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Low-energy expansion of the one-loop type-Il superstring amplitude
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The one-loop four-graviton amplitude in either of the type-Il superstring theories is expanded in powers of
the external momenta up to and including terms of osdén sR*, whereR* denotes a specific contraction of
four linearized Weyl tensors arglis a Mandelstam invariant. Terms in this series are obtained by integrating
powers of the two-dimensional scalar field theory propagator over the toroidal world sheet as well as the
moduli of the torus. The values of these coefficients match expectations based on duality relations between
string theory and eleven-dimensional supergravity.

PACS numbe(s): 04.50+h

[. INTRODUCTION where the Mandelstam invariants are definedssy— (k;
+ky)?, t=—(ky+ky)?, andu=—(k,+ks)? The overall

The wealth of duality symmetries relating different pa- kinematic factork is given by
rameterizations of nonperturbative string theory, or M
theory, provide severe constraints on its structure. One strik-
ing manifestation of this is the relationship between the low- K =tHeretry VSH AL SR 1.3
energy expansion of the type-Il string theory action and one-
loop effects in compactified eleven-dimensional supergravity . | . . . L
[1]. Although the systematics of this relationship becomeé’Vh'C,h is the linearized approximation to the standard con-
very murky at higher loops, the leading behavior of the two-'ction between four curvature tensors
loop contribution of the eleven-dimensional theory is ame-
nable to a detailed analysisee the preceding papg]).

This detailed comparison between string theory and
eleven-dimensional supergravity requires, among othewhere the tensar*t '#8 is defined in Ref[5] and in Appen-
things, detailed knowledge of the low-energy expansion oflix 9 of Ref.[6].2 The value of the constant;q in Eq. (1.1)
the effective action of the type-llA and type-IIB superstring is arbitrary since it can be changed by shifting the dilaton
perturbation theories. Surprisingly, this has scarcely beefield. It is convenient to set it to the value
considered in the literature beyond the most elementary tree-
level terms. In this paper we will obtain terms in the effective -
action that arise from the momentum expansion of the one- "10 (277) (1.9
loop type-Il superstring theory contribution to the four gravi-
ton amplitude. Since the four-graviton tree and one-loop amwhich normalizes theD-string tension to the vaIué’D
plitudes in the type-lIA and -IIB theories are equal we need_ e %Tr, whereTy=1/2ma’ is the fundamental string ten—
not distinguish between the two theories in the following. sion[7]. ’

The tree-level amplitude for the scattering of four gravi- 14 one-loop type-Il superstring four-graviton scattering

tons with polar|zat|on tensorzg(r) and momentaky' (r  amplitude in ten dimensions is also very simple and is given
=1,2,3,4,.=0,1,...,9, andky=0) has the very simple by [5]

RA=tgtgR*=tr1 #st, . R1"2...R7"8 = (1.4
1 8 MiMop M7Mg

form [3,4]
4
~ K A ~
Ag*e= —Krfe 2T, (1.9 AQne1oR= —stéz,4 Kl=«i2mIK, (1.6
whered is the constant dilaton field so thgt «;4 e is the ) _ _
string coupling and wherel is the integral of a modular function
rl1-%s)r(1- %1 & =
- 64 _TS _Tt —ZU |—J 2 F(T_) (17)
~ a'Sstu a’ a’ a
I 1+ s 1+ -t 1+ -u (Where 7= 7, +i1, andd?r=dr,dr,=drd7/2), andF de-

(1.2) notes the fundamental domain of SK2,

F={|r|=<3}|7?<1). 1.8
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The two type-Il string perturbation theories are equal up to and 2This contraction projects onto the purely traceless components of
including two loopd2]. the curvature, which constitute the Weyl tensor.
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The dynamical factor in Eq1.7) is given by an integral over gives the leading correction to the supersymmetric Einstein-
the positionsy)=»{)+i1{ of the four vertex operators on Hilbert theory and determines a term in the effective action

the torus proportional toR*. Subsequent terms give information on
_ higher derivative interactions. The complete tree-level ex-
3 g2y , " , pansion will be reviewed in Sec. Il.
F(r,7)= TiHI —— (Xa2x3d)” *(X14X23)" "(X13X24) " " The one-loop string amplitudd..7) also has a remarkably
- 2 simple form—the overall kinematic factor multiplies an in-
3 g2y tegral over the moduli space of the toroidal world sheet that
= f . el is constructed entirely from the scalar world-sheet propaga-
Ti=1 T2 tor. The leading contribution is proportional ®* but the
3 42,0 nonleading terms in the momentum expansion have not been
:f H expla’'sAs+ a'tAg+a’ud,), calculated up to now. From general principles we can antici-
Ti=1 T2 pate that the momentum expansion of the one-loop ampli-
(1.9 tude has the structure
whered?vyV=dv{)dv{), »®=r, and a' a'?
I(s,;t)=a+ Zlnonanﬁs,t,u)+bﬁ(sz+t2+ u?)
D=a'sAs+a'tAi+a’'uld, (1.10
with +ca—,3(s3+t3+u3)+da—/4(s4+t4+u4)
64 256
As=In(x12x34),  Ar=IN(x1ax23), Au=IN(x13X24) o't
(113 +2_56|nonanisvtau)+"'
and Iny;(¥M—10;7) is the scalar Green function between
the vertices labeletlandj on the toroidal world sheet. These =lads,t,u) +1onad s,t,u), (1.19

Green functions are integrated over the dontAitefined by

wherea, b, ¢, d, ..., areconstant coefficients. Up to this
=l _ 1< <1 0< p,< (112 order the polynomials in the Mandelstam invariants are the
2 s s s ' unique expressions that aset, usymmetric. These make up
the analytic part of the amplitude,(s,t,u), whereas the
It is understood that the mass shell condition nonanalytic threshold terms
s+t+u=0 (1.13 , o'

o
_ _ _ . [ s,t,u)y=—1I s,t,u)+ o=zl s,t,u
is enforced in all expressions which ensures that only con- nonaif ) = 7~ nonand S:.U) + 55l nonand $:1,U)

formally invariant ratios ofy;;’s arise in Eq.(1.9). For ex-
ample, substitutingi= —s—1t the exponent of Eq.1.9) con-
tains

+o(a'%), (1.17

have logarithmic singularities. The presence of such singu-
X12X34  X14X23 larities follows very simply as a consequence of perturbative
(1.14 unitarity due to the phase space available for massless two-
particle intermediate states. For energies such that
This also ensures that the integrand is modular invariant<4a’ * (i.e., below the first massive string threshotte
Many of the following formulas will be expressed in a sym- amplitudeA$™*°s,t) satisfies the unitarity relation
metric form in terms ofs, t andu even though these vari-

X13X24  X13X24

ables are related by the conditigh.13. The relative nor- . one-loo 1 10 10 ntre
malization between the two terms in E4s.1) and(1.7) can DiscA;™ s t) = (2m)? J d%%,1d"p,As% ks k2,
be determined by unitarity as in Ref8&], [4].

The tree-level string amplitudg..1) is sufficiently simple —p1,P2)[ AT K3, ks, p1, — P2) 1T
that it is easily expanded to all orders in powers of the mo- 10 0
mentum. Successive terms in this expansion lead to terms in X 819(py+pa—kyi—k) O(p3)

the effective action that are polynomials in derivatives acting

10)/ 12 0\ o(10)( 12
on R*. The expansion of begins with the terms x 8P (P 6"(py). (118

4 Substituting the lowest-orde(Einstein-Hilberj tree-level
T=—ag T26B3)+ . (1.19  term from Eq.(1.15 into both factors oA on the right-
hand side of Eq(1.18 leads immediately to thk,gpaniterm

Substitution of the first term in Eq1.1) reproduces the tree in Eq. (1.16. Substitution of the term with coefficied(3)
diagrams of classical ten-dimensionaf=2 supergravity from Eq. (1.15 into one of the factors ofAj*® and the
which have poles in thg, t, andu channels. The second term Einstein-Hilbert term into the other leads to thg,anterm
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in Eg. (1.16, which has three extra powers af . These (p+q—1)! (02)13(03
2

q
terms will be discussed in more detail in Secs. Il and$ee o=k g) : (2.9
also Refs[9-11)).

The main purpose of this paper is to evaluate a number of
terms in the expansiofil.16. This exercise involves inte- Since a'3stw64=a4/3 and everyo,, ., is divisible by
grating modular invariant combinations products of the sca,  the expansion of the exponential in Ed.1) can be

lar field theory propagators lvij over the tor(_)idal world expressed entirely in terms of polynomialse@f and o5,
sheet as well as integration over the moduli space of the

torus. Although the integration of combinations addriva-
tives of world-sheet scalar propagators has arisen in the lit- 3 5 1

erature, for example, in connection with the elegant calcula-  T= = +27(3)+ {(5)0,+ = {(3)203+ = {(7)(05)?
tion of the elliptic genus[12], in order to perform the o3 3 2

integrals that arise in this paper we will need to use some 2

tricks that that will be presented in Sec. IV. This will allow + = 4(3)L(B) ooyt . (2.5
us to determine all the terms in E§1.16 up to order 3
a"*l honanz(although the value of the coefficiediwill be left

as a quadruple sumThe values of these coefficients are
compared in Ref[2] with the values that emerge by consid-
ering two-loop eleven-dimensional supergravity compacti
fied on a two-torus.

2pi3g=k  p!q!

It will be significant for the later discussion of unitarity that
the series of powers & t andu has gaps of three powers of
‘the Mandelstam invariants between the first two terms and
two powers between the second and third terms. Each term
translates into a term in the effective action of the type-11B
Il. OVERVIEW OF THE TREE AMPLITUDE string theory which is the linearized version of a number of
covariant derivatives acting oR*. These higher derivative
terms are part of the full duality-invariant effective action for
the type-IIB string.

The tree amplitude for the scattering of four gravitons of
momentak]’, k&, k5, andkj in either of the type-Il super-
string theories is given by Eqg$l.1) and(1.2) whereT can
be written ag5]

I1l. EXPANSION OF THE ONE-LOOP AMPLITUDE

64 Z2L2n+1) (a2t In this section and the next we will consider the low en-
ST “ 2on+1 |\ 4 ergy expansion of the one-loop integ(&l?).in powers ofs,
t and u. Formally, this involves expanding the integrand
i1 onid . omi1 F(7,7) (1.9 in powers of the scalar Feynman propagator
X (ST U (2.)  which are then integrated over the toroidal world sheet
where we have used the elementary identity'(b—2) = yz ) - ) 3 o
+3=14(N)Z"/n. It is convenient to introduce the notatier sz d TF(T?)=E d_TJ 11 dv iDn
=(a'I4)K(s*+t“+u¥) (o,=0), which satisfies the recur- rra & s A )i, T
sion relation (3.1
1 1 where the exponent is given by
a'3+j=§0'20'j+1+ 3930), V;>0. (2.2

The solution of these conditions can be expressed by the D=a’sIN(x12x34) + @'t IN(x14x23) + @' UIN(X13X24).
generating function (3.2

o0 2o+ X3 This expansion is only formal since we already know that the
i 2 03 . . . )

> Xoy= amplitude is not analytic a=0, t=0, oru=0. This lack of

j=1 1— 3 ox3— 3053 icity i i i ici i

J 202 303 analyticity is manifested by divergent coefficients in the se-

ries (3.1). One way of dealing with this problem would be to
=(X20,+X303) >, XX consider the expansion in a power series ground a nonzero
k=0 value ofs, tandu~e. The terms that are singular in tle

P/ o) d —0 limit can then be resummed to give the logarithmic sin-

) (_3) } (2.3  Qularities.

3 A more straightforward procedure is to evaluate the coef-
ficients of the derivatives dof in the smalls, t andu limit.

Therefore We will therefore consider the general term

(p+q)!

2pi3g=k P'Q!

02

X 2
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™= lim (1= e P ) =In x5 (v, 7), (35
S,t—
= lim (4a’~H™ MmN =1, satisfying toroidal boundary conditions can be written as a
S0 st nond sum over image propagators as
d?r 3 d2p® 1
I H - _ m
_s!’:TO J;. 7 L,Iljl ™ (4A5—44,) P(V|T):—§ nmEEZ In|v+m+n7]|
X (4A—4A )" expla’sAq w5
- > Injm+n7 |+ -—, (3.6
(mm)#(0,0 27
+a’tAt+a’uAu)—I§{gh’;)n), (3.3

where the last term is the zero mode of the Laplacian. The

whereAq, A,, andA, are defined in Eq(1.11) and (™ Propagator can also be expressed as
=(4a’ —1)m+n&2’l&?| nonan-

Sincel honanhas logarithmic branch points thE"" terms Pl — EI 01(v|7)|? 7T_V§
are singular functions o andt which must be extracted (vl = el 01(0|7) 27,
from the complete expressidB.3) before the analytic terms )
can be determined. Since the nonanalytic terms originate, via _mvy 1 sin(7v)|?
unitarity, from the logarithmic normal thresholds due to on- T 271, 4 n
shell intermediate states we can anticipate that they arise )
from the region of moduli space in which,—, which is B ( q"  sif(mav) ve c) 3.7
the degeneration limit of the torus. Our strategy in calculat- M= \1—q™ m R '

ing 1 ™" will therefore be to introduce a cutoff at a finite

but large value ofr,. _'I'he.reglonrzs(an)g|ves a finite CoN-  \yhere q=exp(d77) and 6,(v|7) is a standard Jacobi theta
tribution to 1™ which includes|{}™ together with a  f,nction.

L-dependent term. In this region the exponential factor in the - Apother representation of the propagator that we will use
integrand on the right-hand side of EG.3) can be replaced s optained by Fourier transforming with respecttovhich

by unity. However, forr,=L the exponential factor plays a |eads to an expression in terms of the sum over the dis-
crucial role in regulating the integral, resulting in the termscyetized momenturms+ n

in 1™ together with another finite-dependent piece. De-
pendence orL cancels out in the full expression. These

nonanalytic terms will be considered in detail in Secs. IIC, P(y|7r)= i Z LZ
IV C, and the Appendix. 47 (mmZ 00 [M7+n|

Differentiating the analytic terms in Eql.16) an appro- v v
priate number of times with respects@ndt we see that the X exp{ 27-rim( vy— 7-1—2) —2min 2|+ C(r,7)
coefficients that will be extracted from E¢B.3) have the T2 2
form (up to fourth order 1 7

100—q, |(L0_Q, |20=gp=p|LD A (msZ(0,0 |MT+ n|?

(3.9 T _

120=—6c, 139=0, 13Y=24d=1322, |10=4gd, ><e><n[7—2[v(mr+ n)—v(mr+n)]|+C(7,7).
together with the terms obtained by interchangggith t. (3.9
The numerical values of the coefficieras b and c will be
determined in Sec. 1V, althoughwill be left in the form of  The zero mode is given by
a multiple sum that will not be evaluated.

1
A. The scalar propagator on a torus C(r,7)= §|n|(277)1/277(7')|2' (3.9

The exponenD= a'(sAs+tA+UA ), in the expression
(1.9 is a linear combination of scalar world-sheet propagaynere 7(7) is the standard Dedekind function.
tors joining the locations of the four vertex operators. The The combination of propagators that enters the amplitude
scalar propagator between two complex poimt8=1{) s one for which the zero mod€ cancels out. This is a
+ivy) and vV =2 +ivY) on a torus of modulus is the  crucial point in considering the modular invariance of the
doubly periodic function of(") =) — () in the domainr  integrand. The group SI(2) is generated by the two ele-
that has a logarithmic short distance singularity. Thus, thenentsT: 7—7+1, v—v andS. 7— —1/7, v—v/7. Un-
propagator der these transformations the propagator transforms as
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T: P(v|r+1)=P(v|7), i,j(=1,...,4)with positions»(") that are to be integrated
over the torus. We will represent each vertex of a diagram by
vl 1 1 a dot and each propagator linking two vertices by a line. The
S P( ;‘ - ;) =Pv[)+ §|”| 7, (3.10 completenth order contribution requires a sum over all ways
in which the propagators can join the vertices. For any term
so the propagator has a modular anomaly which comes frorim this sum every vertex that is not connected to any propa-
the zero mode in Eq. (3.8). However, the sum over propa- gator contributes a factor gf;d?v;/7,=1.
gators in the exponeri is modular invariant since the zero More generally, we need to isolate divergent contributions
modes cancel after using the on-shell conditieft+u by dividing the r integration domain into two regions

=0. Therefore, it is very convenient to use the subtracted F=F +R,. (3.1
propagator
P=In ('), 7)=P-C, B1)  The domainF, defines the “restricted” fundamental domain
which is modular invariant. The expressi@8) can be writ-  of the 7 plane in whichr,<L, whereas the domaiR, de-
ten as a Poincarseries® fines a semi-infinite rectangle in theplane, in which,
A 1 =L. As stated earlier, the termi§™" that have threshold
P(v|1)= E — E Yl y(v),v(1)], singularities at vanishing Mandelstam invariants arise from
p=1P"yelar the domainR, and will be dealt with separately by integrat-
) T2 oimph ing over this larger, region.
with y(v,7)= o7 ¢ % (3.12 For the finite contributions that come from the dom&jn

the integrations over the positions") enforce overall con-

where v,=v,/7, and the SI(Z) transformation acts om servation of the discrete momentyms=ms+n in any dia-

and by gram. This means, for example, that any propagator with a
_)a7-+b . 4 (313 free end point gives a vanishing contribution since it has
Ter+d Vet d’ ' been normalized to have a vanishing zero mode. Therefore,

wherea, b, ¢, andd are integers andd—bc=1. nonzero contributions only come from diagrams in which

We will also need to express the propagator as a FourigtV0 OF more propagators end on every vertex. Various com-
series in powers 06?71, which has the form binatorial factors are associated with each diagram and will

be described for each case separately.
fp(v| )= 2 2 —1282”7“;2
41 aZzo N

C. The threshold term | ,gpan

1 1 . .
+ o> gimmikryt vy g 2mmlmifk— vyl The lack of analyticity of the low energy expansion of the
4’;‘:;’ |m| one-loop amplitudg1.7) due to the logarithmic thresholds

makes the integral representatioh.7) ill defined. Since
(319 thereis no region of the Mandelstam invariants in which the
In analyzing the singular terms in the amplitude it will be amplitude is real the only way of making sense of the inte-
important to make use of the leading contribution to thisgral is to decompose the integration domain into three do-

expression for the propagator at large values-of mains 7Ty, 7y,, and7,, so that the amplitude is separated
. T, 1, = @, . into real analytic terms that have thresholds in {isg),
P(v|r)= Er;o € 2= > Vo= gl + 5/ (t,u), and (U,s) channels, respectively. The integral repre-

sentation for each of these terms can then be defined in the
region of physical scattering>0; t,u<0, by analytic con-
_ ] tinuation. For example, thes(t) term is defined by continu-
B. The diagrammatic rules ation from the regiors,t<0 (with u= —s—t>0) where it is
The calculation of (™™ in Eq. (3.3 involves integration real. This decomposition follows very naturally in an opera-
of powers of the propagato@(y(ij)h.), contracted between tOr construction of the loop amplitude but does not mani-

various combinations of the points,j (i,je{1,2,3,4) festly preserve modular invariang@l. .
which are the locations of the vertex operators. It is easy to 1he 1eading logarithmic singularity in is the leading

. D . .
deduce a set of diagrammatic rules at any given order. A&™M in limy;_o/(e"—1). This can be extracted by first

term of orderA™ (where each power ot may be any of the differentiating the integral representation with respecs:to
threeA,’s with r =s,t,u) contains a product af propagators d2r 2 d2®
J — J 49,DeP

F T Ti=1

which join pairs of points(which we will call “vertices”) 95l nonani= "mo
S,t—

(3.19

2
2 72

d?r 3 20
: D
3Recall that the Poincarseries associated with a functignde- = lim jf 2 Til:[l . (4As—4A)e”.
fined over F is Ty(7)=3,cr rp(Imy2) for 7=m+ir,e ™ 510 2
={r,=Im >0} andTl',,.={* (3 }),ne Z}. (3.17
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The contribution from the domaitF, vanishes due to the =dr,

integration over the'!). However, the regiofR, leadstoa  slnonan=47 | —— IT dojwi(wz— ;)
. . . . L 72 Osw;swrswzs<l

nonzero result. In this region we can approximBRtby using

the asymptotic expression for the propagd®i5 which is w @@ T2Q(s,1)

proportional tor,. In the term with thresholds in thes, 1)

channels the var'lablecéZ are ordered in such a manner that :47Tf 11 do;01( 03— ©,)

the rescaled variables O<wi<wy<ws<l

=2 (3.18 X{—y=In[—a'7Q(s,t)]-InL}+o0(s). (3.22
LT ' The InL terms cancel out in the complete contribution to
span the range 130= 5 —4,l. It it is easy to integrate Eq3.22 together
with the corresponding expression @i , givin
Tot: 0<so1Swr<w3z<wy=1 (3.19 P g exp @ nonany 9IVING

1

7! =f [I  deQsingst
(where we have used the conformal symmetry to i) 4 "N ) ocui<uymag=t

= 7). The various permutations of this ordering are relevant

in the (t,u) and (u,s) regions so that the whole range, 0 +f 1T dw; Q(t,u)In Q(t,u)
<w;=<1 is covered by adding the three regiofys, 7;,, and 0<wg<wp<wy=<1
7T.s, together. In terms of these variables we have, in the
region Zg,, +f . 1T ) dw;Q(u,s)In Q(u,s).
D=D(s,t)= M a's(Ag—Ay)+a't(A—A vz
( ) o ( S u) ( t u) (3.23
The scale of the logarithm cancels out of the sum of terms in
=770/ [Swi(w3— wy) +t(wy— w1)(1— w3)] the full expression. This threshold term is exactly the same

as that obtained from the one-loop calculation of the four-
graviton amplitude in either of the type-Il supergravity theo-
ries in ten dimensionkl1,10. The corresponding discussion
of the higher-order threshold tering,an» Which is intrinsi-
A(s,t)=swi(w3z— wy) +t(wr—wq1)(1—w3). (3.21)  cally stringy since it involves higher powers af , will be
given in the Appendix.
Similar expressions for the function®(t,u)=t(A;—Ay) Such threshold terms are contained in the largeegion
+u(A,—A,) and D(u,s)=u(A,—A)+s(A,—A,), define of the integration over moduli space, which means that they
D when expressed in th&, and 7, regions. In theR,  are contained in the coefficientéQ“L’”) that are defined by

domain of Eq.(3.17 the 7, integration is trivial since the integration over the domaiR, . So long as ¥m+n<4 it
integrand has na; dependence. The, integration(from L will be sufficient to substitute the asymptotic form of the
to =) simply gives propagator which will produce contributions of the form

=77’ Q(S,1), (3.20

where

d?r 3 g2y
lim 18" (s,t)= lim f —2f 11 (4As—4A)™M(4A,—4A ) el
L R T JTi=1 2

s,t—0 s,t—0 T

3
= lim f drpry =2 I1 doi(47,0)™(475,0) e 722
L TiZ1

s,t—0

3

© L ,
= lim U drz—f drz)rg”“zf I1 doi(470,0)™(475,0)"ex 7722
0 0 Ti=1

s,t—0

m+n—1
— i (m,n) _ m-+n
J:TOI”O”&F(S'U 2X(4) e—
p!q!
XaTd D o [P (— 1)9P(s+ 1)+ (— 1)P(s+ )Pty (3.24

p+d=m+n (2m+2n+3)! (s,)=(0,0
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, _ . FIG. 2. Diagrams that contribute 1§ with m+n=3.
FIG. 1. The diagram that contributes "™ with m+n=2.
ally these are nonholomorphic modular functions that are

with p,q=0. TheL-dependent term in this expression will 5154 gigenfunctions of the Laplace operator in the fundamen-
cancel with a term that arises from the integration over the,| qomain of Si(Z)

domainF, . Whenm+n=4 it is no longer adequate to use

the leadingr, contribution to the propagators and a sublead- 92

ing contribution of the form liL arises. This leads to the VZZSE4T§a—&—ZS= s(s—1)Zs. 4.3
term |l onan2 @s will be seen in more detail in Sec. IV C and Tor

the Appendix. These functions have, expansions in which there are two

power-behaved terms together with an infinite set of expo-

IV. THE ANALYTIC TERMS | {mm nentially suppressed, nonperturbative, terms
The analytic terms are extracted from the integration over S
Fi WhICh is finite. In_thls doma}ln we can first perform the Z.= %
») integrals to obtain a density on the moduli space and miZ00 [Mr+n|
then integrate this over and 7. T'(s—1/2)
The first term in the expansion of E@..9) using Eq.(3.3) =2{(2s) 15+ 2771/2W l(2s—1)73 °
is the trivial constant term. The result of the integrations is
simply the finite volume ofF. This defines the first constant +0(e 2772), (4.4
in Eq. (1.16),
5 Diagrams of this type with vertices &t,2), (3,4), (1,3,
|00 5 &7 7 (4 and(24 contribute equally td (29 Integrating Eq.(4.2)
F r% 3’ ' over the restricted fundamental domaffy and summing

over these four contributions gives
which is the well-known coefficient of the loop contribution
to the R* term.
The next terms in the expansion dfé® and| (Y which
are given by Eq(3.17). As remarked earlier, the(" inte-
grations in Eq.(3.17 cause the integrand to vanish in the where the factor of 4 comes froﬁi[sz+t2+(s+t)z]. This

2.0 1 d?r
7 =4x— fLT_§ZZ(T’_)’ (4.5

domainF_ and the integral only contributes tq‘#,',?;n. expression is easily integrated by substitutibg= V2Z,/2
using Eq.(4.3 so that the integrand is a total derivative and
A. Terms of order s2 Eqg. (4.5 reduces to an integral over the boundary. The re-

stricted fundamental domain has a single boundary which is

The only nonvanishing contribution to the integrand gf at ,=L and the result is

at ordera’? is the bubble diagram of Fig. 1. This term mul-
tiplies (s?+t2+ u?) in the expansiori3.1) and therefore con- 26,2

i (200 (LD (0.2) i : 20_% T -2
tributes to1 2%, 1Y and1{%?. The density on moduli 7= LTOL™). (4.9

space arising from Fig. 1 is

42, g2, ) This L-dependent term cancels the correspondindepen-
A(1,7)= f ———[Inx(»1|7)]? dence arising from{® which is given by Eq(3.24. Since
4 2 there is no residual-independent piece we conclude that
1 7 129=0, which implies that
_W(m,n)qt(O,O) |m7+n|* b=0. 4.7
= #Zz(r,_). (4.2 This means that there is r&3 term in the expansiofl.16).

In a similar manner it is easy to verify that the cross term

. . . . . (1'1) . . . . .
The functionZ, an Epstein zeta function which is an ex- 'an~ aso vanishes, which is consistent with E8.4).

ample of a nonholomorphic Eisenstein sefiddore gener-
B. Terms of order s°

The diagrams in Fig. 2 are the ones that surviveifié

“This is related to the functionEs in Ref. [13] by Z, integrations. These contribute to terms in the expangdh
=2{(29)Es. with coefficient a'3(s3+t3+u®). The first diagram is the
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product of three propagators joining three distinct verticesSince the integration in Eq4.10 is over the restricted fun-

and gives contributions to the integrandl(fﬁL'l) (andl(flﬁz)) damental domaifF;, some care has to be taken in using the

of the form (k> >i) unfolding procedure. For an integral such as K410,
which diverges as a power a&f asL—, it turns out to be

consistent to simply se‘t(q-) 0 for 7,=L, which cuts off

Bi(7,7) (4 )32 |ma-+n|6 (4m)3 Zy(7,7). the divergence at,—.° Using this pgocedure we can ex-
(4.9  Press the contribution of Eg4.10 to I(ﬂ'l) in the form

This is again a nonholomorphic Eisenstein series satisfying 64 d2r
Eq. (4.3, here withs=3, so it is an eigenfunction of the |g3v1>(32)=—6><—f =z B,(7,7)
Laplace equation witts(s—1)=6. The integration of the - 3 JA

density(4.8) over the the restricted fundamental domain can d2,D dz (2
again be performed using Gauss’ law. This gives, =— 128j J ,,(12)|7.)]3
].'
103
12Y(By)= L2+O(L" 3 4.9 - Ldt [ d?u t
(By)=—35g7L°+O(L ™), (4.9 sy f f L
. 2573, 13 3
+t°—(s+1)°]. NN
where the factor of-6 arises fromyzd[s°+1t°— (s+1t)~] e 2P (72). 414

The second diagram of Fig. 2 involves only two distinct
vertices and potentially gives a contribution to the integrand
of both1 29 and1 2 (as well ad E’%S) and| &%) of the form  where the overall factor of-6 comes fromy2d s*+t°—(s

+1)3]. The expression for the integral ove{" and v{?) of

i J, g2, g2 [7?( )] the zeror, Fourier mode is
2 T - 2 14
2 2
1 J‘l/Z dy(l)dv(Z)C(PZ)z t ieZﬂ-in?/(zlz)
= —p R 167\ #50 n?
(A7) (mn), (k0o # (0,0
1 1
3 o(m+k+p)s(n+l+q) i1 +EE _ze—4wt|m|\k V<12\.
“72 ek 1P preqP: 419 m7o m

(4.19

In fact, 19 involves the combinatio3[s®+t3— (s+1)3]

=0, so it automatically vanishes as in E@.16. However, o . . .
the integrand of 2 isyproportional toB Ha.16 Substituting the first term on the right-hand side into Eq.
2 (4.14) leads to thd_-dependent term

Unlike the earlier examples, this expression is not an
eigenfunction of the Laplacian on the fundamental domain
so a new idea is needed in order to perform the integration 2. L2 (2 (D) yn(2)
over 7, . We will make use of the well-known ‘unfolding '1ﬁL(BZ):_128X7£1/2dV2 dv;
procedure’ by using the representation of the propagator by a

Poincareseries(3.12. This relates the integral af X f over 1 1 2i 12 8
F (where ¢ is any Poincareseries to an integral over the X 47Tr;0 nze
semi-infinite line
" " _L? d(ny+n,+n3)
r o =——3 2727
J —zwmf(r):J —Z $(O(CH)(D), (41D Tomezdop - NIMNg
F T t=ot 08 3
=— L2 (4.1
where the expressiofCf) is the zeror; mode of the func- 3x8! - '

tion f(7),

2 Substitution of the second term on the right-hand side of Eq.
Cf(TZ):f drf(7). (4.12  (4.15 into Eq.(4.14 gives theL-independent term
/

;Ii'trileesrelatlonshlﬂ4.1]) is derived by making use of the iden- SAlthough this cutoff leads to the correct answer when the integral
grows as a power of, more care is needed in regularizing loga-
rithmic growth of the kind we will meet in Sec IV C. In that case

f E :f :f ) (4.13 the integral diverges at the points on thg=0 axis that are the

NH T\ \H  J7p>0

images under S12,Z) transformations of the point,—oc°.

104011-8



LOW-ENERGY EXPANSION OF THE ONE-LOOP TYPE-. .. PHFBICAL REVIEW D 61 104011

d2, g2,
OO -« OO a8 i

1

a (477)4(m,n)2¢(0,0) (r,s)E;ﬁ(O,O)
Q (P.)#(0,0) (v,W)%(0,0
= =C
Cs 4 . S(m+p+r+v)s(n+g+s+w)

2 Imrt+nZprtafrr+svrtw]?

FIG. 3. The set of diagrams that contribute 8" with m (4.22
+n=4.
The term C3(7,7) is once again a non-holomorphic

Eisenstein series which can be integrated over the restricted

wdt (1 1 fundamental domain using
(21 - _ - _ ~(1)473,(2)
7 (B2) E _2 ” fod”z dv; ngomz P
K f —Z4=2¢(8)L3+0O(L™%). (4.23
o o~ 2PV~ 4mtjmllk—i A T2 3
47 11 (= dt Inserting the appropriate combinatoric factors gives rise to
=—— E 2 — — f — the L-dependent contributions
T p=1mz0 P™M o pott 10 4
2 |(31(C3) 0 |22(C3)_2 X?ﬂ- L3,
=—6xX5—-{(2){(3). (4.17) 101
37 (4.249
(40 210x 374
20(Cy=—F7—LS

10!
The sum of thel-dependent terms{% 1)(B )+I(2 (B,)

[see Egs.4.16 and (4.9)], again cancels with the corre- The integration of the expressioi®s, and C; over the
sponding term in the integration over the dom@p [1??,  restricted fundamental domain involves the integration of the

L square of an Eisenstein serig&,}?. This can be evaluated
by using Green’s theorem in the fundamental domain. For
general real values «f,s’' >1/2 this states that

in Eqg. (3.24]. However, in this case there is also a finite

contribution tol %, which determines the coefficient of the

a'3(s*+t3+ud) term in Eq.(1.16 to be

1 d?r
, 47(28)L(28) 15, 5 ZsZs
c=3-42){@3). (4.18 Lsts' -1 i-s=¢ LS~

H(S)H(s)+ < $(5")

Tsts —1 sts —1

s'—s

C. Terms of order s* _ b(s)+o(1) (4.29
: . : : s—s’ ' )
The four kinds of diagrams that give nonzero contribu-
tions proportional tax'*(s*+t*+u?) in the expansiori3.) | here
are shown in Fig. 3. These each have four propagators and
contribute tol ™™ with m+n=4. Upon evaluating the(") {(2s—1)I(s—1/2)  =°
integrations these give the following densities for the moduli #(s)= g (29T (S)" (4.2

space integrals
The symbolo(1) means that the remainder goes to zero

1 e
_ 2 4.1 when L becomes infinitgfor a more general statement see

o(n7) (4 )4( 2 419 exercise 12, p. 216 of Vol. | of Ref13]). It follows from

this that
1 d?r 1 £(3)
1 —_|3
Colm 7= (e (Z2)" (4.20 47(8)? f 7 (B gl gy nl=¢'2).
(4.27

The last term gives &-independent contribution to the co-
efficientd in Eq. (1.16. The other terms in Eq4.27) give
another contribution that behaves b3 as well as a new

CS( 7':7) 4 Zy, (4.2])
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L-dependent term proportional tollnSuch a term is implied

by the presence of a new logarithmic threshold of orded rgg°>
a'*s*In's which is contained ir_ ohanpthat is evaluated in

the Appendix. Taking into account the combinatorial factors,

the contribution of these-dependent terms is
15 (C)=157(C,)=0,

29><7 4

122(Cy)=2122(Cy) = L3+ i;z(3>z<4>|n L,

(4.29

2109% 774 . 96
I;‘ﬁ,”)(cz):zléﬁ")(cl):TL3+ —U3)L(4)nL.

[ (40

The last remaining term to consider @,. As with the | feg
two-loop term(4.10 this gives an expression which is not an
eigenfunction of the Laplacian on the fundamental domain.
Once again thel?r integration may be performed by using
the unfolding procedure as in the previous subsection. How-
ever, in this case we have to take greater care of the diver-
gence of the integrand at,=L— (as pointed out in the
footnote in Sec. IV B. The integral can be rendered finite by
subtracting a suitable linear combinationZf and Z5 from
the integrand. Consider, for example,

64 d?7 [ d?vPd2p@ |
@Oc ymagx— [ ST | BTV A a2))y4
|}‘|_ (Cy)=48 3 fﬁ T% f 7'% (P(v |T)) )

(4.29

where the factor of 48 comes fros[ s*+t*+ (s+1)*]. Itis
easy to extract the terms in the integrand that are divergent in
the limit L—o from explicit from of P(v(*2|7) given in
Egs.(3.14 and(3.15. This gives explicit_® and InL terms
that can be subtracted in a modular invariant manner by de-
fining a regularized value df*9(C,),

1140(Ca) =110(Cy) ~15:0(Cy), 4.30
| orans
ance ofl
where
| 4.0)
d27 r d2pDg2,@ 2 | div f
I (Cy)= 1024f _ZJ' > (_ 274 tion of |
AT 5 (41)
b (2 43
@ %) (4.30)

and the integrals of, and Z3 are given in Eqs(4.23 and
(4.27), respectively.

Since the expressio®.30 is finite and its integrand is terml

- Ldt [ d?v <1>d2 @ ¢
)=1024E f f
p:

2
(Ch)=— 3

PHYSICAL REVIEW D61 104011

2

X e 2M'rp1/2 [C[,P( V(lZ))S]

d2,3g2,@
+2ft—<:[7>(y<23> )P P(14)]

3 d2v®d?p@®
f C[P(v1?)Z,]].

 (4m)? t2
(4.32

This term can be evaluated by using the explicit definitions
of P and Z,, giving theL-independent result

4 In|p—n|
—=U3) X —ao
p#0n+#0 PN

p#n
8 1

+ — —
T m#0my+my+my=0 |m1m2m3|
ki € Z,m1kq +myko+mgkz=0

1
23 ;%

><exp< 2i mpii? — 27Tt2 |y ki — 952
<

(4.33
The L-dependent terms are contained in
liv) (Ca)=2157(Cy)
29% 574 48
=—Jor Lt —={(3)(4)InL
10!
48 5,
——20(4%¢'(2). (4.34

The L3 term is connected, as expected, to the presence of

while the InL term is again connected to the appear-
4,0
ETOH;FIZ'

The sum of theL® contributions arising in{:%(C;) and
(C,) indeed cancels the contributions from the integra-
(40 over theR, domain in Eq.(3.24). Similarly,
the total coefficient of It arising in the sum of 22(C,),

122(Cy), and1Z2(C,) is

;%?2,— 3§<3>§<4)In L, (4.35

which will be cancelled by the presence of the new threshold
nomanz The general expression fBfynan2is fairly com-

modular invariant it is straightforward to evaluate using theplicated but we see from the Appendix that at0 it reduces

unfolding procedure. This gives to
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I nonand S,t=0)
!

T
(4.36

L
Taking fours derivatives leads to the same coefficient of In
as that in Eq(4.35.

The finite term 1&’(C,) (4.33, together with the
L-independent parts of Eq(4.34 and 1*9(C,) and
1 (49(C,) [which come from the finite last term of Eq.
(4.27], determine the value of the coefficieshin the expan-
sion of the loop amplitude in the form

+In

| a's
T

4
= U3 (a'9)"

Injp—n|
I

4 1
d=— {4’ ()~ 5532

1

6

1

m;#0,m;+my+mz=0 |m1m2m3|

ki € Z,m1kq + myko+mgky=0

21 (=dt (1t
XD = —J disPdl?
p=1P"Jo t Jo
3

_27Tt|21|m|||k| A(12>| .

)

P A(12
xex;{ _2|7TpV(2 )

(4.37

We have not extracted the numerical value of this compli-

cated looking expression.

V. SUMMARY AND CONCLUSION

In summary, we have determined the first few coefficient
in the expansiori1.16 of the four-graviton one-loop ampli-

tude in either of the ten-dimensional type-Il string theories.

After explicitly subtracting the nonanalytic threshold terms
Inonanland I honanz We found that

a= b=0, c (5.1

T 2

3 32 L(243),
and d is given by the expressiot¥.37 that we have not
evaluated.

These coefficients give a little more insight into the struc-
ture of the low-energy expansion of four-graviton interac-
tions in the M-theory effective action. The leading term of
this type is theR* term about which a great deal is known
[14-18,1. For example, in the ten-dimensional limit corre-
sponding to the type-IIB string theory, it has dependence o
the complex coupling2=C©+ie ¢ (where C® is the
R®R scalar andp® is the type-1IB dilation, that enters by

an overall factor ofE;(£2,Q)), where Eg is the modular
invariant Eisenstein series that is proportionaZto(see the
footnote in Sec. IV A. This function has an expansion for
large(), (weak coupling that begins with the tree-level term
with coefficient{(3) in Eq. (2.5 and is followed by a one-
loop term with a coefficient that is precisely the valueaanh

PHFBICAL REVIEW D 61 104011

Eq. (5.1). There are no further perturbative terms in the ex-
pansion but there is a precisely defined sequence of
D-instanton contributions.

One method by which the exact form of the tRé inter-
action was determinefdl] by calculating the one-loop con-
tribution to four-graviton scattering in eleven-dimensional
supergravity compactified on a two-torus. Recently this
method has been generalized to evaluate the two-loop con-
tribution in eleven-dimensional supergravity which contrib-
utes at leading order in the low-energy expansion to the
D*R* interaction, where the notation symbolically indicates
four derivatives acting on four powers of the curvature. In
the limit that gives the ten-dimensional type-11B theory the
interaction is given by a term in the effective action density
of the form[2]

£(5)V5%E,,0,0) (52 + 2+ U2 R (5.2

(where the factors 08, t2, and u? represent appropriate
derivatives acting on the curvature tengots this case the
modular functionEsj, has an expansion for large, (weak
coupling that begins with the tree-level term with coefficient
{(5) in Eg. (2.5 and is followed by a two-loop term—the
one-loop contribution is absent. Again there are no further
perturbative string theory contributions but there is an infi-
nite series oD-instanton contributions. The vanishing of the
one-loop contribution in Eq5.2) is confirmed by our state-
ment that the coefficiertt in Eq. (5.1) vanishes.

The value ofc in Eq. (5.1) is the coefficient of the one-
loop contribution to the £+t3+ u®)R* interaction. This is
not a term which has yet been motivated from any argument
based on duality or supersymmetry. In particular, it is not yet
clear how this term packages with the tree-leg€8)? term

Sn Eqg. (2.5 to make a modular invariant expression in the

type-IIB limit.

More generally, one might ask whether there is a simple
modular invariant expression for the complete four-graviton
amplitude that generalizes the tree amplit¢@d). An obvi-
ous candidate is obtained by replacing the coefficients
2{(2n+1) in the tree amplitudg2.1) by 7, 2" *2{(2n
+1)E,112 [19,20. The resulting amplitude has, t-, and
u-channel poles at values corresponding to the mass of every
excited state of all thép, g) D strings. This expression has
been conjecture@l19] to be some sort of approximation to
the exact four-graviton amplitude of the type-1IB theory. It
does indeed reproduce the first few of the known coefficients
in the low-energy expansion: by definition, it contains the
exact tree-level amplitude and it also contains the correct

ratio of the Eg;R* term and theEspa’?(s?+t*+u?)R*

term. However, it produces a value for the coefficient of the
one-loop part of thex'3(s3+t3+u®)R* interaction that is
twice the value ot in Eq. (5.1). It is not surprising that the
naive modular invariant conjecture of R¢f.9] fails since
there is no obvious sense in which it can approximate the
exact amplitude. After all it purports to describe an infinite
number of highly unstable non-BPS states in a nonperturba-
tive manner but lacks all of thémassless and massjve
threshold cuts that are required by unitarity.
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APPENDIX: MASSLESS NORMAL THRESHOLDS

. . 1 ) ) . )
The thresholds that arise from massless on-shell interme-5 — ' _(e2|w(mv(112)+llmlv(212)>+ezlw(mv(f“)ﬂlmlv‘f“))).

diate states come from the region of integration over near the * mzo 4|m|
boundary of moduli space at which the toroidal world-sheet (A7)
pinches in such a manner that the four vertex operators are

separated in_to two bunches. At this degeneration point thg¢ne sum ovemin Egs.(A5) and(A7) gives the effect of the

world sheet is the product of the two tree-level world sheetsassjve string states that propagate between the vertices for

that enter in the right-hand side of E@..18. _ the particles 1 and 2 or the vertices for the particles 3 and 4,
In order to extract these thresholds from the eXpressiong 'in the legs of the loop that are not degenerating. These

(1.9 for the loop amplitude it is very useful to change the ormg are the ones that give rise to the stringy corrections to
definition of the moduli fromv(") and 7 to ") by defining  the |ow-energy field theory thresholds.
The contribution to the one-loop amplitude in tfig re-

(1) = (D (2) — (1) (2) (3)= (1) (2) (3) . -
vEETT, viEEg s, vEEg t ety gion can be rewritten as

(A1)
(4) — ~— (1) (2) (3) (4)
visr=n 4ttty | rdsz 3 42,0 arsii)
. =| — exfd a's(Ag—
where we have used the conformal invariance of the loop Tst R Ty JI,i=1 T2 =
amplitude to fix»¥= 7. The 7 variables are the ones that L
arise naturally in the operator construction of the loop am- +a't(A—Ay) Jexpla’sdy). (A8)

plitude as a trace over a string tree. In such a construction the

propagator describing each leg of the loop is written 8 rpq ' expansion is obtained by expanding the last exponen-
tial in powers of §5. The leading term reproduces the field

a' dzdz | theory s-channel threshold given by the first term in Eq.
Ai:ﬁﬁzq?z 0279, (A2)  (3.23. The next contribution, linear ids, vanishes due to

the integration over(?) or v{?. The next term has a factor

wherez=g277. of (a'sé8)? and gives a nonzero contribution to the logarith-

The degeneration limit of relevance to thechannel —mic behavior at orderd’s)?. After a little algebraand add-
thresholds is the one in which)— o and »$)—, which  ing the contributions of thd, andZ,s domaing this gives
puts the twaos-channel propagators in the loop on shell. Thisthe threshold contribution
corresponds to the region of integrati@g:

a's)? (=dr 8
V(21)$ V(22)$ V(23)$ V(24): T (A3) I nonand S:t, _S_t):ngo % JL 7__32 z iljl do;
with 7,—o0. In this limit we may substitute the asymptotic Xeﬂ'a'TZQ(S,t)(ef4ﬂ-m72(w27w1)
values
+ e 4mMn2(1-03)) 4ty term+ usterm,
A~A =P (V1) + P (1), (A9)
(A4)

Ay~K = P(113) + P=(129),

w RSP PR where the integration variables; are defined in Eq(3.18.

and This integral is complicated but for the special case) it
reduces to the simple expression

77_(V<212))2 l| Sirl(wv(12>)‘2+ 71_(1/(234>)2

S 27, ™ ‘ 27, 4 a's\Y [a's
1 Sin('JTv(34)) 2 I nonand $,0,— ) = ?§(3)§(4)<T> ln(I)
4 !
a's
:Zs"‘ 5, (A5) +In| — I) . (A10)
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