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We examine the possibility that, when a black hole is formed, the information on the collapsed star is stored
as the entanglement entropy between the outside and the thin feditve order of the Planck lengtlof the
inside of the horizon. For this reason, we call this the entanglement entropy of the black hole “horizon.” We
construct two models: one is in Minkowski spacetime and the other is in the Rindler wedge. To calculate the
entropy explicitly, we assume that the thin regions of the order of the Planck length of the outside and the
inside of the horizon are completely entangled by quantum effects. We also use the property of the entangle-
ment entropy that it is symmetric under an interchange of the observed and unobserved subsystems. Our setting
and this symmetric property substantially reduce the needed numerical calculations. As a result of our analysis,
we can explain the Bekenstein-Hawking entropy it$elther than its correction by matter fields the context
of entanglement entropy.

PACS numbegs): 04.70.Dy

I. INTRODUCTION ignoreB. Note that the entangled state and the entanglement
entropy is a purely guantum-mechanical notion and there is
There is a well-known analogy between black hole physno counterpart in classical physics.
ics and thermodynamics. This fact is called black hole ther- \When the concept of the entanglement entropy is applied
modynamicg1]. In particular, as first pointed out by Beken- to the black hole, it measures the information loss due to a
stein[2], we can think of the area of the black hole horizon spatial separation. Most previous works on the entanglement
as the entropyup to a proportional constanby using the  entropy were concentrated on the entanglement between the
area theorenh3] which states that the area of the black holepylk regions outside and inside of the black hole horizon. In
horizon does not decrease. Since the black hole emits thehis paper, we instead discuss the entanglement between the
mal radiation of matter, which is called Hawking radiation gytside and a thin regiofof the order of the Planck length
[4-6], we can decide the temperature of the black holeinside of the horizon. For this reason, we call this as the

Thus, the entropy of the black hole is calculated as entanglement entropy of the black hole “horizon.”
We consider that this approach is justified physically by
1 the following discussion: For simplicity, we consider a quan-
S=—A, (1.)  tum field on the extended Schwarzschild spacetime rather
4l than a dynamical spacetime which describes the gravitational

collapse to the black hole. Since we want to calculate the
whereA is the area of the horizon ang=(AG/c®)¥?is the  entropy of the black hole itself, the quantum state of the field
Planck length. This is the Bekenstein-Hawking entropy.  must be a “vacuum.” We thus consider Killing vacuum,

There have been many attempts to understand the origwhich is defined by using the Killing timgNote that the

of this black hole entropy: for example, those consideration&ruskal vacuum, which is defined by using Kruskal time,
on the basis of the value of the Euclidean ac{igr11], the  contains the thermal radiation of the Killing particles,
rate of the pair creation of black hol¢42], the Noether namely, the Hawking radiation. Therefore, if we chose the
charge of the bifurcate Killing horizof13,14], or the central Kruskal vacuum, the resultant entropy would be considered
charge of the Virasoro algebfa5-17. Among past consid- as the entropy of the black hole and its correction by the
erations, we consider the entanglement entrdi8~26 as  matter field) Since the Killing vacuum is expressed as the
the most attractive candidate for black hole entropy. Entensor product of the states in one asymptotically flat region
tanglement entropy is the measure of the information los$ (outside and the other asymptotically flat region(ihside),
due to a division of the system; this direct connection of thethe entanglement entropy between the inside and outside of
entropy with the information loss is not clear in some otherthe horizon becomes zero.
approaches to black hole entropy. If we divide the system However, if we consider the effect of the quantum grav-
into two subsystem#\ and B, and ignore the information ity, this vanishing entanglement entropy is not true any more
aboutB and observe onl, we can view the pure state of since we cannot divide the system sharply due to the quan-
the total system as an effective mixed state for the subsystemm fluctuation of the horizon. By this correction, the Killing
A. The entanglement entropy is the von Neumann entropy ofacuum is deformed to some entangled states between the
this effective mixed state. If the original pure state is aninside and outside of thglassical horizon. The depth of the
entangled state, the entanglement entropy is nonzero. On tle@tanglement is of the order of the Planck length because
other hand, if the original pure state is not an entangled statehis is the effect of the quantum gravity. Of course, it is
the entanglement entropy is zero. That is, if the original puralifficult to achieve such a calculation. To estimate this en-
state is not entangled, there is no information loss when weéanglement entropy, we first assume that the thin regions of
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the order of the Planck length outside and inside the horizois a “boundary,” at least, for the observer at infinity. How-
are completely entangled by quantum effects. Namely, thever, we do not impose any boundary condition at the hori-
main features of the states in the thin region inside the horizon since we do not make any measurement there. Conse-
zon are smoothly extrapolated from those outside of the hoquently, it is natural to take the summation over the state at
rizon. The major ansatz of our calculation is that the enthe horizon[6].

tanglement entropy between the thin region inside the The plan of this paper is as follows. In Sec. Il, we briefly
horizon and all the states outside the horizon is approximatetVview the notion and basic properties of the entanglement
by the entanglement entropy of the Killing vacuum betweerfN{ropy. and then derive a basic formula to calculate it. In
the thin region of the order of the Planck lengthtsidethe Sec. Ill, we construct two models and calculate the entangle-

horizon and the rest of the states outside the horizon. That i§€nt entropy explicitly. In Sec. IV, we conclude and discuss

we consider that the effect of the quantum gravity is approxi{N€ results of this paper.

mated by the shift of théclassical division of the system
rather than the deformation of the state. The shift is of the II. ENTANGLEMENT ENTROPY

order of the Planck length because this is induced by the We review the notion and properties of the entanglement

guantum fluctuation of the horizon. . . i
The present ansatz is analogous to the setting which haesntropy and then derive a basic form{l] o calculate it

been considered in Ref25] in a different context. They
have considered a thin spherical shell infalling toward a
Schwarzschild black hole and the entanglement entropy of et us consider the case where the total system can be
the Killing vacuum associated with the division by a timelike divided into two subsystems. Then, the Hilbert space of the
surface which becomes the horizafter the passage of the total systent can be written by the tensor product

shell, but it is in the Schwarzschild spacetirhefore the

passage of the shell. Our case is different since we analyze H=H1®H,. (2.9

the entanglement entropy generated by quantum effects after ) )

the formation of the classical horizon. Also, the calculation® State|W) e is called entangled if the staannotbe
becomes much simpler in this paper. The key point is thafVritten as

the entanglement entropy is symmetric under an interchange

of the role of the subsysten#s and B. Our setting and this (W) =[40)l ), 22
symmetric property make the calculation very simple and .
substantially reduce the needed numerical calculation. More¥here 1) €M, and [¢,) e H,. For example, if|a),[b)
over, since the calculation in this paper is based on & /i1 and|a),|B) € Ha,

Bombelli-Koul-Lee-Sorkin-type calculatiofL8] rather than _

a Srednicki-type calculatiopl9], we can find directly that W) =[a)|a)+[b)| B) 23
the entanglement entropy is proportional to the area withou
plotting the entanglement entropy to the area.

A. Definition

S an entangled state and

There are some comments on the above setting of the |W)=|a)|a)+2|a)|B)+|b)|a)+2|b)| B)
calculation in this paper: As is well known, Euclidean geom-
etry plays an important role in the Gibbons-Hawking method =(la)y+[b))(|a)+2|B)) (2.9

[7,8] or some other Euclidean approaches to the black hole

entropy. Especially, the temperature of the black hole can bis not an entangled state.

well understood as the period of the Euclidean time in Eu- Moreover, we assume that we are going to ignore the

clidean geometrj27—29. Since the entropy is the conjugate degrees of freedom df(,. To achieve this, we define a re-

variable to the temperature, we want to understand it withirfluced density matriy,¢q for 7, from the(pure state of the

Euclidean geometry. However, the Euclidean black holdotal system¥), whose matrix elements are given by

does not have the “inside” of the horizof8,30. On the

other hand, in Euclidean gravity, the horizon is the fixed _

point of the Euclidean time translation, called the 4], <a|p’ed|b>_§a: (ala[¥)(¥I([b)a)), (29

and an obstruction to the foliation by the Euclidean time.

Therefore, to achieve the Hamiltonian formulation, we wantwhere|a),|b) are the arbitrary states &f; and{|«)} are the

to eliminate the degrees of freedom near the hor[8%11.  orthonormal basis of{,. Then, the expectation value of an

For this reason, the above setting of our calculation appeatsperatorO which acts only or{; becomes

to be reasonable if we persist on the Euclidean picture. Then,

we notice that the energy, temperature, and entropy could be (P[O| V)Y =Tr(pre), (2.6

understood in relation to the Euclidean time translation: That

is, we regard that the energy is its charge, the temperature ighere the trace is taken over the state$(gf By this way, as

its period, and the entropy is concerned with its fixed pointfar as the subsyster®; is concerned, the pure state of the
Moreover, to reach the horizon, we need an infinite time iftotal system{'W') can be viewed as the mixed statgy.

the “time” is measured by the asymptotic Minkowski time ~ Now, the entanglement entropy is defined by the von

(not the proper time Thus, we can consider that the horizon Neumann entropy of this reduced density matrix:
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Note that one of the important properties of the entangle-
S12= = Tri(predIN pred = — ; Pnlnpy, (2.7 ment entropy is that it is symmetric under an interchange of
the role of’H; and™H,,

where{p,} are the eigenvalues gf4. Note that the range S1,=S,;. (2.13
of the entanglement entropy is
This is because the entanglement entropy measures the EPR

0<S;><InN, (2.8)  ‘“correlation” between two subsystems, which is symmetric
by definition. As for more detailed analysis, see Refs.
[19,24.

whereN is the dimension of;.
If the original state|¥) is not entangledp,.q remains .
pure and, thus$,, becomes zero. On the other hand|¥) B. Basic formula

is entangledp g becomes a mixed state afgh, is nonzero. Let us consider a system which consists of coupled oscil-
Thus, the entanglement entropy is a measure of the entanglggtors, {q*}. Now, we will calculate the entanglement en-
naturefor Einstein-Podolsky-Ros€fEPR) correlatior] of the  tropy of the ground state when the system is divided into two
original state. subsystems,q®} and{q®} [18].

For example, let us consider the system which consists of The Lagrangian of the total system is given by
two spin-1/2 particles: If a state of the system is an EPR

state, 1 C 1
L= EGABquB_EVABquB- (2.14
1
|y = T(|Tl>|T2)+|ll>|¢2>), (2.9  (We assume thaBG g and Vg are symmetric and positive
2 definite matrices of constantsThe canonical momentum

conjugate tag” is
then the reduced density matrix becomes

Pa=Gagd®. (2.19
1
= 0
Pred:( 2 (2.10 By using G*)"® which is the inverse matrix 06,g de-
0 i) fined by
(G H)"BGgc=4¢, (2.16

and the entanglement entropySs,= In 2. This state has the
maximum entanglement _entro;ﬁ$3]. Note that, since there ha Hamiltonian becomes

is a perfect EPR correlation between these particles, we can

get full information about one particle by an observation of 1 1

the ?tzer particle. Thus, these particles are maximally en- H= E(G‘l)ABpApBJrEVABquB. (2.1
tangled.

On the other hand, if a state of the system is not an enMoreover, we defindV,s by
tangled state,

(G™HABWAcWgp=Vcp. (2.18
1 1
)= E(|Tl>+|l1>)® E(|Tz>+|lz>) That is,W,g is the square root of 55 in terms of the metric
(G~ 1HAB. Then, by using the canonical commutation relation
1 .
:§(|T1>|T2>+|T1>|l2>+|l1>|T2>+|ll>|l2>), [a” pel=idg, (2.19
(2.1)  one finds that the Hamiltonian becomes
then the reduced density matrix becomes H= E(Gfl)AB( Pa+iWAca®)(Pa—iWgpq®)
1 1
2 2 1 C1\AB
Pred=| , | (212 +5(G7) ™ Was. (2.20
2 2

Thus, we can define the creation operatgrand the annihi-

and the entanglement entropy3s,= 0. This state does not nlgtion operator, by

have the entanglement entropy. Note that, since there is
EPR correlation between these particles, we cannot get any 1
information about one particle by an observation of the other an=—(pa—iWacq®), (2.2
particle. Thus, these particles are not entangled. 2
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1
ap=—=(PatiWacq®). (2.22
b2

The commutation relation between these operators are

[aa,a8]=Wag. (2.23
We can then write the Hamiltonian as
—1\AB| 5T 1
H:(G ) aAaB'f'EWAB . (224)

PHYSICAL REVIEW D 61 104016

M 1/2
-

Prec{{qa}-{q,b}): det;

1 a~b ra~'b
5Man(a%9°+09"%q"")

1 a ra b rb
xexp — 7 Nap(G®=a')(a°— "),

The first term is the number operator and the second term is

the zero-point energy.
The ground state of this system is given by

1
aA|0>=E(pA_iWACqC)|O>=O- (2.29

The wave function of the ground state is obtained by

J c A
— T Wacq® [{{9*}/0)=0, (2.29
gt
sincepa=—iad/dg” in the Schidinger representation. The
normalized solution of this equation is
W 1/4
({g"}|0y= det; eXF{_EWABquB . (227
The density matrix of this ground state is
p({a*}.{a"®H =({a"}|0)(0l{a’®}) (2.28
W 1/2 1
=|det exr{—gwAB(quBm’Aq’B)}.
(2.29

Now, we divide the systenig”} into two subsystems,
{g®} and{q“}. If we want to ignore the information ofg“},
we take the trace ovdig®} and consider the reduced density
matrix as Eq(2.5),

pedtafh 0™ = [ TT da“p((a®,ah a0,

(2.30
By dividing W,g into four blocks
Aab Baﬁ)
Wyg= , (2.31
e ((me D

we find that

(2.32
where
Map=Aap—(BD'BT) 4, (2.33
Nap=(BD 'BT)p, (2.34
and we have used that
Aab Baﬁ)
detW=det(
(BT)ab Daﬁ
A,,—(BDBT),, B
=de 2 2 ¥ =detM detD.
0 Daug

Moreover, we can choose a ba&ig} in which bothM 4,
andN,, are diagonal. Then, in this basis, the reduced density
matrix becomes

1

ex _1[(~a)2+(~/a)2]
Noa RPLGRRC

Prec({aa}a{a,b}) = 1;[ {

1 Ta_ray2
= (@0 (2.39
where{\,} are the eigenvalues of the operator
AZ=(M~HaN,. (2.3

In order to obtain a simpler expression f&f, we divide
the inverse matrix of totalV,g into four blocks,

Aab  Bas
(W~ 1)AB= (~BT)ab 5a3> . (2.39
By definition,
A%PA,+B¥(BT) 5= 82, (2.39
ABy +B*D, =0. (2.39
From Eq.(2.39, we can find
B¥=—-A%B, (D 1)?~. (2.40
Combining this with Eq(2.38), we obtain that
(M~ 1)ab="Aab, (2.4

Then, from Egs(2.40 and(2.41), it is easy to see that Eq.
(2.36) becomes

Aj=—B¥(BT) s =AAg— 5. (2.42

104016-4



ENTANGLEMENT ENTROPY OF THE BLACK HOLE HORIZON PHYSICAL REVIEW D61 104016

Note that the total reduced density matrix can be written g
by the tensor product S=§ —In(1—puy)— Hln Hal. (2.59
a

Pred— ® po(Na), (2.43

Ill. MODELS

where . . . o
In this section, we will construct specific models and cal-

1 1 1 culate the entanglement entropy. We consider a free scalar
po\)=—=expg — =(g°+q'?) - =\(g—q’)?|. field in a background spacetime. Since the field can be
0 2 4 . .
N viewed as a set of coupled oscillators, we can use the for-
(244 mula in the previous section.

h h . by th . ith We must divide the set of oscillators into two subsets. In
Thus, the entropy is given by the summation with respect iQ,ogt previous works, it was divided into the oscillators out-

eachh,: side and inside of the black hole. Instead, in this paper, we
will divide the system into the oscillators completely outside
S=—Trppeqln predzz S(\,), (2.45 and within a thin regionA around horizon, based on the
a discussion in Sec. |. Since the thin region is induced by the
where quantum fluctuation of the horizon, the width of the region

is of the order of the Planck length. Namedy:-1,;, wherea
_ is the width of the region.
S(M)==Trpo(M)In po(M). (2.49 Furthermore, we can make the calculation simpler. If one
To calculateS(\), we must obtain the eigenvalues@f{(\): app]|es the conventional calculatloqal ;cheme to our setting,
we ignore the degrees of freedom insidedofnear the ho-
o rizon). Instead, we here ignore the degrees of freedom out-
f dd’'po(X;9,9")fa(d") =pnfa(a). (247 side ofA in this paper. Of course, this gives the same en-
o tanglement entropy in our setting, because the entanglement
entropy is symmetric as in Eq2.13. Moreover, since the

By using the f la for Hermite pol ial84], : C
y using the formula for Hermite polynomial3] width of the region is of the order of the Planck length, we

" ay can treat the field withiA as a single oscillator if we assume
f dxe” *’H (ax) = Ja(l—a?)"2H, ——, a momentum cutoff associated wish which is of the order
- (1-a”) of the Planck scale(lf we assume a different momentum

(2.48 cutoff, which is still of the order of the Planck scale, we must
consider the field within the thin region as a set of oscillators

we find that the eigenvalues and eigenfunctions are given bP/ather than a single oscillator. However, the number of the

[19] oscillators are still of the order of 1. Although this would
py=(1—p)u" (2.49 change the numerical value of the coefficient of the entangle-
n HIR ' ment entropy, it would be still the same order. Thus, the final
1 conclusion is unaffectedThis makes the calculation quite
fo(a)= ex;{ - Eyqz}Hn( Vya), (2.50 simplg. Especially,_ the matriA§ becomes X 1 matrix and
the eigenvalue\ ,, itself.
where
A. Simple model
=1+, 25
y (259 First, we consider a free scalar field in the flat spacetime
A and adopt the Minkowski coordinatet X,y,z) =(t,x). The
n= m (2.52 indexA is now replaced bi. We assume that the “horizon”

is atx=—L (— —0). Then, the thin region near the horizon
becomesA ={(x,y,z)| —L<x<—L+a}. (See Fig. 1.Since

Then, the entropy fok is given by the action is

M
T s | AR ()7~ mPe?], (3D
(2.53

In summary, in order to calculate the entanglement engne can easily find thad 5 andV g appearing in Eq(2.14
tropy for the ground state of coupled oscillators, one musbecome[18]

first obtain the eigenvalugd\ .} of A in Eq. (2.42. Next,
for each eigenvalue\,, one has to calculate, by Eq. R R o
(2.52. Finally, the entanglement entropy is given by G(x,x")=G Y(x,x")=8(x—x"), (3.2

S()\):_; PalInpy=—1In(1—u)—
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v t=const

FIG. 1. Simple model.

<2+ m2)elk ) (3.3

Then, one finds that

. d*k e,
W(X’X,):f(277)3(|k|2+mz)l’ze"“(x‘x), (3.4
107 2! dk 012 4 2y — 1240k (x—x")

W™ i(x,x")= (2w)3(|k| +m*) "t . (3.5

Thus, A} in Eq. (2.42 becomes

A(i,i')=f dX'TW (X, X" )W(X",X")] = 8(X—=X"),
A

(3.6
wherex,x’ € A.
To solve the eigenvalue equation,
f dx’ A(X,x")E(X")=\F(X), (3.7
A
we make the ansatz
F(x)=e'P*f(x), (3.8

wherex=(y,z) andp=(py,p,). Then, the eigenvalue equa-

tion reduces to

L+a L+a
f dx’ f dx”
~L

1 . m ke oy 4
X ﬁme*x(x’x YT (x)

=N+ 1)f(x), (3.9

where

M= m?+|p|*. (3.10

PHYSICAL REVIEW D 61 104016

Moreover, we use an approximation,

JfHadx G(x)~aG(—L+a/2), (3.11
—L

which corresponds to the prescription that we treat the field
within A as a single oscillator. We then find that

- f f dk; 1
A+1=a 27 TN
This would diverge unless we introduce a momentum cutoff
k.. The momentum cutoff can be decided by

. J~—L+adXJ‘°° %eik><[x—(—L+a/2)]~:’:\.JAkC %: kc_a

L —k2m  w

(3.13

in relation to the width of the region and the approximation
Eq. (3.11). Thus,

\/k’2+M2 (3.12

aa
kC:E;' (3.1@

By using this momentum cutoff, we obtain that

A \/1+_52+1
T

X| 1+ 2+ = ¢2In -1, (3.19
75 Niwcary

where {=Ma/m. Then, from Eqgs(2.52 and (2.53, one
finds that

A (D)

“(5)_[\/1+>\(g +1]2 (319
and
S(0)=— In[1- u({)]- 7 (g()o Inu(¢). (317

Figs. 3 and 4 show (¢) andS(¢{), respectively.

Finally, we must integrate ovey (or ). Note that, for a
surface ared in configuration space, the density of modes in
momentum space i8/(2)2. (Since the shape of the “ho-
rizon” is R? rather thanS? in this model,A and the total
entropy are infinite. However, we can perfectly define the
entropy per unit area, and consequently we can pretend as if
A is finite in our formula forS.)) Therefore,

(277

—Ar/a d WAfld 31
=5 ) Tpapso- 2| cdrsio, (318
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where we have used the assumption that~ml,; <1. Note
that, even thougs({) — < for {—0, {S({) becomes zero at
{=0. Thus, one finds

A
S~C¥, (3.19
where
a1
ngf £dZS(Z)~0.057. (3.20
0

If we consider that the quantum fluctuation of the horizon is

a~2yCly~0.48x1,, (3.2

then the entanglement entropy is consistent with the
Bekenstein-Hawking entropy E@L.1).

FIG. 2. More realistic model.

B. More realistic model
2

Next, we consider a free scalar field in the flat spacetime ys2— — ;2,2 ¢¢2+ 4Ld,72_|_ R2(r)(d62+ sir? 6d¢?),
but adopt the Rindler coordinates, €,y,z) = (7,&,X), which CANG
are defined by (3.27
t=¢£sinhar, especially near the horizon—0,
x=&coshar, (3.22 A
) ) ) ds’— — p?k?dt?+d 7%+ R?(r)(d 6%+ sir? 6 d¢?).
where « is a constanf35]. The Rindler coordinates cover (3.29
only a quarter of the Minkowski spacetime; |t|, called the

Rindler wedge. The boundary of this Rindler wedgeO is Therefore, by the comparison of E@.23 with Eq. (3.28,

the horizon for a uniformly accelerated observer in the Rin- ; :
dler wedge. In the Rindler coordinates, the flat metric bey o ¢an think of the Rindler wedge as the model for the black

hole, even though the shape of the horizon is iAwrather

comes than S2
d?=— d?+dx2+ dy?+ d 7 Since we think of the Rindler time as the “time,” the

indexA is now replaced by4,x). The horizon is at=0 and

=—£2a%d7?+de?+dy?+d 2. (3.23  the thin region near the horizon becom#s-{(£,x)|0<¢

] <a}. (See Fig. 2. The “ground state” is the Rindler
On the other hand, the most general, static, and spherjzacyum (rather than the Minkowski vacuunwhich corre-

cally symmetric black hole in four dimensions is sponds to the Killing vacuum in the case of a black hole.
1 This is because the “time” is the Rindler timerather than
ds?= —f(r)dt?+ —dr2+ R%(r)(d 62+ sir? 0 d¢?), the ordinary Minkowski time.
f(r) Note that this horizog =0 is a null surface, similar to the

(3.24 model of Ref[25]. Thus, this model is not influenced by the
criticism[20] which is related to the fact that the boundary of

where the horizon is at=r, which satisfiesf(r,)=0. We previous works like Refd18,19 was timelike rather

thus make the coordinate transformationt,r(6,)

L . than null.

—(t,7,0,4), which is defined by The action of the scalar field in the Rindler coordinates
1 1 o becomes
== e
nzKﬁ, dn= 5 ﬁdr, (3.29 . )
- 5= f Ardedx; ol 1 (0,)° (966
1
K:§¢9rf|r:rh (3.26 _(a¢)2_m2¢2 ) (3.29

is the surface gravity of the black hole. Note that the horizon
is at »=0. The metric(3.24) becomes Then, by using the orthogonality relatiof36],
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o(pu—w)
2vsinhwv’

1 (=dx B
= fo - Kin 0K, (0= (3.30
izfxdv(ZVsinhqrv)Ki,,(x)KiV(x’)=x5(x—x’),
mJo

(3.3

which are used in the Rindler quantizatip®7], one finds
that Gpg andV,g appearing in Eq(2.14) become

1
G(§,x;§’,><’)=g—a§(§—§’)5(x—><’),

G UEXE X )=Ead(E—E)S(x—X'),

(3.32

(3.33

X € X!
gé (2”)2

(2v sinh7rv)

kg/)eik(xfx’)_
(3.39

X 1VPKi (MK, (M

Then, one obtains that

d
W(E X&' x)—— f

(2vsinh71'v)
(2m)?

X UK (MEKi (M &) el X,
(3.395

WI(E X X) fd”
X € X = =
w?) (2m)?
X1 K (M€K (Mg etk 0,
(3.36
Thus, A} in Eq. (2.42 becomes

A(§,X;§’ ,X,): J'Adgn dX”[Wil(é“,X; f”,XH)

XW(E" X" &' x")] = 6(£—&") 6(x—x"),

(3.37
where ¢,x),(¢',x") e A.
By making the ansatz as above,
F(&x) =€ (&), (3.39

the eigenvalue equation reduces to

ad¢’ rad&” [ dv ) dv’ .
J J J —(2VSInh1TV)J —(2v' sinhwv")
&) o w?

MK (MK (M)

XKiy (Mg () =(N+1)f(&). (3.39
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simple model
more realistic model

02 03 04 05 06 07 08 09 1
¢

0 01

FIG. 3. The numerical evaluation far({).

Then, by using the approximation,

Joadg G(¢é)~aG(al2), (3.40

we find that

dv ) dv’ .
)\+1=4J —2(2VS|nh7Tv)f —2(21/’ sinhzrv’)
T T

X%[KiV(MpaIZ)]Z[KiV,(Mpa/2)]2. (3.4
This would diverge unless we introduce a momentum cutoff
for v and v’ integrals. As in Eq(3.13), we decide the mo-
mentum cutoff in relation to the width of the region and the
approximation Eq.(3.40. By using Eg.(3.31), it can be
decided by

= [P [ Heavsinnan, 6K, 02
" Jo & Jo g2 VTR S R

vedy .
~2f — (2vsinhav)[K;,(Mpa/2)]2 (3.42
0

Unfortunately, this integral cannot be done analytically.
However, we can perform the numerical integration. Note
that the cutoff is not a constant but a function ¢f

=M al/ 7 by the dimensional analysis. Thus,

Vc(g)d]/ A Vc(g)dV, .
)\({)=4[ J —2(2VS|nhTrv) —2(21/’ sinhmv’)
0 T 0 v
V/
Xj[Kiy(Wg/Z)]z[Kiw(775/2)]2] - (343
wherev.({) is defined by
Vc(g)dV 1
j (2V sinh7v)[K; (7L/2)]?==. (3.49
0 7T 2

Then, from Egs.(2.52 and (2.53, one obtainsu({) and
S({), as abovel({) and S(¢) are shown in Figs. 3 and 4,
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FIG. 4. The numerical evaluation f&(¢).

respectively.[Note thatA({) and S({) seem to be not

smooth atZ~0.02 or 0.16. However, this is because the cut-

off v¢({), which is shown in Fig. 5, varies so rapidly there.
Thus, we need more accuracy at such pajnts.

Finally, after integrating ovep (or {) by using the fact
that the density of modes in momentum spacé/f2)?,
one finds that

(3.4H

where

C (3.46

v 1
Efo £dZ S(¢)~0.089.

(Even thoughA and Sin our formula, if literally taken, are
infinite since the shape of the horizonR$ rather tharS? in

PHYSICAL REVIEW D61 104016

IV. CONCLUSION AND DISCUSSION

In this paper, we have considered the entanglement en-
tropy between the outside and the thin regiohthe order of
the Planck lengthof the inside of the horizon based on the
discussion in Sec. I. By constructing two models, a simple
one and a more realistic one, we have shown that its en-
tanglement entropy becomes

A
S~C—

, (4.1
8.2

wherea is the quantum fluctuation of the horizon a@ds a
constant. If the quantum fluctuation of the horizon is

a’\"2\/6|p|l

we can interpret the Bekenstein-Hawking entropy, Bql),

in the context of the entanglement entropy. This is consistent
with the assumption that the quantum fluctuation of the ho-
rizon is of the order of the Planck length.

Although some authors have considered the entanglement
entropy as theorrectionto the Bekenstein-Hawking entropy
generated by matter fields, we want to consider this entangle-
ment entropy as the Bekenstein-Hawking entrapglf. This
is because we have considered the entanglement entropy of
the Rindler vacuungrather than the Minkowski vacuunin
the second model, which does not contain the thermal radia-
tion of the Rindler particles. In the case of a black hole, this
corresponds to the Killing vacuurmather than the Kruskal
vacuum, which does not contain the Hawking radiation.
Thus, this entropy is not associated with the existence of the
thermal radiation of particles but rather with the existence of
the black hole itself.

One might think that this entanglement entropy would

(4.2

this model, we can still define the entropy per unit area predepend on the number of matter fields which are present in

cisely. We can thus pretend asAfand S are finite in our
final formula) If we consider that the quantum fluctuation of
the horizon is

a~2yCly,~0.60x1,, (3.47)

then the entanglement entropy is consistent with th
Bekenstein-Hawking entropy E@l.1).

2.5 . — i .
more realistic model --—- ]

—
o

H —
H o

ve(©

o I I 1 1 I 1 1 I I
01 02 03 04 05 06 07 08 09 1
g

0

FIG. 5. The numerical evaluation far, ().

the real world. That is, if there afd matter fields indepen-
dently, one might think that the entanglement entropy would
be multiplied byN and conclude that this entropy could not
be considered as the entropy of the “black hole,” since it
would depend oriN. However, the entanglement entropy of
the horizon in fact doesot depend orN. This is because the

dfuantum fluctuation of the horizamalso depends oN and,

besides, it is proportional tgN. This can be seen from the
following argument. Let us consider a Schwarzschild black
hole with its masdM, which fluctuates withinsM (SM/M
<1). Then, the Schwarzschild radius of this black hole fluc-
tuates within M in the coordinate length. The proper
length of this fluctuation becomes

r=2(M+ oM) r=2(M+ oM) dr
ds=f ———~2\2M M.
frzZM r=2M 1-2M/r
4.3

Note thatéM is proportional toN, since the rate of sponta-
neous guantum emission or absorption of particles is propor-
tional to N. Thus, the fluctuation of the horizon is propor-
tional to N in the proper length(This is similar to the
“brick wall” of 't Hooft [38].) Since the coefficient in front
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of dé? is 1 in Eq.(3.23, ais the proper length and thus is ties which appear in the first law of the black hole thermo-

proportional toN. Therefore, if the species of matter fields dynamig:s can be_understood in .rel_ation to the Euclidean time
becomesN, the entanglement entropy of the horizon be_ftra'nslatlop: That is, the energy is its charge, the_ temperature
comes is its period, and the entropy is concerned with its fixed

point.
A Finally, to be more realistic, we have to consider the case
NXC—=—=C—, (4.4  where the shape of the horizon$3, such as Eq(3.28. We
(VNa) a then have to expand the field by the spherical harmonics
Y\m(6,®). However, we expect that this would not change
the result drastically and would turn out to be consistent with
e[he result of Ref[25],

which is independent oN [20]. We thus consider this en-
tanglement entropy of the horizon as the entropy of th
“black hole” itself rather than the “matter field.”

The result of our analysis suggests that we can consider A
that information on the collapsed star is stored as the EPR S~0.024<—. (4.5
correlation between the outside and neighborhéoidthe a

order of the Planck lengjtof the horizon. Since the horizon This is because as lond as the radius of the sphere is much
remains stable to the Planck scale, we can encode the enor- 9 p

mous information on the collapsed star. If we used an ordi-2r9¢r ‘h?‘” the Planck length, (wh|gh IS equwaler_n to the

nary wall, we could not do so because it begins to fluctuatcg'ear'horlzon limit, we can approximate the horlz_on as a

far below the Planck scale. The information available outsid lane. Qf course, by using the methqd developed |n_th|s pa-

the horizon is the probability distribution of the effective per which is based on the Bombelli-Koul-Lee-Sorkin-type

stated(the effective density matrjxwhen we ignore the field calculatlon_[ls] rather than _the Sredmclq—type calcu_latlon

near the horizon. Note that this consideration does not cor{-lg]’ we W'”. be able to o_btgm the result in a much simpler

tradict with the no-hair theorem. and more direct way. This is left for a future work.
Moreover, this picture appears to be consistent with the
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