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Effect of low momentum quantum fluctuations on a coherent field structure
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In the present work the evolution of a coherent field structure of the sine-Gordon equation under quantum
fluctuations is studied. The basic equations are derived from the coherent state approximation to the functional
Schralinger equation for the field. These equations are solved asymptotically and numerically for three physi-
cal situations. The first is the study of the nonlinear mechanism responsible for the quantum stability of the
soliton in the presence of low momentum fluctuations. The second considers the scattering of a wave by the
soliton. Finally the third problem considered is the collision of solitons and the stability of a breather. It is
shown that the complete integrability of the sine-Gordon equation precludes fusion and splitting processes in
this simplified model. The approximate results obtained are non-perturbative in nature, and are valid for the full
nonlinear interaction in the limit of low momentum fluctuations. It is also found that these approximate results
are in good agreement with full numerical solutions of the governing equations. This suggests that a similar
approach could be used for the baby Skyrme model, which is not completely integrable. In this case the higher
space dimensionality and the internal degrees of freedom which prevent the integrability will be responsible for
fusion and splitting processes. This work provides a starting point in the numerical solution of the full quantum
problem of the interaction of the field with a fluctuation.

PACS numbse(s): 03.65.Sq, 02.60.Cb, 12.39.Dc

[. INTRODUCTION sine-Gordon field, and the approximate results obtained for
phase transitions and stability were found to compare favor-
In the past few years it has been shown that the Skyrmably with known exact results. In this same work static re-
model[1] is related to the low energy limit of QC[2]. This  sults were also obtained for more realistic field equations.
fact, together with progress in the approximate and numeriOur present work differs from the above cited papers in that
cal solution of strongly nonlinear equations, has renewed inwe choose to approximate the Green functitre variance
terest in a detailed study of the quantum mechanics of th&ernel for the Gaussian ansptay a suitable parametrized
Skyrme model. These studies are directed along two maitrial function. This choice leads to a great simplification of
lines. The first simplifies the model at the classical level tothe problem for the case of low momentum fluctuations.
the so-called baby Skyrmion model, which in turn is relatedThus, for example, the infinite system of partial differential
to the sine-Gordon equatiqn,3,4]. In this simplified classi- equations of 7] become ordinary differential equations and,
cal model extensive numerical studies have led to an ineven though the field and the fluctuations in our formalism
creased understanding of the stability, scattering and intera@re strongly coupled, we are able to use some of the solu-
tion of coherent structures with radiati¢®,4]. On the other tions of the classical sine-Gordon equatiince in 1+1
hand, the second line has focused on the quantum effects dfmensions it is completely integrabl® construct approxi-
the full Skyrme model5,6]. In these studies the quantization mate solutions to the quantum problem, including the effect
was either obtained by linearization around a field configu-of the radiation generated by the quantum fluctuations. We
ration[5] or by a finite dimensional approximation to the full then solve the equations numerically and these numerical
problem([6]. solutions are compared with asymptotic solutions. Note also
Here we take a complementary approach. We study théhat the approach used in the present work is completely
1+1 sine-Gordon equation keeping all the degrees of freedifferent to that of{12,13 where the wave functionals are
dom and quantize along the lines[d%10]. This leads to a constructed using Gaussian approximations to the functional
field equation which is strongly coupled with the equationsSchralinger equation for the sine-Gordon field. However,
for the fluctuations. 1110] the formalism for the functional the particles are considered as higher excited statdsnc-
coherent state approximation was fully developed and thé&ion spacg of the linearized field equations. In our treatment
possible advantages and disadvantages of various approacties field equations are nonlinear and dynamic and different
designed for numerical purposes were discussed in detail. Iparticles are represented by different nonlinear field configu-
particular, the closed-time path method with the Hartree facrations, not by higher order Hermite functionals as in
torization (see e.g[11]) was applied in[10] to the static [12,13.
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Finally, it must be stressed that the approximate analytic t
results obtained here are valid in a strongly nonlinear regime 5f
and, in principle, do not depend on the+1 nature of the '
model and could be used to study problems related to MOr the sine-Gordon equation
realistic simplifications of the Skyrme model.

(mo—H) dt (2.4

0

The paper is organized as follows. In Sec. Il the detailed Po P
formulation of the quantum problem is stated, with the free _‘P__"°+sin¢,:0. (2.5
parameters adjusted to mimic mesons and baryons. Section at?  ox?

[l is devoted to the study of the coherent state approxima-

tion and the derivation of the quantum equations for the fieldrhe one dimensional Skyrmion is the soliton solution

for low momentum fluctuations. In Sec. IV three problems

are considered. The first is the nonlinear stability of a single ¢=—4 arctafiexp(— (x—vt)/V1-v?)], (2.9
soliton under the influence of quantum fluctuations. This sta- ] ) )

bility is studied both numerically and asymptotically. In par- ©f Ed. (2.9, which represents a localized deformationxat
ticular the asymptotic solution includes the damping effect of=vt. In this contextv must be taken to satisfy<1, since

the radiation shed by the soliton due to the fluctuations. Thi¢he Skyrme model is only consistent for small energies. The
asymptotic solution explains in detail the mechanism for théinear travelling periodic wave solutions of the sine-Gordon
nonlinear stability of the soliton. The second problem studiec@duation are interpreted as pions. Notice that the nonlinear
is the scattering of a mesawave by a static soliton. The r_nodel contains Ilnear waves W_hlch des<_:r|be bosons an_d_non-
numerical solution for this problem shows that in this pro_Ilnear structures which describe ferm!on_s. In his original
cess the soliton is also stable. Finally the third problem studWork Skyrme suggested that the fermionic part of the La-
ied concerns the collision of solitons and the quantum evodrangian is needed only just to count the number of localized
lution of a bound statésoliton and an anti-soliton It is  States of finite amplitude of the bosonic figldl]. In this
shown that the complete integrability of the sine-Gordoninterpretation, fermions are just a point approximation to
simplification of the full Skyrme model to just one internal nonlinear localized bose fields. It has aIS(_) been suggested on
degree of freedom for the field precludes the processes ¢fther general grounds that the canonical quantization of
fusion and splitting. The processes of fusion and splitting ardi€lds (@s bosonsgives Fermi-Dirac type statistics for the

produced by the influence of all the internal degrees of freekinks [15]. In the sine-Gordon model the exclusion principle
dom. holds for kinks, since we know that for the general exact

solution there is no solution with two identical solitorist].
In this article, we shall consider a canonical quantization
using the functional Schdinger picture. It is to be noted that
For the basic structure we take the baby Skyrme modekll quantizations for the Skyrme model cited in the Introduc-
which is a reduction of the full model with only two fields tion make the same assumption. However, in this work we
present1,3]. This model, in turn, reduces to the sine-Gordondiffer from previous treatments in that we shall keep infi-
equation which is known to be completely integrak8¢ In nitely many degrees of freedom in the classical field and
these variables the Hamiltonian takes the form reduce the dimensionality of the space of fluctuations. The
final result will be shown to be a system which consists of a
H=md f [EW2+ 1((9_90 partial differential equatioksimilar to the sine-Gordon equa-
2 2\ dx tion) for the field coupled to a system of nonlinear ordinary
(2.1 differential equations which control the fluctuations.

) ) o In the field configuration representation the Sclinger
where ¢ is an angle variable whose momentumis given equation takes the form

by

Il. FORMULATION OF THE PROBLEM

2

+17?(1—cose) |dX,

ov
_1 (2.2 i a(t(P):
T=C e '

HY (¢), 2.7

whereW (¢(x),t) :=(¢(x)| W (t)) is the amplitude for finding

the field system characterized by the state vepfogt)) in

the field configurationp(x) at timet. In this configuration
representation the scalar product of two state vectors is given
by the functional integration

m is the mass of the particle anhds a typical particle size.

Using dimensionless variables=x/I andt=ct/I, we ob-
tain, after dropping the tildes,

de 2
+(1—cosyp)

H:mczj —

121
2™ 13

dx, (2.3

Wy |W =J‘I’*(<p,t)\1’ (¢.t) Do, (2.9
with w=d¢/dt. To mimic a baryon by means of the sine- () ' 2

Gordon soliton, we také~10 '3 cm andm~10 2’ Kg, , .
which gives an internal time of 16° sec. and the field operators are represented by functional kernels.

The equation of motion derived from the Hamiltonian Thus the field —operator $(x) is represented by
variational principle (e(X)|p(X) | ¥ (1)) = o(X) W (¢(X),t) and, therefore, acts as
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a multiplication operator, while the action of the canonical 0 .
momentum operator is given by l"=f (Pl i H|W)dt, (3.

é which we extremize with the Gaussian trial functional
o) (e()[W(1)).

(2.9 ‘If(qo(X).t)=eXD[if T(X D[ e(X) — (X, 1)] dX]

((xX)|m(x")|¥(t)y=—ih

The Hamiltonian field operatd?‘l then becomes
L Xexp{—f f dxdy o(x) — ¢(x,t)]
e

oX

ﬂ=méf

1. 1 -
sz(x)+ > +(1—cose) |dx,

(2.10 X

1
ZQ‘l(x,y,t)—iE(x,y,t)}[cp(y)— QD(X)]],

where there is no ambiguity in the ordering and the functions (3.2

of operators are defined by their power series. 1 .
The quantum mechanical problem for the field consists ofVhere the kernel§) ™" andX take into account the quantum

solving the Schidinger equation(2.7) for a given initial ~ fluctuations andp(x,t) and(x,t) are the average field and
field configuration. Notice that the time in E(R.7) has a average momentum of the Gaussian, respectively.

scale set bync/#, which is of the same order of magnitude Substltgtlng th_e trial functlor(3.2). into tr_\e functional
(10~ as the time scalb/c for the field fluctuations. Thisis (3-1 and integrating over the(x) variable yields an aver-
to be expected since the Skyrme equation was assumed to Bged actiori7—10]. This action is given in terms ap(x,t),
consistent with the quantum scale of the particle. Thus wd} and=. The potential is then also expanded around the
can take the same dimensionless time variable for eithefVerages(x,t). It should be stressed that the consistency of

scale. this approximation depends on the smallness at all times of
the variance(, in the sense that the average energy of the

IIl. APPROXIMATE SOLUTIONS TO THE EUNCTIONAL fluctuations around the meaﬁ(?(,t) is small compared_wnh
EQUATION the energy of the average motion. Moreover, by keeping only

guadratic terms resulting from the averaging around the

To solve the Schidinger equatiorf2.7), we take a coher- mean of the nonlinear term, which amounts to making the

ent state approximatioY —10] and study the evolution of its assumption that the energy of the fluctuations is small com-

parameters. Following the approach in R¢%-10 we con-  pared to the energy of the mean, we arrive at an effective
sider the functional action of the form

2

2

do (1 do
Tt \2\ox

+(1—cos<p))+EQ(x,x,t)—ZEQE(X,x,t)

SIS

0 1 9%Q Lo

]dxdt+ 0(Q?), (3.3

where the notatiof)> is taken to mean the kernel of the action can be computed once we choose an appropriate pa-
operator defined by the convolution Bf with (), that is rametrization for the varianc@ and the phasg&. It must be
noted that thanks to the simple form of the potential. the
Gaussian integral can be evaluated exactly. However, since
we are interested in small fluctuations we stop at the qua-
dratic level. We will come back to this point when compar-
and2 Q3 is the kernel of the operator defined by the con-ing our results with those ifl0].

Q3 (xy)= f_LLQ(x,Z)E(z,y)dz (3.9

volution of 3, Q and, Now, since the field is homogeneous, we can take
L (L 1 (= . o
EQE(x,y)zj f 3(x,2)Q(z,u)S(u,y)dudz Q(x,y,t)= zf_wexmk(x—y)]ﬂ(k,t)dk (3.6
-LJ-L
(3.5 1 (= A
In the following we will take the limitL—c at different E(X'y’t):Ej_mexq'k(x_y)]z(k’t)dk’
stages in the calculation of the effective action. The effective 3.7
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where TrL P (1 90\ 2 Q )
_ LA a4 g 220
o L—fo f—L[ﬂ-(?t Z(ax) +[1 (1 27raC2 COoSe
A 0
Qkt)y=——F—, 3.8 .
(k) k2+a?(t) (38 1 2abQ 2|o2Q K
+Z g 0C1 ; oC1 —4QOa
- b(t)
2(k,t)= YA (3.9 1
ke+a“(t) +§ro2a dxdt, (3.13

The parametera(t) andb(t), which control the spread- ,
ing of the fluctuations, are to be determined after the effec¥here the constants; andc, are given by
tive action is varied. The choice of the trial function is then

guided by the simplicity of the resulting expressions. Notice, [ dk [ dk
however, that since the results obtained depend only on the C1= —w(14+Kk2)3 T 2T ~w(1+Kk2) -
spreading, the same qualitative behavior will be obtained for (3.14)

other forms of the trial function.

Since the approximate SOIU“dGZ) involves the kernel Note thatc2 approximates the integra| in qulz

Q" the proposed expression is convergent provided that the |t is now convenient to change variables and define
momentum of the fluctuations involved in the integration is=1/a3 andb=p in order to obtain the Lagrangi&B.13 in

low. This assumption is in agreement with the fact that thehe form
basic Skyrme model is consistent at low momentum and with

—5/3 K —2/3

the assumed homogeneity of the fluctuation. This is taken T([2¢,0p.
into account by taking fof) ~1(x,y,t) the cut-off kernel L= fo (( 3 qp—2c,Q0p%q ">~ 4—90
1 (K 1 ¢ L L do 1 1(dg\?
Q7 Xyt =—f e CM(k2+a?) dk. Z02q = f LA ) gt
Y O=5700) « ( ) HIZACTS B = B e Y
(3.10
—1- 1—%q1’3 cose | [dx|dt (3.15
Then the non-constant contribution 8f *(x,x,t) is 2 ¢ ' '

1 Ko The equations of motion are obtained by varying the La-
—g TxxH=- 870, (31D grangian(3.15 with respect to the parameters ¢, p andg.
These variational equations will consist of a partial differen-
In a similar manner we obtain tial equation for the field coupled to ordinary differential
equations for the fluctuations. For the field the variational
2 K K2 equation is
2 axzﬂ(x,y,t)ly_x 4WQOJ—Kk2+ade e FPo Qo 1pa|
—2——2+<1—7q )Sln(pZO. (3.19
QK 1 Ka  dk ate X
= —2—+4—a(t)QOJ > .
& ™ ~Kiak®+1 The equations fop andq are derived from the Lagrang-
(3.12 ian
The first term in this expression is infinite, but a constant. _2¢LQO0 (T .
Thus it does not contribute to the equations of motion. We £= 3 fo [ap—3H(p.q)]dt, (3.1

therefore take just the second term in the effective Lagrang-
lan while noting at the same time thita>1, sinceais  \here the Hamiltonian for the fluctuations is given by
assumed to be small compareddoObserve that the param-
eter (3, measures the size of the fluctuations. In principle,
other choices of the parameters may lead to different requ-  H(p,q)=p%q~ **+q
larizations. However, as discussed below, the basic qualita-
tive picture described in this work is not changed by these K
alternative regularizations, provided the momentum is low. +
For the case of higher momentum, procedures similar to the 8c,02
ones discussed if8,10] can be used.

With the above assumptions, the effective LagrangiarmThe equations of motion fop and g are then given by
takes the form Hamilton’s equations as

sl

- 1 —-1/3
ZLJ,LCOS(p dx— gq

q 23 (3.18
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. oH this section we also consider important to stress the fact that
q=%=6pq‘5’3 (3.19  in previous published work the interest has been on static
solutions allowing for arbitrary momentum of arbitrarily
. 9H 2 1 large fluctuations. This leads to a different renormalized ver-
p=——=5p°q 83+ -pq - —q 48 sion of the gap equatidi7,8,10 and, for large coupling, to
99 3 24 a loss of stability(phase transition Our approximation does
—23 not capture this region, since we have assumed from the
_ 9 f cosg dx (3.20 onset small fluctuations and small momentum. However it
2L J-. ’ must be noted that our procedure could be extended to
handle large momenta by choosing different trial functions
where for G and,, similar to the ones used [8]. Also, due to the
special form of the potential in the equations, the Gaussian
3K integral may be evaluated to a better degree of approxima-
B= 5 (3.21 i ; . . -
8c,02 ion, thu; allowing tq include ﬂuctuat|o.ns of a Ia_rger ampll_
tude. This program is currently under investigation and will
SinceK is assumed to be small buk&a), we will take 3 be reported subsequently.
=2.5 in the numerical calculations of the next section. It In the following section we undertake a detailed study of
must be noted that for initial conditions which hawe the dyamics described by E¢8.16), (3.19 and(3.20.
— 2 asx— —o and ¢—0 asx—ce, or vice versa,

1 (L IV. SOLUTIONS
A:=lim=—| cospdx=1. (3.22 ) _
R The system of the sine-Gordon equati@16 and Egs.

(3.20 and (3.19 for q and p describe the coupling of the
It is therefore apparent that Eq®.20 for the fluctuations field to the fluctuations and the corresponding feedback.
decouple from Eq(3.16 for the field. Note that the fluctuations have been assumed to be small.
It is interesting at this point to compare our equationsHowever, they are allowed to feed back onto the basic field
(3.16), (3.19 and(3.20 with the corresponding Eq#4.5 of  configuration. We shall now use these equations to describe
Ref.[10]. Observe that in that reference the equation for theén a nonperturbative manner the nonlinear evolution of some
field takes the form special field configurations.

1 20 - (2126 XD gin o= 0 32
Pttt ™ Pxx Fe Sinye=U. (3.23 A. Quantum stability of the single soliton

. . ) We begin by studying the stability of the soliton solution
Taking y=1 and assuming(x,x,t)<1, which amounts to (3 g) ynder a class of initial values fgr andg. Note that a

choosing the initial conditions in the form of small fluctua- g4 value ofq represents a small variance. Stability is then

tions, we have assured in the model by the fact thptemains small and that
1 the field maintains its identity as a localized structure.
e~ (12G(xx.1) 1 — EG(X'XJ)- (3.24 Numerical integrations of the sine-Gordon equati®ri6

and Egs.(3.20 and(3.19 for p andq have been performed
for a wide range of initial conditions and typical behaviors
are shown in Figs. (&), 1(b), and 2. In Fig. 1a) numerical
solution for & = ¢, for the Skyrmion is shown and in Fig.

: . -7 1(b) the behavior ofa, the maximum of®, is shown. It can
NO\.N' as for the second e_quap()mS) n [10] note that this is be seen that the fluctuations of the Skyrmion produce radia-
an infinite system of pAartlaI differential equations for the OP-tion. but that the field eventually stabilizes. This can be
erator valued function?, while in our formulation, because clea{rly seen from the behavior of the maxima shown in Fig.
of the assumption of spatial homogeneity and the functionap_The stabilization onto a modulated small oscillation of the
form chosen for the trial Green function, the system simpli-sikyrmion amplitude can be clearly seen. These results ex-
fies to a problem of ordinary differential equations. Anotherpipit the strong stability of the Skyrmion with respect to
difference between our approach and that followeflldi is  fiyctuations. It is possible to understand this behavior by
that the equations proposed there in order to arrive at NUnaking use of the modulation theory given[it6] and[17]
merical solutions are integrodifferential equations, as oppy means of the following argument. If the scalesgandq

posed to the simple variational approximation we proposgre slow, we may take as an approximate solution
for obtaining solutions. It must be also remarked that our

assumed homogeneity of the Green function is consistent Qg 12

K .. . — 1__q1/3 X
with the low momentum limit we have chosen. In this low LA o 2 ’
momentum limit, the fluctuations do not resolve the fine
scale of the field and, to leading order, the configuration is a
homogeneous background for the fluctuation. To concludevhich satisfies

Clearly, substituting this last expression into Eg§.23 re-
covers our Eq(3.16), so the respective field equations agree
for the above mentioned initial conditions and valueof

4.9
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FIG. 2. Stability of a single soliton to fluctuations. Comparison
between the full numerical solution of the sine-Gordon equation
(3.16 and equation$3.20 for p andq and the approximate Eqgs.
(4.11. Qy=0.6, B=2.5. The initial conditions arg=1.0, p=0.0
andv=0 att=0. Amplitudea of ® = ¢, . Full numerical solution:

— ; approximate solution: — — — .

The potentialV(q) has a minimum which gives an oscilla-
tory solution forp andq, so that the width of the Skyrmion
and thus the amplitude @b = ¢, oscillate in time. The nu-
merical solution shown in Fig.(&) shows that the radiation,
which is not taken into account in this approximation, stabi-
12 35 25 5 = 00 lizes 'Fhe oscillations onto a limit cyple.
i __Th|s strongly n(_)nlmear me_chanlsm accounts for the sta-
bility of the Skyrmion. In fact it is the feedback of the field
FIG. 1. Stability of a single soliton to fluctuations. Solution of on the fluctuations which produces the teg? in V(q) and
sine-Gordon equatiofB8.16 and equation$3.20 for p andqg with it is this term which stabilizes the motion. The potential
Q(,=0.6 andB=2.5. The initial conditions arg=1.0 andp=0.0  V(q) has a maximum for smat]. For energie& larger than

(b)

andv =0 in the soliton solutior2.6) att=0. (a) soliton. — : initial  this maximum, the fluctuationgincrease and the field struc-
condition; — — — : soliton at="100.(b) Evolution of maximumaof  ture is destroyed. However the valuecpfor this to occur is
D=0¢y. too small to be consistent with the coherent state approxima-
tion. The model is therefore self-consistent and provides an
1., explanation of how nonlinear interactions are responsible for
cosp=1-¢" (4.2 the quantum stability of the field.

The approximate solution above does not take into ac-

Hence ad.— we have from Eq(3.22 that A=1. With  count the radiation produced by the oscillating Skyrmion and

this, the equations fop andq are derivable from the Hamil- SO this approximate solution will not give the baryon settling
tonian onto a limit cycle solution. To take account of the radiation

the ideas of Smyth and Worthyd8] can be used. In this
K work the effect of shed dispersive radiation on the evolution
q "+ — q 28|, of a single pulse for the sine-Gordon equation was treated.
8 40q To take account of the radiation we proceed agl#l, indi-
(4.3 cating only the main differences from this work.
The Lagrangian density for the sine-Gordon equation is

1
H(p,a)=3| p?q~*+q'*- 3

Thus the orbits in thef,q) plane are just the level lines of

H(p,a)=E. @4 o> &
p.q L=5¢f~ 565~ 1~ 50" (1-cose). (4.6

The orbits of the [f,q) system are then given by

1 To obtain an approximate solution of the sine-Gordon equa-
2_ o573 — g By gB- g tion, the trial function
p==q 2 Q(z) q q gd
=g°JE-V(q)]. (4.5 ¢=—4 arctare” V() 4.7
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which is a solitonlike pulse with varying widtiw(t), is sub- o o Qo 5
stituted into the averaged Lagrangian —_— ——q1’3(t)) ©=0 4.9
> ox? 2
— * 772 W,2 4 QO ~
LZJ Ldx= 3w w Hi- 7q1’3)w, (4.8  for the radiatione. This equation is solved together with

appropriate source conditions at the pulsexatO. Since

as in[18]. In this approximation the Hamiltonian fgrandq Qo<1,
again does not change due to £8.22. d
The effect of the radiation shed by the evolving soliton is —(
determined by finding an appropriate solution of the linear- dt
ized sine-Gordon equatidii8]. The effect of this radiation |t js then possible to obtain an expression for the radiation by
is then to modify the Euler-Lagrange equation feft). Itis  making the adiabatic approximation that-104/2)q™ is
noted from the numerical solution of Fig(a that the radia-  constant to leading order. The effect of the radiation can then
tion ¢ is of small amplitude compared with the soliton. be found from the expression (8] by a suitable re-scaling.
Therefore following[18] we consider the linearized sine- In this manner we find that the equations governing the evo-
Gordon equation lution of the soliton, including the effect of radiation, are

- %qm(t)) <1. (4.10

272 d°w 7P (dw)2 4 a1 Qg 1/3) 1 272 dW+ 272 tJ (R(t=1) w’'(7) g
A o ——\| = - A = | — = T - T T
3w g 3w?ldt] W 2 T )TN 3w dt 3gwedo™ (7
dq —5/3
H—qu (4.11
dp 2~—8/3 2 —5/3 —2/3 1 —4/3
gt 2P9 Thgpa Thoa TR ga T
|
where o(X)=—4 arctare” *+ f(x) (4.13
Q J
A=1- 218, (4.12 2 g(x), (4.14
2 ot
These equations were integrated numerically. Comparisonghere the function$ andg are given by
between solutions of these equations and the full numerical )
solution of the sine-Gordon equation for the amplitdef f(x)=asink(x+Xo), [X+Xo|<d (4.1
®=¢, andq(t) for the fluctuations are shown in Fig. 2. It
can be seen also that the amplitude agreement shown in Fig. g(x)= —a ki + 1cosk(X+Xg), |[X+Xq|<é.
2 is good considering the assumptions that were made to (4.16

incorporate the radiation loss in the approximate equations. It
can be seen that the approximate equations provide a suitabldis initial condition represents an incoming meson with
approximate solution for the full field behavior using a finite momentumk impinging on a nucleon located at=0. A
dimensional approximation which includes radiation. Notenumerical solution for the scattering of the pion wave packet
that, sinceq(t) is periodic, the sine-Gordon equati¢®.16  can be seen in Fig. 3. The initial conditigatt=0) is shown
is subject to a parametric excitation. However the nonlinearby the solid line in Fig. 8). In this figure a reflected wave
ity and radiation loss provide the necessary damping to erpacket, a reorganized field configuration and a new packet
able a limit cycle to be achieved. shed by the baryon as a result of the interaction can be seen.
In Figs. 3a), 3(b), and 3c), the complicated evolution of the
baryon amplitude is displayed. This amplitude behavior is
due to the interaction of the baryon with the packet. The
As a final example we consider the scattering of a wavescattering then involves a reorganization of the field, which
packet representing a pion with momentlknwith a static  is not taken into account when the particles are taken to be
soliton, representing a baryon originally at rest. The problenpoint particles. The description of the interaction of the
is solved by numerically integrating the sine-Gordon equabaryon with radiation using a multi-phase solution of the
tion (3.16) using the initial condition sine-Gordon equation is under investigation at present.

B. The collision of a wave with a static soliton
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FIG. 3. Scattering of a wave packgton) with a baryon. Solu-
tion of sine-Gordon equatio(8.16) and equation$3.20 for p and
g with Q(=0.6 andB=2.5. The initial conditions are given by Egs.
(4.13,(4.14 anda=0.1, k=1.0, 5=4.0 andxy,=20 in Egs.(4.15
and(4.16). Also g=1.0 andp=0.0 att=0. (a) Solution att=50.
(b) Evolution of maximuma of ®= ¢, . (c) Detail of evolution of o ) . .
maximuma of ® = o, from t=15 tot=40. FIG. 4. Collisions of solltor_ls. In|t|al_c_ond|t|on_s_haqec 1.0 a_md
p=0.0. Q,=0.6. (&) Two solitons. Initial condition(4.17) with
C. Collision of two solitons in the presence of a fluctuation Xo=15 andv=0.2. Initial condition ¢=0): —; solution att
) _ ) o _ =150: — — — — .(b) Soliton and an anti-soliton. Initial condition
Since the classical field equation is completely integrable(4.18 with a=1.2. Initial condition ¢= —15): — ; solution att
solitons interact elastically and do not change configuration=15: — — — — .(c) Bound state of a soliton and an anti-soliton.
The effect of quantum fluctuations on the collisions of soli-Initial condition (4.19 with «=0.98. Initial condition {=—5):
tons and this clean interaction will now be studied. — ; solution att=45: — — — —.
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Figure 4a) shows the collision of two solitons with equal that finite dimensional approximations to the dynamics of the

and opposite velocity. The initial condition used was Skyrmion model, such as those used[@]}, are also good
approximations to the full dynamics of more complicated
p=27—4 arctare~ (*Xo-v/V1-v? problems, such as those treated there.
— The scattering of a wave by a static soliton was also stud-
— 4 arctare” X Xotv)/V1~v (4.17  ied. The numerical results obtained show well defined waves

and a Skyrmion after collision, which suggests the possibility
ast— —co. Since there is no classical solution with twice the of using multi-phase solutions, such as thos¢1&f, to un-
baryon number and zero velocity, the effect of the quantungierstand this scattering process.
fluctuations is just to slightly modify the classical interaction.  Finally several collision processes were studied. It was
The solitons again settle down to a limit cycle for which the found that the reduced Skyrme model cannot account for the
parametric resonance is balanced by the radiation dampingollision and fusion of baryons. Therefore the study of the

Figure 4b) shows the collision of a soliton and an anti- fusion of Skyrmions into a toroidal configuration requires a

soliton. The initial condition is uniform solution which interpolates between the torus and

the individual Skyrmions. The possibility of using the solu-

a sinhya®—1 t tions given in[20,21 is currently under study. It must be
p=—4arcta Ja?—1 coshax | (418 noted that more sophisticated numerical formulations such as

the ones proposed iri0] must produce, in the limit of low
Again this interaction does not produce disintegration, just a"°Mentum, solutions comparable to our results.

modification of the classical interaction. To conclude, we note that the techniques described in this
Finally the susceptibility to disintegration of the breather-Work can be applied to the study of low dimensional black
type configuration holes. Indeed, an old observation that the sine-Gordon theory

and 2-dimensional spaces of constant curvature are very

o sinfl—a? tl closely related has recently found an interesting application

(4.19  to gravity in 1+1 dimensions. More precisely, Gegenberg
coshax  \[1-q? and Kunstattef22] have noticed that when a two dimen-

sional Lorenzian metric is parametrized as

with frequencyy1— o? is studied. From the numerical solu-
tion shown in Fig. 4c) it can be seen that the breather is ds?= —sir?(u/2)dt?+ cog(u/2)dx?, (5.1
stable with respect to quantum fluctuations.

The solutions displayed in Fig. 4 show that the reductionthen the condition of constant curvature is equivalent to the
of the Skyrme model to the sine-Gordon equation is too secondition thatu satisfies theEuclideansinh-Gordon equa-
vere for treating collisions. In order to obtain non-trivial col- tion. On the other hand, the so-called Jackiw-Teitelboim
lision and fusion processes, such as those possible for tHgeory in two dimensions
nonlinear Schrdinger equation, reductions of the Skyrme
LneoziLinvgéch retain more internal degrees of freedom must |:j (;S(R—A)\/—_g dtdx (5.2)

p=—4 arcta{

has as solutions space-times of constant curvaRse\.
Furthermore, the one-soliton solution of the sine-Gordon
equation has been found to represémtpatch of a black
] hole solution of thgJackiw-Teitelboim theory[22]. That a
We have formulated the quantum field problem for theconstant curvature space-time can be interpreted as a black
sine-Gordon equation which is related to {ltémensionally  hole is not unique to two dimensions. Ther1 Jackiw-
reduced Skyrme model. Using the coherent state approxi-Teijtelnoim black hole can indeed be interpreted as a dimen-
mation for the solution of the functional Scldioger equa- sionally reduced Bzados-Teitelboim-Zanell(BTZ) (non-
tion, we obtain a solution of the partial differential equation rotating black hole and many of its propertig@cluding
for the (quantum corrected, semi-classicéield, which is thermodynamidshave been studief®3].
coupled to ordinary differential equations for the fluctua- T perform an analysis similar to the one presented in the
tions. Other quantizations for nonlinear fields keep only ﬁ'present work for the Euclidean sine-Gordon equation is cum-
nitely many degrees of freedofminisuperspace approxima- persome, since the equation is now elliptic and does not ac-
tion), which are then quantized in a canonical way. cept a well-posed initial value formulation. However it is
The first problem considered in the present work was thebossible to work in the framework of a well-posed problem

stability with respect to quantum fluctuations of a soliton. jf gne chooses a different parametrization for the two dimen-
Both numerical and asymptotic solutions were considered. ljona| space-time as follows:

was found that the nonlinear saturation of the field equation

together with the loss of radiation balanced the parametric ds?= —sint?(u/2)dt?+ cost(u/2)dx?. (5.9
excitation of the fluctuations. The fluctuations in turn were

controlled by the shape of the field. The good agreemenin this case, the constant curvature condition reduces to the
found between numerical and asymptotic solutions suggestsorenziansine-Gordon equation. It is then possible to ana-

V. CONCLUSIONS AND SUGGESTIONS FOR FURTHER
RESEARCH

105011-9



G. CRUZ-PACHECCet al. PHYSICAL REVIEW D 61 105011

lyze the quantum stability of a black hole solution using theequations for théparameters of thefluctuations which are
functional methods presented in this article. This work will non-local in the fields will always be obtained.
be reported elsewhere.

As a final remark we point out that the quantum equations ACKNOWLEDGMENTS
for a classical field obtained using the functional Sclimger
equation and the coherent state approximation will always This work was supported in part by UNAM DGAPA
have the same structure. Namely the classical equations fé&roject No. IN 106097. A.C. was also supported by Conacyt
the field with renormalized(fluctuating parameters and Proyect No. 125655-E.
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