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Low-energy expansion of the one-loop type-II superstring amplitude

Michael B. Green* and Pierre Vanhove†

DAMTP, Silver Street, Cambridge CB3 9EW, United Kingdom
~Received 7 October 1999; published 24 April 2000!

The one-loop four-graviton amplitude in either of the type-II superstring theories is expanded in powers of
the external momenta up to and including terms of orders4 ln sR4, whereR4 denotes a specific contraction of
four linearized Weyl tensors ands is a Mandelstam invariant. Terms in this series are obtained by integrating
powers of the two-dimensional scalar field theory propagator over the toroidal world sheet as well as the
moduli of the torus. The values of these coefficients match expectations based on duality relations between
string theory and eleven-dimensional supergravity.

PACS number~s!: 04.50.1h
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I. INTRODUCTION

The wealth of duality symmetries relating different p
rameterizations of nonperturbative string theory, or
theory, provide severe constraints on its structure. One s
ing manifestation of this is the relationship between the lo
energy expansion of the type-II string theory action and o
loop effects in compactified eleven-dimensional supergra
@1#. Although the systematics of this relationship becom
very murky at higher loops, the leading behavior of the tw
loop contribution of the eleven-dimensional theory is am
nable to a detailed analysis~see the preceding paper@2#!.

This detailed comparison between string theory a
eleven-dimensional supergravity requires, among ot
things, detailed knowledge of the low-energy expansion
the effective action of the type-IIA and type-IIB superstrin
perturbation theories. Surprisingly, this has scarcely b
considered in the literature beyond the most elementary t
level terms. In this paper we will obtain terms in the effecti
action that arise from the momentum expansion of the o
loop type-II superstring theory contribution to the four gra
ton amplitude. Since the four-graviton tree and one-loop a
plitudes in the type-IIA and -IIB theories are equal we ne
not distinguish between the two theories in the following1

The tree-level amplitude for the scattering of four gra
tons with polarization tensorszmn

(r ) and momentakr
m (r

51,2,3,4, m50,1, . . . ,9, andkr
250) has the very simple

form @3,4#

A4
tree52K̂k10

2 e22fT, ~1.1!

wheref is the constant dilaton field so thatg5k10
21ef is the

string coupling and

T5
64

a83stu

GS 12
a8

4
sDGS 12

a8

4
t DGS 12

a8

4
uD

GS 11
a8

4
sDGS 11

a8

4
t DGS 11

a8

4
uD ,

~1.2!

*Email address: m.b.green@damtp.cam.ac.uk
†Email address: p.vanhove@damtp.cam.ac.uk
1The two type-II string perturbation theories are equal up to a

including two loops@2#.
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where the Mandelstam invariants are defined bys52(k1
1k2)2, t52(k11k4)2, and u52(k11k3)2. The overall
kinematic factorK̂ is given by

K̂5tm1¯m8tn1¯n8)
r 51

4

zmrnr

~r ! kmr 14

~r ! knr 14

~r ! , ~1.3!

which is the linearized approximation to the standard c
traction between four curvature tensors

R45t8t8R4[tm1¯m8tn1¯n8
Rm1m2

n1n2
¯Rm7m8

n7n8 , ~1.4!

where the tensortm1¯m8 is defined in Ref.@5# and in Appen-
dix 9 of Ref. @6#.2 The value of the constantk10 in Eq. ~1.1!
is arbitrary since it can be changed by shifting the dilat
field. It is convenient to set it to the value

k10
2 5

1

2
~2p!7a84, ~1.5!

which normalizes theD-string tension to the valueTD1

5e2fTF , whereTF51/2pa8 is the fundamental string ten
sion @7#.

The one-loop type-II superstring four-graviton scatteri
amplitude in ten dimensions is also very simple and is giv
by @5#

A4
one-loop5

k10
4

25p6a84 K̂I 5k10
2 2pIK̂ , ~1.6!

whereI is the integral of a modular function

I 5E
F

d2t

t2
2 F~t,t̄ ! ~1.7!

~wheret5t11 i t2 and d2t[dt1dt25dtdt̄/2), andF de-
notes the fundamental domain of Sl(2,Z),

F5$ut1u< 1
2 ,utu2<1%. ~1.8!

d 2This contraction projects onto the purely traceless componen
the curvature, which constitute the Weyl tensor.
©2000 The American Physical Society11-1
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The dynamical factor in Eq.~1.7! is given by an integral ove
the positionsn ( i )5n1

( i )1 in2
( i ) of the four vertex operators o

the torus

F~t,t̄ !5E
T )

i 51

3
d2n~ i !

t2
~x12x34!

a8s~x14x23!
a8t~x13x24!

a8u

5E
T )

i 51

3
d2n~ i !

t2
eD

5E
T )i 51

3
d2n~ i !

t2
exp~a8sDs1a8tDg1a8uDu!,

~1.9!

whered2n ( i )[dn1
( i )dn2

( i ) , n (4)5t, and

D5a8sDs1a8tD t1a8uDu , ~1.10!

with

Ds5 ln~x12x34!, D t5 ln~x14x23!, Du5 ln~x13x24!
~1.11!

and lnxij(n
(1)2n(j);t) is the scalar Green function betwee

the vertices labeledi andj on the toroidal world sheet. Thes
Green functions are integrated over the domainT defined by

T5H 2
1

2
<n1,

1

2
,0<n2,t2J . ~1.12!

It is understood that the mass shell condition

s1t1u50 ~1.13!

is enforced in all expressions which ensures that only c
formally invariant ratios ofx i j ’s arise in Eq.~1.9!. For ex-
ample, substitutingu52s2t the exponent of Eq.~1.9! con-
tains

x12x34

x13x24
,

x14x23

x13x24
. ~1.14!

This also ensures that the integrand is modular invari
Many of the following formulas will be expressed in a sym
metric form in terms ofs, t, andu even though these vari
ables are related by the condition~1.13!. The relative nor-
malization between the two terms in Eqs.~1.1! and~1.7! can
be determined by unitarity as in Refs.@8#, @4#.

The tree-level string amplitude~1.1! is sufficiently simple
that it is easily expanded to all orders in powers of the m
mentum. Successive terms in this expansion lead to term
the effective action that are polynomials in derivatives act
on R4. The expansion ofT begins with the terms

T5
64

a83stu
12z~3!1¯ . ~1.15!

Substitution of the first term in Eq.~1.1! reproduces the tree
diagrams of classical ten-dimensionalN52 supergravity
which have poles in thes, t, andu channels. The second term
10401
-

t.

-
in

g

gives the leading correction to the supersymmetric Einste
Hilbert theory and determines a term in the effective act
proportional toR4. Subsequent terms give information o
higher derivative interactions. The complete tree-level
pansion will be reviewed in Sec. II.

The one-loop string amplitude~1.7! also has a remarkably
simple form—the overall kinematic factor multiplies an in
tegral over the moduli space of the toroidal world sheet t
is constructed entirely from the scalar world-sheet propa
tor. The leading contribution is proportional toR4 but the
nonleading terms in the momentum expansion have not b
calculated up to now. From general principles we can ant
pate that the momentum expansion of the one-loop am
tude has the structure

I ~s,t !5a1
a8

4
I nonan1~s,t,u!1b

a82

16
~s21t21u2!

1c
a83

64
~s31t31u3!1d

a84

256
~s41t41u4!

1
a84

256
I nonan2~s,t,u!1¯

5I an~s,t,u!1I nonan~s,t,u!, ~1.16!

where a, b, c, d, . . . , areconstant coefficients. Up to thi
order the polynomials in the Mandelstam invariants are
unique expressions that ares, t, usymmetric. These make u
the analytic part of the amplitudeI an(s,t,u), whereas the
nonanalytic threshold terms

I nonan~s,t,u!5
a8

4
I nonan1~s,t,u!1

a84

256
I nonan2~s,t,u!

1o~a84!, ~1.17!

have logarithmic singularities. The presence of such sin
larities follows very simply as a consequence of perturbat
unitarity due to the phase space available for massless
particle intermediate states. For energies such thas
,4a821 ~i.e., below the first massive string threshold! the
amplitudeA4

one-loop(s,t) satisfies the unitarity relation

DiscA4
one-loop~s,t !5

1

~2p!2 E d10p1d10p2A4
tree~k1 ,k2 ,

2p1 ,p2!@A4
tree~k3 ,k4 ,p1 ,2p2!#†

3d~10!~p11p22k12k2!u~p1
0!

3d~10!~p1
2!u~p2

0!d~10!~p2
2!. ~1.18!

Substituting the lowest-order~Einstein-Hilbert! tree-level
term from Eq.~1.15! into both factors ofA4

tree on the right-
hand side of Eq.~1.18! leads immediately to theI nonan1term
in Eq. ~1.16!. Substitution of the term with coefficientz(3)
from Eq. ~1.15! into one of the factors ofA4

tree and the
Einstein-Hilbert term into the other leads to theI nonan2term
1-2
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in Eq. ~1.16!, which has three extra powers ofa8. These
terms will be discussed in more detail in Secs. III and IV~see
also Refs.@9–11#!.

The main purpose of this paper is to evaluate a numbe
terms in the expansion~1.16!. This exercise involves inte
grating modular invariant combinations products of the s
lar field theory propagators lnxij over the toroidal world
sheet as well as integration over the moduli space of
torus. Although the integration of combinations ofderiva-
tives of world-sheet scalar propagators has arisen in the
erature, for example, in connection with the elegant calcu
tion of the elliptic genus@12#, in order to perform the
integrals that arise in this paper we will need to use so
tricks that that will be presented in Sec. IV. This will allo
us to determine all the terms in Eq.~1.16! up to order
a84I nonan2~although the value of the coefficientd will be left
as a quadruple sum!. The values of these coefficients a
compared in Ref.@2# with the values that emerge by consi
ering two-loop eleven-dimensional supergravity compa
fied on a two-torus.

II. OVERVIEW OF THE TREE AMPLITUDE

The tree amplitude for the scattering of four gravitons
momentak1

m , k2
m , k3

m , andk4
m in either of the type-II super-

string theories is given by Eqs.~1.1! and ~1.2! whereT can
be written as@5#

T5
64

a83stu
expS (

n51

`
2z~2n11!

2n11 S a8

4 D 2n11

3~s2n111t2n111u2n11!D , ~2.1!

where we have used the elementary identity lnG(12z)5gz
1Sn.1z(n)zn/n. It is convenient to introduce the notationsk
5(a8/4)k(sk1tk1uk) (s150), which satisfies the recur
sion relation

s31 j5
1

2
s2s j 111

1

3
s3s j , ; j.0. ~2.2!

The solution of these conditions can be expressed by
generating function

(
j 51

`

xjs j5
x2s21x3s3

12 1
2 s2x22 1

3 s3x3

5~x2s21x3s3!(
k>0

xk

3F (
2p13q5k

~p1q!!

p!q! S s2

2 D pS s3

3 D qG . ~2.3!

Therefore
10401
of

-

e

t-
-
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e

sk5k (
2p13q5k

~p1q21!!

p!q! S s2

2 D pS s3

3 D q

. ~2.4!

Sincea83stu/645s3/3 and everys2n11 is divisible by
s3 , the expansion of the exponential in Eq.~1.1! can be
expressed entirely in terms of polynomials ofs2 ands3 ,

T5
3

s3
12z~3!1z~5!s21

2

3
z~3!2s31

1

2
z~7!~s2!2

1
2

3
z~3!z~5!s2s31¯ . ~2.5!

It will be significant for the later discussion of unitarity tha
the series of powers ofs, t, andu has gaps of three powers o
the Mandelstam invariants between the first two terms
two powers between the second and third terms. Each t
translates into a term in the effective action of the type-I
string theory which is the linearized version of a number
covariant derivatives acting onR4. These higher derivative
terms are part of the full duality-invariant effective action f
the type-IIB string.

III. EXPANSION OF THE ONE-LOOP AMPLITUDE

In this section and the next we will consider the low e
ergy expansion of the one-loop integral~1.7! in powers ofs,
t and u. Formally, this involves expanding the integran
F(t,t̄) ~1.9! in powers of the scalar Feynman propaga
which are then integrated over the toroidal world sheet

I 5E
F

d2t

t2
2 F~t,t̄ !5 (

n50

` E
F

d2t

t2
2 E

T)i 51

3
d2n~ i !

t2

1

n!
Dn,

~3.1!

where the exponent is given by

D5a8s ln~x12x34!1a8t ln~x14x23!1a8u ln~x13x24!.
~3.2!

This expansion is only formal since we already know that
amplitude is not analytic ats50, t50, or u50. This lack of
analyticity is manifested by divergent coefficients in the s
ries ~3.1!. One way of dealing with this problem would be t
consider the expansion in a power series around a non
value ofs, t andu;e. The terms that are singular in thee
→0 limit can then be resummed to give the logarithmic s
gularities.

A more straightforward procedure is to evaluate the co
ficients of the derivatives ofI in the smalls, t, andu limit.
We will therefore consider the general term
1-3
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I an
~m,n!5 lim

s,t→0
~ I ~m,n!2I nonan

~m,n!!

[ lim
s,t→0

~4a821!m1n]s
m] t

n~ I 2I nonan!

5 lim
s,t→0

S E
F

d2t

t2
2 E

T)i 51

3
d2n~ i !

t2
~4Ds24Du!m

3~4D t24Du!n exp~a8sDs

1a8tD t1a8uDu!2I nonan
~m,n!D , ~3.3!

whereDs , D t , andDu are defined in Eq.~1.11! and I nonan
(m,n)

5(4a821)m1n]s
m] t

nI nonan.
SinceI nonanhas logarithmic branch points theI nonan

(m,n) terms
are singular functions ofs and t which must be extracted
from the complete expression~3.3! before the analytic terms
can be determined. Since the nonanalytic terms originate
unitarity, from the logarithmic normal thresholds due to o
shell intermediate states we can anticipate that they a
from the region of moduli space in whicht2→`, which is
the degeneration limit of the torus. Our strategy in calcu
ing I (m,n) will therefore be to introduce a cutoffL at a finite
but large value oft2 . The regiont2<L gives a finite con-
tribution to I (m,n) which includes I an

(m,n) together with a
L-dependent term. In this region the exponential factor in
integrand on the right-hand side of Eq.~3.3! can be replaced
by unity. However, fort2>L the exponential factor plays
crucial role in regulating the integral, resulting in the term
in I nonan

(m,n) together with another finiteL-dependent piece. De
pendence onL cancels out in the full expression. The
nonanalytic terms will be considered in detail in Secs. II
IV C, and the Appendix.

Differentiating the analytic terms in Eq.~1.16! an appro-
priate number of times with respect tos andt we see that the
coefficients that will be extracted from Eq.~3.3! have the
form ~up to fourth order!

I an
~0,0!5a, I an

~1,0!50, I an
~2,0!54b52I an

~1,1! ,
~3.4!

I an
~2,1!526c, I an

~3,0!50, I an
~3,1!524d5I an

~2,2! , I an
~4,0!548d,

together with the terms obtained by interchangings with t.
The numerical values of the coefficientsa, b and c will be
determined in Sec. IV, althoughd will be left in the form of
a multiple sum that will not be evaluated.

A. The scalar propagator on a torus

The exponentD5a8(sDs1tD t1uDu), in the expression
~1.9! is a linear combination of scalar world-sheet propa
tors joining the locations of the four vertex operators. T
scalar propagator between two complex pointsn ( i )5n1

( i )

1 in2
( i ) and n ( j )5n1

( j )1 in2
( j ) on a torus of modulust is the

doubly periodic function ofn ( i j )5n ( i )2n ( j ) in the domaint
that has a logarithmic short distance singularity. Thus,
propagator
10401
ia
-
se

t-
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e

e

P~n~ i j !ut!5 ln x i j ~n~ i j !,t!, ~3.5!

satisfying toroidal boundary conditions can be written a
sum over image propagators as

P~nut!52
1

2 S (
n,mPZ

lnun1m1ntu

2 (
~m,n!Þ~0,0!

lnum1ntu D 1
pn2

2

2t2
, ~3.6!

where the last term is the zero mode of the Laplacian. T
propagator can also be expressed as

P~nut!52
1

4
lnUu1~nut!

u18~0ut!
U2

1
pn2

2

2t2

5
pn2

2

2t2
2

1

4
lnUsin~pn!

p U2

2 (
m>1

S qm

12qm

sin2~mpn!

m
1c.c.D , ~3.7!

whereq5exp(2ipt) and u1(nut) is a standard Jacobi thet
function.

Another representation of the propagator that we will u
is obtained by Fourier transforming with respect ton, which
leads to an expression in terms of the sum over the
cretized momentummt1n,

P~nut!5
1

4p (
~m,n!Þ~0,0!

t2

umt1nu2

3expF2p imS n12t1

n2

t2
D22p in

n2

t2
G1C~t,t̄ !

5
1

4p (
~m,n!Þ~0,0!

t2

umt1nu2

3expF p

t2
@ n̄~mt1n!2n~mt̄1n!#G1C~t,t̄ !.

~3.8!

The zero mode is given by

C~t,t̄ !5
1

2
lnu~2p!1/2h~t!u2, ~3.9!

whereh(t) is the standard Dedekind function.
The combination of propagators that enters the amplit

is one for which the zero modeC cancels out. This is a
crucial point in considering the modular invariance of t
integrand. The group Sl(2,Z) is generated by the two ele
mentsT: t→t11, n→n and S: t→21/t, n→n/t. Un-
der these transformations the propagator transforms as
1-4
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T: P~nut11!5P~nut!,

S: PS n

tU2 1

t D5P~nut!1
1

2
lnutu, ~3.10!

so the propagator has a modular anomaly which comes f
the zero modeC in Eq. ~3.8!. However, the sum over propa
gators in the exponentD is modular invariant since the zer
modes cancel after using the on-shell conditions1t1u
50. Therefore, it is very convenient to use the subtrac
propagator

P̂5 ln x̂ i j ~n~ i j !,t!5P2C, ~3.11!

which is modular invariant. The expression~3.8! can be writ-
ten as a Poincare´ series:3

P̂~nut!5 (
p51

`
1

p2 (
gPG`\G

c@g~n!,g~t!#,

with c~n,t!5
t2

2p
e22ippn̂2, ~3.12!

where n̂25n2 /t2 and the Sl(2,Z) transformation acts onn
andt by

t→ at1b

ct1d
, n→ n

ct1d
, ~3.13!

wherea, b, c, andd are integers andad2bc51.
We will also need to express the propagator as a Fou

series in powers ofe2ipt1, which has the form

P̂~nut!5
t2

4p (
nÞ0

1

n2 e2ipnn̂2

1
1

4 (
mÞ0
kPZ

1

umu
e2ipm~kt11n1!e22pt2umuuk2 n̂2u.

~3.14!
In analyzing the singular terms in the amplitude it will b
important to make use of the leading contribution to t
expression for the propagator at large values oft2 ,

P̂~nut!5
t2

4p (
nÞ0

1

n2 e2ipnn̄25
pt2

2 S n̂2
22un̂2u1

1

6D .

~3.15!

B. The diagrammatic rules

The calculation ofI (m,n) in Eq. ~3.3! involves integration
of powers of the propagators,P̂(n ( i j )ut), contracted between
various combinations of the pointsi , j ( i , j P$1,2,3,4%)
which are the locations of the vertex operators. It is easy
deduce a set of diagrammatic rules at any given order
term of orderDn ~where each power ofD may be any of the
threeD r ’s with r 5s,t,u) contains a product ofn propagators
which join pairs of points~which we will call ‘‘vertices’’!

3Recall that the Poincare´ series associated with a functionc de-
fined over F is Tc(t)5SgPG`\Gc(Im gz) for t5t11 i t2PH
5$t25Im t.0% andG`5$6(0

1
1
n),nPZ%.
10401
m

d

er

to
A

i , j (51, . . . ,4) with positionsn ( i ) that are to be integrated
over the torus. We will represent each vertex of a diagram
a dot and each propagator linking two vertices by a line. T
completenth order contribution requires a sum over all wa
in which the propagators can join the vertices. For any te
in this sum every vertex that is not connected to any pro
gator contributes a factor of*T d2n i /t251.

More generally, we need to isolate divergent contributio
by dividing thet integration domain into two regions

F5FL1RL . ~3.16!

The domainFL defines the ‘‘restricted’’ fundamental domai
of the t plane in whicht2<L, whereas the domainRL de-
fines a semi-infinite rectangle in thet plane, in whicht2

>L. As stated earlier, the termsI nonan
(m,n) that have threshold

singularities at vanishing Mandelstam invariants arise fr
the domainRL and will be dealt with separately by integra
ing over this large-t2 region.

For the finite contributions that come from the domainFL

the integrations over the positions,n ( i ) enforce overall con-
servation of the discrete momentump5mt1n in any dia-
gram. This means, for example, that any propagator wit
free end point gives a vanishing contribution since it h
been normalized to have a vanishing zero mode. Theref
nonzero contributions only come from diagrams in whi
two or more propagators end on every vertex. Various co
binatorial factors are associated with each diagram and
be described for each case separately.

C. The threshold term I nonan

The lack of analyticity of the low energy expansion of th
one-loop amplitude~1.7! due to the logarithmic threshold
makes the integral representation~1.7! ill defined. Since
there is no region of the Mandelstam invariants in which
amplitude is real the only way of making sense of the in
gral is to decompose the integration domain into three
mainsTst , Ttu , andTus , so that the amplitude is separate
into real analytic terms that have thresholds in the~s,t!,
(t,u), and (u,s) channels, respectively. The integral repr
sentation for each of these terms can then be defined in
region of physical scatterings.0; t,u,0, by analytic con-
tinuation. For example, the (s,t) term is defined by continu-
ation from the regions,t,0 ~with u52s2t.0) where it is
real. This decomposition follows very naturally in an oper
tor construction of the loop amplitude but does not ma
festly preserve modular invariance@9#.

The leading logarithmic singularity inI is the leading
term in lims,t→0 *(eD21). This can be extracted by firs
differentiating the integral representation with respect tos:

]sI nonan15 lim
s,t→0

E
F

d2t

t2
2 E

T )
i 51

3
d2n~ i !

t2
4]sDeD

5 lim
s,t→0

E
F

d2t

t2
2 E

T )
i 51

3
d2n~ i !

t2
~4Ds24Du!eD.

~3.17!
1-5
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The contribution from the domainFL vanishes due to the
integration over then ( i j ). However, the regionRL leads to a
nonzero result. In this region we can approximateD by using
the asymptotic expression for the propagator~3.15! which is
proportional tot2 . In the term with thresholds in the~s, t!
channels the variablesn2

( i ) are ordered in such a manner th
the rescaled variables

v i5
n2

~ i !

t2
, ~3.18!

span the range

Tst : 0<v1<v2<v3<v451 ~3.19!

~where we have used the conformal symmetry to fixn (4)

5t). The various permutations of this ordering are relev
in the (t,u) and (u,s) regions so that the whole range,
<v i<1 is covered by adding the three regionsTst , Ttu , and
Tus , together. In terms of these variables we have, in
regionTst ,

D5D~s,t !5 lim
r 2→`

a8s~Ds2Du!1a8t~D t2Du!

5pt2a8@sv1~v32v2!1t~v22v1!~12v3!#

5pt2a8Q~s,t !, ~3.20!

where

Q~s,t !5sv1~v32v2!1t~v22v1!~12v3!. ~3.21!

Similar expressions for the functionsD(t,u)5t(D t2Ds)
1u(Du2Ds) and D(u,s)5u(Du2D t)1s(Ds2D t), define
D when expressed in theTtu and Tus regions. In theRL
domain of Eq.~3.17! the t1 integration is trivial since the
integrand has not1 dependence. Thet2 integration~from L
to `! simply gives
10401
t

e

]sI nonan154pE
L

` dt2

t2
)

0<v1<v2<v3<1
dv iv1~v32v2!

3ea8pt2Q~s,t !

54pE )
0<v1<v2<v3<1

dv iv1~v32v2!

3$2g2 ln@2a8pQ~s,t !#2 ln L%1o~s!. ~3.22!
The lnL terms cancel out in the complete contribution
I (1,0)5]sI 2]uI . It it is easy to integrate Eq.~3.22! together
with the corresponding expression for] tI nonan1, giving

1

4p
I nonan15E )

0<v1<v2<v3<1
dv iQ~s,t !ln Q~s,t !

1E )
0<v3<v2<v1<1

dv iQ~ t,u!ln Q~ t,u!

1E )
0<v2<v1<v3<1

dv iQ~u,s!ln Q~u,s!.

~3.23!
The scale of the logarithm cancels out of the sum of term
the full expression. This threshold term is exactly the sa
as that obtained from the one-loop calculation of the fo
graviton amplitude in either of the type-II supergravity the
ries in ten dimensions@11,10#. The corresponding discussio
of the higher-order threshold termI nonan2 which is intrinsi-
cally stringy since it involves higher powers ofa8, will be
given in the Appendix.

Such threshold terms are contained in the large-t2 region
of the integration over moduli space, which means that th
are contained in the coefficientsI RL

(m,n) that are defined by

integration over the domainRL . So long as 1,m1n,4 it
will be sufficient to substitute the asymptotic form of th
propagator which will produce contributions of the form
lim
s,t→0

I RL

~m,n!~s,t !5 lim
s,t→0

E
RL

d2t

t2
2 E

T )
i 51

3
d2n~ i !

t2
~4Ds24Du!m~4D t24Du!neD

5 lim
s,t→0

E
L

`

dt2t2
m1n22E

T )
i 51

3

dv i~4p]sQ!m~4p] tQ!nea8pt2Q

5 lim
s,t→0

S E
0

`

dt22E
0

L

dt2D t2
m1n22E

T )
i 51

3

dv i~4p]sQ!m~4p] tQ!nea8pt2Q

5 lim
s,t→0

I nonan
~m,n!~s,t !223~4p!m1n

Lm1n21

m1n21

3]s
m] t

n (
p1q5m1n

p!q!

~2m12n13!!
@sptq1~21!qsp~s1t !q1~21!p~s1t !ptq#U

~s,t !5~0,0!

~3.24!
1-6
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with p,q>0. The L-dependent term in this expression w
cancel with a term that arises from the integration over
domainFL . Whenm1n54 it is no longer adequate to us
the leadingt2 contribution to the propagators and a sublea
ing contribution of the form lnL arises. This leads to th
term I nonan2, as will be seen in more detail in Sec. IV C an
the Appendix.

IV. THE ANALYTIC TERMS I an
„m,n…

The analytic terms are extracted from the integration o
FL which is finite. In this domain we can first perform th
n ( i ) integrals to obtain a density on the moduli space a
then integrate this overt and t̄.

The first term in the expansion of Eq.~1.9! using Eq.~3.3!
is the trivial constant term. The result of the integrations
simply the finite volume ofF. This defines the first constan
in Eq. ~1.16!,

I ~0,0!5a5E
F

d2t

t2
2 5

p

3
, ~4.1!

which is the well-known coefficient of the loop contributio
to theR4 term.

The next terms in the expansion areI (1,0) andI (0,1) which
are given by Eq.~3.17!. As remarked earlier, then ( i ) inte-
grations in Eq.~3.17! cause the integrand to vanish in th
domainFL and the integral only contributes toI nonan

(1,0) .

A. Terms of order s2

The only nonvanishing contribution to the integrand ofI an
at ordera82 is the bubble diagram of Fig. 1. This term mu
tiplies (s21t21u2) in the expansion~3.1! and therefore con-
tributes to I an

(2,0) , I an
(1,1) , and I an

(0,2) . The density on moduli
space arising from Fig. 1 is

A~t,t̄ !5E
T

d2n~ i !d2n~ j !

t2
2 @ ln x̂~n~ i j !ut!#2

5
1

16p2 (
~m,n!Þ~0,0!

t2
2

umt1nu2

5
1

16p2 Z2~t,t̄ !. ~4.2!

The functionZ2 an Epstein zeta function which is an e
ample of a nonholomorphic Eisenstein series.4 More gener-

4This is related to the functionEs in Ref. @13# by Zs

52z(2s)Es .

FIG. 1. The diagram that contributes toI an
(m,n) with m1n52.
10401
e

-

r

d

s

ally these are nonholomorphic modular functions that
also eigenfunctions of the Laplace operator in the fundam
tal domain of Sl(2,Z),

¹2Zs[4t2
2 ]2

]t]t̄
Zs5s~s21!Zs . ~4.3!

These functions havet2 expansions in which there are tw
power-behaved terms together with an infinite set of ex
nentially suppressed, nonperturbative, terms

Zs5 (
~m,n!Þ~0,0!

t2
s

umt1nu2s

52z~2s!t2
s12p1/2

G~s21/2!

G~s!
z~2s21!t2

12s

1O~e22pt2!. ~4.4!

Diagrams of this type with vertices at~1,2!, ~3,4!, ~1,3!,
and ~2,4! contribute equally toI an

(2,0) . Integrating Eq.~4.2!
over the restricted fundamental domainFL and summing
over these four contributions gives

I FL

~2,0!543
1

p2 EFL

d2t

t2
2 Z2~t,t̄ !, ~4.5!

where the factor of 4 comes from]s
2@s21t21(s1t)2#. This

expression is easily integrated by substitutingZ25¹2Z2/2
using Eq.~4.3! so that the integrand is a total derivative a
Eq. ~4.5! reduces to an integral over the boundary. The
stricted fundamental domain has a single boundary whic
at t25L and the result is

I FL

~2,0!5
26p2

6!
L1O~L22!. ~4.6!

This L-dependent term cancels the correspondingL depen-
dence arising fromI RL

(2,0) which is given by Eq.~3.24!. Since

there is no residualL-independent piece we conclude th
I an

(2,0)50, which implies that

b50. ~4.7!

This means that there is nos2 term in the expansion~1.16!.
In a similar manner it is easy to verify that the cross te
I an

(1,1) also vanishes, which is consistent with Eq.~3.4!.

B. Terms of order s3

The diagrams in Fig. 2 are the ones that survive then ( i j )

integrations. These contribute to terms in the expansion~3.1!
with coefficient a83(s31t31u3). The first diagram is the

FIG. 2. Diagrams that contribute toI an
(m,n) with m1n53.
1-7
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product of three propagators joining three distinct vertic
and gives contributions to the integrand ofI FL

(2,1) ~and I FL

(1,2))

of the form (k. j . i )

B1~t,t̄ !5
1

~4p!3 (
m,n

t2
3

umt1nu6 5
1

~4p!3 Z3~t,t̄ !.

~4.8!

This is again a nonholomorphic Eisenstein series satisfy
Eq. ~4.3!, here withs53, so it is an eigenfunction of the
Laplace equation withs(s21)56. The integration of the
density~4.8! over the the restricted fundamental domain c
again be performed using Gauss’ law. This gives,

I FL

~2,1!~B1!52
210p3

338!
L21O~L23!, ~4.9!

where the factor of26 arises from]s
2] t@s31t32(s1t)3#.

The second diagram of Fig. 2 involves only two distin
vertices and potentially gives a contribution to the integra
of both I FL

(3,0) andI FL

(2,1) ~as well asI FL

(0,3) andI FL

(1,2)) of the form

B2~t,t̄ !5E d2n~ i !d2n~ j !

t2
2 @P̂~n~ i j !ut!#3

5
1

~4p!3 (
~m,n!,~k,l !,~p,q!Þ~0,0!

3t2
3 d~m1k1p!d~n1 l 1q!

umt1nu2ukt1 l u2upt1qu2 . ~4.10!

In fact, I (3,0) involves the combination]s
3@s31t32(s1t)3#

50, so it automatically vanishes as in Eq.~1.16!. However,
the integrand ofI (2,1) is proportional toB2 .

Unlike the earlier examples, this expression is not
eigenfunction of the Laplacian on the fundamental dom
so a new idea is needed in order to perform the integra
over FL . We will make use of the well-known ‘unfolding
procedure’ by using the representation of the propagator
Poincare´ series~3.12!. This relates the integral ofc3 f over
F ~wherec is any Poincare´ series! to an integral over the
semi-infinite line

E
F

d2t

t2
2 c~t! f ~t!5E

t50

` dt

t2 c~ t !~C f !~ t !, ~4.11!

where the expression~Cf ! is the zerot1 mode of the func-
tion f (t),

C f~t2!5E
21/2

1/2

dt1f ~t!. ~4.12!

The relationship~4.11! is derived by making use of the iden
tities

E
G\H (

G`\G
5E

G`\H
5E

t2.0
. ~4.13!
10401
s

g

n

t
d

n
n
n

a

Since the integration in Eq.~4.10! is over the restricted fun-
damental domainFL some care has to be taken in using t
unfolding procedure. For an integral such as Eq.~4.10!,
which diverges as a power ofL asL→`, it turns out to be
consistent to simply setf (t)50 for t2>L, which cuts off
the divergence att2→`.5 Using this procedure we can ex
press the contribution of Eq.~4.10! to I FL

(2,1) in the form

I FL

~2,1!~B2!5263
64

3 E
FL

d2t

t2
2 B2~t,t̄ !

52128E
F

d2t

t2
2 E d2n~1!d2n~2!

t2
2 @P̂~n~12!ut!#3

52128(
p51

`
1

p2 E
0

L dt

t2 E d2n~1!d2n~2!

t2

t

2p

3e22ippn̂2C~P̂2!, ~4.14!

where the overall factor of26 comes from]s
2] t@s31t32(s

1t)3#. The expression for the integral overn1
(1) andn1

(2) of
the zerot1 Fourier mode is

E
21/2

1/2

dn1
~1!dn1

~2!C~P2!5
t2

16p2 S (
nÞ0

1

n2 e2p in n̂2
~12!D 2

1
1

16 (
mÞ0

k

1

m2 e24ptumuuk2 n̂2
~12!u.

~4.15!

Substituting the first term on the right-hand side into E
~4.14! leads to theL-dependent term

I 1FL

~2,1!~B2!521283
L2

2 E
21/2

1/2

dn̂2
~1!dn̂2

~2!

3S 1

4p (
nÞ0

1

n2 e2ipnn̂2
~12!D 3

52
L2

p3 (
niPZ\$0%

]~n11n21n3!

n1
2n2

2n3
2

52
28p3

338!
L2. ~4.16!

Substitution of the second term on the right-hand side of
~4.15! into Eq. ~4.14! gives theL-independent term

5Although this cutoff leads to the correct answer when the integ
grows as a power ofL, more care is needed in regularizing log
rithmic growth of the kind we will meet in Sec IV C. In that cas
the integral diverges at the points on thet250 axis that are the
images under SL~2,Z) transformations of the pointt2→`.
1-8
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I 2FL

~2,1!~B2!52
2

p (
p51

`
1

p2 E
0

` dt

t E
0

1

dn̂2
~1!dn̂2

~2! (
mÞ0

k

1

m2

3e22ippn̂2e24ptumuuk2 n̂2u

52
4

p2 (
p51

`

(
mÞ0

1

p2

1

m2 E
0

` dt

p21t2

5263
2

3p
z~2!z~3!. ~4.17!

The sum of theL-dependent termsI 1FL

(2,1)(B2)1I FL

(2,1)(B1)

@see Eqs.~4.16! and ~4.9!#, again cancels with the corre
sponding term in the integration over the domainRL @I RL

(2,1) ,

in Eq. ~3.24!#. However, in this case there is also a fin
contribution toI 2FL

(2,1) , which determines the coefficient of th

a83(s31t31u3) term in Eq.~1.16! to be

c5
2

3p
z~2!z~3!. ~4.18!

C. Terms of order s4

The four kinds of diagrams that give nonzero contrib
tions proportional toa84(s41t41u4) in the expansion~3.1!
are shown in Fig. 3. These each have four propagators
contribute toI an

(m,n) with m1n54. Upon evaluating then (r )

integrations these give the following densities for the mod
space integrals

C1~t,t̄ !5
1

~4p!4 ~Z2!2, ~4.19!

C2~t,t̄ !5
1

~4p!4 ~Z2!2, ~4.20!

C3~t,t̄ !5
1

~4p!4 Z4 , ~4.21!

FIG. 3. The set of diagrams that contribute toI (m,n) with m
1n54.
10401
-

nd

li

C4~t,t̄ !5E d2n~ i !d2n~ j !

t2
2 ~P̂~n~ i j !ut!!4 ~ j . i !

5
1

~4p!4 (
~m,n!Þ~0,0!
~p,q!Þ~0,0!

(
~r ,s!Þ~0,0!
~v,w!Þ~0,0!

3t2
4 d~m1p1r 1v !d~n1q1s1w!

umt1nu2upt1qu2ur t1su2uvt1wu2 .

~4.22!

The term C3(t,t̄) is once again a non-holomorphi
Eisenstein series which can be integrated over the restri
fundamental domain using

E
FL

d2t

t2
2 Z45

2

3
z~8!L31O~L24!. ~4.23!

Inserting the appropriate combinatoric factors gives rise
the L-dependent contributions

I an
~3,1!~C3!50, I an

~2,2!~C3!5
21033p4

10!
L3,

~4.24!

I an
~4,0!~C3!5

21033p4

10!
L3.

The integration of the expressionsC2 and C3 over the
restricted fundamental domain involves the integration of
square of an Eisenstein series (Z2)2. This can be evaluated
by using Green’s theorem in the fundamental domain.
general real values ofs,s8.1/2 this states that

1

4z~2s!z~2s8!
E

FL

d2t

t2
2 ZsZs8

5
Ls1s821

s1s821
2

L12s2s8

s1s821
f~s!f~s8!1

Ls2s8

s2s8
f~s8!

2
Ls82s

s2s8
f~s!1o~1!, ~4.25!

where

f~s!5
z~2s21!G~s21/2!

ps21/2

ps

z~2s!G~s!
. ~4.26!

The symbolo(1) means that the remainder goes to ze
when L becomes infinite~for a more general statement se
exercise 12, p. 216 of Vol. I of Ref.@13#!. It follows from
this that

1

4z~4!2 EFL

d2t

t2
2 ~Z2!25

1

3
L31p

z~3!

z~4!
ln L2f8~2!.

~4.27!

The last term gives aL-independent contribution to the co
efficient d in Eq. ~1.16!. The other terms in Eq.~4.27! give
another contribution that behaves asL3 as well as a new
1-9
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L-dependent term proportional to lnL. Such a term is implied
by the presence of a new logarithmic threshold of or
a84s4 ln s which is contained inLnonan2 that is evaluated in
the Appendix. Taking into account the combinatorial facto
the contribution of theseL-dependent terms is

I an
~3,1!~C1!5I an

~3,1!~C2!50,

I an
~2,2!~C2!52I an

~2,2!~C1!5
2937p4

10!
L31

48

p3 z~3!z~4!ln L,

~4.28!

I an
~4,0!~C2!52I an

~4,0!~C1!5
21037p4

10!
L31

96

p3 z~3!z~4!ln L.

The last remaining term to consider isC4 . As with the
two-loop term~4.10! this gives an expression which is not a
eigenfunction of the Laplacian on the fundamental doma
Once again thed2t integration may be performed by usin
the unfolding procedure as in the previous subsection. H
ever, in this case we have to take greater care of the di
gence of the integrand att25L→` ~as pointed out in the
footnote in Sec. IV B!. The integral can be rendered finite b
subtracting a suitable linear combination ofZ4 andZ2

2 from
the integrand. Consider, for example,

I FL

~4,0!~C4!5483
64

3 E
FL

d2t

t2
2 E d2n~1!d2n~2!

t2
2 ~P̂~n~12!ut!!4,

~4.29!

where the factor of 48 comes from]s
4@s41t41(s1t)4#. It is

easy to extract the terms in the integrand that are diverge
the limit L→` from explicit from of P̂(n (12)ut) given in
Eqs.~3.14! and~3.15!. This gives explicitL3 and lnL terms
that can be subtracted in a modular invariant manner by
fining a regularized value ofI (4,0)(C4),

I reg
~4,0!~C4!5I FL

~4,0!~C4!2I div
~4,0!~C4!, ~4.30!

where

I div
~4,0!~C4!51024E

FL

d2t

t2
2 E d2n~1!d2n~2!

t2
2 S 2

2

~4p!4 Z4

1
3

~4p!4 ~Z2!2D , ~4.31!

and the integrals ofZ4 andZ2
2 are given in Eqs.~4.23! and

~4.27!, respectively.
Since the expression~4.30! is finite and its integrand is

modular invariant it is straightforward to evaluate using t
unfolding procedure. This gives
10401
r

,

.

-
r-

in

e-

I reg
~4,0!~C4!51024(

p51

`
1

p2 E
0

L dt

t2 E d2n~1!d2n~2!

t2

t

2p

3e22ippn̂2
~12!FC@P̂~n~12!!3#

12E d2n~3!d2n~4!

t2 C@P̂~n~23!!P̂~n~34!!P̂~n~41!!#

2
3

~4p!2 E d2n~3!d2n~4!

t2 C@P̂~n~12!!Z2#G .
~4.32!

This term can be evaluated by using the explicit definitio
of P̂ andZ2 , giving theL-independent result

I reg
~4,0!~C4!52

24

p3 z~3! (
pÞ0,nÞ0

pÞn

lnup2nu
p2n2

1
8

p (
miÞ0,m11m21m350

kiPZ,m1k11m2k21m3k350

1

um1m2m3u

3 (
p51

`
1

p2 E
0

` dt

t E
0

1

dn̂2
~1!dn̂2

~2!

3expS 22ippn̂2
~12!22pt(

i 51

3

umi uuki2 n̂2
~12!u D .

~4.33!

The L-dependent terms are contained in

I div
~4,0!~C4!52I an

~2,2!~C4!

5
2935p4

10!
L31

48

p3 z~3!z~4!ln L

2
48

p4 z~4!2f8~2!. ~4.34!

The L3 term is connected, as expected, to the presenc
I nonan1

(4,0) while the lnL term is again connected to the appea
ance ofI nonan2

(4,0) .
The sum of theL3 contributions arising inI an

(4,0)(C1) and
I div

(4,0)(C4) indeed cancels the contributions from the integ
tion of I nonan1

(4,0) over theRL domain in Eq.~3.24!. Similarly,
the total coefficient of lnL arising in the sum ofI an

(2,2)(C1),
I an

(2,2)(C2), andI an
(2,2)(C4) is

I an ln
~2,2!5

96

p3 z~3!z~4!ln L, ~4.35!

which will be cancelled by the presence of the new thresh
term I nonan2

(2,2) . The general expression forI nonan2is fairly com-
plicated but we see from the Appendix that att50 it reduces
to
1-10
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I nonan2~s,t50!

5
4

p3 z~3!z~4!~a8s!4F lnS a8s

L D1 lnS 2
a8s

L D G .
~4.36!

Taking fours derivatives leads to the same coefficient of lnL
as that in Eq.~4.35!.

The finite term I reg
(4,0)(C4) ~4.33!, together with the

L-independent parts of Eq.~4.34! and I (4,0)(C2) and
I (4,0)(C3) @which come from the finite last term of Eq
~4.27!#, determine the value of the coefficientd in the expan-
sion of the loop amplitude in the form

d52
4

p4 z~4!2f8~2!2
1

2p3 z~3!(
lnup2nu

p2n2

1
1

6p (
miÞ0,m11m21m350

kiPZ,m1k11m2k21m3k350

1

um1m2m3u

3 (
p51

`
1

p2 E
0

` dt

t E
0

1

dn̂2
~1!dn̂2

~2!

3expS 22ippn̂2
~12!22pt(

i 51

3

umi uuki2 n̂2
~12!u D .

~4.37!

We have not extracted the numerical value of this com
cated looking expression.

V. SUMMARY AND CONCLUSION

In summary, we have determined the first few coefficie
in the expansion~1.16! of the four-graviton one-loop ampli
tude in either of the ten-dimensional type-II string theori
After explicitly subtracting the nonanalytic threshold term
I nonan1and I nonan2, we found that

a5
p

3
, b50, c5

2

3p
z~2!z~3!, ~5.1!

and d is given by the expression~4.37! that we have not
evaluated.

These coefficients give a little more insight into the stru
ture of the low-energy expansion of four-graviton intera
tions in the M-theory effective action. The leading term
this type is theR4 term about which a great deal is know
@14–18,1#. For example, in the ten-dimensional limit corr
sponding to the type-IIB string theory, it has dependence
the complex couplingV5C(0)1 ie2fB

~where C(0) is the
R^ R scalar andfB is the type-IIB dilation!, that enters by

an overall factor ofE3/2(V,V̄), where Es is the modular
invariant Eisenstein series that is proportional toZs ~see the
footnote in Sec. IV A!. This function has an expansion fo
largeV2 ~weak coupling! that begins with the tree-level term
with coefficientz~3! in Eq. ~2.5! and is followed by a one-
loop term with a coefficient that is precisely the value ofa in
10401
i-

s

.

-
-
f

n

Eq. ~5.1!. There are no further perturbative terms in the e
pansion but there is a precisely defined sequence
D-instanton contributions.

One method by which the exact form of the theR4 inter-
action was determined@1# by calculating the one-loop con
tribution to four-graviton scattering in eleven-dimension
supergravity compactified on a two-torus. Recently t
method has been generalized to evaluate the two-loop
tribution in eleven-dimensional supergravity which contri
utes at leading order in the low-energy expansion to
D4R4 interaction, where the notation symbolically indicat
four derivatives acting on four powers of the curvature.
the limit that gives the ten-dimensional type-IIB theory t
interaction is given by a term in the effective action dens
of the form @2#

z~5!V25/2E5/2V,V̄)~s21t21u2!R4 ~5.2!

~where the factors ofs2, t2, and u2 represent appropriate
derivatives acting on the curvature tensors!. In this case the
modular functionE5/2 has an expansion for largeV2 ~weak
coupling! that begins with the tree-level term with coefficie
z~5! in Eq. ~2.5! and is followed by a two-loop term—the
one-loop contribution is absent. Again there are no furt
perturbative string theory contributions but there is an in
nite series ofD-instanton contributions. The vanishing of th
one-loop contribution in Eq.~5.2! is confirmed by our state
ment that the coefficientb in Eq. ~5.1! vanishes.

The value ofc in Eq. ~5.1! is the coefficient of the one
loop contribution to the (s31t31u3)R4 interaction. This is
not a term which has yet been motivated from any argum
based on duality or supersymmetry. In particular, it is not
clear how this term packages with the tree-levelz(3)2 term
in Eq. ~2.5! to make a modular invariant expression in t
type-IIB limit.

More generally, one might ask whether there is a sim
modular invariant expression for the complete four-gravit
amplitude that generalizes the tree amplitude~2.1!. An obvi-
ous candidate is obtained by replacing the coefficie
2z(2n11) in the tree amplitude~2.1! by t2

22n212z(2n
11)En11/2 @19,20#. The resulting amplitude hass-, t-, and
u-channel poles at values corresponding to the mass of e
excited state of all the~p, q! D strings. This expression ha
been conjectured@19# to be some sort of approximation t
the exact four-graviton amplitude of the type-IIB theory.
does indeed reproduce the first few of the known coefficie
in the low-energy expansion: by definition, it contains t
exact tree-level amplitude and it also contains the corr
ratio of the E3/2R4 term and theE5/2a82(s21t21u2)R4

term. However, it produces a value for the coefficient of t
one-loop part of thea83(s31t31u3)R4 interaction that is
twice the value ofc in Eq. ~5.1!. It is not surprising that the
naive modular invariant conjecture of Ref.@19# fails since
there is no obvious sense in which it can approximate
exact amplitude. After all it purports to describe an infin
number of highly unstable non-BPS states in a nonpertu
tive manner but lacks all of the~massless and massive!
threshold cuts that are required by unitarity.
1-11
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APPENDIX: MASSLESS NORMAL THRESHOLDS

The thresholds that arise from massless on-shell inter
diate states come from the region of integration over near
boundary of moduli space at which the toroidal world-sh
pinches in such a manner that the four vertex operators
separated into two bunches. At this degeneration point
world sheet is the product of the two tree-level world she
that enter in the right-hand side of Eq.~1.18!.

In order to extract these thresholds from the express
~1.9! for the loop amplitude it is very useful to change t
definition of the moduli fromn (r ) andt to h (r ) by defining

n~1!5h~1!, n~2!5h~1!1h~2!, n~3!5h~1!1h~2!1h~3!,
~A1!

n~4!5t5h~1!1h~2!1h~3!1h~4!,

where we have used the conformal invariance of the lo
amplitude to fixn (4)5t. The h variables are the ones tha
arise naturally in the operator construction of the loop a
plitude as a trace over a string tree. In such a construction
propagator describing each leg of the loop is written as

D i5
a8

2p E
uzu,1

dzdz̄

uzu2 zL0z̄L̄0, ~A2!

wherez5e2p ih.
The degeneration limit of relevance to thes-channel

thresholds is the one in whichh2
(1)→` andh2

(3)→`, which
puts the twos-channel propagators in the loop on shell. Th
corresponds to the region of integrationTst :

n2
~1!<n2

~2!<n2
~3!<n2

~4!5t2 ~A3!

with t2→`. In this limit we may substitute the asymptot
values

D t;D̃ t5P̂`~n~14!!1P̂`~n~23!!,
~A4!

Du;D̃u5P̂`~n~13!!1P̂`~n~24!!,

and

Ds;
p~n2

~12!!2

2t2
2

1

4
lnUsin~pn~12!!

p U2

1
p~n2

~34!!2

2t2

2
1

4
lnUsin~pn~34!!

p U2

5D̃s1ds , ~A5!
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he

where

D̃s5P̂`~n~12!!1P̂`~n~34!! ~A6!

and

ds5 (
mÞ0

1

4umu ~e2ip~mn1
~12!

1 i umun2
~12!

!1e2ip~mn1
~34!

1 i umun2
~34!

!!.

~A7!

The sum overm in Eqs.~A5! and~A7! gives the effect of the
massive string states that propagate between the vertice
the particles 1 and 2 or the vertices for the particles 3 an
i.e., in the legs of the loop that are not degenerating. Th
terms are the ones that give rise to the stringy correction
the low-energy field theory thresholds.

The contribution to the one-loop amplitude in theTst re-
gion can be rewritten as

I Tst
5E

RL

` d2t

t2
2 E

Tst
)
i 51

3
d2n~ i !

t2
exp@a8s~D̃s2D̃u!

1a8t~D̃ t2D̃u!#exp~a8sds!. ~A8!

Thea8 expansion is obtained by expanding the last expon
tial in powers ofds . The leading term reproduces the fie
theory s-channel threshold given by the first term in E
~3.23!. The next contribution, linear inds , vanishes due to
the integration overv1

(2) or v1
(4) . The next term has a facto

of (a8sd)2 and gives a nonzero contribution to the logarit
mic behavior at order (a8s)4. After a little algebra~and add-
ing the contributions of theTtu andTus domains! this gives
the threshold contribution

I nonan2~s,t,2s2t !5 (
mÞ0

~a8s!2

32m2 E
L

` dt2

t2
2 E

Tst
)
i 51

3

dv i

3epa8t2Q~s,t !~e24pmt2~v22v1!

1e24pmt2~12v3!!1tu term1us term,

~A9!

where the integration variablesv i are defined in Eq.~3.18!.
This integral is complicated but for the special caset50 it
reduces to the simple expression

I nonan2~s,0,2s!5
4

p3 z~3!z~4!S a8s

4 D 4F lnS a8s

4L D
1 lnS 2

a8s

4L D G . ~A10!
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