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NÄ2 supersymmetric model with Dirac-Kähler fermions
from generalized gauge theory in two dimensions

Noboru Kawamoto* and Takuya Tsukioka†

Department of Physics, Hokkaido University, Sapporo, 060-0810, Japan
~Received 7 September 1999; published 19 April 2000!

We investigate the generalized gauge theory which has been proposed previously and show that in two
dimensions the instanton gauge fixing of the generalized topological Yang-Mills action leads to a twistedN
52 supersymmetric action. We have found that theR symmetry ofN52 supersymmetry can be identified with
the flavor symmetry of the Dirac-Ka¨hler fermion formulation. Thus the procedure of twist allows topological
ghost fields to be interpreted as the Dirac-Ka¨hler matter fermions.

PACS number~s!: 12.60.Jv, 11.30.Ly
u
t t
b
of

e
o

c-
n

t
m

is
ich

ut

e
n
g
tu
io

ill

di
c
ed
ni
t-

cal
f
a-

ory.
we
to-
’

a

ng
di-

the

a-
. In
po-
n

ain

n-
raic

a
o a
ram-

t

I. INTRODUCTION

In formulating a unified theory it is the general consens
that supersymmetry may play a crucial role. It is importan
understand the origin of supersymmetry and fermion and
son correspondence. There is an interesting example
topological field theory analysis by Witten@1# which sug-
gests the possible origin ofN52 supersymmetry and th
generation of fermionic fields from ghosts via a twisting pr
cedure. Later it has been pointed out that this theory can
derived from the ‘‘partially’’ Becchi-Rouet-Stora-Tyutin
~BRST! gauge-fixed action of the topological Yang-Mills a
tion with instanton gauge fixing@2,3#. This subject has bee
intensively investigated@4#, particularly in connection with
supersymmetric field theories@5#. In this paper we claim tha
the topological twist generating the matter fermions fro
ghosts is essentially related to the Dirac-Ka¨hler fermion for-
mulation.

In the 1960s Ka¨hler @6# showed that the Dirac equation
constructed from inhomogeneous differential forms wh
are called Dirac-Ka¨hler fields @7#. Moreover the Dirac-
Kähler fermion is a curved spacetime version of the Kog
Susskind fermion@8# or staggered fermion@9# and thus a
natural framework of the lattice fermion formulation@10#.

About ten years ago one of the authors~N.K.! and Wat-
abiki proposed a generalization of the ordinary thre
dimensional Chern-Simons theory into arbitrary dimensio
by introducing all the degrees of differential forms as gau
fields and parameters together with a quaternion struc
@11#. Later the quantization of the even-dimensional vers
of the generalized Chern-Simons actions was completed
the Batalin-Vilkovisky formulation@12#. This formulation
can be, however, generalized to the topological Yang-M
and ordinary Yang-Mills actions.

Since the generalized gauge theory is formulated by
ferential forms it has a close connection with the Dira
Kähler fermion formulation. We believe that the generaliz
gauge theory may play a crucial role in formulating the u
fied model including quantum gravity on the simplicial la
tice manifold@13#.

*Email address: kawamoto@particle.sci.hokudai.ac.jp
†Email address: tsukioka@particle.sci.hokudai.ac.jp
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In this paper we investigate the generalized topologi
Yang-Mills theory from the topological field theory point o
view. An enlarged algebraic structure of BRST transform
tions in the manner of Baulieu and Singer@3# is naturally
constructed in a unified way by the generalized gauge the
As the simplest example towards more realistic case,
quantize the two-dimensional version of the generalized
pological Yang-Mills action and show that the ‘‘partially’
gauge-fixed action with instanton gauge fixing leads to
twisted N52 supersymmetric Abelian-Higgs action@14,15#
without a symmetry-breaking potential term. It is interesti
to recognize that our instanton relations coincide with
mensionally reduced Seiberg-Witten equations@16# from
four into two dimensions@17#. We point out that the fermi-
onic ghost fields can be interpreted as Dirac-Ka¨hler fermion
fields and thus the twisting procedure is nothing but
Dirac-Kähler fermion formulation.

This paper is organized as follows. In Sec. II we summ
rize the generalized gauge theory in arbitrary dimensions
Sec. III we analyze the generalized two-dimensional to
logical Yang-Mills theory as a topological field theory. I
Sec. IV we explicitly verify the twistedN52 supersymmet-
ric algebra for the gauge-fixed action. In Sec. V we expl
the twisting mechanism via Dirac-Ka¨hler formulation. Con-
clusions and discussions are given in the final section.

II. GENERALIZED GAUGE THEORIES IN ARBITRARY
DIMENSIONS

In this section we summarize the formulation of the ge
eralized gauge theory with an emphasis on their algeb
structures.

The essential point of the generalization is to extend
one-form gauge field and zero-form gauge parameter t
quaternion valued generalized gauge field and gauge pa
eter which contain forms of all possible degrees.

In the most general form, a generalized gauge fieldA and
a gauge parameterV are defined by the following componen
form:

A51c1 iĉ1 jA1kÂ, ~2.1!

V51â1 ia1 j â1ka, ~2.2!
©2000 The American Physical Society09-1
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where (c,a), (ĉ, â), (A,a), and (Â,â) are direct sums of
fermionic odd forms, fermionic even forms, bosonic o
forms, and bosonic even forms, respectively, and they t
values on a gauge algebra. The symbols1, i, j , andk satisfy
the following quaternion algebra:

1251, i2521, j2521, k2521,

ij 52 ji 5k, jk 52kj 5 i, ki52 ik5 j . ~2.3!

The following graded Lie algebra can be adopted as a ga
algebra:

@Ta ,Tb#5 f ab
c Tc ,

@Ta ,Sb#5gab
g Sg , ~2.4!

$Sa ,Sb%5hab
c Tc ,

where all the structure constants are subject to consiste
conditions which follow from the graded Jacobi identitie
The components of the gauge fieldA and the gauge param
eter V are particularly assigned as elements of the ga
algebra

A5TaAa , ĉ5Taĉa , c5Saca , Â5SaÂa ,

â5Taâa , a5Taaa , â5Saâa , a5Saaa .
~2.5!

The component expansion of the same type asA andV are
classified as elements of theL2 class andL1 class, respec-
tively. These elements fulfill theZ2-grading structure

@l1 ,l1#PL1 , @l1 ,l2#PL2 , $l1 ,l1%PL1 ,
~2.6!

wherel1PL1 andl2PL2 . In particular the exterior de
rivative belongs toL2 class

Q5 jd, ~2.7!

and the following relations similar to the ordinary exteri
derivative operator hold:

Q~l1l2!5~Ql1!l21~2 ! ul1ul1~Ql2!, Q250,
~2.8!

where ul1u50 for l1PL1 and ul1u51 for l1PL2 . To
construct the generalized actions, the two types of traces
the gauge algebra should be introduced,

Tr@Ta, . . . #50, Tr@Sa, . . . #50, ~2.9!

Str@Ta, . . . #50, Str$Sa, . . . %50, ~2.10!

where (•••) in the commutators and the anticommutator d
note a product of the generators. These definitions of
traces are crucial so that the generalized actions are inva
under the generalized gauge transformations.

We can then construct generalized actions in terms
these generalized quantities. The generalized Chern-Sim
10500
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actions which have been previously proposed@11# are given
on even- and odd-dimensional manifoldsM,

Seven5E
M

TrkS AQA1
2

3
A 3D , ~2.11!

Sodd5E
M

StrjS AQA1
2

3
A 3D , ~2.12!

where Trk(•••) and Strj(•••) are defined so as to pick u
only the coefficient ofk andj from (•••) and take the traces
We then need to pick upd-form terms corresponding to
d-dimensional manifoldsM. These actions are invariant up t
surface terms under the following generalized gauge tra
formation:

dA5@Q1A,V#, ~2.13!

where V is the generalized gauge parameter. It should
noted that this symmetry is much larger than the usual ga
symmetry since the gauge parameterV contains many pa-
rameters of various forms.

There is another suggestive topological nature due to
parallel construction to the standard gauge theory. In
generalized gauge theory it is possible to define the gene
ized Chern character which is expected to have topolog
nature

Str1~F n!5Str1~QV2n21!, ~2.14!

Tri~F n!5Tri~QV2n21!, ~2.15!

whereF is a generalized curvature

F5QA1A 2, ~2.16!

and V2n21 are the ‘‘generalized’’ Chern-Simons form
Equations ~2.14! and ~2.15! are bosonic even form an
bosonic odd form, respectively. Especially, for then52 case
in Eq. ~2.14!, we obtain a topological Yang-Mills type actio
related to a one dimension lower generalized Chern-Sim
action on an even-dimensional manifoldM,

E
M

Str1F 25E
M

Str1S QS AQA1
2

3
A 3D D , ~2.17!

which has the same forms of the standard relation.

III. GENERALIZED TOPOLOGICAL YANG-MILLS
THEORY IN TWO DIMENSIONS

In this section we analyze the two-dimensional version
the generalized topological Yang-Mills action. Our formul
tion of this section is the two-dimensional realization of t
known four-dimensional scenario@1–3# and can be extende
to arbitrary dimensions.

As we have already mentioned, the action we consi
satisfies the following well known relation:
9-2
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N52 SUPERSYMMETRIC MODEL WITH DIRAC-KÄHLER . . . PHYSICAL REVIEW D 61 105009
E
M

Str1F 0
25E

M
Str1S QS A0QA01

2

3
A 0

3D D , ~3.1!

whereA0 andF0 are the two-dimensional counter part of th
classical gauge field and curvature. More explicitly, they
given by

A05 jv1k~f1B!, PL2 , ~3.2!

F05QA01A 0
2

521~dv1v21$f,B%1f2!1 i~df1@v,f#!, PL1 ,

~3.3!

wheref, v, andB are graded Lie algebra valued zero-, on
and two-form gauge fields, respectively. Due to the topolo
cal nature of the action, the action has so-called shift sy
metry. In other words, the action is invariant under the ar
trary deformation of the gauge fieldA0, which we denoteE0.
Thus the gauge transformation of the generalized topolog
Yang-Mills action has the following form:

dA05@Q1A0 ,V0#1E0 , ~3.4!

whereV0 is the generalized gauge parameter

V051~v1b!1 iu, PL1 , ~3.5!

while E0 is a new gauge parameter of the shift symmetry a
is given by

E05 jj (1)1k~j (0)1j (2)!, PL2 , ~3.6!

where the suffix~n! with n50,1,2 denotes the form degre
Hereafter, we use the same notation to the form degree.
field strength is transformed under the gauge transforma
~3.4!,

dF05@F0 ,V0#1$Q1A0 ,E0%. ~3.7!

The first term is transformed covariantly, and the seco
term is the inhomogeneous gauge transformation ofF0 by
the gauge parameter which belongs to theL2-class.

The topological shift symmetry ofE0, however, can ab-
sorb the usual gauge transformation, so that this is a re
ible system with the following obvious reducibility cond
tions:

V05V1 ,

E052@Q1A0 ,V1#. ~3.8!

Correspondingly we need to introduce ghost fields with
spect to the generalized gauge symmetry and the topolog
shift symmetry, and the ghost for ghost fields with respec
the additional gauge symmetry of the gauge parameter~3.8!.

Although we can construct the nilpotent BRST algebra
the above reducible system by the procedure of cohomol
cal perturbation@18#, we can treat it in an algebraically un
fied way by using the characteristic of the generalized ga
10500
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system. We redefine the generalized gauge field by introd
ing the generalized ghost fieldsC(0) , C(1) , andC(2) :

A51C(1)1 i~C(0)1C(2)!1 jv1k~f1B!, PL2 .
~3.9!

We need to introduce a generalized field which belongs
another class ofA to accomodate the topological ghost fiel
C̃(0) , C̃(1) , and C̃(2) and the ghost for ghost fieldsh (0) ,
h (1) , andh (2) :

C51~h (0)1h (2)!1 ih (1)1 j ~C̃(0)1C̃(2)!1kC̃(1) , PL1 .
~3.10!

Here C belongs toL1 and could be identified as a part o
generalized curvature later.

Furthermore, we extend the concept of the differen
operator by introducing the BRST operators as a fermionic
zero form:1

Q[Q1QB5 jd1 is, PL2 . ~3.11!

It should be noted thats commutes withd, i.e., @d,s#50 and
s250. This operator satisfies the nilpotency property due
the quaternion structures:

Q 250. ~3.12!

The following graded Leibnitz rule acting on generaliz
gauge fields can be derived:

Q~l1l2!5~Ql1!l21~2 ! ul1ul1~Ql2!, ~3.13!

whereul1u50 for l1PL1 and ul1u51 for l1PL2 .
We can now construct the BRST transformation algeb

ically in a unified way. We define the generalized curvatu
by using the redefined gauge field

F5QA1A 25F01C, ~3.14!

where the second relation is imposed to relate the BR
transformation with respect to classical and generali
ghost fields.C50 corresponds to imposing the usual ho
zontal conditions. The transformations with respect to
topological ghost and the ghost for ghost fields are deri
by the following Bianchi identity of the generalized field:

QF1@A,F#50. ~3.15!

The component wise expressions of the BRST transfor
tion can be read from~3.14! and ~3.15!:

sf52@C(0) ,f#2C̃(0) ,

sv5dC(0)1@v,C(0)#2$C(1) ,f%1C̃(1) ,

sB5dC(1)1$v,C(1)%2@C(0) ,B#2@C(2) ,f#2C̃(2) ,

1The fermionic operators acts as a left derivative on fields in th
same way as the operation of the exterior derivatived.
9-3
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NOBORU KAWAMOTO AND TAKUYA TSUKIOKA PHYSICAL REVIEW D 61 105009
sC(0)52C(0)
2 2h (0) ,

sC(1)52$C(0) ,C(1)%1h (1) ,

sC(2)5C(1)
2 2$C(0) ,C(2)%2h (2) ,

sC̃(0)52$C(0) ,C̃(0)%2@f,h (0)#, ~3.16!

sC̃(1)5dh (0)1@v,h (0)#1@C(1) ,C̃(0)#2$C(0) ,C̃(1)%

1$f,h (1)%,

sC̃(2)5dh (1)1$v,h (1)%2@C(1) ,C̃(1)#2$C(0) ,C̃(2)%

2$C(2) ,C̃(0)%2@f,h (2)#2@B,h (0)#,

sh (0)52@C(0) ,h (0)#,

sh (1)5@C(1) ,h (0)#2@C(0) ,h (1)#,

sh (2)52@C(1) ,h (1)#2@C(0) ,h (2)#2@C(2) ,h (0)#.

These algebraic and geometric constructions of the BR
transformation were emphasized by Baulieu-Singer@3# for
the four-dimensional topological Yang-Mills model. We he
propose the natural extension of their approach in the fra
work of the generalized gauge theory. Moreover, we do
have to introduce the ghost number for fields and the BR
operator which played an important role in the above
thors’ formulations. In deriving BRST transformations~3.16!
we only compare the terms expanded in the form degr
and the coefficients of quaternions in Eqs.~3.14! and~3.15!.
The conventional ghost number for particular fields and
BRST charge are automatically assigned by the quaterni
classifications.

Next we can consider the physical observable. We
construct BRST invariant polynomials because of the nil
tency property of the extended differential operator. Bian
identity leads to the following algebraic relation,

QF n52@A,F n#. ~3.17!

Taking a trace of the gauge algebra and particular quater
sector, we obtain the following relations due to the vanish
nature of the right-hand side of Eq.~3.17!,

Strj~QF n!5Strj@~Q1QB!F n#50,

Stri~QF n!5Stri@~Q1QB!F n#50,

which lead to the following descendent equations:

sStrk~F n!52dStr1~F n!, ~3.18!

sStr1~F n!52dStrk~F n!. ~3.19!

We can then find a series of gauge invariant physical obs
ables:

Oo
f 5E

g
StrkF n, ~3.20!
10500
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Oe
b5E

g
Str1F n, ~3.21!

whereg is a homology cycle on the submanifold inM and
Oo

f and Oe
b denote odd-dimensional fermionic and eve

dimensional bosonic observables, respectively.
Although we consider the above BRST algebra in t

two-dimensional case, we will see that the algebra in a
trary dimensions can be treated in a similar way.

We next introduce a particular model to carry out expli
analyses. To make the formulation concrete and simpler
specify to the two-dimensional flat Euclidean case and t
the following two-dimensional anti-Hermitian Euclidea
Clifford algebra as the graded algebra, which closes un
the multiplication and is the simplest example:

Ta:1, g5 ,

Sa:ga, ~3.22!

where ga5( is1,is2), which satisfy$ga,gb%522dab and
g55 1

2 eabg
agb52 is3 with e1251. A grading generator can

be identified asg5 and then we define the supertrace

Str~••• !5Tr~g5••• !.

The two-dimensional topological Yang-Mills action lead
to

S05
1

2E Str1F0`F0

5E d2x~emnFmnufu21emneab~Dmf!a~Dnf!b!

5E d2xemn]m~2vnufu21eabfa]nfb!, ~3.23!

where Fmn5]mvn2]nvm and (Dmf)a5]mfa

22ea
bvmfb . In the action~3.23! the scalar part of the one

form field vms and two-form fieldBamn in the generalized
field ~3.2! drop out because of the reducible structures of
gauge transformations. Then the generalized gauge tran
mations are consistently truncated to the following SO~2!
invariance:

dgaugefa52vea
bfb ,

dgaugevm5]mv, ~3.24!

wherev is a zero-form gauge parameter. As we have d
cussed we impose the topological shift symmetry, th
BRST transformations~3.16! lead to the following truncated
forms:

sfa52ea
bfbC2C̃a ,

svm5]mC1C̃m ,

sC52h,
9-4



d
e-
bl
ee

o

el
ng

tia

e

on
on

f
n

e

r in
as

lu-

i-

-
f
-

her
a-

s

-

ical
e
m

re-
-
-
try

T
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sC̃a52ea
bCC̃b22ea

bfbh,

sC̃m5]mh,

sh50, ~3.25!

where C, (C̃a ,C̃m), and h are the ghost fields associate
with SO~2! gauge symmetry and topological shift symm
tries, and the ghost for the ghost field with the reduci
symmetry, respectively. These BRST transformations ind
satisfy the nilpotency property.

We can now find a two-dimensional instanton relation
our generalized gauge system by imposing the self-~anti-
self-! dual condition

* F056F0 . ~3.26!

Since a repeated application of * on the generalized fi
strength must yield the identity map, we define the followi
duality relation for the gauge operators and quaternions
addition to the usual Hodge dual operation on the differen
forms:

*1 52g5 , * ga52ea
bgb, * g5521, ~3.27!

* 151, * i52 i. ~3.28!

We can then find the following minimal condition of th
action leading to instanton relations:

6
1

2E Str1F0`F01
1

2E Str1F0`* F0

5E d2xXS 1

2
emnFmn6ufu2D S 1

2
ersFrs6ufu2D

1
1

2
@~Dmf!a6em

nea
b~Dnf!b#@~Dmf!a

6em
rea

c~Drf!c#C. ~3.29!

Then the instanton relations are obtained from the conditi
for the absolute minima of the generalized Yang-Mills acti

1

2
emnFmn2ufu250, ~3.30!

~Dmf!a
(2)[

1

2
@~Dmf!a2em

nea
b~Dnf!b#

50. ~3.31!

These instanton relations are a natural consequence o
formulation of the generalized topological Yang-Mills actio
as we have seen above.

It has come to our attention~the recent paper@17#! that
the dimensionally reduced Seiberg-Witten equation@16#
from four into two dimensions coincide with Eqs.~3.30! and
~3.31!. It should be noted that the Weyl spinor in th
10500
e
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Seiberg-Witten equation corresponds to the Higgs scala
our formulation. The explicit solutions have been obtained
the Liouville vortex solution by Nergiz and Sac¸lıog̃lu @17#
for the solution of the Seiberg-Witten equation. The so
tions are

f5f11 if25A2
dg/dz

12ḡg
,

v5vmdxm5
i

2 S gdḡ2ḡdg

12ḡg
D ,

~3.32!

whereg5g(z) is an arbitrary holomorphic function andḡ is
the complex conjugate ofg with z5x11 ix2.

The topological nature of the solutions is explicitly ver
fied by calculating a flux

F5E Fd2x54pn, ~3.33!

whereF5 1
2 emnFmn5ufu2. Here we have chosen the holo

morphic function asg(z)5zn. Due to the singular nature o
the solutions~3.32!, we need particular regularization to ob
tain the explicit topological relation~3.33!.

It is worth to mentioning at this stage that there is anot
kind of solution to the modified instanton relation or equiv
lently Bogomol’nyi equation,

1

2
emnFmn2ufu21uvu250, ~3.34!

while the second relation~3.31! is the same. These relation
yield the Nielsen-Olesen vortex solution@19# which has
again a topological nature@14#. It is important to recognize
that our formulation leading to the instanton relations~3.30!
and~3.31! by the generalized topological Yang-Mills formu
lation will never lead to the relation~3.34!. Instead it may
lead to the relations wheref can get a constant shift:f
→f1v, which is different from Eq.~3.34!. Therefore, the
instanton solutions obtained from the generalized topolog
Yang-Mills formulation are not Nielsen-Olesen vortex-typ
solution but the dimensionally reduced one derived fro
four-dimensional Seiberg-Witten equations.

We now derive the gauge-fixed action with instanton
lations ~3.30! and ~3.31! as gauge fixing conditions of topo
logical ~shift!symmetry together with the following Landau
type gauge fixing conditions to fix the usual gauge symme
and the reducible symmetry:

]mvm50, ]mC̃m50. ~3.35!

Correspondingly we introduce a set of antighost fieldsl,
xma , h̄, and C̄, and associated Lagrange multipliers,p̃,
pma , r, andp. These fields obey the following closed BRS
subalgebra:

sl5p̃, sp̃50,

sxma5pma , spma50,
9-5
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sh̄5r, sr50,

sC̄5p, sp50, ~3.36!

where the anti-self-dual fieldxma obeys the condition
em

nea
bxnb52xma andpma also obeys the same condition

We then obtain the following ‘‘completely’’ gauge-fixe
action by adding the BRST-exact terms:

Sg-f5S01sE d2xH 1lS 1

2
emnFmn2ufu22bp̃ D

2xma@~Dmf!a(2)2apma#1h̄]mC̃m1C̄]mvmJ ,

~3.37!

wherea andb are arbitrary parameters. Using the equatio
of motions for auxiliary fieldspma and p̃ and choosing the
parametersa52 1

8 andb5 1
4 , we can eliminate topologica

sectors and then we obtain the physical Yang-Mills act
plus fermion interaction terms.

IV. TWISTED NÄ2 SUPERSYMMETRIC ACTION

We first summarize the twisting procedure ofN52 supe-
ralgebra. The algebra ofN52 supersymmetry without a cen
tral extension is constructed by the following relations:2

$Qa,i ,Qb, j%5d i j ~gm!abPm ,

@J,Pm#5 i em
nPn ,

@J,Qa,i #5
i

2
~g5!a

bQb,i ,

@R,Qa,i #5
i

2
~g5! i

jQa, j ,

@Pm ,Qa,i #5@R,J#5@R,Pm#50.
~4.1!

Here Qa,i are the generators of supersymmetry, where
indicesa(51,2) andi (51,2) are Lorentz spinor and inter
nal spinor indices labeling two differentN52 generators,
respectively. We can take these operators to be Major
Pm , J, and R are generators of translation, SO~2! Lorentz
rotation, and internal SO(2)I rotation calledR symmetry,
representing spin and isospin rotation, respectively.

The aboveN52 superalgebra is transformed into th
twistedN52 superalgebra by the following procedure. T
essential meaning of the topological twist is to identify t

2Our convention of Hermite Euclideang matrices is (gm)a
b

5$s1,s3%, wheres i are Pauli matrices, andg55g1g2. Majorana
fermion is a two-dimensional real representation of SO~2!, and the
Lorentz spinor indices are lowered and raised by the charge co
gation matrixCab5dab .
10500
s

n

e

a.

isospinor indices as spinor indices. Then the isospinor in
ces should then transform as spinors under the Lorentz tr
formation. This will then lead to the redefinition of the e
ergy momentum tensor and the Lorentz rotation generat

We consider the energy momentum tensorTmn and the
conserved currentRm associated withR symmetry. We then
define a new energy momentum tensorTmn8 without spoiling
the conservation law by the following relation:

Tmn8 5Tmn1emr]rRn1enr]rRm . ~4.2!

This modification of the energy momentum tensor leads t
redefinition of the Lorentz rotation generatorJ,

J85J1R. ~4.3!

This rotation group is interpreted as the diagonal subgrou
SO(2)3SO(2)I . Now the supercharges have double spin
indices and thus can be decomposed into the following s
lar, pseudoscalar, and vector components:

Qa
b5

1

2 S 1

A2
da

bQB1A2~gm!a
bQm1

1

A2
~g5!a

bQ̃D .

~4.4!

Solving conversely, we obtain

QB5A2 TrQ,

Q̃52A2 Tr~g5Q!,

Qm5
1

A2
Tr~gmQ!. ~4.5!

The essence of the twisting procedure is reflected in the
that the spin-1/2 charge having the first spinor suffix tu
into the spin 0 or spin 1 charge by adding the isospin-
charge, which can be understood by the above relations~4.3!
and ~4.4!.

The part of the algebra including Lorentz generatorJ in
Eq. ~4.1! can be rewritten in terms of the new Lorentz ge
eratorsJ8 in the following form:

@J8,QB#5@J8,Q̃#50,

@J8,Qm#5 i em
nQn , ~4.6!

@J8,Pm#5 i em
nPn ,

where the scalar and vector nature of the fermionic char
measured by the new Lorentz generatorJ8 after the twist is
obvious from these relations.

The following algebra together with the algebra~4.6! con-
struct the twisted version ofN52 superalgebra,

QB
25Q̃250, @R,QB#5

i

2
Q̃,ju-
9-6



th
a

d

ry
t

op

.

r

or-

ith

ow-

ion

m-

ion

N52 SUPERSYMMETRIC MODEL WITH DIRAC-KÄHLER . . . PHYSICAL REVIEW D 61 105009
$QB ,Q̃%5$Qm ,Qn%50, @R,Q̃#52
i

2
QB ,

$QB ,Qm%52Pm , @R,Qm#5
i

2
em

nQn ,

$Q̃,Qm%522em
nPn , @R,J8#5@R,Pm#50.

~4.7!

Here we identify the scalar chargeQB as the BRST charge
since it has a nilpotency property. It should be noted that
momentum operator is BRST exact, which reflects the ch
acteristic of topological field theory.

Here we explicitly show that the ‘‘partially’’ gauge-fixe
action possesses twistedN52 supersymmetry@1#. ‘‘Par-
tially’’ we mean to fix the gauge of topological symmet
only and recover the SO~2! gauge symmetry. We firs
modify the gauge-fixed action~3.37! by adding another
BRST-exact term

22isE d2xh̄eabf
aC̃b,

and make all fields Hermitian to assure the hermicity pr
erty of the action:

S5E d2xS 1
1

2
FmnFmn1~Dmf!a~Dmf!a1ufu41 ir]mC̃m

2 ilemn]mC̃n2 ixma~DmC̃!a1]mh̄]mh22ireabfaC̃b

22ilfaC̃a22ixmaeabC̃mfb2
i

4
emnxmaxn

ah

12i h̄eabC̃
aC̃b14h̄hufu2D . ~4.8!

It is easy to see that kinetic terms offa , C̃m , r, l, xma ,
and C̃a are nondegenerate, while that ofvm is degenerate
Indeed this action is invariant under the following SO~2!
gauge transformations with a gauge parameterv:

dgauge~fa ,C̃a ,xma!52vea
b~fb ,C̃b ,xmb!,

dgaugevm5]mv, ~4.9!

dgauge~C̃m ,h,l,r,h̄ !50.

Corresponding to the Lagrangian given in Eq.~4.8!, we
can find explicit transformations of fields by the supe
charges:

uAsAw5@ iuAQA,w#, ~4.10!

wheresA5$s,s̃,sm% andQA5$QB ,Q̃,Qm%.
We first point out that the action~4.8! is invariant under

the following BRST-like fermionic transformations:

sfa52C̃a , sxma54i ~Dmf!a
(2) ,
10500
e
r-

-

-

svm5C̃m , sl522i S 1

2
emnFmn2ufu2D ,

sC̃a522i ea
bfbh, sh̄5r, ~4.11!

sC̃m5 i ]mh, sr50,

sh50.

These transformations are only on-shell nilpotent up to c
responding gauge transformations in Eq.~4.9!:

s25 idgaugeh
, ~4.12!

wheredgaugeh
denotes a gauge transformation associated w

a gauge parameterh.
Furthermore we find that the action possesses the foll

ing fermionic vector symmetry:

smfa5
1

2
xma , smxna524i ~dmneab2emndab!h̄fb,

smvn52
1

2
~emnl1dmnr!, sml52i em

n]nh̄,

smC̃a522i ~Dmf!a
(1) , smh̄50, ~4.13!

smC̃n5 i ~Fmn1emnufu2!, smr52i ]mh̄,

smh52C̃m .

These transformations satisfy the following anticommutat
relations:

$s,sm%52i ]m22idgaugevm
,

$sm ,sn%522idmndgaugeh̄
, ~4.14!

where these algebras are also satisfied on shell.
Lastly we can introduce the fermionic pseudoscalar sy

metry which are the partner of the BRST-like symmetry:

s̃fa5ea
bsfb52ea

bC̃b ,

s̃xma52em
nsxna524i em

n~Dnf!a
(2) ,

s̃vm5em
nsvn5em

nC̃n , s̃l50,

s̃C̃a52ea
bsC̃b522ifah, s̃h̄52l, ~4.15!

s̃C̃m52em
nsC̃n52 i em

n]nh,

s̃r522i S 1

2
emnFmn2ufu2D , s̃h50.

These transformations lead to the following anticommutat
relations:
9-7
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$s̃,sm%522i em
n]n12idgaugeem

nvn
,

$s̃,s̃%52idgaugeh
, ~4.16!

$s̃,s%50.

It is apparent from Eqs.~4.12!, ~4.14!, and ~4.16!, that the
operatorss,sm , ands̃ obey the twistedN52 supersymmetric
algebra.

V. TOPOLOGICAL TWIST AND DIRAC-KA ¨ HLER
FERMION

In this formulation we discover a very interesting corr
spondence. We point out that two multiplets for the gh
fields and the multiplier fields (r,C̃m ,l) and (C̃a ,xma) can
be interpreted as Dirac-Ka¨hler multiplets, as we shall se
below.

In two-dimensional flat Euclidean spacetime, we intr
duce the following Dirac-Ka¨hler field @7,10#:

C5c1cmdxm1
1

2
cmndxm`dxn[ (

a,(b)
ca

(b)Za
(b) ,

~5.1!

wherec, cm , andcmn are the Hermitian fermionic scala
vector, and antisymmetric tensor fields, respectively. T
baseZa

(b) is a 232 matrix and can be expanded into th
following inhomogeneous forms:

Z511gm
Tdxm1

1

2
gm

Tgn
Tdxm`dxn. ~5.2!

The coefficientca
(b) can be equivalently rewritten as

ca
(b)5

1

2 S c1cmgm1
1

2
emncmng5D

a(b)

. ~5.3!

It is interesting to note the remembrance of the expans
relations of the fermionic charge in Eq.~4.4! and the coeffi-
cients of the Dirac-Ka¨hler field in Eq.~5.3!. This could be
understood as the origin of the Dirac-Ka¨hler interpretation of
ghost fields. We then find that massless Dirac equations
expressed as the following set of equations by the use
antisymmetric tensor fields:

~d1d!C5~gm]mc!a
(b)Za

(b)50, ~5.4!

whered is an adjoint operatord5* d* and the indexa is a
spinor one, while the index (b) is regarded as a ‘‘flavor’’
one for two degenerate Dirac fermions. The Dirac-Ka¨hler
action which leads to the above equation of motion is defi
by
10500
t

-

e

n

re
of

d

S5
1

2E iC* `* ~d1d!C

5E d2x(
(b)

i ~c†!(b)
a~gm]mc!a

(b)

5E d2x Tr~ ic†gm]mc!. ~5.5!

We now turn to describe ghost fields in terms of Dira
Kähler fields. The kinetic terms of these multiplets in th
action ~4.8! can be expressed as

E d2x~ ir]mC̃m2 ilemn]mC̃n2 ixma]mC̃a!

5E d2x Tr~ ic†gm]mc1 ix†gm]mx!, ~5.6!

where Dirac-Ka¨hler fieldsc andx are given by

c5
1

2
~r1C̃mgm2lg5!,

x5
1

2
~2C̃a511xma51gm2C̃a52g5!. ~5.7!

Here we impose anti-self-dual conditions forxma . It is easy
to see that the action possess SO~2! ‘‘flavor’’ symmetry.

The final expression of the twistedN52 supersymmetric
action with Dirac-Kähler fermions is

S5E d2xS 1
1

2
FmnFmn1~Dmf!a~Dmf!a1ufu4

1
1

2
]mA]mA2

1

2
]mB]mB1Tr~ ic†gm]mc!

1Tr~ ix†gmDmx!24if1 Tr~c†g5x!

14if2 Tr~c†g5xg5!2 iA2A Tr~x†g5x!

1 iA2B Tr~x†xg5!12~A22B2!ufu2D , ~5.8!

where we denoteh[2/A2(A1B) and h̄[1/2A2(A2B)
and the covariant derivative with respect to the flavor gro
on the Dirac-Ka¨hler field x is given by Dmx[]mx
12vmxg5. It is worth to mentioning that this action i
equivalent to the extended supersymmetric Abelin Hig
system@14# and topological Bogomol’nyi theory@15# except
for the symmetry-breaking potential.

As we have seen in the formulation, the fermionic fiel
appearing in the quantization procedure such as ghost fi
turns into the Dirac-Ka¨hler matter fermion. It would be im-
portant to confirm algebraically that the Dirac-Ka¨hler fermi-
ons tranform as spinor fields and possess half-integral s
unlike the ghost fields.

Redefining the Lorentz generator, we will perform
change of the spin of the operators. Indeed we will ass
9-8
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R-quantum number integrals and half-integrals for bos
fields and fermion fields, respectively. The twistedN52
theory defined byJ8 is the topological field theory, whos
superalgebra corresponds to Eqs.~4.6! and ~4.7!, while the
theory defined byJ is theN52 supersymmetric field theory

It is important to recognize that in the present model
can identify theR symmetry as the flavor symmetry of th
Dirac-Kähler fields

dRc5cS 1

2
g5D , dRx5xS 1

2
g5D , ~5.9!

which should be compatible with the algebra~4.7!. The ori-
gin of this identification is again due to the resemblance
the relations between Eqs.~4.4! and~5.3!. In other words this
identification is originated from the observation that the s
ond flavor suffix of the Dirac-Ka¨hler field in Eq.~5.3! has
faithful correspondence with the second spinor suffix of
fermionic charge in Eq.~4.4!, which originally corresponds
to the isospinor suffix of theR generator before the twist
Then Lorentz transformation on the Dirac-Ka¨hler field c in-
duced byJ8 is

dJ8c5
1

2
~2em

nC̃ngm!52
1

2
@g5 ,c#. ~5.10!

On the other hand, the Lorentz transformation induced bJ
5J82R is

dJc5dJ8c2dRc52
1

2
g5c, ~5.11!

which precisely coincides with the Lorentz transformation
the spinor field. This implies that the Dirac-Ka¨hler field is
exactly transformed as spinors. We can obtain the same
lation for x. Consequently, we have found that the twisti
mechanism in the two-dimensionalN52 theory has been
understood from the Dirac-Ka¨hler fermion formulation and
the R symmetry is nothing but the flavor symmetry of th
Dirac-Kähler fermion.

VI. CONCLUSIONS AND DISCUSSIONS

We have investigated the generalized gauge theory f
the topological field theory point of view. First, we hav
extended the algebraic structure of the BRST transforma
n,
.
id

10500
n

e

f

-

e

f

re-

m

n

in the manner of Baulieu-Singer and derived sets of BRS
invariant physical operators. This extension fits naturally
the framework of the generalized gauge theory. The class
fields, the ghost fields, ghost for ghost fields, the differen
operator, and the BRST operator are treated in a unified
by the quaternion algebra. In particular, commutator and
ticommutator difference in the algebra is automatically ac
modated in the generalized gauge theory formulation wh
this point is treated in anad hocway in the previous treat-
ments.

As a concrete example we have quantized the general
topological Yang-Mills action in two-dimensional flat Eu
clidean spacetime with the two-dimensional Clifford algeb
as the simplest graded Lie algebra. We have shown that
generalized topological Yang-Mills action is BRST equiv
lent to the standard Yang-Mills action plus fermionic gho
and Lagrange multiplier terms by imposing the instanton
lations as the gauge fixing conditions. It turns out that
instanton relations coincide with the two-dimensional cou
terpart of the Seiberg-Witten relations dimensionally reduc
from four into two dimensions. The explicit topological so
lutions of the instanton relations have been obtained@17#.
The full twistedN52 supersymmetric algebra has been e
amined for the gauge-fixed action and explicit transform
tions of fields for the fermionic charge family includin
BRST charge has been obtained.

We found that the fermionic sector including ghost fiel
in the gauge-fixed action can be identified with the Dira
Kähler fermions. The crucial observation is that theR sym-
metry of theN52 supersymmetric action can be identifie
with the ‘‘flavor’’ symmetry of the Dirac-Ka¨hler fermion
action. Then the ghost fields together with the fermion
multiplier fields turn into matter fermions via the twistin
mechanism. On the other hand, the twisting mechanism
equivalent to the Dirac-Ka¨hler fermion formulation when we
identify theR symmetry and the ‘‘flavor’’ symmetry. In this
sense we have found that the twisting mechanism is es
tially equivalent to the generation of matter fermions fro
fermionic ghosts via Dirac-Ka¨hler fermion formulation. It is
interesting to see if this mechanism works even in hig
dimensions.
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