose fields. It has also been suggeste
rather general grounds that the canonical quantization
fields ~as bosons! gives Fermi-Dirac type statistics for th
kinks @15#. In the sine-Gordon model the exclusion princip
holds for kinks, since we know that for the general exa
solution there is no solution with two identical solitons@14#.

In this article, we shall consider a canonical quantizat
using the functional Schro¨dinger picture. It is to be noted tha
all quantizations for the Skyrme model cited in the Introdu
tion make the same assumption. However, in this work
differ from previous treatments in that we shall keep in
nitely many degrees of freedom in the classical field a
reduce the dimensionality of the space of fluctuations. T
final result will be shown to be a system which consists o
partial differential equation~similar to the sine-Gordon equa
tion! for the field coupled to a system of nonlinear ordina
differential equations which control the fluctuations.

In the field configuration representation the Schro¨dinger
equation takes the form

i\
]C~w!

]t
5ĤC~w!, ~2.7!

whereC(w(x),t)ª^w(x)uC(t)& is the amplitude for finding
the field system characterized by the state vectoruC(t)& in
the field configurationw(x) at time t. In this configuration
representation the scalar product of two state vectors is g
by the functional integration

^C1uC2&5E C1* ~w,t !C2~w,t !Dw, ~2.8!

and the field operators are represented by functional kern
Thus the field operator f̂(x) is represented by

^w(x)uf̂(x)uC(t)&5w(x)C„w(x),t… and, therefore, acts a
1-2
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a multiplication operator, while the action of the canonic
momentum operator is given by

^w~x!up̂~x8!uC~ t !&52 i\
d

dw~x8!
^w~x!uC~ t !&.

~2.9!

The Hamiltonian field operatorĤ then becomes

Ĥ5mc2E F1

2
p̂2~x!1

1

2
S ]ŵ

]x
D 2

1~12cosŵ !Gdx,

~2.10!

where there is no ambiguity in the ordering and the functio
of operators are defined by their power series.

The quantum mechanical problem for the field consists
solving the Schro¨dinger equation~2.7! for a given initial
field configuration. Notice that the time in Eq.~2.7! has a
scale set bymc2/\, which is of the same order of magnitud
(10223) as the time scalel /c for the field fluctuations. This is
to be expected since the Skyrme equation was assumed
consistent with the quantum scale of the particle. Thus
can take the same dimensionless time variable for ei
scale.

III. APPROXIMATE SOLUTIONS TO THE FUNCTIONAL
EQUATION

To solve the Schro¨dinger equation~2.7!, we take a coher-
ent state approximation@7–10# and study the evolution of its
parameters. Following the approach in Refs.@7–10# we con-
sider the functional
e

n

iv
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G5E ^Cu i
]

]t
2ĤuC&dt, ~3.1!

which we extremize with the Gaussian trial functional

C„w~x!,t…5expH i E p~x,t !@w~x!2f~x,t !# dxJ
3expH 2E E dxdy@w~x!2f~x,t !#

3F1

4
V21~x,y,t !2 iS~x,y,t !G@w~y!2w~x!#J ,

~3.2!

where the kernelsV21 andS take into account the quantum
fluctuations andf(x,t) andp(x,t) are the average field an
average momentum of the Gaussian, respectively.

Substituting the trial function~3.2! into the functional
~3.1! and integrating over thew(x) variable yields an aver-
aged action@7–10#. This action is given in terms off(x,t),
V and S. The potential is then also expanded around
averagef(x,t). It should be stressed that the consistency
this approximation depends on the smallness at all time
the varianceV, in the sense that the average energy of
fluctuations around the meanf(x,t) is small compared with
the energy of the average motion. Moreover, by keeping o
quadratic terms resulting from the averaging around
mean of the nonlinear term, which amounts to making
assumption that the energy of the fluctuations is small co
pared to the energy of the mean, we arrive at an effec
action of the form
L5E
0

TH E
2L

L Fp
]w

]t
2X1

2 S ]w

]x D 2

1~12cosw!C1SV̇~x,x,t !22SVS~x,x,t !

2cos~w!V~x,x,t !1
1

2

]2V

]x2
~x,y,t !ux5y2

1

8
V21~x,x,t !G J dxdt1O~V2!, ~3.3!
pa-

he
ince
ua-
r-
where the notationVS is taken to mean the kernel of th
operator defined by the convolution ofS with V, that is

VS~x,y!5E
2L

L

V~x,z!S~z,y!dz ~3.4!

and SVS is the kernel of the operator defined by the co
volution of S, V andS

SVS~x,y!5E
2L

L E
2L

L

S~x,z!V~z,u!S~u,y!dudz.

~3.5!

In the following we will take the limitL→` at different
stages in the calculation of the effective action. The effect
-

e

action can be computed once we choose an appropriate
rametrization for the varianceV and the phaseS. It must be
noted that thanks to the simple form of the potential. t
Gaussian integral can be evaluated exactly. However, s
we are interested in small fluctuations we stop at the q
dratic level. We will come back to this point when compa
ing our results with those in@10#.

Now, since the field is homogeneous, we can take

V~x,y,t !5
1

2pE2`

`

exp@ ik~x2y!#V̂~k,t !dk ~3.6!

S~x,y,t !5
1

2pE2`

`

exp@ ik~x2y!#Ŝ~k,t !dk,

~3.7!
1-3
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where

V̂~k,t !5
V0

k21a2~ t !
, ~3.8!

Ŝ~k,t !5
b~ t !

k21a2~ t !
. ~3.9!

The parametersa(t) andb(t), which control the spread
ing of the fluctuations, are to be determined after the eff
tive action is varied. The choice of the trial function is th
guided by the simplicity of the resulting expressions. Noti
however, that since the results obtained depend only on
spreading, the same qualitative behavior will be obtained
other forms of the trial function.

Since the approximate solution~3.2! involves the kernel
V21 the proposed expression is convergent provided that
momentum of the fluctuations involved in the integration
low. This assumption is in agreement with the fact that
basic Skyrme model is consistent at low momentum and w
the assumed homogeneity of the fluctuation. This is ta
into account by taking forV21(x,y,t) the cut-off kernel

V21~x,y,t !5
1

2pV0
E

2K

K

eik(x2y)~k21a2! dk.

~3.10!

Then the non-constant contribution ofV21(x,x,t) is

2
1

8
V21~x,x,t !52

K

8pV0
a2. ~3.11!

In a similar manner we obtain

1

2

]2

]x2
V~x,y,t !uy5x52

1

4p
V0E

2K

K k2

k21a2
dk

5F2
V0K

2p
1

1

4p
a~ t !V0E

2K/a

K/a dk

k211
G .

~3.12!

The first term in this expression is infinite, but a consta
Thus it does not contribute to the equations of motion. W
therefore take just the second term in the effective Lagra
ian while noting at the same time thatK/a@1, sincea is
assumed to be small compared toK. Observe that the param
eter V0 measures the size of the fluctuations. In princip
other choices of the parameters may lead to different re
larizations. However, as discussed below, the basic qua
tive picture described in this work is not changed by the
alternative regularizations, provided the momentum is lo
For the case of higher momentum, procedures similar to
ones discussed in@8,10# can be used.

With the above assumptions, the effective Lagrang
takes the form
10501
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L5E
0

TE
2L

L H p
]w

]t
2X1

2 S ]w

]x D 2

1F12S 12
V0

2pa
c2D coswGC

1
1

2p S 22
ȧb

a4
V0c122

b2

a5
V0c12

K

4V0
a2

1
1

2
V0c2aD J dxdt, ~3.13!

where the constantsc1 andc2 are given by

c15E
2`

` dk

~11k2!3
5

p

2
, c25E

2`

` dk

~11k2!
5p.

~3.14!

Note thatc2 approximates the integral in Eq.~3.12!.
It is now convenient to change variables and defineq

51/a3 andb5p in order to obtain the Lagrangian~3.13! in
the form

L5E
0

TH S 2c1V0

3
q̇p22c1V0p2q25/32

K

4V0
q22/3

1
1

2
V0

c2

c1
q21/3D L

p
dt1E

2L

L Fp ]w

]t
2

1

2
p22

1

2 S ]w

]x D 2

2F12S 12
V0

2
q1/3D coswG GdxJ dt. ~3.15!

The equations of motion are obtained by varying the L
grangian~3.15! with respect to the parametersp, w, p andq.
These variational equations will consist of a partial differe
tial equation for the field coupled to ordinary differenti
equations for the fluctuations. For the field the variation
equation is

]2w

]t2
2

]2w

]x2
1S 12

V0

2
q1/3D sinw50. ~3.16!

The equations forp andq are derived from the Lagrang
ian

L5
2c1LV0

3p E
0

T

@ q̇p23H~p,q!#dt, ~3.17!

where the Hamiltonian for the fluctuations is given by

H~p,q!5p2q25/31q1/3
1

2LE2L

L

cosw dx2
1

8
q21/3

1
K

8c1V0
2

q22/3. ~3.18!

The equations of motion forp and q are then given by
Hamilton’s equations as
1-4
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q̇5
]H

]p
56pq25/3 ~3.19!

ṗ52
]H

]q
55p2q28/31

2

3
bq25/32

1

24
q24/3

2
q22/3

2L E
2L

L

cosw dx, ~3.20!

where

b5
3K

8c1V0
2

. ~3.21!

SinceK is assumed to be small but (K@a), we will take b
52.5 in the numerical calculations of the next section.
must be noted that for initial conditions which havew
→2p asx→2` andw→0 asx→`, or vice versa,

Lª lim
L→`

1

2LE2L

L

cosw dx51. ~3.22!

It is therefore apparent that Eqs.~3.20! for the fluctuations
decouple from Eq.~3.16! for the field.

It is interesting at this point to compare our equatio
~3.16!, ~3.19! and~3.20! with the corresponding Eqs.~4.5! of
Ref. @10#. Observe that in that reference the equation for
field takes the form

w tt2wxx1
a0

b
e2(g2/2)G(x,x,t)singw50. ~3.23!

Taking g51 and assumingG(x,x,t)!1, which amounts to
choosing the initial conditions in the form of small fluctu
tions, we have

e2(1/2)G(x,x,t)'12
1

2
G~x,x,t !. ~3.24!

Clearly, substituting this last expression into Eq.~3.23! re-
covers our Eq.~3.16!, so the respective field equations agr
for the above mentioned initial conditions and value ofg.
Now, as for the second equation~4.5! in @10# note that this is
an infinite system of partial differential equations for the o
erator valued functionĈ, while in our formulation, becaus
of the assumption of spatial homogeneity and the functio
form chosen for the trial Green function, the system simp
fies to a problem of ordinary differential equations. Anoth
difference between our approach and that followed in@10# is
that the equations proposed there in order to arrive at
merical solutions are integrodifferential equations, as
posed to the simple variational approximation we prop
for obtaining solutions. It must be also remarked that o
assumed homogeneity of the Green function is consis
with the low momentum limit we have chosen. In this lo
momentum limit, the fluctuations do not resolve the fi
scale of the field and, to leading order, the configuration
homogeneous background for the fluctuation. To concl
10501
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this section we also consider important to stress the fact
in previous published work the interest has been on st
solutions allowing for arbitrary momentum of arbitraril
large fluctuations. This leads to a different renormalized v
sion of the gap equation@7,8,10# and, for large couplingg, to
a loss of stability~phase transition!. Our approximation does
not capture this region, since we have assumed from
onset small fluctuations and small momentum. Howeve
must be noted that our procedure could be extended
handle large momenta by choosing different trial functio
for G andS, similar to the ones used in@8#. Also, due to the
special form of the potential in the equations, the Gauss
integral may be evaluated to a better degree of approxi
tion, thus allowing to include fluctuations of a larger amp
tude. This program is currently under investigation and w
be reported subsequently.

In the following section we undertake a detailed study
the dyamics described by Eqs.~3.16!, ~3.19! and ~3.20!.

IV. SOLUTIONS

The system of the sine-Gordon equation~3.16! and Eqs.
~3.20! and ~3.19! for q and p describe the coupling of the
field to the fluctuations and the corresponding feedba
Note that the fluctuations have been assumed to be sm
However, they are allowed to feed back onto the basic fi
configuration. We shall now use these equations to desc
in a nonperturbative manner the nonlinear evolution of so
special field configurations.

A. Quantum stability of the single soliton

We begin by studying the stability of the soliton solutio
~2.6! under a class of initial values forp andq. Note that a
small value ofq represents a small variance. Stability is th
assured in the model by the fact thatq remains small and tha
the field maintains its identity as a localized structure.

Numerical integrations of the sine-Gordon equation~3.16!
and Eqs.~3.20! and ~3.19! for p andq have been performed
for a wide range of initial conditions and typical behavio
are shown in Figs. 1~a!, 1~b!, and 2. In Fig. 1~a! numerical
solution for F5wx for the Skyrmion is shown and in Fig
1~b! the behavior ofa, the maximum ofF, is shown. It can
be seen that the fluctuations of the Skyrmion produce ra
tion, but that the field eventually stabilizes. This can
clearly seen from the behavior of the maxima shown in F
2. The stabilization onto a modulated small oscillation of t
Skyrmion amplitude can be clearly seen. These results
hibit the strong stability of the Skyrmion with respect
fluctuations. It is possible to understand this behavior
making use of the modulation theory given in@16# and @17#
by means of the following argument. If the scales forp andq
are slow, we may take as an approximate solution

w5wXS 12
V0

2
q1/3D 1/2

xC, ~4.1!

which satisfies
1-5
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cosw512
1

2
ẇ2. ~4.2!

Hence asL→` we have from Eq.~3.22! that L51. With
this, the equations forp andq are derivable from the Hamil
tonian

H~p,q!53S p2q25/31q1/32
1

8
q21/31

K

4V0
2

q22/3D .

~4.3!

Thus the orbits in the (p,q) plane are just the level lines o

H~p,q!5E. ~4.4!

The orbits of the (p,q) system are then given by

p25q5/3FE2S K

4V0
2

q22/31q1/32
1

8
q21/3D G

5q5/3@E2V~q!#. ~4.5!

FIG. 1. Stability of a single soliton to fluctuations. Solution
sine-Gordon equation~3.16! and equations~3.20! for p andq with
V050.6 andb52.5. The initial conditions areq51.0 andp50.0
andv50 in the soliton solution~2.6! at t50. ~a! soliton. — : initial
condition; – – – : soliton att5100.~b! Evolution of maximuma of
F5wx .
10501
The potentialV(q) has a minimum which gives an oscilla
tory solution forp andq, so that the width of the Skyrmion
and thus the amplitude ofF5wx oscillate in time. The nu-
merical solution shown in Fig. 1~a! shows that the radiation
which is not taken into account in this approximation, sta
lizes the oscillations onto a limit cycle.

This strongly nonlinear mechanism accounts for the s
bility of the Skyrmion. In fact it is the feedback of the fiel
on the fluctuations which produces the termq1/3 in V(q) and
it is this term which stabilizes the motion. The potent
V(q) has a maximum for smallq. For energiesE larger than
this maximum, the fluctuationsq increase and the field struc
ture is destroyed. However the value ofq for this to occur is
too small to be consistent with the coherent state approxi
tion. The model is therefore self-consistent and provides
explanation of how nonlinear interactions are responsible
the quantum stability of the field.

The approximate solution above does not take into
count the radiation produced by the oscillating Skyrmion a
so this approximate solution will not give the baryon settli
onto a limit cycle solution. To take account of the radiati
the ideas of Smyth and Worthy@18# can be used. In this
work the effect of shed dispersive radiation on the evolut
of a single pulse for the sine-Gordon equation was trea
To take account of the radiation we proceed as in@18#, indi-
cating only the main differences from this work.

The Lagrangian density for the sine-Gordon equation

L5
1

2
w t

22
1

2
wx

22S 12
V0

2
q1/3D ~12cosw!. ~4.6!

To obtain an approximate solution of the sine-Gordon eq
tion, the trial function

w524 arctane2x/w(t), ~4.7!

FIG. 2. Stability of a single soliton to fluctuations. Comparis
between the full numerical solution of the sine-Gordon equat
~3.16! and equations~3.20! for p and q and the approximate Eqs
~4.11!. V050.6, b52.5. The initial conditions areq51.0, p50.0
andv50 at t50. Amplitudea of F5wx . Full numerical solution:
— ; approximate solution: – – – .
1-6
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which is a solitonlike pulse with varying widthw(t), is sub-
stituted into the averaged Lagrangian

L̄5E
2`

`

Ldx5
p2

3

w82

w
2

4

w
24S 12

V0

2
q1/3Dw, ~4.8!

as in@18#. In this approximation the Hamiltonian forp andq
again does not change due to Eq.~3.22!.

The effect of the radiation shed by the evolving soliton
determined by finding an appropriate solution of the line
ized sine-Gordon equation@18#. The effect of this radiation
is then to modify the Euler-Lagrange equation forw(t). It is
noted from the numerical solution of Fig. 1~a! that the radia-
tion w̃ is of small amplitude compared with the solito
Therefore following@18# we consider the linearized sine
Gordon equation
o
ic

It
F

e
s.
ta
ite
te

a
e

v

em
ua

10501
-

]2w̃

]t2
2

]2w̃

]x2
1S 12

V0

2
q1/3~ t ! D w̃50 ~4.9!

for the radiationw̃. This equation is solved together wit
appropriate source conditions at the pulse atx50. Since
V0!1,

d

dt S 12
V0

2
q1/3~ t ! D!1. ~4.10!

It is then possible to obtain an expression for the radiation
making the adiabatic approximation that 12(V0/2)q1/3 is
constant to leading order. The effect of the radiation can t
be found from the expression of@18# by a suitable re-scaling
In this manner we find that the equations governing the e
lution of the soliton, including the effect of radiation, are
2p2

3w

d2w

dt2
2

p2

3w2 S dw

dt D
2

2
4

w2
14S 12

V0

2
q1/3D5

1

Al
F2

2p2

3wAl t

dw

dt
1

2p2

3Awt
E

0

t

J1„Al~ t2t!…
w8~t!

Atw~t!
dtG

dq

dt
56pq25/3 ~4.11!

dp

dt
55p2q28/31

2

3
bq25/32q22/31

1

9
q24/3,
ith

ket

ket
een.

is
he
ich

be
he
he
where

l512
V0

2
q1/3. ~4.12!

These equations were integrated numerically. Comparis
between solutions of these equations and the full numer
solution of the sine-Gordon equation for the amplitudea of
F5wx andq(t) for the fluctuations are shown in Fig. 2.
can be seen also that the amplitude agreement shown in
2 is good considering the assumptions that were mad
incorporate the radiation loss in the approximate equation
can be seen that the approximate equations provide a sui
approximate solution for the full field behavior using a fin
dimensional approximation which includes radiation. No
that, sinceq(t) is periodic, the sine-Gordon equation~3.16!
is subject to a parametric excitation. However the nonline
ity and radiation loss provide the necessary damping to
able a limit cycle to be achieved.

B. The collision of a wave with a static soliton

As a final example we consider the scattering of a wa
packet representing a pion with momentumk with a static
soliton, representing a baryon originally at rest. The probl
is solved by numerically integrating the sine-Gordon eq
tion ~3.16! using the initial condition
ns
al

ig.
to
It
ble

r-
n-

e

-

w~x!524 arctane2x1 f ~x! ~4.13!

]w

]t
5g~x!, ~4.14!

where the functionsf andg are given by

f ~x!5a sink~x1x0!, ux1x0u<d ~4.15!

g~x!52aAk211cosk~x1x0!, ux1x0u<d.
~4.16!

This initial condition represents an incoming meson w
momentumk impinging on a nucleon located atx50. A
numerical solution for the scattering of the pion wave pac
can be seen in Fig. 3. The initial condition~at t50) is shown
by the solid line in Fig. 3~a!. In this figure a reflected wave
packet, a reorganized field configuration and a new pac
shed by the baryon as a result of the interaction can be s
In Figs. 3~a!, 3~b!, and 3~c!, the complicated evolution of the
baryon amplitude is displayed. This amplitude behavior
due to the interaction of the baryon with the packet. T
scattering then involves a reorganization of the field, wh
is not taken into account when the particles are taken to
point particles. The description of the interaction of t
baryon with radiation using a multi-phase solution of t
sine-Gordon equation is under investigation at present.
1-7
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C. Collision of two solitons in the presence of a fluctuation

Since the classical field equation is completely integrab
solitons interact elastically and do not change configurat
The effect of quantum fluctuations on the collisions of so
tons and this clean interaction will now be studied.

FIG. 3. Scattering of a wave packet~pion! with a baryon. Solu-
tion of sine-Gordon equation~3.16! and equations~3.20! for p and
q with V050.6 andb52.5. The initial conditions are given by Eqs
~4.13!,~4.14! anda50.1, k51.0, d54.0 andx0520 in Eqs.~4.15!
and ~4.16!. Also q51.0 andp50.0 at t50. ~a! Solution att550.
~b! Evolution of maximuma of F5wx . ~c! Detail of evolution of
maximuma of F5wx from t515 to t540.
10501
,
n.
-

FIG. 4. Collisions of solitons. Initial conditions haveq51.0 and
p50.0. V050.6. ~a! Two solitons. Initial condition~4.17! with
x0515 and v50.2. Initial condition (t50): —; solution at t
5150: – – – – . ~b! Soliton and an anti-soliton. Initial condition
~4.18! with a51.2. Initial condition (t5215): — ; solution att
515: – – – – .~c! Bound state of a soliton and an anti-soliton
Initial condition ~4.19! with a50.98. Initial condition (t525):
— ; solution att545: – – – –.
1-8
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Figure 4~a! shows the collision of two solitons with equa
and opposite velocity. The initial condition used was

w52p24 arctane2(x1x02vt)/A12v2

24 arctane2(x2x01vt)/A12v2
~4.17!

ast→2`. Since there is no classical solution with twice t
baryon number and zero velocity, the effect of the quant
fluctuations is just to slightly modify the classical interactio
The solitons again settle down to a limit cycle for which t
parametric resonance is balanced by the radiation damp

Figure 4~b! shows the collision of a soliton and an an
soliton. The initial condition is

w524 arctanF a

Aa221

sinhAa221 t

coshax G . ~4.18!

Again this interaction does not produce disintegration, jus
modification of the classical interaction.

Finally the susceptibility to disintegration of the breathe
type configuration

w524 arctanF a

coshax

sinA12a2 t

A12a2 G ~4.19!

with frequencyA12a2 is studied. From the numerical solu
tion shown in Fig. 4~c! it can be seen that the breather
stable with respect to quantum fluctuations.

The solutions displayed in Fig. 4 show that the reduct
of the Skyrme model to the sine-Gordon equation is too
vere for treating collisions. In order to obtain non-trivial co
lision and fusion processes, such as those possible for
nonlinear Schro¨dinger equation, reductions of the Skyrm
model which retain more internal degrees of freedom m
be derived.

V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER
RESEARCH

We have formulated the quantum field problem for t
sine-Gordon equation which is related to the~dimensionally
reduced! Skyrme model. Using the coherent state appro
mation for the solution of the functional Schro¨dinger equa-
tion, we obtain a solution of the partial differential equati
for the ~quantum corrected, semi-classical! field, which is
coupled to ordinary differential equations for the fluctu
tions. Other quantizations for nonlinear fields keep only
nitely many degrees of freedom~minisuperspace approxima
tion!, which are then quantized in a canonical way.

The first problem considered in the present work was
stability with respect to quantum fluctuations of a solito
Both numerical and asymptotic solutions were considered
was found that the nonlinear saturation of the field equa
together with the loss of radiation balanced the parame
excitation of the fluctuations. The fluctuations in turn we
controlled by the shape of the field. The good agreem
found between numerical and asymptotic solutions sugg
10501
.
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that finite dimensional approximations to the dynamics of
Skyrmion model, such as those used in@6#, are also good
approximations to the full dynamics of more complicat
problems, such as those treated there.

The scattering of a wave by a static soliton was also st
ied. The numerical results obtained show well defined wa
and a Skyrmion after collision, which suggests the possibi
of using multi-phase solutions, such as those of@19#, to un-
derstand this scattering process.

Finally several collision processes were studied. It w
found that the reduced Skyrme model cannot account for
collision and fusion of baryons. Therefore the study of t
fusion of Skyrmions into a toroidal configuration requires
uniform solution which interpolates between the torus a
the individual Skyrmions. The possibility of using the sol
tions given in@20,21# is currently under study. It must b
noted that more sophisticated numerical formulations suc
the ones proposed in@10# must produce, in the limit of low
momentum, solutions comparable to our results.

To conclude, we note that the techniques described in
work can be applied to the study of low dimensional bla
holes. Indeed, an old observation that the sine-Gordon the
and 2-dimensional spaces of constant curvature are
closely related has recently found an interesting applica
to gravity in 111 dimensions. More precisely, Gegenbe
and Kunstatter@22# have noticed that when a two dimen
sional Lorenzian metric is parametrized as

ds252sin2~u/2!dt21cos2~u/2!dx2, ~5.1!

then the condition of constant curvature is equivalent to
condition thatu satisfies theEuclideansinh-Gordon equa-
tion. On the other hand, the so-called Jackiw-Teitelbo
theory in two dimensions

I 5E f~R2L!A2g dtdx ~5.2!

has as solutions space-times of constant curvatureR5L.
Furthermore, the one-soliton solution of the sine-Gord
equation has been found to represent~a patch of! a black
hole solution of the~Jackiw-Teitelboim! theory @22#. That a
constant curvature space-time can be interpreted as a b
hole is not unique to two dimensions. The 111 Jackiw-
Teitelboim black hole can indeed be interpreted as a dim
sionally reduced Ban˜ados-Teitelboim-Zanelli~BTZ! ~non-
rotating! black hole and many of its properties~including
thermodynamics! have been studied@23#.

To perform an analysis similar to the one presented in
present work for the Euclidean sine-Gordon equation is cu
bersome, since the equation is now elliptic and does not
cept a well-posed initial value formulation. However it
possible to work in the framework of a well-posed proble
if one chooses a different parametrization for the two dim
sional space-time as follows:

ds252sinh2~u/2!dt21cosh2~u/2!dx2. ~5.3!

In this case, the constant curvature condition reduces to
Lorenziansine-Gordon equation. It is then possible to an
1-9
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lyze the quantum stability of a black hole solution using t
functional methods presented in this article. This work w
be reported elsewhere.

As a final remark we point out that the quantum equatio
for a classical field obtained using the functional Schro¨dinger
equation and the coherent state approximation will alw
have the same structure. Namely the classical equation
the field with renormalized~fluctuating! parameters and
. J

s

n

10501
l

s

s
for

equations for the~parameters of the! fluctuations which are
non-local in the fields will always be obtained.
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