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Charged rotating black hole in three spacetime dimensions
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The generalization of the black hole in three-dimensional spacetime to include an electric chargeQ in
addition to the massM and the angular momentumJ is given. The field equations are first solved explicitly
whenQ is small and the general form of the field at large distances is established. The total ‘‘hairs’’M, J and
Q are exhibited as boundary terms at infinity. It is found that the inner horizon of the rotating uncharged black
hole is unstable under the addition of a small electric charge. Next it is shown that whenQ50 the spinning
black hole may be obtained from the one withJ50 by a Lorentz boost in thew2t plane. This boost is an
‘‘illegitimate coordinate transformation’’ because it changes the physical parameters of the solution. The
extreme black hole appears as the analog of a particle moving with the speed of light. The same boost may be
used whenQÞ0 to generate a solution with angular momentum from that withJ50, although the geometrical
meaning of the transformation is much less transparent since in the charged case the black holes are not
obtained by identifying points in anti–de Sitter space. The metric is given explicitly in terms of three param-

eters,M̃ , Q̃ andv which are the ‘‘rest mass’’ and ‘‘rest charge’’ and the angular velocity of the boost. These
parameters are related toM, J and Q through the solution of an algebraic cubic equation. Altogether, even
without angular momentum, the electrically charged 211 black hole is somewhat pathological since~i! it exists
for arbitrarily negative values of the mass, and~ii ! there is no upper bound on the electric charge.

PACS number~s!: 04.70.Bw, 04.20.Jb, 04.40.Nr
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I. INTRODUCTION

The black hole in three-dimensional spacetime@1,2# has
been the object of considerable study@3#. However—as
pointed out by several authors@3,4#—if one includes electric
charge, the solution reported in the original article@1# only
applies when the angular momentum vanishes. In this ar
we analyze the case when all three ‘‘hairs’’M, J andQ are
different from zero.

The work is organized as follows. Section II presents
Einstein-Maxwell action in Hamiltonian form. The Hami
tonian form is well suited for the present analysis becaus
permits us to identify directly the physical meaning of t
integration constants as the total charges and their co
gates. The requirements of circular symmetry and time in
pendence~stationarity! are then imposed and the simplifie
equations applying in that case are written down. The eq
tions are a coupled set of first order differential equations
the electric charge is small the equations can be integr
directly. This is done in Sec. III. A noteworthy fact is that th
inner horizon of the rotating uncharged black hole is unsta
under the addition of a small electric charge.

Section IV begins by showing that whenQ50 the spin-
ning black hole may be obtained from the one withJ50 by
a Lorentz boost in thew2t plane. This boost is an ‘‘illegiti-
mate coordinate transformation’’ because it changes
physical parameters of the solution. The extreme black h
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appears as the analogue of a particle moving with the sp
of light. The same boost may be used whenQÞ0 to generate
a solution with angular momentum from that withJ50, al-
though the geometrical meaning of the transformation
much less transparent since in that case the black holes
not obtained by identifying points in anti–de Sitter spac
The metric is given explicitly in terms of three paramete
M̃ , Q̃ andv which are the ‘‘rest mass’’ and ‘‘rest charge
and the angular velocity of the boost. These parameters
related toM, J and Q through the solution of an algebrai
cubic equation. Altogether, even without angular mome
tum, the electrically charged 211 black hole is somewha
pathological since~i! it exists for arbitrarily negative value
of the mass, and~ii ! there is no upper bound on the electr
charge.1

II. EINSTEIN-MAXWELL EQUATIONS

A. Hamiltonian form

The Hilbert action coupled to electromagnetism

I H5E d3xA2gS R22L

2k
2

1

4
FmnFmnD , ~1!

1As it was observed in@5#, the lack of a lower bound for the mas
prevents charged black holes from being supersymmetric.
©2000 The American Physical Society13-1
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can be cast in Hamiltonian form,

I 5E dtd2x~p i j ġi j 1E i Ȧi2N'H'2NiHi2A0G!, ~2!

by adding appropriate surface terms.
The canonical variables are the spatial metricgi j and the

vector potentialAi together with their conjugate momen
p i j and E i . The generators of normal deformations (H'),
tangential deformations (Hi) and gauge transformations~G!
are given by

H'52kg21/2
„p i j p i j 2~p i

i !2
…2~2k!21g1/2~R22L!

1
1

2
g21/2~gi j E iE j1B 2! ~3!

Hi522p i
j
u j2e j i E jB ~4!

G52E,i
i . ~5!

In terms of the lapse (N') and shift (Ni) Lagrange multipli-
ers and the spatial two-dimensional metricgi j , the space-
time line element is

ds252~N'!2dt21gi j ~dxi1Nidt!~dxj1Njdt!, ~6!

and the magnetic densityB is given by

Fi j 5e i j B. ~7!

We will use units such that the gravitational constantk
58pG, which has dimensions of an inverse mass, is
equal to 1

2 . The cosmological constant is negative and
related to the cosmological lengthl by L52 l 22. This
length will be set equal to unity.

B. Rotational symmetry and time independence

If one requires invariance under spatial rotations and t
translations, the metric may be cast in the form

ds252N2~r ! f 2~r !dt21 f 22~r !dr21r 2
„dw1Nw~r !dt…2,

0<r ,`, 0<w,2p, t1<t<t2 . ~8!

This implies that the only non-vanishing component of t
gravitational momentum is given by

pw
r 5p~r !. ~9!

The only non-vanishing electromagnetic strengths are

E r5Q, ~10!

the total electric charge, and

B5] rAw . ~11!

Equation ~10! follows from solving the constraintG50,
whereasE w50 follows from Hr50. To arrive at Eq.~11!
one uses the radial gaugeAr50.
10401
t
s

e

In terms of the remaining fields, which are only functio
of r, the action reads

I 52~ t22t1!2pE ~NH1NwHw!dr, ~12!

with

H5 fH'5~ f 2!822r 1
2p2

r 3
1

Q2

2r
1

f 2B 2

2r
, ~13!

and

Hw522p82QB. ~14!

Extremization of the reduced action~12! with respect toN,
Nw, f 2, p andAw gives, respectively,

~ f 2!822r 1
2p2

r 3
1

Q2

2r
1

f 2B 2

2r
50 ~15!

2p81QB50 ~16!

N82
NB 2

2r
50 ~17!

~Nw!81
2Np

r 3
50 ~18!

S N f2B
r

2NwQD 8
50. ~19!

III. SOLUTIONS IN SPECIAL CASES AND PHYSICAL
MEANING OF INTEGRATION CONSTANTS

Equation ~19! can be solved forB with an appropriate
integration constant which is fixed by regularity and is not
independent free parameter@see Eq.~49! below#. The inte-
gration constants forf 2 andp can be expressed in terms o
the massM and the angular momentumJ. Thus, together
with the electromagnetic field, the solution is characteriz
by the chargesM, J, Q and their conjugatesN(`), Nw(`)
and A0(`) ~‘‘chemical potentials’’ in the Euclidean formu
lation!.

The system of first order nonlinear differential equatio
~15!–~18! is not straightforward to solve forf 2, p, N andNw,
when QÞ0. It is therefore useful to analyze special cas
and approximations in order to gain insight into the prop
ties of the solution.

We first turn our attention to the two limiting cases wh
the solution is known in closed form. These areQ50, J
Þ0, MÞ0 ~the standard 211 black hole! and QÞ0, J
50, MÞ0 ~charged black hole without angular mome
tum!.
3-2
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CHARGED ROTATING BLACK HOLE IN THREE . . . PHYSICAL REVIEW D 61 104013
A. JÅ0, QÄ0

The solution of the equations is

f 25r 22M1
J2

4r 2
~20!

p5p~`!52
J

2
~21!

N5N~`! ~22!

Nw52
J

2r 2
1Nw~`!. ~23!

If one varies the reduced action~12! one picks up a surface
term @10#

~ t22t1!2p@2d f 2~`!N~`!22dp~`!Nw~`!#, ~24!

which identifiesd f 2(`)5dM anddp(`)52dJ/2. In order
to have a black hole forM>0 one adjusts the zero of th
energy so thatM is indeed the mass. In the same manner
order to have a static black hole forJ50 one takesJ as the
total angular momentum. Similarly with the electric charg
which is identified with the integration constantQ appearing
in Eq. ~12! because its variation in the action~2! multiplies
A0(`).

The function f 2 has zeros atr 1 and r 2 , the outer and
inner horizons, given by

r 15FM1~M22J2!1/2

2 G1/2

, ~25!

r 25FM2~M22J2!1/2

2 G1/2

, ~26!

which exist provided

J2<M2, ~27!

and coalesce ifJ5M ~extreme case!.
Note that if J→0 (M fixed! the root r 2 tends tor 50

which is considered as a~‘‘chronological’’! singularity @2#.
Note also that whenJ50, f 250 has only one rootr 5r 1 .
Thus the limit of the rootr 2 ~which is zero! is not a root of
the limit of f 2. In this sense the limit is discontinuous. Th
discontinuous behavior shows itself in the graph off 2 as a
function of r. The minimum of f 2 occurs atr min

4 5(J/2)2

whereas the value off 2 at the minimum isf min
2 5uJu2M for

all J. Thus whenJ→0 the whole branch off 2 to the left of
the minimum disappears. We shall see similar behaviors
J50, QÞ0 andJÞ0, QÞ0.

B. JÄ0, QÅ0

Now one has

f 25r 22M2
1

4
Q2ln r 2 ~28!
10401
n

,

or

p50 ~29!

N5N~`! ~30!

Nw50. ~31!

If one varies the action, one picks up a surface term

S 2dM2
1

2
dQ2ln r DN~r !, ~32!

which diverges ifr→`.
This divergence may be handled as follows. One enclo

the system in a large circle of radiusr 0 and rewrites Eq.~28!
as

f 25r 22M ~r 0!2
1

2
Q2ln

r

r 0
, ~33!

with

M5M ~r 0!2
1

2
Q2ln r 0 . ~34!

Then Eq.~32! is replaced by

S 2dM ~r 0!2
1

2
dQ2ln

r

r 0
DN~r !, ~35!

and the second term vanishes whenr→r 0.
One might callM (r 0) ‘‘the energy within the radiusr 0.’’

It differs from M by 2 1
2 Q2ln r0 which may be thought of as

the electrostatic energy outsider 0 up to an~infinite! constant
which is absorbed inM (r 0). The sum~34! is then indepen-
dent of r 0, finite and equal to the total mass.

Thus in practice one does not bring inr 0 and writes

‘‘ lim
r→`

d~Q2ln r !50.’’ ~36!

A similar situation occurs in four spacetime dimension
One may write the Reissner-Nordstro¨m g00 as 1
22M (r 0)/r 1Q2(1/r 221/r 0

2). Then M5M (r 0)1Q2/2r 0 is
the total mass, independent ofr 0, andQ2/2r 0 is the electro-
static energy outside a sphere of radiusr 0. In this case it is
not necessary to include an infinite constant inM (r 0) since
Q2/2r 0 vanishes whenr 0→`.

The functionf 2 given by Eq.~28! tends to positive infin-
ity if r→0 or if r→`. It has a minimum atr 5uQu/2. The
value of f 2 at the minimum is

2M1S Q

2 D 2F12 lnS Q

2 D 2G . ~37!

If Eq. ~37! is negative there are two zeros off 2, r 1 andr 2 .
If Eq. ~37! vanishes the two roots coincide and one has
extreme black hole. The situation is illustrated in Fig. 1.

Now, the function (Q/2)2@12 ln(Q/2)2# vanishes atQ
50, has a maximum at (Q/2)251 with value 1, vanishes a
(Q/2)25e and tends to negative infinity for large (Q/2)2.
3-3
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This means that ifM.1 there are always two rootsr 6

which are different. WhenM51 the two roots coincide for
(Q/2)251. If 0,M,1 there are two branchesQ2<Q1

2 and
Q2>Q2

2 , whereQ1
2,Q2

2 are the two roots of Eq.~37!.
One sees that if the electric charge is large enough b

hole solutions exist even for negative values of the ma
This feature is in sharp contrast with what happens in 311
dimensions and makes the electrically charged 211 black
hole somewhat pathological.

Lastly, consider the limitQ→0. The situation is analo
gous to the limitJ→0 discussed at the end of Sec. III A
Now one hasr min

2 5(Q/2)2 and f min
2 →2M so that, again, the

whole ascending branch to the left of the minimum disa
pears in the limitQ→0. Note thatr 2 approaches zero a

r 2;e22M /Q2
.

C. MÅ0, JÅ0, QÅ0 small

One can solve Eqs.~15!–~19! perturbatively for smallQ.
This is of interest because the solution for smallQ captures
the behavior at large distances for a genericQ, and also
because it gives insight into the properties of horizons.

We start with expressions~20!–~23! which we will denote
with a subscript zero~‘‘unperturbed’’! and add to them cor
rections of orderQ2. One hasB050. The equations for the
perturbation then read

~D f 2!85
2J

r 3
Dp2

Q2

2r
2

f 0
2DB 2

2r
~38!

FIG. 1. Region in the mass-charge plane for which there
black holes. Black holes exist wheneverM2(Q/2)2@12 ln(Q/2)2#
>0. This corresponds to the shaded area in the diagram. Extr
black holes are at the boundary between the shaded and unsh
areas. Note that if the electric charge is large enough black
solutions exist for arbitrarily negative values of the mass.
10401
ck
s.

-

Dp852
QDB

2
~39!

DN85
DB 2

2r
~40!

~DNw!85
J

r 3
DN2

2

r 3
Dp ~41!

S ~r 22r 1
2 !~r 22r 2

2 !

r 3
DB1

JQ

2r 2
2Nw~`!QD 8

50. ~42!

These equations must be integrated demanding
N(`), Nw(`), M andJ be unchanged. Thus we should a

DN~`!50, DNw~`!50

and also demand thatDp(r ) and D f 2 should vanish asr
→`, up to logarithmic terms multiplied byQ2, which are
not considered when identifyingJ andM by the reasoning of
Sec. III B. The integration constant in Eq.~42! is fixed by a
regularity requirement as discussed below.

One obtains

D f 252
Q2

4 S 11
r 2

2

r 1
2

22
r 2

2

r 2 D ln~r 22r 2
2 ! ~43!

Dp52
JQ2

8r 1
2

ln~r 22r 2
2 ! ~44!

DN52
Q2r 2

2

4r 1
2

1

r 22r 2
2

~45!

DNw52
JQ2

8r 1
2 r 2

~11 ln~r 22r 2
2 !! ~46!

DB5
JQ

2r 1
2

r

r 22r 2
2

. ~47!

Here r 1 and r 2 are those of the unperturbed solution. No
that whenJ50 (r 250) the results go over into the exa
expressions found in the previous subsection.

The integration constant in Eq.~42! has been chosen s
that the magnetic field referred to an orthonormal basis,

B̂5Fr̂ ŵ5g21/2B5
fB
r

, ~48!

is regular at the~outer! horizon r 1 . Indeed, Eq.~47! is
equivalent to writing

e
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ded
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B~r !5
Q@Nw~r !2Nw~r 1!#

N~r ! f 2~r !
r . ~49!

Note that, as a consequence,B̂(r 1)50.
As a result of the perturbation the horizon is now atr 1

1Dr 1 whereDr 1 may be obtained from

Dr 1
2 52

D f 2

~d f0
2/dr1

2 !
U

r 1

52
Q2

4
ln@r 1

2 2r 2
2 #

52
Q2

2
ln@M22J2#. ~50!

The solution given by Eqs.~43!–~47! is singular atr 2 .
This means that the inner horizon of the rotating unchar
black hole is unstable under the addition of a small elec
charge.

IV. EXACT SOLUTION WITH MÅ0, JÅ0, QÅ0

The system of ordinary, coupled, non-linear, first ord
differential equations~15!–~19! appears not to be tractab
directly. However one may find the solution by means of
‘‘illegitimate coordinate transformation.’’ In this case ‘‘ille
gitimate’’ means a transformation that does not preserve
periodicity of the angular variable and also changes the ra
of the radial variable. As a consequence of the change
periodicity, the Casimir invariants of the symmetry group
infinity are changed.

Generating new solutions from old ones by means of
ordinate transformations which are illegitimate in some
termediate step, but lead to a sensible answer, is a proce
that has been quite useful in general relativity although th
appears to be no general rationale behind it.

For a conical singularity in three spacetime dimensio
the idea of bringing in angular momentum through an il
gitimate coordinate transformation was used in Refs.@6–8#.
In @9# the procedure was used to generate the uncha
rotating black hole metric~with a transformation not quite
the same as the one used here!, but the parameters appearin
in the construction were not related to the mass and the
gular momentum.

A. Rotating solution with QÄ0 revisited

In this case one knows that the black holes withJ50 and
JÞ0 are both obtained by identifications of anti–de Sit
space as discussed in@2#. Therefore, if one forgets the iden
tifications there exists a coordinate transformation that ta
the standard form of the black hole line element withJ50
onto the one withJÞ0. It is given by

t̃ 5
R1

r 1
S t2

R2

R1
w D ~51!

w̃5
R1

r 1
S w2

R2

R1
t D ~52!
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r 25R22R2
2 . ~53!

This transformation may be obtained by composing
transformations that relate each of these black holes to
standard form of the anti–de Sitter line element and wh
are given by Eq.~3.29! of @2#. The individual transforma-
tions and also their composition change the functional fo
of the anti–de Sitter line element and therefore do not bel
to theSO(2,2) symmetry group of anti–de Sitter space.

Here we have denoted by (r ,w̃, t̃ ) and (R,w,t) the stan-
dard coordinates for the non-rotating and rotating cases
spectively. To obtain the rotating black hole one must d
mand thatw be periodic with period 2p and also that 0
<R2,`. As already anticipated, these requirements are
compatible withw̃ having period 2p and 0<r 2,`. It is
important to realize that the outer horizon is the imageR1 of
the unique horizon that the non rotating black hole has
r 1

2 5M̃ . On the other hand, the inner horizon comes in b
cause the Jacobian factordR/dr vanishes atr 50, whose
image isR2 .

Now, the transformation~51!,~52!,~53! has more freedom
than what we need because it takes a non-rotating black
with a given mass onto the most general black hole. It s
fices for our needs to be able to endow a given black h
with angular momentum, much as one endows a part
with linear momentum by means of a boost. This analogy
quite appropriate, indeed if we write

S R2

R1
D 2

5v2<1 ~54!

R1

r 1
5a

1

A12v2
, ~55!

we see that Eqs.~51!,~52! is the product of a Lorentz boos
and a conformal rescaling ofw, t. One may set

a51 ~56!

by rescaling the radial variableR and the parametersR2 and
R1 by factora, and we shall do so. Therefore we will tak
as our ‘‘rotation boost’’ the transformation

t̃ 5
t2vw

A12v2
, ~57!

w̃5
w2vt

A12v2
, ~58!

supplemented by the change of the radial coordinate

r 25R22
v2r 1

2

12v2
. ~59!

The reason for adopting this particular way of eliminati
one of the redundant parameters in Eqs.~51!,~52! ~rather
than, say, settingR1 /r 151) is, basically, that it simplifies
considerably the analysis for the charged case. On less p
matic grounds, taking Eqs.~51!,~52! to be just a Lorentz
3-5
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boost is appealing because it captures distinctly the limit
nature of the extreme black hole which appears as the
logue of a zero mass particle.

Indeed, one may rewrite Eqs.~54! and ~55! as

R15
r 1

A~12v2!

R25
r 1v

A~12v2!
.

Thus we see that (R1,R2) transforms as a vector under th
boost andr 15M̃1/2 plays the role of the rest mass. Th
extreme black hole corresponds to the limitv2→1, M̃→0,
keepingR1

2 5M̃ /(12v2) finite.
The corresponding transformation formulas for the m

and the angular momentum read

M5M̃ ~11v2!/~12v2!, ~60!

J52vM̃ /~12v2!. ~61!

Recall thatM and J are precisely the Casimir invarian
associated with the identification which produces the bl
hole out of anti–de Sitter space@2#. It follows from Eqs.~60!
and ~61! that each of these Casimir invariants separat
changes under the boost; however, the combinationM2

2J25r 1
4 remains unchanged.

B. Charged case

WhenQÞ0, the black hole is not obtained through ide
tifications of points in anti–de Sitter space or in another u
versal space. Therefore the reasoning accompanying e
tions ~51!–~53! no longer applies. Nevertheless, we w
again bring in angular momentum through the rotation bo
~58! supplemented by a change of the radial coordin
which will be a generalization of Eq.~59! and which we will
derive below. The procedure will of course produce a so
tion of the field equations since one is performing a cha
of coordinates. That the solution is a charged rotating bl
hole will follow from verifying that the asymptotic condi
tions ~43!–~47! are met and because it will have the app
priate horizon structure.

We start from a line element of the form

ds252 f 2~r !d t̃21 f 22~r !dr21r 2dw̃2, ~62!

and apply the boost~58! to it to obtain

ds252N2F2dt21F22dR21R2~dw1Nwdt!2 ~63!

with

R25
r 22v2f 2

12v2
~64!
10401
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F25S dR

dr D 2

f 2 ~65!

N5
r

R S dr

dRD5S dr2

dR2D ~66!

Nw5
v~ f 22r 2!

~12v2!R2
. ~67!

To boost to rotation the uncharged black hole one sub
tutes r 22r 1

2 for f 2 in Eqs. ~64!–~67! and obtains the un-
charged rotating black hole metric, with Eq.~64! giving the
transformation~59! of the radial coordinate. If one starts in
stead with the charged nonrotating black hole, one takes

f 25r 22M̃2
1

4
Q̃2ln r 2 ~68!

and obtains, after the boost,

R25r 21
v2

~12v2!
S M̃1

Q̃2

4
ln r 2D ~69!

F25

S r 21
v2Q̃2

4~12v2!
D 2

R2r 2 S r 22M̃2
1

4
Q̃2ln r 2D

~70!

N5
r 2

r 21
v2Q̃2

4~12v2!

~71!

Nw52v
M̃1 1

4 Q̃2ln r 2

~12v2!R2
~72!

dR

dr
5

r 21
v2Q̃2

4~12v2!

Rr
. ~73!

The potentialA52Q̃ ln rdt̃ transforms into

A52
Q̃

A12v2
ln r ~dt2vdw! ~74!

yielding a magnetic density

B5
Q̃vR

A12v2S r 21
v2Q̃2

4~12v2!
D . ~75!

The momentump is determined using Eq.~18!
3-6
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p52
v

12v2 S M̃1
Q̃2

4
~ ln r 221! D . ~76!

The graph ofR2 as a function ofr 2 given by Eq.~69! is
shown in Fig. 2. One sees that the function has two branc
separated by a singularity in the form of an infinite throat
r 250. The black hole space corresponds to the piece to
right of the throat for whichR2>0. In the limit Q→0 the
left and right sides of the throat annihilate each other and
two branches merge on the segmented straight line. The
ner horizon of the uncharged black hole corresponds to
intersection of the straight line and the horizontal axis, wh
occurs at a negative value ofr 2. When the electric charge i
turned on, the throat comes in and the old inner horiz
becomes thus disconnected from the black hole space, w
a new inner horizon appears in the black hole space. Th
the origin of the perturbative instability of the inner horizo
found in Sec. III. Both the outer and inner horizons of t
charged rotating black hole come from the correspond
ones of the original charged black hole withJ50. They are
the images under the boost of the zerosr 1 r 2 of f 2. Unlike
what happens in the uncharged case, the JacobiandR/dr in
Eq. ~73! is different from zero and does not bring in ne
zeros ofF2.

C. Asymptotic form

We now verify that the rotating solution has the corre
asymptotic form and relate the parametersM̃ , Q̃ to M, Q and
J, the actual mass, charge and angular momentum of
charged rotating solution.

For R→`, Eq. ~69! takes the form

r 25R22
v2

12v2 S M̃1
Q̃2

4
ln R2D 1O~1/R2!. ~77!

FIG. 2. R2 as a function ofr 2. The black hole space correspon
to the piece to the right of the throat for whichR2>0. In the limit
Q→0 the left and right sides of the throat annihilate each other
the two branches merge on the segmented straight line. The s
ration between the solid and the segmented line behaves asym

cally as @v2/(12v2)#(Q̃2/4)ln r2. The inner horizon of the un-
charged black hole corresponds to the intersection of the stra
line and the vertical axis. When the electric charge is turned on,
throat comes in and the old inner horizon becomes thus dis
nected from the black hole space, while a new inner horizon
pears in the black hole space. This is the origin of the perturba
instability of the inner horizon.
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Using this relation one obtains the asymptotic forms ofF2

andp

F25R22
1

12v2 S M̃ ~11v2!2
v2Q̃2

2
D 2

~11v2!Q̃2ln R2

4~12v2!

1O~1/R2!, ~78!

p52
v

12v2 S M̃2
Q̃2

4
D 2

vQ̃2

12v2
ln R21O~1/R2!,

~79!

whereas from Eq.~74! one has

E R5
Q̃

A12v2
. ~80!

From Eqs.~78!, ~79! and ~80! one finds that the symptotic
forms are the desired ones provided that

M5
1

12v2 S M̃ ~11v2!2
v2Q̃2

2
D , ~81!

J5
2v

12v2 S M̃2
Q̃2

4
D , ~82!

and

Q5
Q̃

A12v2
. ~83!

It may seem surprising thatQ differs from Q̃. This comes
from the change in the periodicity ofw under the boost,
which changes the region of integration of the charge d
sity.

Now, for a black hole one wants to express the metric
terms of the charges at infinity~hairs!. To this end, one
should solve Eqs.~81!,~82!,~83! to expressM̃ , Q̃ and v as
functions ofM, Q,andJ. If one can do this, the ‘‘rest mass’
M̃ (M ,Q,J) and ‘‘rest charge’’Q̃(M ,Q,J) are by construc-
tion invariants under the boost, and generalize theM̃ of the
case without charge, whereasv(M ,Q,J) is the ‘‘velocity
expressed in terms of the momentum.’’

The difficult part in inverting Eqs.~81!,~82!,~83! is to
solve the cubic equation that they imply, namely,

Q2

4
v32

Jv2

2
1vS M2

Q2

4 D2
J

2
50. ~84!

To gain insight into this equation it is useful to consider t
caseQ50 which may be rewritten as

v22
2M

J
v1150. ~85!

The solution of this equation, which satisfiesv2,1, is

d
pa-
oti-

ht
e

n-
-
e
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v5sgnS M

J
D S UM

J
U2AS M

J
D 2

21D , ~86!

and exists if and only if

M2.J2. ~87!

In the limiting caseM25J2, one hasv→61.
If the solution~86! is inserted back in the original equa

tions ~60!, ~61!, one finds

M̃5sgnMAM22J2. ~88!

We see, therefore, two points of interest. They are:~i! A real
v, with v2,1, exists only for a range of the parameters
the algebraic equation~85!, namelyM2.J2. ~ii ! Even when
v2,1 exists, the solution is not necessarily a black ho
One needs, in addition to Eq.~87!, M̃>0, which in this case
is equivalent toM.0.

WhenQÞ0, one expects to face the same situation. Th
will be a certain region in the space of parametersM, J and
Q ~actually, only the two independent combinationsM /J and
Q2/4J enter! for which v2,1 exists. Within that region one
will be able to expressM̃ andQ̃ as functions ofM, J andQ

and the solution will be a black hole whenM̃ andQ̃ obey the
additional restrictions described in Fig. 1. It does not seem
be possible to exhibit explicitly the necessary and suffici
condition forM, J andQ to be such that the cubic equatio
lli,

. B
g
i

al-

10401
f

.
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to
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~84! admits a unique real solutionv2,1. The best we have
been able to do is to show by analyzing the graph of
cubic, that sufficient, but not necessary conditions areM2

.J2 andM2Q2/4.0. It is also straightforward to show tha
under these conditionsJ andv have the same sign.

Note added in proof.Professor G. Cle´ment informs us
that he derived a rotating black hole metric in 211 dimen-
sions in @11#, and that he also pointed out there that wh
QÞ0 the original solution in Ref.@1# was only valid in the
absence of rotation. He also informs us that in@9# he chose
not to relate the integration constants to the mass and ang
momentum because ‘‘in this case there is no scale-invar
definition of M andJ.’’
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