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N =2 supersymmetric model with Dirac-Kahler fermions
from generalized gauge theory in two dimensions
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We investigate the generalized gauge theory which has been proposed previously and show that in two
dimensions the instanton gauge fixing of the generalized topological Yang-Mills action leads to a twisted
=2 supersymmetric action. We have found thatReymmetry ofN=2 supersymmetry can be identified with
the flavor symmetry of the Dirac-Kder fermion formulation. Thus the procedure of twist allows topological
ghost fields to be interpreted as the Diradaléa matter fermions.

PACS numbsds): 12.60.Jv, 11.30.Ly

[. INTRODUCTION In this paper we investigate the generalized topological
Yang-Mills theory from the topological field theory point of
In formulating a unified theory it is the general consensusvziew. An enlarged algebraic structure of BRST transforma-
that supersymmetry may play a crucial role. It is important totions in the manner of Baulieu and Sing@] is naturally
understand the origin of supersymmetry and fermion and boeonstructed in a unified way by the generalized gauge theory.
son correspondence. There is an interesting example of &s the simplest example towards more realistic case, we
topological field theory analysis by Wittelil] which sug-  quantize the two-dimensional version of the generalized to-
gests the possible origin dfi=2 supersymmetry and the pological Yang-Mills action and show that the “partially”
generation of fermionic fields from ghosts via a twisting Pro-gauge-fixed action with instanton gauge fixing leads to a
cedure. Later it has been pointed out that this theory can bgyisted N=2 supersymmetric Abelian-Higgs acti¢n4,15
derived from the “partially” Becchi-Rouet-Stora-Tyutin ithout a symmetry-breaking potential term. It is interesting
(BRST) gauge-fixed action of the topological Yang-Mills ac- to recognize that our instanton relations coincide with di-
tion with instanton gauge fIXIn&,S] This SUbjeCt has been mensiona”y reduced Seiberg_Witten equandﬂﬁ] from
intensively investigated4], particularly in connection with  foyr into two dimension§17]. We point out that the fermi-
supersymmetric field theori¢S]. In this paper we claim that  gnjc ghost fields can be interpreted as Diradikéa fermion
the topological twist generating the matter fermions fromfie|ds and thus the twisting procedure is nothing but the
ghosts is essentially related to the Dirachia fermion for-  pirac-Kzhler fermion formulation.
mulation. . . o This paper is organized as follows. In Sec. Il we summa-
In the 1960s Khler [6] showed that the Dirac equation is rize the generalized gauge theory in arbitrary dimensions. In
constructed from inhomogeneous differential forms whichgec, |11 we analyze the generalized two-dimensional topo-
are called Dirac-Khler fields [7]. Moreover the Dirac- |ogical Yang-Mills theory as a topological field theory. In
Kahler. fermion.is a curved spacetime vgrsion of the Kogut-gec. 1V we explicitly verify the twistedN=2 supersymmet-
Susskind fermior{8] or staggered fermiofi9] and thus a yjc algebra for the gauge-fixed action. In Sec. V we explain
natural framework of the lattice fermion formulati¢hO]. the twisting mechanism via Dirac-Kéer formulation. Con-

About ten years ago one of the auth¢keK.) and Wat-  ¢Jysions and discussions are given in the final section.
abiki proposed a generalization of the ordinary three-

dimensional Chern-Simons theory into arbitrary dimensions
by introducing all the degrees of differential forms as gauge”' GENERALIZED GAUGE THEORIES IN ARBITRARY
fields and parameters together with a quaternion structure DIMENSIONS

[11]. Later the quantization of the even-dimensional version |n this section we summarize the formulation of the gen-

of the generalized Chern-Simons actions was completed byralized gauge theory with an emphasis on their algebraic
the Batalin-Vilkovisky formulation[12]. This formulation  gtryctures.

can be, however, generalized to the topological Yang-Mills The essential point of the generalization is to extend a
and ordinary Yang-Mills actions. one-form gauge field and zero-form gauge parameter to a

Since the generalized gauge theory is formulated by difyyaternion valued generalized gauge field and gauge param-

gauge theory may play a crucial role in formulating the uni-5 gauge parametetare defined by the following component
fied model including quantum gravity on the simplicial lat- f5rm-

tice manifold[13].
A=1y+ig+jA+KA, (2.0
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where @, a), (¢, a), (A,a), and (A,a) are direct sums of actions which have peen previously.propoglaﬂl are given
fermionic odd forms, fermionic even forms, bosonic odd©On even- and odd-dimensional manifollls
forms, and bosonic even forms, respectively, and they take

values on a gauge algebra. The symlglg j, andk satisfy ZJ E 3
the following quaternion algebra: Seven M Tnd AQA+ 3“4 ’ (213
1°2=1, i’=-1, j?’=-1, k?=-1, 5
S =f Str-(A A+—A3), 2.1
j=—ji=k, jk=—kj=i, ki=—ik=j. (2.3 oad |, SU| AQA+ 3 212

The following graded Lie algebra can be adopted as a gauggnere Ty(---) and St(- - -) are defined so as to pick up
algebra: only the coefficient ok andj from (- - -) and take the traces.
[T, To]=fC,T We then need to pick upl-form terms corresponding to
ar’b ab’co d-dimensional manifoldM. These actions are invariant up to

surface terms under the following generalized gauge trans-

[Ta,2p]=025%,, 29 formation:

_ hC
{202 g =hepTe, SA=[Q+A,V], (2.13
where all the structure constants are subject to consistenc\% . .
conditions which follow from the graded Jacobi identities. here V' is the generallzgd gauge parameter. It should be
The components of the gauge fiefdand the gauge param- noted that this symmetry is much larger than the usual gauge

eter V are particularly assigned as elements of the gaugéymmetry since the gauge paramelecontains many pa-
rameters of various forms.

algebra . . .
There is another suggestive topological nature due to the
A=T3A =T W=3% A=3 A parallel construction to the standard gauge theory. In the
& & “ “ generalized gauge theory it is possible to define the general-
a=T% =T a=Sey a=Sca ized Chern character which is expected to have topological
a a @’ “'(25) nature
The component expansion of the same typedaand ) are Stry(F") = Str(QQsp-1), (2149
classified as elements of the_ class and\ . class, respec-
tively. These elements fulfill th&,-grading structure Tr(FM)=Tri(QQ2n-1), (219
[Ny NsdeAy, [N N JeA, A N teA,, where F is a generalized curvature
(2.6
F=QA+ A2, (2.1

whereN ;e A, and\_e A _. In particular the exterior de-

rivative belongs to\ - class and Q,,_; are the “generalized” Chern-Simons form.

Q=jd 2.7) Equations (2.14 and (2.15 are bosonic even form and
' ' bosonic odd form, respectively. Especially, for tive 2 case
and the following relations similar to the ordinary exterior in EQ.(2.14, we obtain a topological Yang-Mills type action
derivative operator hold: related to a one dimension lower generalized Chern-Simons
action on an even-dimensional manifditi

2.9 ,
stF2= | sty Q
where [\4|=0 for A;e A, and|r;|=1 for \;e A_. To M M

construct the generalized actions, the two types of traces for . :
the gauge algebra should be introduced, which has the same forms of the standard relation.

QN A2)=(QN )N+ (—)PMIhy(QNy),  Q%=0,

2
AQA+ §A3) ) (2.17

(T4 ...]=0, T{X% ...]=0, (2.9 Ill. GENERALIZED TOPOLOGICAL YANG-MILLS
THEORY IN TWO DIMENSIONS
su{T?, ...]=0, St{x* ...}=0, (2.10
In this section we analyze the two-dimensional version of
where (- - -) in the commutators and the anticommutator de-the generalized topological Yang-Mills action. Our formula-
note a product of the generators. These definitions of thé&on of this section is the two-dimensional realization of the
traces are crucial so that the generalized actions are invariakhown four-dimensional scenari@—3] and can be extended
under the generalized gauge transformations. to arbitrary dimensions.
We can then construct generalized actions in terms of As we have already mentioned, the action we consider
these generalized quantities. The generalized Chern-Simosatisfies the following well known relation:
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5 2 system. We redefine the generalized gauge field by introduc-
f Stﬁfo:f Stfl(Q(AoQAo+ §Ao) ) (3.)  ing the generalized ghost fiel@g), C(1), andCy):
M M

where A, and Fy are the two-dimensional counter part of the (3.9

classical gauge field and curvature. More explicitly, they are
given by We need to introduce a generalized field which belongs to
another class afl to accomodate the topological ghost fields

Ao=jotk(+B), eA_, 32 Co). Cay. and C(2 and the ghost for ghost fields,,
Fo=QAg+ A2 M@y, and ney:
=—1(do+w’+{d,B}+ ) +i(dp+[w,¢]), eA,, C=1ny+ n2)) Tima)+ti(Co)+C2) +kC(yy, E(?l('))
(3.3 '

HereC belongs toA , and could be identified as a part of
where¢, o, andB are graded Lie algebra valued zero-, one-generalized curvature later.
and two-form gauge fields, respectively. Due to the topologi-  Furthermore, we extend the concept of the differential

cal nature of the action, the action has so-called shift symoperator by introducing the BRST operatas a fermionic
metry. In other words, the action is invariant under the arbi—zerg form?

trary deformation of the gauge fieldy, which we denot&,,.
Thus the gauge transformation of the generalized topological 0=Q+Qg=jd+is, eA_. (3.11)

Yang-Mills action has the following form: o
It should be noted that commutes withd, i.e.,[d,s]=0 and

6A,=[Q+ Ap,Vol+ &, (3.4  s?=0. This operator satisfies the nilpotency property due to
the quaternion structures:

Q2%=0. (3.12

The following graded Leibnitz rule acting on generalized
while &, is a new gauge parameter of the shift symmetry andyauge fields can be derived:

is given by
QN 1hp) = (AN DA+ (—)MIN(ON,), (313

=jéqyt+ + _, :
KRG CRECHIES (9 where|\1|=0 for \;e A, and|\,|=1 for\;e A_.
where the suffixn) with n=0,1,2 denotes the form degree. = We can now construct the BRST transformation algebra-
Hereafter, we use the same notation to the form degree. THeally in a unified way. We define the generalized curvature
field strength is transformed under the gauge transformatioRy using the redefined gauge field
(3.4),

where), is the generalized gauge parameter

Vo=1(v+b)+iu, eA,, (3.5

F=QA+A?=Fy+C, (3.19
8F0=[F0,Vo] +{Q+ Ao &ol- S where the second relation is imposed to relate the BRST
The first term is transformed covariantly, and the secondransformation with respect to classical and generalized
term is the inhomogeneous gauge transformatioFgpiby ~ ghost fields.C=0 corresponds to imposing the usual hori-
the gauge parameter which belongs to the-class. zontal conditions. The transformations with respect to the
sorb the usual gauge transformation, so that this is a redu& the following Bianchi identity of the generalized field:

LE)OI?];ystem with the following obvious reducibility condi- OF+[ A F]=0. (3.19

V=) The component wise expressions of the BRST transforma-
o L tion can be read froni3.14 and(3.15:

(C/‘O:_[Q_l—AOvVl]- (38) S¢:_[C(0),¢]_6(0),

Correspondingly we need to introduce ghost fields with re-

spect to the generalized gauge symmetry and the topological

shift symmetry, and the ghost for ghost fields with respect to ~

the additional gauge symmetry of the gauge parani{8téy. sB=dCy)*+{w,C(1)} ~[C(0),B]~[C(2), 4]~ C(2),
Although we can construct the nilpotent BRST algebra of

the above reducible system by the procedure of cohomologi-

cal perturbatiorj18], we can treat it in an algebraically uni- The fermionic operatos acts as a left derivative on fields in the

fied way by using the characteristic of the generalized gaugeame way as the operation of the exterior derivative

Sw=dCyp)+[w,C()] —{C(y) ,¢}+6(1) '
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sC0)="—Clo)~ M0 b
ob= | stpr", (3.21)
Y

sCy=—1C0),C)t + 111y »
where vy is a homology cycle on the submanifold M and

_c2 . . o
sC2=C1~1Cw0):Ct ~ M2)» O and O° denote odd-dimensional fermionic and even-
~ ~ dimensional bosonic observables, respectively.
$C0)=—1C0),Co)} —[ &, 1(0)], (3.19 Although we consider the above BRST algebra in the
_ _ _ two-dimensional case, we will see that the algebra in arbi-
sCay=dn)+[w,70)]+[C1),C(0)]—1C0),.C(1)} trary dimensions can be treated in a similar way.
We next introduce a particular model to carry out explicit
ek analyses. To make the formulation concrete and simpler we
~ ~ ~ specify to the two-dimensional flat Euclidean case and take
sC2y=dn()t{w 71} ~[C(2),C1y] ={C(0).Ci2)} the following two-dimensional anti-Hermitian Euclidean
~ Clifford algebra as the graded algebra, which closes under
~{C@).Coo)~[¢. 721~ [B. 70)]. the multiplication and is the simplest example:
$7(0)=~[C0)» 0], Ta1, s,
s71)=[Cy s 70)] = [Coy s (1)1 S @2, (3.22
$72)=~[Cw)» 71)]~[C0) 72)] = [Cr2) M(0)]- where y2=(io%,io?), which satisfy{y?,y*}=—25% and
=1e.,72y?=—io° with €;,=1. A grading generator can

These algebraic and geometric constructions of the BRSKg
transformation were emphasized by Baulieu-Singdrfor
the four-dimensional topological Yang-Mills model. We here St )=Tr(yg--).
propose the natural extension of their approach in the frame-
work of the generalized gauge theory. Moreover, we do not The two-dimensional topological Yang-Mills action leads
have to introduce the ghost number for fields and the BRSTo
operator which played an important role in the above au-
thors’ formulations. In deriving BRST transformatiof816) 1
we only compare the terms expanded in the form degrees SO:EJ StrFo/\Fo
and the coefficients of quaternions in E¢3.14) and(3.15.
The conventional ghost number for particular fields and the
BRST charge are automatically assigned by the quaternionic
classifications.

Next we can _cons_lder the phy_smal observable. We_ can :J dZXE’”@M(ZwV|¢|2+Eab(ﬁa%(ﬁb), (3.23
construct BRST invariant polynomials because of the nilpo-
tency property of the extended differential operator. Bianchi

identified asys and then we define the supertrace

=J d*X(e'F | p|>+ €""€®*(D ) a(D )

identity leads to the following algebraic relation, whereb Fu=0,0,~d,w, —and  0,¢)a=d.¢a
—2€, w,¢yp. In the action(3.23 the scalar part of the one-
QF"=—[AF"]. (3.17  form field w,s and two-form fieldB,,, in the generalized

) ) _field (3.2) drop out because of the reducible structures of the
Taking a trace of the gauge algebra and particular quaterniogauge transformations. Then the generalized gauge transfor-
sector, we obtain the fOIIOWIﬂg relations due to the VanlShlngfnations are Consistenﬂy truncated to the fo”owing (80

nature of the right-hand side of E(.17), invariance:
St(QF") = Sti[(Q+Qp) F"]=0, Sqaugdba= 20 €, by,
Sti(QF") =St (Q+Qg) F"]=0, Sgaugd? = 3,0, (3.29
which lead to the following descendent equations: whereu is a zero-form gauge parameter. As we have dis-
SS(= s, (Gan  gissed we imee e fpolgcl st symety, e
sStr(F™) = — dStr(F"). (3.19 forms:
We can then find a series of gauge invariant physical observ- Sha=2€,"¢ppC—C,,

ables:
Sw#=z9,uC+ Cﬂ,
szf St F", 3.2
o) y k ( Q SC:_7],
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sC.=2¢ bCEb—Ze b¢b7] Seiberg-Witten equation corresponds to the Higgs scalar in
e e a ' our formulation. The explicit solutions have been obtained as
~ the Liouville vortex solution by Nergiz and Samlu [17]

SCu=um for the solution of the Seiberg-Witten equation. The solu-
$7=0, (3.25 tions are

~ = ) . . dg/dz
where C, (C,,C,), and 5 are the ghost fields associated ¢=¢1+|¢2=\/§ —
with SO(2) gauge symmetry and topological shift symme- 1-9g9
tries, and the ghost for the ghost field with the reducible o
symmetry, respectively. These BRST transformations indeed i (gdg—gdg
satisfy the nilpotency property. “’:“’udxﬂzi 1-g9

We can now find a two-dimensional instanton relation of (3.32
our generalized gauge system by imposing the delfii- '
self-) dual condition whereg=g(z) is an arbitrary holomorphic function anglis
. the complex conjugate @f with z=x;+iX».
Fo==o. (326 The topological nature of the solutions is explicitly veri-
Since a repeated application of * on the generalized fieldi€d Py calculating a flux
strength must yield the identity map, we define the following

duality relation for the gauge operators and quaternions in <I>=f Fd?x=41n, (3.33
addition to the usual Hodge dual operation on the differential
forms: whereF =3¢, F*'=|¢|%. Here we have chosen the holo-

PRV S Eab’yb, fye=—1, (327 tmh2rggliﬁtifg:;gogz)a?v(ez)nze;;. Dug to the singu!ar nature of
32, particular regularization to ob-
f1=1  *ie—j (3.28 tain the explicit topological relatiof3.33.
' ' ' It is worth to mentioning at this stage that there is another
We can then find the following minimal condition of the kind of solution,to_the mo_dified instanton relation or equiva-
action leading to instanton relations: lently Bogomol'nyi equation,

1
1 1 MV _ 2 2_
1 1 while the second relatiofB8.31) is the same. These relations
:f d2x( —e"F x| o] 5 €F x| |2 yield the Nielsen-Olesen vortex solutidd9] which has
2 nv 2 po . . . .
again a topological naturgl4]. It is important to recognize
1 that our formulation leading to the instanton relatig8s30)

+ 5[(DM¢)ai E,LV'Eab(DV(ﬁ)b][(D”(ﬁ)a and(3.31 by the generalized topological Yang-Mills formu-
lation will never lead to the relatiofB3.34). Instead it may
lead to the relations wherg can get a constant shifi

+ et ,e%(DP¢)°]). (3.29 —¢+v, which is different from Eq(3.34). Therefore, the
instanton solutions obtained from the generalized topological

Then the instanton relations are obtained from the conditiong 2"9-Mills formulation are not Nielsen-Olesen vortex-type

for the absolute minima of the generalized Yang-Mills actionSelution but the dimensionally reduced one derived from
four-dimensional Seiberg-Witten equations.

1 ) We now derive the gauge-fixed action with instanton re-
EE’LVFW—|¢| =0, (3.30  lations(3.30 and(3.31) as gauge fixing conditions of topo-
logical (shift)symmetry together with the following Landau-

1 type gauge fixing conditions to fix the usual gauge symmetry

(D). )= SL(Dud)a- €,"€. (D, )] and the reducible symmetry:

J,w"=0, 9,C*=0. (3.35

=0. (3.3) . .
_ _ Correspondingly we introduce a set of antighost fields

These instanton relations are a natural consequence of tlj(e ; and C, and associated Lagrange multipliefs,

. . . . . nas
gvvilﬂglogggﬁ eglﬁg\elz;allzed topological Yang-Mills action 7 ,a, p, andmr. These fields obey the following closed BRST

It has come to our attentio(the recent papefrl7]) that subalgebra:
the dimensionally reduced Seiberg-Witten equatidr6] S\=m, sm=0,
from four into two dimensions coincide with Eq8.30 and
(3.3). It should be noted that the Weyl spinor in the SXua=Tua» STua=0,
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isospinor indices as spinor indices. Then the isospinor indi-

ces should then transform as spinors under the Lorentz trans-

formation. This will then lead to the redefinition of the en-

ergy momentum tensor and the Lorentz rotation generator.
We consider the energy momentum ten3gr, and the

S;= p, sp=0,
sC=m, sm=0, (3.36

where the anti-self-dual fieldy,, obeys the condition , ,
€MV€abXVb: ~ Xua and 1, also obeys the same condition. conserved currerR,, associated witliR symmetry. We then

We then obtain the following “completely” gauge-fixed define a new energy momentum ten3dy, without spoiling
action by adding the BRST-exact terms: the conservation law by the following relation:

N T;LV=TMV+ €,,0°R, T €,,0'R, . (4.2

sg_fzso+sf d?x %EWFW—|¢|2—/3%)
This modification of the energy momentum tensor leads to a
al) = g = redefinition of the Lorentz rotation generatyr

— Xpal (D*¢) —am"?]+ 754, Cr+Cd, 0",

J=J+R. (4.3

(3.37

_ _ ~ This rotation group is interpreted as the diagonal subgroup of
wherea and g are arbitrary parameter~s. Using the equannsSO(z)x SO(2) . Now the supercharges have double spinor
of motions for auxiliary fieldsw,, and 7 and choosing the indices and thus can be decomposed into the following sca-
parametersr= — 3 and =%, we can eliminate topological lar, pseudoscalar, and vector components:
sectors and then we obtain the physical Yang-Mills action
plus fermion interaction terms. 1/ 1 1 _

Q' =3| Zo "t V20 ,PQ,+ 7R
IV. TWISTED N=2 SUPERSYMMETRIC ACTION (4.4)

We first summarize the twisting procedureNf2 supe-
ralgebra. The algebra &f=2 supersymmetry without a cen-
tral extension is constructed by the following relatiéns:

1Q4i »Qp.i} =8 (¥") apPu.

[J,P.]=i€,"P,,

Solving conversely, we obtain
QB: \/E TrQ!
Q=2 Tr(%Q),

1
| =75 T : 4,
[9.Quil= 5 (75, Qp. Q=5 T,Q) @5

| The essence of the twisting procedure is reflected in the fact
[R,Q, 1= _(75)ianj ' that the spin-1/2 charge having the first spinor suffix turns
T2 ’ into the spin 0 or spin 1 charge by adding the isospin-1/2
charge, which can be understood by the above relat3s
[Py, Qa,1=[RII=[R,P,]=0. and (4.4,
(4.1) The part of the algebra including Lorentz generatan

Here Q,, are the generators of supersymmetry, where théEq. (4.1 can be rewritten in terms of the new Lorentz gen-

indicesa(=1,2) andi(=1,2) are Lorentz spinor and inter- érators)” in the following form:
nal spinor indices labeling two differeid=2 generators,

respectively. We can take these operators to be Majorana. [J".Qe]=[J".Q]=0,
P., J, andR are generators of translation, &p Lorentz ]
rotation, and internal SO(2)rotation calledR symmetry, [3".Q.]1=i€,"Q,, (4.9
representing spin and isospin rotation, respectively.
The aboveN=2 superalgebra is transformed into the [J',P,]=i€,"P,,

twisted N=2 superalgebra by the following procedure. The
essential meaning of the topological twist is to identify thewhere the scalar and vector nature of the fermionic charges
measured by the new Lorentz generalorafter the twist is
obvious from these relations.

The following algebra together with the algel§fa6) con-

2 ; ; ; ; ; B
Our convention of Hermite Euclideary matrices is ¢* . .
il ¢ struct the twisted version dfi=2 superalgebra,

={o',6%}, whereo' are Pauli matrices, angls=y*y?. Majorana
fermion is a two-dimensional real representation ofl&Qand the .
Lorentz spinor indices are lowered and raised by the charge conju- 2_B%2=0 R _ '_"

gation matrixC,s= 8,z. Qe=Q"=0, [R.Qs] 2 Q
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~ ~ ~ 1
1Qs,Q}={Q,,Q.1=0, [RQ]=~ IEQB, s0,=C,, S\= —Zi(is”vFW—|¢|2),

. S _
{Qs.Q,}=2P,, [R,Qﬂ]zlzeMVQy, sCa=—2i. by, Sn=p, 4.1

{Q.Q,}=—-2¢,"P,, [RJ']=[RP,]=0.
4.7 sn=0.

Here we identify the scalar char@@s as the BRST charge These transformations are only on-shell nilpotent up to cor-
since it has a nilpotency property. It should be noted that théesponding gauge transformations in E£4.9):
momentum operator is BRST exact, which reflects the char- 5
acteristic of topological field theory. S —'5gaugq7v

Here we explicitly show that the “partially” gauge-fixed
action possesses twisted=2 supersymmetnfl]. “Par-
tially” we mean to fix the gauge of topological symmetry @ gauge parametey.
0n|y and recover the a@) gauge Symmetry_ We first ) Furthermpre we find that the action possesses the follow-
modify the gauge-fixed actiorf3.37 by adding another ing fermionic vector symmetry:
BRST-exact term 1

S,u.an:EX/.Lai SuXva™ _4i(6,uveab_ Euvﬁab) 7]¢b=

(4.12

Whereégauge” denotes a gauge transformation associated with

- 2isf d?x pe,pd2CP,

1 -
and make all fields Hermitian to assure the hermicity prop- Su®v= "~ E(fuv)\J“ Suvp)y  SuN=21€,"d,,
erty of the action:

S= f d?x

—i 7\6’“”/&’“6”— iXMa(D“a)a+ &M;&“n— 2ipe®®ph,Cp

1 a 4 g Sﬂaa:_Zi(Du(b)gﬂv S;L;:O' (4.13
+§FMVF'“V+(DM¢)a(D”“¢) +| @] +ipd,CH

= . 5 =
SMCV_I(F;LV+€MV|¢| )s S,LP—ZWM??,

i S, N= ZCM .
L\ At ; b v
—2iN$*Ca— 2ixuae™CHp— 2 "X uaX s These transformations satisfy the following anticommutation
relations:
+2i 7€,,CACP+ 47| ¢|?]. (4.9 {s,5,}=2i39,—2i Sgaug,
It is easy to see that kinetic terms &f,, Eﬂ, Py Ny Xpa 18,8, =—2i 5M,,5gaugq7, (4.14

and C, are nondegenerate, while that ef, is degenerate.

Indeed this action is invariant under the following @D Where these algebras are also satisfied on shell.

gauge transformations with a gauge parameter Lastly we can introduce the fermionic pseudoscalar sym-
metry which are the partner of the BRST-like symmetry:

5gauge£ ®a ’aa aXMa) =2v Gab( Lo iéb iX,ub)!

Ogaugdd = 9,0, (4.9

§¢a: eabs(,bb: - Eabéb y
C 7) SXua=—€,"Sxra=—4i€,"(D,)7),
5gaUQéCM’7]’)\’p!7]):O' ~r M "

Corresponding to the Lagrangian given in E4.8), we
can find explicit transformations of fields by the super-

i _ v _ 7 _
Sw,=€,'Sw,=€, C,, sA=0,

charges: SCa=—€,°5Cy=—2ihan, Sy=—N\, (4.19
05”0 =[i62Q" ¢], (4.10 EEM:—EM”SNC,F—ieM”&,,n,
wheres*={s/s,s,} andQ,={Qs.,Q,Q,,}. B (1 B
We first point out that the actiof¢.8) is invariant under sp=—2i <§E’WFW—|¢>|2>, sn=0.

the following BRST-like fermionic transformations:

~ ) ) These transformations lead to the following anticommutation
Spa=—Ca, Sxua=4i(D, o)y 7, relations:
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{E,SM}= —2i eMV&V'i' 2i 5gaug§#ywy, S= %f W A% (d+ 8) W
{5/8}=2i Sgauge, (4.16 = f dzx% () (79 ,4) P
fE.s)=0. - f X Tr(i !y a,0). (5.5

It is apparent from Eqsi4.12), (4.14), and (4.16), that the

operatorss,s,, , ands obey the twistedN=2 supersymmetric
algebra.

We now turn to describe ghost fields in terms of Dirac-
Kahler fields. The kinetic terms of these multiplets in the
action (4.8) can be expressed as

V. TOPOLOGICAL TWIST AND DIRAC-KA ~HLER f d2x(i pd, Ch—ine’d. Ty iy T.)
FERMION K’ w=v p-a

In this formulation we discover a very interesting corre- B 2 . C ot
spondence. We point out that two multiplets for the ghost _J’ AX Ty "0, 4+ X000, (5.6

fields and the multiplier fieldsg,C,, ,\) and Ca,x,a) can

be interpreted as Dirac-Kder multiplets, as we shall see Where Dirac-Kaler fieldsy and x are given by

below. 1
In two-dimensional flat Euclidean spacetime, we intro- = _(p+§ Y=\ ys),
duce the following Dirac-Khler field[7,10]: 2 .
1 = 1( Caqt r—C ) (5.7)
W=+, dx+ Ewﬂydxﬂ/\dx”za%) P, PZ% ), X=73 a=17" Xpa=17Y a=27s)- -

(5.1) Here we impose anti-self-dual conditions fgy, . It is easy
to see that the action possess(3O‘flavor” symmetry.
wherey, ¢, , andy,, are the Hermitian fermionic scalar,  The final expression of the twistedi=2 supersymmetric
vector, and antisymmetric tensor fields, respectively. Theaction with Dirac-Kéler fermions is
baseZ“ ) is a 2<2 matrix and can be expanded into the

following inhomogeneous forms: 1 v
S= [ @7 + 5P, Fe (D, 0)u(D4 )+ 0]
1
Z=1+y dx*+ =y yTdx*/\dx". (5.2 1 1 -
VudXt 57,7, + 5 I AIA= 59,BB+TH Y y4d,4)
The coefficienty,(#) can be equivalently rewritten as +Tr(ix YD x) — 4i b1 Tr(4h ysx)
. . +4iy Tr( ysxvs) — I V2A Tr(x T ysx)
%(B)zi Yt Pyt S €, Ys . (53

NE) +iV2B Tr(x xys) +2(AZ—-B?)| $|?|, (5.8

It is interesting to note the remembrance of the expansion _ —
relations of the fermionic charge in E@l.4) and the coeffi- where we denotey=2/\2(A+B) and 7=1/2y2(A~B)

cients of the Dirac-Kaler field in Eq.(5.3). This could be and the covariant derivative with respect to the flavor group

understood as the origin of the Diracer interpretation of 0N the Dirac-Kaler field y is given by D,x=d,x

ghost fields. We then find that massless Dirac equations aré 2@«X¥s- It is worth to mentioning that this action is

expressed as the following set of equations by the use dfdulvalent to the extended supersymmetric Abelin Higgs
antisymmetric tensor fields: system[14] and topological Bogomol'nyi theoryl5] except
for the symmetry-breaking potential.

As we have seen in the formulation, the fermionic fields
appearing in the quantization procedure such as ghost fields
turns into the Dirac-Kialer matter fermion. It would be im-
where § is an adjoint operatof=*d* and the indexa is a  portant to confirm algebraically that the Diracdar fermi-
spinor one, while the indexd) is regarded as a “flavor” ons tranform as spinor fields and possess half-integral spin,
one for two degenerate Dirac fermions. The Diradika  unlike the ghost fields.
action which leads to the above equation of motion is defined Redefining the Lorentz generator, we will perform a
by change of the spin of the operators. Indeed we will assign

(d+ &)W =(¥*3,1) P Z% 5=0, (5.4

105009-8
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R-quantum number integrals and half-integrals for bosorin the manner of Baulieu-Singer and derived sets of BRST-
fields and fermion fields, respectively. The twistbd=2 invariant physical operators. This extension fits naturally in
theory defined byd’ is the topological field theory, whose the framework of the generalized gauge theory. The classical
superalgebra corresponds to E¢.6) and (4.7), while the fields, the ghost fields, ghost for ghost fields,_the diff_e_rential
theory defined byl is theN=2 supersymmetric field theory. Operator, and the BRST operator are treated in a unified way
It is important to recognize that in the present model weby the quaternion algebra. In particular, commutator and an-
can identify theR symmetry as the flavor symmetry of the ticommutator difference in the algebra is automatically acco-

Dirac-Kzhler fields modated in the generalized gauge theory formulation while
this point is treated in aad hocway in the previous treat-
1 1 ments.
Orip= w(i 7’5) ' 5RX:X(§ 7’5) ' (5.9 As a concrete example we have quantized the generalized

topological Yang-Mills action in two-dimensional flat Eu-
which should be compatible with the algelira7). The ori-  clidean spacetime with the two-dimensional Clifford algebra
gin of this identification is again due to the resemblance ofas the simplest graded Lie algebra. We have shown that the
the relations between Eq#.4) and(5.3). In other words this  generalized topological Yang-Mills action is BRST equiva-
identification is originated from the observation that the secident to the standard Yang-Mills action plus fermionic ghost
ond flavor suffix of the Dirac-Klaler field in Eq.(5.3) has  and Lagrange multiplier terms by imposing the instanton re-
faithful correspondence with the second spinor suffix of theations as the gauge fixing conditions. It turns out that the
fermionic charge in Eq(4.4), which originally corresponds instanton relations coincide with the two-dimensional coun-
to the isospinor suffix of th&k generator before the twist. terpart of the Seiberg-Witten relations dimensionally reduced
Then Lorentz transformation on the Diractiar field ¢ in- from four into two dimensions. The explicit topological so-
duced byJd' is lutions of the instanton relations have been obtaified.
The full twistedN=2 supersymmetric algebra has been ex-
amined for the gauge-fixed action and explicit transforma-
tions of fields for the fermionic charge family including
BRST charge has been obtained.
On the other hand, the Lorentz transformation induced by  we found that the fermionic sector including ghost fields
=J'—Ris in the gauge-fixed action can be identified with the Dirac-
1 Kahler fermions. The crucial observation is that fResym-
=5 l— —_ - metry of theN=2 supersymmetric action can be identified
0= Oy OR= = 5 st 619 with the “flavor” symmetry of the Dirac-Kaler fermion
action. Then the ghost fields together with the fermionic
multiplier fields turn into matter fermions via the twisting
mechanism. On the other hand, the twisting mechanism is
%huivalent to the Dirac-Kaer fermion formulation when we
identify the R symmetry and the “flavor” symmetry. In this

1 ~ 1
Spy=5(=¢€,/Cy)==35lv.yl. (510

which precisely coincides with the Lorentz transformation of
the spinor field. This implies that the Dirac-Klar field is

exactly transformed as spinors. We can obtain the same r
lation for y. Consequently, we have found that the twisting

mechanism in the two?dim_(_ansionalz_z theory hgs been sense we have found that the twisting mechanism is essen-
understood from the Dirac-Kier fermion formulation and yja\1y equivalent to the generation of matter fermions from

the R symmetry is nothing but the flavor symmetry of the tomignic ghosts via Dirac-Kaer fermion formulation. It is

Dirac-Kahler fermion. interesting to see if this mechanism works even in higher

dimensions.
VI. CONCLUSIONS AND DISCUSSIONS
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