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Charged rotating black hole in three spacetime dimensions
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The generalization of the black hole in three-dimensional spacetime to include an electric Gharge
addition to the masM and the angular momentuthis given. The field equations are first solved explicitly
whenQ is small and the general form of the field at large distances is established. The total “Nhids&nd
Q are exhibited as boundary terms at infinity. It is found that the inner horizon of the rotating uncharged black
hole is unstable under the addition of a small electric charge. Next it is shown that@/énthe spinning
black hole may be obtained from the one witk0 by a Lorentz boost in the—t plane. This boost is an
“illegitimate coordinate transformation” because it changes the physical parameters of the solution. The
extreme black hole appears as the analog of a particle moving with the speed of light. The same boost may be
used wherQ+# 0 to generate a solution with angular momentum from that W@ittd, although the geometrical
meaning of the transformation is much less transparent since in the charged case the black holes are not
obtained by identifying points in anti—de Sitter space. The metric is given explicitly in terms of three param-
eters,M, Q andw which are the “rest mass” and “rest charge” and the angular velocity of the boost. These
parameters are related M, J and Q through the solution of an algebraic cubic equation. Altogether, even
without angular momentum, the electrically chargediZblack hole is somewhat pathological sirigét exists
for arbitrarily negative values of the mass, afiidl there is no upper bound on the electric charge.

PACS numbe(s): 04.70.Bw, 04.20.Jb, 04.40.Nr

[. INTRODUCTION appears as the analogue of a particle moving with the speed
of light. The same boost may be used wii@g# 0 to generate
The black hole in three-dimensional spacetifie?] has @ solution with angular momentum from that wilk=0, al-
been the object of considerable stufi§]. However—as though the geometrical meaning of the transformation is
pointed out by several authoff3,41—if one includes electric Much less transparent since in that case the black holes are
charge, the solution reported in the original artifd only ~ Not obtained by identifying points in anti—de Sitter space.
applies when the angular momentum vanishes. In this articidn€ metric is given explicitly in terms of three parameters,
we analyze the case when all three “hairst, JandQ are M, Q andw which are the “rest mass” and “rest charge”
different from zero. and the angular velocity of the boost. These parameters are
The work is organized as follows. Section Il presents thgelated toM, J and Q through the solution of an algebraic
Einstein-Maxwell action in Hamiltonian form. The Hamil- cubic equation. Altogether, even without angular momen-
tonian form is well suited for the present analysis because itum, the electrically charged+2l black hole is somewhat
permits us to identify directly the physical meaning of the pathological sincéi) it exists for arbitrarily negative values
integration constants as the total charges and their conjef the mass, andi) there is no upper bound on the electric
gates. The requirements of circular symmetry and time indecharge'
pendencestationarity are then imposed and the simplified
equations applying in that case are written down. The equa- II. EINSTEIN-MAXWELL EQUATIONS
tions are a coupled set of first order differential equations. If
the electric charge is small the equations can be integrated _ i _
directly. This is done in Sec. Ill. A noteworthy fact is that the ~ The Hilbert action coupled to electromagnetism
inner horizon of the rotating uncharged black hole is unstable R_2A 1
under the addition of a small electric charge. IH:J d3x\/—_g( — SF, F*, (1
Section IV begins by showing that wh&p=0 the spin- 2x 4
ning black hole may be obtained from the one withO by
a Lorentz boost in the—t plane. This boost is an “illegiti-
mate coordinate transformation” because it changes the!as it was observed ifi5], the lack of a lower bound for the mass
physical parameters of the solution. The extreme black holgrevents charged black holes from being supersymmetric.

A. Hamiltonian form
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In terms of the remaining fields, which are only functions
of r, the action reads

can be cast in Hamiltonian form,

szdtdzx(w”gij—l—SiAi—NlHL—NiHi—AOG), 2)

| = —(tz—t1)2wf (NH+N*H,)dr, (12
by adding appropriate surface terms.
The canonical variables are the spatial megricand the )
vector potentialA; together with their conjugate momenta with
7') and £'. The generators of normal deformatior¥ (),
tangential deformationsH;) and gauge transformatior&) , 2p? Q? f2B2
are given by H=fH, =(?) —2f+r—3+ﬁ+ - (13
Hy =29~ 2wy — (m)?)— (26) 'gYAR-2A)
and
1 o
TN U2y cic] 2
Hi=—2m)— ;B (4)  Extremization of the reduced actigf2) with respect toN,
_ N¢, {2, pandA, gives, respectively,
n . i L 2p2 QZ fZBZ
In terms of the lapseN") and shift (N') Lagrange multipli- (f2) —2r+ —+ —+ -0 (15)
ers and the spatial two-dimensional metgg, the space- r32r  2r
time line element is
ds= — (N*)2dt2+g; (dx +Nidt)(dxi+Nidt),  (6) 2p'+Qb=0 (18
and the magnetic densit§ is given b NB?
g yis g y N — 720 (17
Fij = EijB' (7)
We will use units such that the gravitational constant 2Np
=8mG, which has dimensions of an inverse mass, is set (N¥)"+ —=0 (18)
equal to3. The cosmological constant is negative and is r
related to the cosmological lengthby A=—1"2. This )
' i Nf<B '
length will be set equal to unity. ( r —N‘PQ) —o. (19

B. Rotational symmetry and time independence

If one requires invariance under spatial rotations and time || SOLUTIONS IN SPECIAL CASES AND PHYSICAL
translations, the metric may be cast in the form MEANING OF INTEGRATION CONSTANTS

ds?=—N2(r)f2(r)dt®+f ~2(r)dr2+r2(de+N¢(r)dt)?, Equation (19) can be solved fo3 with an appropriate
integration constant which is fixed by regularity and is not an
independent free parametimee Eq.(49) below]. The inte-
gration constants fof? andp can be expressed in terms of
This implies that the only non-vanishing component of thethe massM and the angular momentuth Thus, together
gravitational momentum is given by with the electromagnetic field, the solution is characterized

by the charged, J, Q and their conjugatebl(e), N¥()

Osr<ow, 0=s¢<2m, tsts<t,. (8)

me=p(r). (®  andAy(x=) (“chemical potentials” in the Euclidean formu-
_— . lation).
The only non-vanishing electromagnetic strengths are The system of first order nonlinear differential equations
£=Q, (10) (15)—(18) is not straightforward to solve fd¥, p, N andN¢,

when Q#0. It is therefore useful to analyze special cases
and approximations in order to gain insight into the proper-
ties of the solution.

We first turn our attention to the two limiting cases when
the solution is known in closed form. These &pe=0, J

the total electric charge, and

B=4a,A,. 11

Equation (10) follows from solving the constrainG=0,
whereas€¢=0 follows from H,=0. To arrive at Eq(11)
one uses the radial gauge=0.

#0, M#0 (the standard 21 black hole and Q#0, J
=0, M#0 (charged black hole without angular momen-
tum).
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A.J#0, Q=0
The solution of the equations is

2

J

2_.2_ -~

Peri-M+ (20
J

p=p(°°)=—§ (21)

N=N() (22

NF= — L 4 N#(e). 23

2r2

If one varies the reduced actigh2) one picks up a surface

term[10]
(ta—t) 27 — 8%(2)N(%) —25p(*)N?()], (24)

which identifiessf2(«) = M and p(«) = — 8J/2. In order
to have a black hole foM =0 one adjusts the zero of the

energy so thaM is indeed the mass. In the same manner, in

order to have a static black hole fde=0 one takesl as the

PHYSICAL REVIEW D 61 104013

p=0 (29)
N=N(o) (30)
N¢=0. (31)

If one varies the action, one picks up a surface term

1
—5M—§5Q2Inr N(r), (32

which diverges ifr —oo.

This divergence may be handled as follows. One encloses
the system in a large circle of radiug and rewrites Eq(28)
as

total angular momentum. Similarly with the electric charge, Then Eq.(32) is replaced by

which is identified with the integration consta@tappearing
in Eqg. (12) because its variation in the acti¢®) multiplies
Ag().

The functionf? has zeros at, andr_, the outer and
inner horizons, given by

M +(M2_J2)l/2 1/2
re= f} : (25)
M _(M2_J2)1/2 1/2
r=[f} : (26)
which exist provided
J2<M?, (27)

and coalesce il=M (extreme case

Note that if J—0 (M fixed) the rootr_ tends tor=0
which is considered as @chronological”) singularity[2].
Note also that whed=0, f?=0 has only one root=r .
Thus the limit of the roof _ (which is zerg is not a root of
the limit of f2. In this sense the limit is discontinuous. This
discontinuous behavior shows itself in the graphfdfas a
function of r. The minimum of f2 occurs atr ;. =(J/2)?
whereas the value d at the minimum isf2,.=|J|—M for

all J. Thus whenJ—0 the whole branch of? to the left of

the minimum disappears. We shall see similar behaviors for

J=0, Q#0 andJ#0, Q0.

B.J=0, Q#0
Now one has

1
f2=r2—M—ZQ2Inr2 (29

1 r
f2=r2—M(r0)—§Q2InG, (33
with
1

M=M(r0)—§Q2Inr0. (34)

1 r
—5M(r0)—§5Q2In— N(r), (35)

)

and the second term vanishes whenr .

One might callM(r) “the energy within the radiusy.”
It differs from M by — 3Q?Inr, which may be thought of as
the electrostatic energy outsidg up to an(infinite) constant
which is absorbed iM(ry). The sum(34) is then indepen-
dent ofr, finite and equal to the total mass.

Thus in practice one does not bringrip and writes

“lim 8(Q%nr)=0."

r—o

(36)

A similar situation occurs in four spacetime dimensions.
One may write the Reissner-Nordstio goq as 1
—2M(ro)/r+Q?(1r2—1/r3). ThenM=M(ro)+Q?%2ry is
the total mass, independent if, andQ?/2r, is the electro-
static energy outside a sphere of radigsIn this case it is
not necessary to include an infinite constanMifr,) since
Q?/2r 4 vanishes whemy— .

The functionf? given by Eq.(28) tends to positive infin-
ity if r—0 or if r—o. It has a minimum at =|Q|/2. The
value off2 at the minimum is

Q 2
7|

o

2
If Eq. (37) is negative there are two zerosfdf r, andr_ .
If Eq. (37) vanishes the two roots coincide and one has an
extreme black hole. The situation is illustrated in Fig. 1.
Now, the function Q/2)’[1—In(Q/2)?] vanishes atQ
=0, has a maximum atQ/2)?=1 with value 1, vanishes at
(Q/2)?=e and tends to negative infinity for largeQ(2)?.

~M+

(37
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] AB
ap—- 28 39
2
AN’—AB2 40
o “o
11
J 2
(AN@)’Z —3AN— —3Ap (41)
r r
r2—r2)(r2—r2 J '
( *E )AB+—%—N%wxg =0. (42
a1 r 2r
* These equations must be integrated demanding that
N(e), N¥(«), M andJ be unchanged. Thus we should ask
11 AN()=0, AN®(x)=0

o , and also demand thatp(r) and Af? should vanish as
FIG. 1. Region in the mass-charge plane for which there are_, o up to logarithmic terms multiplied b@z, which are
black holes. Black holes exist whenewdr— (Q/2)?[ 1—In(Q/2)?]

not considered when identifyinandM by the reasoning of
=0. This corresponds to the shaded area in the diagram. Extrem fying y g

black holes are at the boundary between the shaded and unshade c. ”I.B' The_lntegratlon C_onstant in E2) is fixed by a
. . ; regularity requirement as discussed below.
areas. Note that if the electric charge is large enough black hole

solutions exist for arbitrarily negative values of the mass. One obtains
2 r2 r2
This means that ifM>1 there are always two roots. Af2=— =14+ ——2—|In(r2—r?) (43)
which are different. Whe =1 the two roots coincide for 4 r2+ r?
(Q/2)?>=1.1f 0<M<1 there are two branch&®’< Q'f and
Q?=Q3, whereQ3< Q3 are the two roots of Eq37). JQ? ,
One sees that if the electric charge is large enough black Ap=-— 8—2In(r2—r_) (44)
hole solutions exist even for negative values of the mass. s
This feature is in sharp contrast with what happens 13
dimensions and makes the electrically chargeg12black Q% 1
; AN=— — —— (45
hole somewhat pathological. 4r2 r2—p2
Lastly, consider the limilQ—0. The situation is analo- - B
gous to the limitJ—0 discussed at the end of Sec. Ill A. )
2 _ 2 2 ;
Now one hasr_mn—(QIZ) andf,,——M so thaF, again, the AN¢= — (1+In(r2=r2)) (46)
whole ascending branch to the left of the minimum disap- 8rir2
pears in the limitQ—0. Note thatr _ approaches zero as
r Ne—zM/Q2
. ' ap=22 ! 47)
2r% r2—r2’

C.M#0, J#0, Q#0 small

One can solve Eq€15)—(19) perturbatively for small. Herer ., andr _ are those of the unperturbed. solution. Note
This is of interest because the solution for sn@itaptures that whenJ=0 (r_=0) the results go over into the exact
the behavior at large distances for a gend@icand also  €xpressions found in the previous subsection.
because it gives insight into the properties of horizons. The integration constant in E¢42) has been chosen so

We start with expressior@0)—(23) which we will denote that the magnetic field referred to an orthonormal basis,
with a subscript zerd“unperturbed”) and add to them cor-

rections of ordeiQ?. One hasB,=0. The equations for the s ip, B
perturbation then read B=Fis=9 "B= T (48)
2J Q2 f3AB? . , ,
(Af2) = —Ap— —— 0 (38) is regular at the(outep horizonr. . Indeed, Eq.(47) is
rs 2r 2r equivalent to writing
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e(r)—N¢ r’=R?-R2. 53
By AN )] 9 (53
N(r)f(r) This transformation may be obtained by composing the
transformations that relate each of these black holes to the
Note that, as a consequenér . )=0. standard form of the anti—de Sitter line element and which
As a result of the perturbation the horizon is nowrat ~ are given by Eq(3.29 of [2]. The individual transforma-
+ Ar, whereAr . may be obtained from tions and also their composition change the functional form
of the anti—de Sitter line element and therefore do not belong
, Af2 2 . to the SO(2,2) symmetry group of anti—de Sitter space.
Ari=— m == Inlri—r] Here we have denoted by ,@ft)l and R,¢,t) the stan-
ry dard coordinates for the non-rotating and rotating cases, re-
2 spectively. To obtain the rotating black hole one must de-
:_Q_m[Mz_Jz]' (50) mand thate be periodic with period Z and also that 0
2 <R2<x. As already anticipated, these requirements are in-

compatible withy having period 2r and O<r2<co. It is

The solution given by Eqs43—(47) is singular ar . jmportant to realize that the outer horizon is the imageof
This means that the inner horizon of the rotating unchargeg,q unique horizon that the non rotating black hole has at
black hole is unstable under the addition of a small electric, ~ ) . .

<~ =M. On the other hand, the inner horizon comes in be-

2
charge. cause the Jacobian factdiR/dr vanishes atr =0, whose

image isR_ .
IV. EXACT SOLUTION WITH = M#0, J#0, Q#0 Now, the transformatio51),(52),(53) has more freedom
The system of ordinary, coupled, non-linear, first orderthan what we need because it takes a non-rotating black hole

differential equationg15)—(19) appears not to be tractable vylth a given mass onto the most general blqck hole. It suf-

directly. However one may find the solution by means of arfices for our needs to be able to endow a given black hole

“illegitimate coordinate transformation.” In this case “ille- With angular momentum, much as one endows a particle

gitimate” means a transformation that does not preserve th¥ith linear momentum by means of a boost. This analogy is

periodicity of the angular variable and also changes the rang@Viteé appropriate, indeed if we write

of the radial variable. As a consequence of the change in R \2

periodicity, the Casimir invariants of the symmetry group at (—_) =w?

infinity are changed. R
Generating new solutions from old ones by means of co-

<1 (59

ordinate transformations which are illegitimate in some in- &za 1 (55)

termediate step, but lead to a sensible answer, is a procedure Iy N

that has been quite useful in general relativity although there )

appears to be no general rationale behind it. we see that Eqs(51),(52_) is the product of a Lorentz boost
For a conical singularity in three spacetime dimensions@nd a conformal rescaling of, t. One may set

the idea of bringing in angular momentum through an ille- a=1 (56)

gitimate coordinate transformation was used in REs-8].

In [9] the procedure was used to generate the unchargdsy rescaling the radial variabR and the parameteR_ and
rotating black hole metrigwith a transformation not quite R, by factor «, and we shall do so. Therefore we will take
the same as the one used helait the parameters appearing as our “rotation boost” the transformation

in the construction were not related to the mass and the an-

gular momentum. t—woe

=2 (57)

A. Rotating solution with Q=0 revisited

In this case one knows that the black holes with0 and
J#0 are both obtained by identifications of anti—de Sitter 1-w?’
space as discussed|ig]. Therefore, if one forgets the iden- i )
tifications there exists a coordinate transformation that takeSUPPlemented by the change of the radial coordinate

(58)

the standard form of the black hole line element with O w2r2
onto the one withl# 0. It is given by r2=R2— — (59)
1-w?
~ Ry R_
t= : t— R_+ (51 The reason for adopting this particular way of eliminating

one of the redundant parameters in E¢sl),(52) (rather

R R than, say, settingR, /r, =1) is, basically, that it simplifies

’(;:_+< —t) (52) considerably the analysis for the charged case. On less prag-
matic grounds, taking Eqg51),(52) to be just a Lorentz

104013-5
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boost is appealing because it captures distinctly the limiting
nature of the extreme black hole which appears as the ana-
logue of a zero mass particle.

Indeed, one may rewrite Eq&4) and (55) as

Iy
Ry=—
(1-?)
N
R

extreme black hole corresponds to the limaft—1, M—0,
keepingR% =M/(1— w?) finite.

The corresponding transformation formulas for the mass
and the angular momentum read

M=M(1+ w?)/(1-0?), (60)

J=20M/(1- w?). (61)

Recall thatM and J are precisely the Casimir invariants
associated with the identification which produces the black
hole out of anti—de Sitter spa€2]. It follows from Egs.(60)
and (61) that each of these Casimir invariants separately
changes under the boost; however, the combinatibh
—J2=r* remains unchanged.

B. Charged case

WhenQ# 0, the black hole is not obtained through iden-
tifications of points in anti—de Sitter space or in another uni-

versal space. Therefore the reasoning accompanying equa-

tions (51)—(53) no longer applies. Nevertheless, we will
again bring in angular momentum through the rotation boost
(58 supplemented by a change of the radial coordinate
which will be a generalization of E¢59) and which we will
derive below. The procedure will of course produce a solu-
tion of the field equations since one is performing a change
of coordinates. That the solution is a charged rotating black
hole will follow from verifying that the asymptotic condi-
tions (43)—(47) are met and because it will have the appro-
priate horizon structure.

We start from a line element of the form

ds’=—f2(r)dt?+f2(r)dr’+r2de?, (62)

and apply the boog58) to it to obtain

PHYSICAL REVIEW D 61104013

dR\?
3 I P
] (d) f
r(dr) dr?
N=—| —|=[—
R\dR dR?
2_ .2
neo 2070
(1- w?)R?

(65

(66)

(67)

To boost to rotation the uncharged black hole one substi-
tutesr2—r2 for 2 in Egs. (64)—(67) and obtains the un-

Thus we see thatR, R_) transforms as a vector under the charged rotating black hole metric, with E@4) giving the

boost andr , =M plays the role of the rest mass. The transformation59) of the radial coordinate. If one starts in-

~ 1.
fe=r2—M- ZQZIn r?

and obtains, after the boost,

2 A2
R2=r24 — 2 I\N/I+Q—Inr2)
(1-w?) 4
(rz »?Q? )2
4(1— w?) - 1.
2 2 %1 A2 2
F<= R2r? (r M 4anr)
N= r*
rz w262
4(1— w?)
M+ 1Q?nr?
N‘P—_w—
(1— w?)R?
wZQZ
re4 ——
dR 4(1— w?)
dr Rr '

The potentialA= —Q Inrdt transforms into

Q
A=— 1—w2|n r(dt— odop)

yielding a magnetic density

ds’=—N?F?dt*+F 2dRP+R*(de+N¢dt)® (63

with

R2=—«— (64)

104013-6
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B= IR ) .
4(1— w?)

The momentunp is determined using Eq18)

stead with the charged nonrotating black hole, one takes

(68)

(69

(70

(71)

(72

(73

(74)

(75
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R2 Using this relation one obtains the asymptotic formsFéf
- andp
— _ _
- , - ,. ©*Q?| (1+0)QINR?
> Fe=R“— 5 M(1+ w®)— - >
=] 1-w 2 4(1- w?)
2
- r +0(1/R?), (79)
—
A2 A2
w ~ w
p=— Z(M—Q—)— QZInR2+O(1/R2),
l-w 4 l-w
FIG. 2. R? as a function of 2. The black hole space corresponds (79
to the piece to the right of the throat for whi€f=0. In the limit
Q—0 the left and right sides of the throat annihilate each other amyvhereas from Eq(74) one has
the two branches merge on the segmented straight line. The sepa- ~
ration between the solid and the segmented line behaves asymptoti- gR= Q (80)

Nl

cally as[w?(1—w?)](Q%4)InrZ The inner horizon of the un- 1-w
charged black hole corresponds to the intersection of the straight

line and the vertical axis. When the electric charge is turned on, th&rom Egs.(78), (79) and (80) one finds that the symptotic
throat comes in and the old inner horizon becomes thus discorforms are the desired ones provided that

nected from the black hole space, while a new inner horizon ap-

pears in the black hole space. This is the origin of the perturbative 1 - 5 wzéz
instability of the inner horizon. M= M(1+ o) — , (81)
1- w? 2
Q? ) ~
== M+——(Inr?=1)|. 76 20 [ QF
P w2 7 ¢ : (79 J= (M—Q—), (82)
1— w? 4
The graph ofR? as a function of ? given by Eq.(69) is
shown in Fig. 2. One sees that the function has two brancheand
separated by a singularity in the form of an infinite throat at -
r2=0. The black hole space corresponds to the piece to the 0= Q 83)
right of the throat for whichR>=0. In the limit Q—0 the 1— w2

left and right sides of the throat annihilate each other and the

two branches merge on the segmented straight line. The in; may seem surprising thad differs from O. This comes
ner horizon of the uncharged black hole corresponds to thg . ihe change in the periodicity af under the boost

intersection of the straight line and the horizontal axis, which, 1,ich changes the region of integration of the charge den-
occurs at a negative value of. When the electric charge is sit

turned on, the throat comes in and the old inner horizon Now for a black hole one wants to express the metric in
becomes thus disconnected from the black hole space, whilg (’)f the charges at infinitshairg. To this end, one

a new inner horizon appears in the black hole space. This is &=
the origin of the perturbative instability of the inner horizon should solve Eqs(81),(82),(83) to expressM, Q andw as

found in Sec. lll. Both the outer and inner horizons of theanCt'onS ofM, Q.andJ. If one can do this, the “rest mass”

charged rotating black hole come from the correspondindg’(M,Q,J) and “rest charge”Q(M,Q,J) are by construc-
ones of the original charged black hole witlk-0. They are tion invariants under the boost, and generalizeNhef the

the images under the boost of the zergsr_ of f2. Unlike  case without charge, whereagM,Q,J) is the “velocity

what happens in the uncharged case, the Jacaliidr in expressed in terms of the momentum.”

Eqg. (73 is different from zero and does not bring in new  The difficult part in inverting Eqs(81),(82),(83) is to

zeros ofF2. solve the cubic equation that they imply, namely,
2 2 2
C. Asymptotic form Q° ; Jo Q% J
i +w| M 273 0. (84

We now verify that the rotating solution has the correct

asymptotic form and relate the parametersQ toM, Qand  1¢ gain insight into this equation it is useful to consider the
J, the actual mass, charge and angular momentum of th@aseQ=O which may be rewritten as
charged rotating solution.
For R—x, Eq. (69) takes the form M
wZ—Tw-i-l:O. (85)
2 A2

I\~/I+Q7In R?|+O(1R?). (77)

2

l1-w The solution of this equation, which satisfied<1, is
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M M M) 2 (84) admits a unique real solution®<1. The best we have
wzsg,-(_ | — _1), (86)  been able to do is to show by analyzing the graph of the
J J J cubic, that sufficient, but not necessary conditions e
L ) >J? andM — Q?/4>0. It is also straightforward to show that
and exists if and only if under these conditionsand » have the same sign.
M2> J2. (87) Note added in proofProfessor G. Ciment informs us
that he derived a rotating black hole metric ifr-2 dimen-
In the limiting caseM?=J2, one hasw— *1. sions in[11], and that he also pointed out there that when
If the solution(86) is inserted back in the original equa- Q#0 the original solution in Refl1] was only valid in the
tions (60), (61), one finds absence of rotation. He also informs us thaf9h he chose
not to relate the integration constants to the mass and angular
M = sgrivi yM?2—J2. (88)  momentum because “in this case there is no scale-invariant

definition of M and J.”
We see, therefore, two points of interest. They &neA real
w, with w?< 1, exists only for a range of the parameters of ACKNOWLEDGMENTS
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One needs, in addition to E¢B7), M=0, which in this case
is equivalent toM >0.

WhenQ#+# 0, one expects to face the same situation. Ther
will be a certain region in the space of parametdrs] and
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