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Two loops in eleven dimensions
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The two-loop Feynman diagram contribution to the four-graviton amplitude of eleven-dimensional super-
gravity compactified on a two-torug? is analyzed in detail. The Schwinger parameter integrations are
reexpressed as an integration over the moduli space of a secondZtdrushich enables the leading low-
momentum contribution to be evaluated in terms of map@'%ﬁnto T2. The ultraviolet divergences associ-
ated with boundaries of moduli space are regularized in a manner that is consistent with the expected duality
symmetries of string theory. This leads to an exact expression for terms of @®érin the effective
M-theory action(whereR* denotes a contraction of four Weyl tensorhereby extending earlier results for
the R* term that were based on the one-loop eleven-dimensional amplitude. Precise agreement is found with
terms in type-llA and -IIB superstring theory that arise from the low-energy expansion of the tree-level and
one-loop string amplitudes and predictions are made for the coefficients of certain two-loop string theory terms
as well as for an infinite set db-instanton contributions. The contribution at the next order in the derivative
expansiond®R* is problematic, which may indicate that it mixes with higher-loop effects in eleven-
dimensional supergravity.

PACS numbe(s): 04.50:+h, 04.65+e

[. INTRODUCTION croscopic input that is not contained in the supergravity
theory but should be built into a detailed microscopic theory,
This paper continues the study of the interconnections besuch as the matrix model. However, it was seen in IR&f.
tween quantum supergravity in eleven dimensipiflscom-  that if some mild extra information is fed in from string
pactified on7 2 and properties of perturbative and nonper-theory the regularized value of the one-loop divergence in
turbative string theory2,3]. In earlier paper$4—6] it was  the four-graviton scattering amplitude is uniquely specified.
shown that the one-loop diagrams of eleven-dimensional sufhis mild information is the fact that the type-llA and 1I-B
pergravity that contribute to certain special amplitudes reprosuperstring theories have identical one-loop four-graviton
duce terms in the effective type-Il superstring actions thaamplitudes. Similar statements hold for other interactions of
may be described by integrals over sixteen Grassmann conthe same dimension that are related to the four-graviton in-
ponents, which is half the dimension of the type-Il super-teraction by supersymmetffs]. We will see that requiring
space. These terms include tRé term, which is a specific the various string duality symmetries to hold will also se-
contraction of four Weyl tensors that arises from the leadingverely restrict the form of special higher-dimension interac-
behavior in the low-energy expansion of the four-gravitontions that arise at two loops in eleven-dimensional super-
amplitude. gravity and contribute higher-derivative terms in the
The main objective of this paper is to extend this analysisffective action.
to the evaluation of higher-derivative terms in the effective In Sec. Il we will give a schematic overview of the loop
action by considering the low-energy expansion of the two-amplitudes of eleven-dimensional supergravity compactified
loop contribution to eleven-dimensional supergravity com-on a circle and on a two-dimensional torus, and their corre-
pactified on72. This seemingly awesome calculation is spondence with terms in the string theory effective action.
greatly facilitated by the observation in RET] that the two-  The purpose of this section is to show how simple dimen-
loop amplitude has a surprisingly simple expression as a kisional arguments can hint at connections between these
nematic factor multiplying a subset of the two-loop ampli- quantum loop amplitudes and the structure of higher-order
tudes ofe? scalarfield theory. This is a generalization of the terms in the effective action of type-Il string theory in nine
well-known structure of the one-loop amplitude. and ten dimensions. An important point to be discussed at
Eleven-dimensional supergravity is only the long wave-the end of Sec. Il is that the four-graviton amplitudes in the
length approximation to M theory and does not by itselften-dimensional type-IlA and type-IIB theories can be shown
define the short distance physics that is necessary for a cote be equalup to two loops, even though the two-loop am-
sistent quantum theory. This is evident from the fact that theplitudes are notoriously difficult to evaluate in closed form.
guantum theory has nonrenormalizable ultraviolet behavioflhis rather non-obvious consequence of supersymmetry fol-
that can only be consistently interpreted with additional mi-lows from careful consideration of the effect of the insertion
of world-sheet supermoduli. In order to compare our results
obtained from one and two-loop diagrams of eleven-

*Email address: m.b.green@damtp.cam.ac.uk dimensional supergravity or7 2 with the corresponding
"Email address: h.kwon@damtp.cam.ac.uk string theory results, we include an appendix which contains
*Email address: p.vanhove@damtp.cam.ac.uk a brief review of the expansion of the four-graviton tree-level
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and one-loop string theory amplitudes in a series of derivathat have the dilaton dependence of string theory one-loop

tives. and two-loop contributions. These terms apparently violate
Section Il will review the detailed calculation of the one- the equality of type-lIA and -IIB four-graviton amplitudes at

loop four-graviton amplitude compactified ohi? and its  two string loops. However, we will see that the expected

contributions to the effective M-theory action, developing equality is restored when two-loop supergravity effects are
the arguments in Refg8], [9] concerning the momentum gdded.

dependence. The lowest order term in the momentum expan- section IV will be concerned with the two-loop super-

sion determines the interaction of the foft0] gravity four-graviton amplitude compactified 7, making
use of its expression in terms of scalar field thepfl; An

4 — ; i . : _—

9 [ ~@od| 77 33 3 important feature of the two-loop and higher-loop contribu

J dXV=GTVR 3 AV () ), tions is that they have overall kinematic factors of the form

(1.)) D*R? so that they do not give extra contributions to the
one-loopR* term? However, it is not known if theD*R*
whereG(® is the nine-dimensional M-theory metrig,is the andD®R* terms, which get contributions from both one and
dimensionless volume of 2, Q=Q,+iQ, is its complex two loops in eleven dimensions, are protected from correc-

structure, andfl(Q,(_l) is a modular-function invariant. tions arising from higher-loop diagrams. In a sense, the re-

. A 44 -
When translated into the nine-dimensional type-1IB stringSUItS of this paper indicate that tf2"R" terms are com

theory parameters the complex structure is identified with thés)lhegﬁ:g t?l(;(;glyonrtee?wo{orrecbgivéhﬁi tr\:‘; i’_f%%fg‘rzgzgﬂgs and
complex coupling constant wher€, is the Ramond- 9 )

i I B We will be interested in the expression for the two-loop
Ramond R®R) scalar field ansz_ze , with ¢ the amplitude compactified ofi ? so that each loop is associated

type-IIB dilaton. The functiorf,(€2,Q2) has a large?, ex-  with an independent nine-dimensional momentum integral
pansion that begins with two power-behaved terms. Thesand a sum over two Kaluza-Klein momentum components.
are interpreted in string theory as terms that arise from théfter performing the integration over the continuous loop
tree-level string amplitude and from the one-loop string am-momenta the leading term in the low-energy expansion of

— ; : 44

plitude. The remainder of;(Q2,Q) consists of an infinite the two-loop supergravity amplitude &*R" will be ex-
sequence of exponentially suppressed contributions of thBreéssed as an integral over three Schwinger parameters and a
form e~ 27(KI22-1K99) \yhich correspond to D-instanton con- SUM over the Kaluza-Klein charges. This needs to be regu-
tributions. The one-loop ultraviolet divergence is cubic in thelarized in order to suppress the ultraviolet divergences which

loop momentum and has been cut off in Efj.1) at a mo- &€ of two kinds. One of these is the two-loop primitive
mentum scale\ measured in units dfl_ll- wherel ; is the divergence while the second comprises the three independent

eleven-dimensional Planck length. It was shown in IRE] subdivergences that come from the divergences of one-loop

that in order for Eq(1.1) to be consistent with the equality SuPdiagrams.

of the one-loop four-graviton amplitudes in the type-llA and ' Order to describe these divergences in a systematic
JIB string theories the cutoff must be set to the valueManner we first perform Poisson resummations over the

(Aly)3=m/2. Alternatively, a localR* counterterm should Kaluza-Klein momenta to rewrite the amplitude as a sum

be added to the one-loop action with a coefficient chosen tGVer the windings of the internal lines arouid as well as

cancel theA dependence and give the appropriate finite2" integr_al over three Ioop_ parameters. The Iea_din_g diver-
value gence arises, as expected, in the sector of zero winding num-

The one-loop amplitude compactified @i also contains ber_ while the one—Iqop_ subdivergence; arise in sectors in
an infinite set of higher-derivative terms. Among these ar which a subset of winding numbers vanish. In order to ana-

the nonanalytic terms containing the nine-dimensional mas yze these subdlv_ergences we have found it very helpful to
less threshold singularities implied by unitarity which havemake use of_a hidden SL.@'. symmetry Of f[he two-loc_)p_
the symbolic form H§5)1/2 (wheres represents any of the supergravity mtggrand._Tms is made explicit by redefining
. . . . the three loop integration variables to be the volume and
Mandelstam invariants After subtracting this term the loop A .
amplitude can be expanded in a series of powers of the m¢omPplex structure of a second two tor#i$. The ultraviolet
menta corresponding to higher derivative terms in the effecdivergences are regularized in a natural manner that respects
tive action[8,9]. These higher-derivative terms translate intothe SL(2Z) symmetry by introducing a cutoff at the bound-
terms in the type-IIA and -1IB string theory effective actions aries of the moduli space of this torus. 'I:he evaluation of the
that have a dependence on the coupling constant that impliégop amplitude then involves mappings Bf into 7 2.
that they should be identified with multiloop string theory  In this manner we will be able to evaluate contributions to
effects. Among these terms are contributions of osf@®®*  the effective action that have the form of a prefactor, which
is a function of the moduli, multiplyind*R*. There is a

We use lower-case lettess t, uto denote the Mandelstam in-
variants in the ten-dimensional theory in the string frame and upper- >This symbolic notation indicates a term in which there are four
case letterss, T, Ufor the corresponding invariants in the eleven- (covarianj derivatives and four factors of the Riemann curvature.
dimensional theory. The precise pattern of index contractions will be specified later.
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finite (cutoff-independentcontribution to this prefactor that s given byl,,=(g*) "3, andR%,= e2¢" = (g™)2. Masses are
is independent of the string coupling and is interpreted as gheasured with the metrid.2]

string one-loop contribution. The dependence on the com-

plex structure of the torus is encoded in a contribution to the ds?= G(Nﬁl)ddeXN

prefactor that is again a modular invariant nonholomorphic

Eisenstein series. This enters in the sectors that have one |§1
. ’ : . - i TIR? 22 11_ )2
loop subdivergences proportional 1°, whereA is a mo- |§Rllgfwdx dx"+ Ryl 1,(dx = C,dx*)%,
mentum cutoff. These subdivergences are cancelled by addi-
tional one-loop four-graviton diagrams in which the one-loop (2.2

4 . . . .
R counterterm(and its supersymmetric partngis inserted whereg,,, is the string frame metric. Since the compactifi-

as one of the vertices. When translateq Into string thec.)r)(:ation radiusR,; depends of the string coupling constant the
coordinates the renormalized value of this prefactor containg . .- «iein modes are mapped to the massless fundamen-

equal tree-level, one-loop and two-loop perturbative contri- : :
. . ) tal string states and the nonperturbati®-brane states.
butions to the type-lIA and -1IB string theory four-graviton g b

amplitudes. The agreement between these type-IIA and -II a::g;; %Zszﬁg]égégggj 3;;2%;?/23: (I)'?] Etég]gmtgs ory pa
perturbative terms follows from detailed comparison be-

tween the one-loop expressions of Sec. Il and the two-loop 1 N

expressions of Sec. IV. The coefficients of these terms are SEH=2—2f dlox\/—_ge’z‘ZS R, (2.3
also in precise agreement with the corresponding terms in the K10

;ahxepaAr;)sF;Z?];i;Fhe string tree and one loop amplitudes given M here 2&0:(2#)7'2 andl is the string length scafe.

X . . . More generally, we will be concerned with the compacti-
We will also argue on the basis of string dualities that the,. _.. . . . !
! . o fication of eleven-dimensional supergravity @rf. The dic-
leading two-loop divergence can make no contribution to the.

D*R* interaction, which means that its renormalized value' " &Y that relates’ and(} to the nine-dimensional type-IIA

must be set equal to zero. However, it can contribute to th‘e’de type-lIB string theory parameters{&3]

D®R* interaction at string tree level. The analysis of the

eleven-dimensional two-loop contribution to this interaction  y=R, R, = exy{lch) rg 2, r5=;=r;1,
indeed appears to be a mess. This suggests that this interac- 3 RioVR11
tion may also receive contributions from higher-loop effects (2.9
in eleven-dimensional supergravity. Section V contains a 0 _ ~(1) 10 B A
summary and some concluding comments. 1=C=0Cy7, szR—nzeXD(— do)=raexp—¢"),

Il. HIGHER ORDER TERMS IN ELEVEN DIMENSIONS wherer, and rg are the dimensionless radii of the tenth

dimension as measured in the type-llIA and -l1IB string
frames, respectively. The one-for@*) and the zero-form
C© are the respectivR® R potentials andp”, ¢° are the
type-lIA and -IIB dilatons.

1 The higher order corrections to the four-graviton interac-
SEH=—2f d¥x—GIIR, (2.1)  tion in the M-theory effective action compactified @if can
2K be schematically represented by the expression,

The derivative expansion of the M-theory action for the
eleven-dimensional theory compactified @rf starts with
the classical Einstein-Hilbert term

where 2Z,=(27)8%, and |, is the eleven-dimensional 1
Planck lengtt?. There is no coupling constant that can be S dxV-GOWh(V,Q;12.0)RY, (2.5
tuned to a small value in the eleven-dimensional theory so 1
there is no meaningful perturbative expansion. Therefore, w
will only be able to make sense of “protected” quantities
that receive only a finite number of perturbative contribu-
tions. The dimensional ultraviolet cutoff is determined in
units of the eleven-dimensional Planck sdale Upon com-
pactification it will often be convenient to change to the
string theory parameters, which are given in units of the RA—thL " BatrL VBRMLVIR2V2. . . RITVTHEYS, (2.6)
string scalelg. Compactification on a circle of radiuR;
gives rise to the type-IIA string theory where the string cou-where the tensat*s "#8 (u,=0,1, . . . ,9) isdefined in Ref.
pling constantg®=e?" (where #* is the type-IIA dilaton,  [16]. In the following we will be evaluating the scattering
amplitude for four on-shell gravitons that contributes to ef-

fhere the expansion of the functidnsummarizes general
features of the higher order corrections to the action. The
lowest-order contribution of this type is ti&* term[10,13—
15,4], which denotes the familiar contraction between four
Weyl tensors

Swith this convention the value of the tension of the fundamental
string is equal to the tension of thé2-brane wrapped on a circle of  “In this convention the fundamental string tension is related to the
radius 27Ry,, i.e., Te=27Ryl 11(27% k3) Y3 [3,11]. string scale byT2= (21l ¢)% k3,
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fective interactions of this type. Instead of specifying the
precise normalization constant in E®.6), it will therefore

be more useful to define the linearized version of this inter- .
action in momentum space, which is given by R
4

< My (1) (1) (1)

K =tH1Het1 Vsrl;[l gﬂrVrkMr+4er+4’ (2.7
whereggr)vr (r=1,2,3,4) are the polarization vectors for the (@) (b)
gravitons with moment&{]) satisfying the condition&(")? FIG. 1. (@) The scalar field theory one-loop diagram contribut-
=0 and=% .k.=0 ' ing to the four-graviton amplitude of compactified eleven-
- r=1%r— Y-

g fo . g A
In writing the effective action in the forr2.5) it is nec- dimensional supergravityb) The one-loopR™ counterterm that
._cancels the cubic ultraviolet divergence.

essary to first subtract the nonlocal threshold terms that arisé
from integration over the massless intermediate states in the
loop amplitudes. In the nine-dimensional compactification togravitational contact interactions. This simplification is a
be considered later these thresholds generate square roary special feature of the four-graviton amplitude and other
branch points of the form-{s)¥2 Having subtracted this related processes that are protected by supersymi@try
behavior the amplitude has a power series expansion in pow- The box diagram can be expressed as a sum over the
ers ofs, t andu. This translates into an expansion of the windings of the worldline of the particle circulating in the
functionh in powers ofg?, beginning with terms that we will |oop, which gives an expression that is the sum of integer
write symbolicallyD*R*, which have the linearized form  winding numbers around the circle or the two torus. The
term with zero winding number, which is ultraviolet diver-
gent, does not depend on the geometry of the torus. This
X(‘7M4‘7V4hM3V3)‘74[(‘7M ‘7v6hu5v5)(‘9u8‘9v8hu7V7)] divergencg will be regulated by introducing a cutaff 2 on
the Schwinger parameter conjugate to the loop momentum
(2.8 which suppresses the ultraviolet domain. This gives a contri-
bution to the amplitude proportional tv®. The dependence
on the cutoff can be cancelled by adding a IoR4lcounter-
term to the action. The sum over nonzero windings gives a
finite contribution which is necessarily proportional F?q‘f
which has the dimensiongnomentum [3] where, for sim-
(S2+ T2+ UK. (2.9 plicity, we are considering compactification on a circle.
Comparing this to the expected result in the type-IIA theory,
The possible term of ordet” vanishes by use of the equa- iy which R3,=e?%", we see that the finite term is interpreted

tions of motion (the mass §hel| conditi0|$+T+U.=0). as a string tree-level effect while the regularized téwhich
There are expected to be higher order nonanalytic terms qf . oA .
the form S3(—S)Y2 which will also need to be subtracted ' independent 0é®") is a string one-loop effect. Compac-

before powers 08* and higher can be considered. However,tiﬁcation of the loop on a tvvo-torus_ gives a depende_ncg on
the considerations of this paper will cover only the terms ofiN€ Modulus of the torus as well as its volume. In the limit of
order S?R* (together with a few comments about terms of Z€r0 volume the ultraviolet divergent zero winding number
order S*R*) so the higher-order thresholds will not be rel- term vanishes and the finite sum over nonzero windings

evant. gives the finite result that corresponds to the type-IIB string
theory.
As will be explained in Sec. Il C the four-graviton ampli-
. tudes of the type-IIA and -1IB string perturbation expansions
Some of the systematics of the correspondence betweef}e equal up to and including two loops. This is not an au-
the loop calculations of eleven-dimensional supergravity,maiic property of the eleven-dimensional field theory cal-
compa<_:t|f|ed ona circle or on a two torus can be unOIerStOOgulation but it is true if the coefficient of the counterterm is
from dimensional arguments. For example, the one'Ioo%hosen to have an appropriate value. Furthermore, this is the

four-graviton diagram of Fig. 1 has dimensiGmomentum . .
[11] but it actually only diverges cubically with momentum. same value that is .reqw.red by supersymmétigsed on an
indirect argument given in Ref10]).

This follows from the fact that an overall factor of the lin- ) : . .

earized approximation t®* factors out of the amplitude and . In the neXt. section we will consider terms of higher qrder
this prefactor contains eight powers of the external momentd! the derivative expansion that come from the expansion of
After accounting for this prefactor the dynamical part of thetn® one-loop supergravity amplitude in powersfT, and
loop calculation is identical to the box diagram @f field Y- When compactified on a circle ;hlszgwes terms in the
theory. Importantly, no other diagrams contribute. In particu-effective action of the symbolic forR;;D*"R*, Which con-

lar, there are no diagrams with vertices corresponding tdribute to then-loop string action sinc&flz e’

JRA~trr e e( g, 9,0, )

The precise normalization of this term will be relevant later
when its contribution to the four-graviton amplitude will be
discussed. In that case we will defiBéR* in such a manner
that it gives a four-graviton contact term that is equal to

A. One-loop contributions
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As in the case of one-loop diagrams the effects of the
internal propagators winding around the compact dire¢sjon

R4 5 2r4 leads to dependence on the geometry of the compact dimen-
sions. In this case these effects arise both in finite terms as
well as in terms that contain subdivergences. For example,

Fig. 2(a) shows an example of a two-loop supergravity dia-

(@) (b) (c) gram which has dimensiomomentum [20]. After account-
ing for the twelve powers of the external momenta in the
FIG. 2. (a) A scalar field theory two-loop diagram that contrib- overall S*R* factor eight powers of momenta remain that

utes to four-graviton scatteringb) One-loop diagrams in which myst be replaced either by powers/ofor appropriate pow-
one vertex is theR* counterterm cancel the subdivergences of thegrs of the dimensional paramete®;() ! ands=S/Ry;, t

two-loop diagrams.(c) A two-loop counterterm proportional to =T/Ry,, or u=U/Ry;. When compactified on a circle of
214 ’ .
SR radiusR; this will contribute to the string tree level ampli-
o tude if it is proportional to Ry;) ~3. There are therefore two
B. Two-loop contribution possible kinds of term that contribute at the tree level,
New primitive divergences arise at each order in pertur’amely, terms of the form
bation theory. For example, the two-loop Feynman diagrams

I : ; . K P+ T2+ U2
contributing to the four-graviton amplitude in eleven- —1A34 —) = gR 24 (S 12+ u?)
dimensional supergravity have the superficial degree of di- Ry, ™ R AT
vergenceA?°. However, the amplitude has an expansion in (2.1
powers of derivatives acting 0R* so there are at least eight
powers of the external momenta, reducing the naive diver‘-"1nd
gence toA?, or less(depending on the number' of deriva- K., PT343 B
tives). According to Ref[7] at two loops there is also an — 18| ——=— | =0, A%+ 3+ ud), (212
additional factor ofS? (or T? or U?) so that the naive two- Riy Ri1

loop divergence is\8, which is the same as that of scalar
field theory. More generally, atloops there is a new primi-
tive divergences of the form °"~1°S>R#. From the work of
Ref.[7] it is not yet clear whether extra overall powersf

T, and U arise beyond two loops which would reduce the
naive degree of divergence still furthéilthough it seems

whereK; andK, are constants. The second of these terms
does not depend on the cutoff and is a finite contribution
whereas the first term results from the one-loop subdiver-
gences.

These subdivergences are cancelled by including the one-
) X . > ) loop diagram of Fig. @), in which the vertex indicated by
unlikely that there will be a simple expression for hlgherthe dot is the localR* counterterm that was extracted from

. 3 . . . _
loops in terms ofg® field theory. These ultraviolet diver the one-loop diagram and has a coefficient that depends on

ser]lic;ehsa%%m;;r?nrgghgnzeeﬁf:)flr:h\ghI(z:)ril(lat\:’v 'ngf":ﬁengg]n?e;sthe cutoff. Since the particles circulating in the loop include
P 9 y Pag| components of the supermultiplet, the supersymmetric

tified dimensions. Their cutoff dependence can therefore bSartners of the? vertices are also involved. These couple
subtracted by the inclusion of local counterterms propor- ' P

tional to powers of derivatives acting on four DOWers of thethe two external gravitons to two internal third-rank antisym-
curvaturer[)as in Fig. 20)]. In Ref.[7] thge two-loopam litude metric tensors, or two gravitini, in addition to two internal

9. 40)]. In Rel. /o-l00p amp . 5Tqravitons. In practice, this complication will be avoided
was evaluated by dimensional regularization, which picks:.

out the logarithmically divergent term. This arises from theSince we will find that the consistency of the renormalization
finite part of a term of thesymbolio fbrm H-2¢R4/ ¢ in procedure requires Fig.(d) to be given in terms of scalar

11— € dimensions. Likewise, the diagram will contribute field theory in the same manner as the other one-loop and

. ) : two-loop diagrams. This makes the diagram very easy to
no_nan_alytlc_ threshold terms at o_rdﬁ?. Dimensional regu- evaluate. Its dimension gmomentum [17] is accounted for
larization discards the power divergences that have lower h ff-ind dent f -3(g 2194 that has th

owers ofS which are precisely the terms we are interestecPyt € cutoff-independent factdh, ( Rl.l) R that has the
P same form as Eq2.11). The sum of this diagram and Eq.

in this paper. . o . o
In trgnglating to string theory we must use the relations(z'm should give a specific overall coefficient that is inde-

between the string theory Mandelstam invariagit§ andu pe”de”F of the cutoff. In fact, we Wi.” see frogéth4e explicit
and those of eleven-dimensional supergravity calculations in Sec. IV that the coefficient of tDéR" term

is proportional, in the type-IIB limit, tdeg;(€2,€)), which is
11 Iil Ifl the natural modular invariant completion of the tree-level
S:S|‘2R_’ t:T|_2R_' U:U|‘2R—’ (210 term (2.12. As anticipated, the overall coefficient is pre-
s s st cisely determined by requiring that the type-IIA and type-1IB
string loop amplitudes are equalp to two loops.
where the presence of the inverse powerRgfresults from The status of th&>R* term (2.12) will not be resolved in
the inverse metric in the definition of the invariants this paper. It seems likely that a complete understanding will
[S=—G*"(kyt+kp) (K1t Ky),,  T=—G*(kyi+Ky) . (Ky have to take into account higher-loop supergravity contribu-
+Ka)y, U=—=GH*(kyt+Ky) (Kot Ks), ] tions. This is one of many complications in understanding in

2
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detail the systematics of the correspondence between thmoving and right-moving vectors in the polarization tensors
higher-loop supergravity diagrams and string diagramsor with each other. At one loop there are no contractions
Whereas th&k* and related terms of the same dimension arebetween the two epsilon tensors so the odd-odd spin struc-
integrals over half the superspace, terms with more derivatures vanish and the two theories are identical. At higher
tives are formally integrals over a higher fraction of the su-loops there are insertions ofl 22 supermoduli associated
perspace. Each power of momentum is equivalent to twavith picture changing. Each one of these inserts a factor of
powers of § so that terms with less than eight powers of 5x~5x” which leads to a total of two contractions of the
momentum acting orR* should be protected and may be form ;** between the two epsilon tensors. This is still not
determined in this manner. This includes ®&R*~D°R*  enough to allow the sixteen remaining indices of these ten-
term which should therefore also be determined by Similal’sors to be saturated by the external momenta and po]ariza_
considerations. Whether it is possible to go beyond this angions. Whenl>2 there are more contractions between the
relate terms in string perturbation theory at higher order ingpsilon tensors due to the higher number of picture changing
the momentum expansion to eleven-dimensional supergrayperators, in which case the odd-odd spin structures give a
ity is much less obvious. nonzero contributionWe conclude, therefore, that the four-
graviton amplitudes in the type-llA and -1IB superstring
C. Comparison of type-lIA and -IIB perturbation expansions theories are equal up to two loops, but not beyoAdorol-
fIary is that amplitudes with five external gravitons are not
qual at two loops while those with more gravitons are not
gual at one or two loops.

An important constraint on the structure of the results o
the eleven-dimensional calculations that we will make use o
is a relationship between the type-IIA and -1I1B four-graviton
scattering amplitudes that holds up to and including two
loops. It is well known that the tree-level and one-loop four-
graviton amplitudes of the type-llIA and type-IIB superstring

theories are identicalignoring the parity-violating part of  The one-loop amplitude describing the elastic scattering

the loop amplitude, which vanishes in topologically trivial of two gravitons in eleven-dimensional Minkowski space is
backgrounds This property, which is also true for compac- given by[4]

tifications, is not an obvious consequence of the duality sym-
metries. For example, T dualityvhich applies to all orders

in perturbation theory as well as nonperturbatiyebnly
identifies the two theories when one is compactified on a
circle and the other on the inverse circle, whereas we are
comparing the theories on circles of the same radiusch
may, for examp|e, be infini)eThe question is how far this where the functiorl has the form of a Feynman integral for
generalizes to higher genus diagrams, which have not beehbox diagram in massless scalgt field theory

explicitly evaluated? Such equality can be seen by consider-
ing the explicit construction of the four-graviton loops in the

IIl. MOMENTUM DEPENDENCE OF THE ONE-LOOP
SUPERGRAVITY AMPLITUDE

4
K11
(27)

AP =——mK[I(ST)+I(SU)+1(U,T)], (3.

X 1 1 1 1
two theories I(S’T):f dilg— , , ,
Recall that the type-IIB theory differs from that of the q° (q+ky)” (a+kit+ka)® (g—Kyg)
type-IIA by a flip of sign in the Gliozzi-Scherk-OliveGSO (3.2
projection for the odd spin structure of the left-moving fer-
mions while the right-moving fermions have identical GSO g q,(1=0, ...,10) is theeleven-dimensional loop mo-

projections. Therefore, loop amplitude_s with external gravi-mentum. The numerical coefficient in E.1) follows the
tons, or any other massless states in the_Neveu_—Schwa(z%,m,emiOns of Ref[7] [with a slight reshuffling of the pow-
®Neveu-Schwarz (NSNS) sector, differ only in the sign of a5 of (277)1] which will be convenient for later consider-
the odd-odd spin structures—those spin structures that atgion of two-loop diagrams.
odd both in the left-moving and in the right-moving sectors  \ye want to consider this amplitude compactified M
(we will again ignore the odd-even spin structures whichy 72 <5 that two components of the loop momentum are
vanish in the topologically trivial backgrounds that we areproportional to integer Kaluza-Klein chargds andl,). For
considering. Consider the scattering of gravitons with mo- simplicity, we will choose a kinematic configuration in
mentakﬁl,)(f =1,2,3,4), wheres{_ k() =0, and polarization \hich the external gravitons have their polarizations and mo-
vectorshg)y which can be written in terms of left-moving menta oriented in directions transverse to the two torus. Af-
o ter representing the propagators as integrals of Schwinger

ight- i (1) =< RKEDREED
and right-moving vectors al_wr El_h'“r h”r - For genus parameters in the usual manner the compactified version of
I=1 these terms are associated with the product of two epgq. (3.2) can be written as

silon tensorse#0” '#9¢"0 Y9, The tensor indices can contract
with the three independent external momenta, the left- .
1
1(ST)= 7 j 11 do, f dq S e 6oty
13,V ) =1 {lal2}
5This subsection is based on conversations with Nathan Berkovits. (3.3
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Where<f=Ef:1<rr andp,=q+3._,ks are the momenta in
the legs of the loop. The Schwinger parametershave di-
mension(length.?

After a few manipulation$8,9,4] each of the three terms
in the scalar integral3.3) can be rewritten as

do o~ 3/2j
Ts

-GV1;0-Q(S,T;wp) 0
1

92 o 3

I(S’T):W H d(,t)r
11 0 Tr=1

X > e

{1115}

(3.9

where Q(S,T; w;) = —Sw (w3~ wy) — T(wr— w1)(1— w3).
The domain of integration indicated &g+ is defined by O
<w;<w,<w3<1. The other two terms in Eq3.3) come
from integration over the two remaining regiork:
O=w3<wr=w <1 andZgy: O<w,<w;<w;3<1. The in-
tegral (3.4) is to be evaluated witt5, T<0 where it con-

verges and then analytically continued to the physical region
The amplitude can be split into a momentum-dependent and

a momentum-independent part

[(S,T)=1g+1'(S,T), (3.5
where
mt (= 13
|Oz|(o,0)=2—f doo 32 > e "N (3.9
1711V Jo {1112}

where o has been rescaled by a factor#fin passing from
Eqg. (3.4) to Eqg.(3.6). This expression diverges for smai
which is the cubic ultraviolet divergence of the scalar box
diagram in eleven dimensions. We will regularize this diver-
gence by introducing a cutoff oo so that 1A°<o. It is

convenient to carry out Poisson summationslgrand |,

which replaces the Kaluza-Klein charges by winding num

bersi, andi,. The divergence is now isolated in the zero
winding number termi,i,)=(0,0). The result is

w4

= | — 3,132 0O
IO 2'?1 3 (Alll) +V fl(QIQ) ’

3.7

whereA? is the regularized value of the zero winding num-

ber term. In balancing the dimensions in this and other equagnd

PHYSICAL REVIEW D61 104010

andc, is an arbitrary coefficient that will shortly be given a
A-dependent value.
The_A-independent term in EQ(3.7 has coefficient

f1(Q,Q)=2¢(3)E3», where the Eisenstein seri€s is de-
fined by

Q;

2{(2s)Es= ———s.
g( ) S (m,n)z#(0,0) |m+nQ|23

(3.10

The volume dependenci ®? of this term means that it

vanishes in the eleven-dimensional limit—o. However,
this is the only term that survives in the limit that corre-
sponds to the decompactified type-11B theory,—~ with

fixed e¢B, while the cutoff dependent term in E@.7) gives
vanishing contribution. The complex structure®f is to be
identified with the complex type-lIB scalar field)=,
+iQ,. ExpandingEs, for large ), (small type-IIB cou-

ling e*°) gives

27
20(3)Eqp=2L(3)e 342+ - e**24 nonperturbative.
(3.11)

The successive terms in this expansion can be identified with
tree-level, one-loop, and nonperturbative terms in the coeffi-
cient of the type-IIB string theorR* interaction. The non-
perturbative terms have the form of an infinite series of
D-instanton terms where each chatgeéd-instanton contri-
bution has an infinite series of perturbative fluctuations.
The total one-loop contribution to the amplitude comes
from the combinationl ,+ 81, [the sum of Egs(3.9) and
(3.7]. The dominant term in the largélimit is proportional
to [4m(Al;)%/3+¢,] and is independent o¥ so in the
string theory parametrization this term is independent of the
dilaton and arises from one string loop in the type-lIA
theory. Although this coefficient is not determined by the
physics of quantized eleven-dimensional supergravity, it is
determined by insisting that the four-graviton interactions in
the type-IIA and type-IIB effective string actions should be
equal when the radii, andrg are equal. As argued in Sec.
II C this is known property of string perturbation theory up to
including two loops. More explicitly, the nine-

tions it is important to note that we have defined all distanceglimensional effective actions that give rise to the momentum

as dimensionless multiples of the Planck distange In this
conventionV is dimensionless while the one-loop cutaff
has dimension (length).. In addition to the one-loop con-

independent part df+ 1, haveR* terms that are expressed
as

tribution there is the freedom to add the local counterterm

sWs~1 3¢, fd% /- G®VR*, which adds a term

4
Kll A~
SAY = ( 277)11'(5'0 (3.9
to the amplitude, where
773
Slo===Cyq, (3.9
0 2'?1 1

1
SR 3 @,

f d°xy—GVR*

— 41
X[ 22(3)V 3 E55(0,Q) +cy + ?(Aln)?’ ;

(3.12

which can be written in string theory coordinates and ex-

panded for small string coupling constant in the form

104010-7
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. The terms in Eq(3.15 with nonzero Kaluza-Klein charge
Spa= 3% 477)7| jd x\V=g°rgR I, are homogeneous polynomials $and T of degreen,
272 cyt+4m(Al)°33 Gt (= do
x| 2¢(3)e 24"+ ?+1—(%+---) 12 V1,(S,T) =272 TT | o6l
) : g (I1,12)#(0,0
1 1
:mf d9x\/—gBrAR4 =4779/21“(n—§> §(2n—1)lﬂ_1v"‘1’2
27 1 A n _
x| 2¢(3)e 2" tgptat = (Al®+ xnilTEn_l,z(Q,Q). (3.19

(313 The Eisenstein series that enter this expression have the
in the type-IIA and type-1IB theories, respectiveignoring  large{), expansion
the nonperturbative contributionslt follows that the only o .
consistent value foc; which equates the type-lIA and -1IB En_1(Q,Q)=e (2n-1¢772

expression is
2 4 . \/;F(n—l)é’(Zn—Z) e(3-2n)¢B12
7T aa

cl=T——(AI11)3 (3.14 I'(n—3){(2n—1)

o o _ . + nonperturbative. (3.20

This is the value which is also consistent with supersymme-

try [10]. . _ The first term will contribute to the tree-level amplitude
The momentum dependencel¢8,T) in Eq.(3.4) is con-  \hen expressed in string coordinates and the second term is

tained in the finite term’(S,T) in Eq. (3.5. We will sepa- 3 n-loop contribution. All the other terms are non-
rate the term with zero Kaluza-Klein moment¥S,T) (I, perturbativeD-instanton effects.

=1,=0), from the rest by writing Using the expansiof3.20 and putting all the terms to-
- gether, the complete expression for tR& term in the one-
, _10 loop effective action for eleven-dimensional supergravity in
(SD=] (S’T”g n(S,T). (3.19 nine-dimensions is given by Eg2.5 with the functionh

defined by the amplitudd, in Eq. (3.1), where
The terml®(S, T), which contains the nonanalytic contribu-

tion to the amplitudg8,9] has the form ind dimensions I(S,T)+I(T,U)+I(U,S)

1ZMY(S,T) A (W1’2
3 12y

:27Td/2f do 0_37d/2 H dwr(efQ(S,T;wr)o'_l)
0

Tgrr=1 . 9/22 |20~ VTV 3
=27 (4~d/2) n
3 1 RlO n—1/2
< | TI deQ(sT;w) 092 Xrinmg)een= iR,
Igtr=1
dr2 d-8)/2 Rio s
=279 (4—d/2)(— Ggp '@~ ®72 (3.16 +yml(n—1)¢(2n— 2)(R
11
N .
whereGgr is defined by +nonperturbative (3.21
3
ggT=f [1 do[-Q(ST;w)]". (317 and
Tgrr=1
WN=GL.+Gh+Gls. (3.22

Similarly, G1, andG}s will be defined by cyclically permut-

ing § T, andU in the functionQ. Specializing tal=9 gives There is non=1 term after adding the contributions of

|§1VI°(S,T)E—87T5(—QST)1’2 I(S,U_) and I(T,p) to 1(S,T) _since the linear symme}ric
combination vanishes after using the mass shell condition.
3 The nonanalytic term (3.18 in nine-dimensional
=—8m f [] do[Q(ST;w)1"2 M-theory comes from the same massless thresholds that arise
Tsrr=t in either nine-dimensional type-Il string theof®,8] and

(3.18  have square root branch cuts of the form$)*2
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The two infinite series of terms on the right-hand side ofwhere the expressiongs;, G3,, and Gys are defined in
(3.21) have very obvious origins from the dimensional re-terms of the Mandelstam invariants of string theory, using
duction of the massless one-loop normal threshold of thenhe relation between the M-theory and string theory Mandel-
eleven-dimensional loop. The first infinite series is a series o§tam invariants, Eq2.10. Both Egs.(3.18 and(3.26) have
ascending powers dRyo. Although such terms appear t0 jmaginary parts corresponding to the massless normal thresh-
give singular behavior in the ten-dimensional Il1A decompac-y|4s determined by unitarity. However, the real parts, which

tification limit, Ryg—°, the §eries actually sums up to give might have given rise to arbitrary constants, are here fixed to
the correct threshold behavior of the ten-dimensional theoryprecise values. In addition to the threshold te@26), the
schematically of the forn$In(—S). More explicitly, the sum . ayel part ofly also survives the lmiRy, o in the

gives type-llIA amplitude, but theD-instanton terms are infinitely
suppressed and disappear.

4r® " 9/2§ I2n_3W”V”’3’2 The second series of terms on the right-hand side of Eq.
N @ —W)TAm “, n! (3.2 is an ascending series of powersRf;. In the ten-
dimensional decompactification limR;,— o this sums to a
1 n—1/2 series of massive logarithmic thresholds of the ten-
«<Tln= 5) {(2n— 1)(_10) dimensional theory
Rll
47T5 r2 1/2 "
_ —? W) Wnyn-3i2 R, 3/2-n
|§lvr§e:z (Rio 1 275> 1273 T(n—1)2{(2n—2)| =~
n=1 n! Ri1
1 270 r2 R?
— g5 s 4T~ DI(-12).  (3.23 ——> | == 12W||In| 1- 5 1Z2,W| -2|.
17:R11R10 [11R11770 | Ry; r

The last term on the right-hand side cancels against the sec- (3.27

ond term in the expansion d5,({2,Q) in 1y (3.7) [using
Eqg. (3.11)]. The net result is that the sum of the first infinite
series of terms in Eq.3.21) is given by

3
f do,
Tgr=1

The sum over can be evaluated in the lardg®y limit by
approximating it by an integral by letting Ryg—y,

This is a series of thresholds for the massive Kaluza-Klein
states of M-theory on a circle of radil®,;; which is to be
added to the massless threshold that comes from{E&25).
This sum can be evaluated in the decompactification limit
Ri;—0% by approximatingr/R,; by a continuous variable.
(3.24  Including the massless threshold tef8126), the sum re-
duces to the eleven-dimensional threshold

2

r 1/2
R—z+|f1Q(S,T;wr)) :
10

872
-5

3
IllVI'EZ

45 2

>

3
|11VI’EZ

li '
m — —
Rig— RlO

3
112 w
2 — 9/2 3-11/2 —0Q(w
_|ilw) [T V=2 fo doo frljl dw,e” 7Qr)

5
8m° (= T
- —; dy(y?—12, )12 = T[(_QST)SIZ"‘(_QTU)3/2+(_QUS)3/2]-
171R11 Jo

2> (3.28
WlIn(-wW)—2], (3.25
I11R11

where a constant has been absorbed into the implicit scale c‘)l'pe tree-level type-IA term vanishes in thg,— limit,

the logarithm. This cancels out when tt®,T), (T,U), and Rewriting thg result of the one-loop c.alculati(iBlZ']) in
(U,9 contributions are added. The result is that the serieferms of the string theory parameters gives terms in the ef-

sums up to the expected massless logarithmic threshold {§ctive action of nine-dimensional type-IlA and -IIB string
ten dimensions of the form theory with derivatives acting o®” that can be written in

terms of the one-loop amplitud8.1) ad
RY(Gs7In Gst+ Gry In Gry+GusIn Gys)

~RHGarIn 31+ Gy In Gry+ GusinGys), 6 : . . .
These expressions correct certain coefficients in the correspond-
(3.26 ing formulas of Ref[9].
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(1) 8 1 P 277-2 Ky ka k|\ Ka
AV =478 4 )K 27(3)e %¢ +3_r§ > < .
2
T 8’772rA|S(_WS)1/2
3 kz k3 kz/ ks
- 1 1 r3"(12ws)n (@) (b)
+8m2Y ( (n——)g(Zn 1) 2“—,
n=2 A n: FIG. 3. The “Schannel” scalar field theory diagrams that con-

tribute to the two-loop four-graviton amplitude of eleven-
dimensional supergravitya The (S,T) planar diagram °(S,T);

(b) the (S, T nonplanar diagrari™NP(S, T).

2r‘|d>A |2Ws n
4+ JaT(n— 1)g(2n—2)e—2¢“ei1—f))

+ nonperturbative (3.29 AN=2= 478 ﬁe*<4’3>¢A>< m(2£(3)r4

+4(2)e2?™) (WK

47710 272
~ el |%€1)e<4/3)¢A(2§(3)ri+Tez¢A

or

2

N 2w
AY=(4m°1 Fre)Rrg| 20(3)e 27 +

X (s +t2+ud)K, (3.32
+ 25 2w i_ 8 (= Ws)L2 where we have used
3 s
3 rg T3 5
- 1 1 (IZW) (Gt J H do[—soi(wz—w))
+87w%2), (F(n—i)g(Zn— 1) =~ Ty f=
n=2 n! s

—t(wy— w1)(1— w3)]?

+J§r(n—1)g(2n—2)

2n+2

,2¢ (|2W ) 2n¢>
n! rs )

1
=ﬂ(452+4t2+ 2st). (3.33

*nonperturbative, (3.39 The expressiof3.32 has a dependence on the dilaton that is

characteristic of contributions in type-llA string theory at
where one and two loops. Since the type-llIA and type-IIB string
perturbation theories are identical up to two loops these type-
. IIA terms must be matched by identical terms in the type-11B
WP =(G3p"+(GFu)"+ (GYs)" (3.3)  theory(with r,—rg and ¢*— ¢B). We will see in the next
section that these missing contributions to the type-1IB ac-

81 8 15 tion arise from the compactification of two-loop terms in

factored out in these expressions cancels with a factor in the
measure in transforming the effective action from eleven-
dimensional supergravity coordinates to string coordinates.
This makes it easy to see the dependence of the effective The evaluation of two-loop amplitudes in eleven-
interactions on the string-frame radius and the dilaton in indimensional quantum supergravity would normally be a for-
the remaining factors in Eq$3.29 and(3.30. midable task. However, it is known from the work of Ref.
The infinite series of terms in the type-llA theory are [7] that the two-loop four-graviton amplitude in maximally
related byT duality to the series in the type-1IB theory. How- supersymmetric supergravity continues to have the feature
ever, these terms appear asymmetrically between the twihat it can be written in terms of scalar field theory diagrams.
theories in Egs(3.29 and(3.30. In particular, all the terms  The fact that the two-loop amplitude has such a simple ex-
in the series in the type-1IB action vanish in the limig  pression was motivated in R€f7] in dimensions< 10 by
—o0 which is not true for the type-IIA series in the type-lIA use of the Kawai-Llewelyn-Tyé&LT) rules for constructing
decompactification limit. Since we saw in Sec. Il C that theclosed-string amplitudes out of open-string amplitupes.
four-graviton amplitudes in the type-llIA and -lIB string This was shown to imply that the two-loop amplitude in the
theories are identical up to and including the contributiondow-energy supergravity theory id dimensions with maxi-
from two string loops there must be some more contributionsnum supersymmetry is given in terms of the two-loop am-
that correct for this asymmetry. We will be concerned par-plitude of supersymmetric Yang-Mills theory with maximal
ticularly with then=2 terms on the right-hand side of the supersymmetry. These rules were then independently derived
type-llA action in Eq.(3.29, by using unitarity in all channels. In eleven dimensions su-

IV. THE TWO-LOOP SUPERGRAVITY AMPLITUDE
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pergravity is not the low-energy limit of a string theory so the amplitude igwith same conventions as in R¢7)])
the strategy for determining the two-loop amplitude has to be 8
a little different. In that case the expression may be deter- (2)_; "1 ~ecor P P NP
mined by the requirement of unitarity and can also be Ad= (277)22K{S [FED+HHEU+HTHST)
checked by the requirement that it reduce to the lower-
dimensional expressions upon trivial dimensional reduction. +IN(S,U)]+perms}, 4.0

The result is that the two-loop four-graviton amplitude where “perms” signifies the sum of terms with permutations
Aﬁf)(S,T,U), is given in terms of the sum of particular dia- of S, T, andU. This expression has an overall factor®f
grams ofe? scalar field theory illustrated in Fig. 3. These aretogether with four powers of the momentum muiltiplying the
the planar diagramP(S,T) and the nonplanar diagram loop integrals which means that these diagrams are much
INP(S,T), together with the other diagrams obtained by peress divergent than they would naively appear. The loop in-
muting the external particles. The complete expression fotegrals are given by

1
IP(S,T =f dtpdt 4.2
(ST PO e o k2Pt ke T k)% ) 2aRa T Kt K 2(Q T K2 “2
and
1
INP(S,T :j dpdi? 4.3
(ST PO D2 (b k) 2(p T )X (p+ a4+ ko) 202(q+ Ka + Kg) (G + Ky)2 @3

which have ultraviolet divergences of ordenomentum [8] 1 7
that will need to be regularized. . CIP(sT)= 2 > | di¥"pditng J IT do,
In addition to these two-loop diagrams there is a contri- 11 ¥ n{m.m} r=1

bution to the amplitude from the one-loop diagram of Fig.

2(b), which is a triangle diagram in which there is one inser-

tion of the linearized one-loop counterterm. Together with xe~
two-loop counterterm of Fig. (2), this will give an addi-

tional contributionsA‘? to the amplitude.

7
G”(<rm|mj+>\n|nJ+p(m+n)|(m+n)J)+E Kr"'r}
r=1 !

(4.9
A. Evaluation of the two-loop amplitude onZ™"

We shall now consider the leading contribution to the'Vherel,J=1.2 label the directions if". The vectorK, is
derivative expansion arising from these two-loop diagramd&€fined by
when compactified orf 2. As discussed earlier, this will
c_ontrib_ute to t_heD“R4 in_teraction._ For_ con\_/enier_lce our con- K,=(p,p+ky,p+Kks,0,0+ks,q+ks,p+0q) (4.5
siderations will be restricted to situations in which the polar-
ization tensors and momenta of the gravitons are in direcand
tions transverse to torus and covariantize the final result. We
will first be slightly more general and consider the case of
compactification on am-torus 7" with metric G,; and vol-
umeV,, in which case the planar diagram with external

0':(71+0'2+0'3, )\:(T4+0'5+0'6, pP=07. (46)

momentak, r=1, ...,4 isgiven by the expression The nonplanar diagram is given by
1 7
INP(S,T)= 2 dinpdit-ng H do,re—[Gl‘]((Tm|mJ+)\r'l|nJ+p(m+n)|(m+n)J)+§Z:1Kr’20'r], 4.7)
|1?Vn{m| i} r=1
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where dard manner by completing the squares in the exponent fol-
, lowed by Gaussian integration. We are envisioning introduc-
Ki=(p,p+ky,0,0+Ks,q+ks,p+a+ks) (48 jng some sort of cutoff at large momenta by imposing a
and lower limit to the range of integration of the Schwinger pa-
o=0,+0,, N=03+o,t05, p=osto,. (4.9  rameters. The precise details will be clarified following suit-

able changes of variables below. Ignoring these for now, the

The loop momentum integrals are performed in the stanresultant expressions for the planar and nonplanar loops are

11— 0_2 2
|P(S,T) IZ”Vn{mI nl}f dO’d)\dpm

—GN[ommy+anng+p(m+n);(m+n);] ! 2 "
Xe OdUdez 0 dl)l 0 dWl

XeT(U)\p/A)(UZ—vl)(WZ—Wl)+S[(U)\p/A)(Ul—Wl)(vz—Wz)+le(l—v2)+)\wl(1—W2)] (41@
and
11-n 2
an 20\ Gh
| NP, ST)= 2z do-d)\d @ G lommy+aning+p(mn)(m+n),]
(8T)= |11Vn{m|2n|} pA[ (=il

1
Xf duldvldwzfWzdWleT(oxp/m(wz—wl)(ul—ul)+S{[(a+p)AZ/A]wl(l—wz)Jr(m\p/m[wl(l—u1>+v1(ul—w2)]}
0 0

(4.11

(where the variables,, v, vy, Wy, andw, are rescalings o .~ N _ p
of o). These expressions can be expanded in powess §f o=x A=x. PR (4.13
and U in order to determine their contributions to higher
derivatives acting or$?R*.
The leading term in the low energy expansi@i order ~ Where
S?R%) is obtained by setting the external momenta to zero so
thatS, T, andU are set equal to zero i and I_NP. After A=oNtoptrp=A-l=(Ghtoptip) L (4.14
summing these two zero-momentum contributions followed
by a sum over all the diagrams required by Bose symmetri-

zation the result is The amplitude(4.12 becomes
it n 1 P+NP ' 125~ wE
1P(0)+1NP(0)= d d\dp— =757 17NP0)= - J dodhdpA e mEe,
17(0) (0)= 32 (i TANEp = ATT—172] 3 {m, n} P
(4.195
XefG”[(om|mJ+)\n|nJ+p(m+n)|(m+n)J)],
(4.12 where the exponent is defined by
which is symmetric in the parametess A, andp. The inte- Ew(,N,p)=Gy[ Aiymy+ & A+ p(M+A), (m+A) 4],
gration in Eq.(4.12 is divergent for every value af',n' (4.16

whenA~ 0, which requires at least two of the parameters

p, o to approach zero simultaneously. The sums contribute

additional divergences, which makes this representation ¢ind is a function of the winding numbers. The paramegers

the amplitude rather awkward to analyze. \ andp will be referred to as “winding parameters.” The
As in the case of the one-loop amplitude it is convenientclassification of the divergences is simplified in the winding

to analyze the divergences after performing a Poisson resumumber basis. For example, the sector in which all the wind-

mation over the Kaluza-Klein modes, ,n,, which trans- ing numbers vanish diverges at the end-point where all of the

forms them into winding numben®, ,f,, and also to rede- winding parameters reach their upper limits. This term is

fine the Schwinger parameters by independent of the metricG,; and is the primitive
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To which consists of the sectolBoF' @gag' @fef’. As is
A ; clear from the Fig. 4 this domain covers precisely three cop-
ies of F=F&F", the fundamental domain of SL&),. More
concretely, in terms of the conventional generators of
SL(2Z):" region g is mapped intoF” by S regiong’ is
mapped intoF by ST %; regionf is mapped intoF by TS
region f’ is mapped intoF” by T"!ST!; region F’ is
mapped intoF” by T 1.

Substituting the change of variablé$.17) into the inte-
gral (4.15 gives

"'_l
ul
il

247 ® d?r
> IPN0)=—5— 2 fdvvaf—z
4 A2 0 12 1 1y 111 (mny Jo F T

— 7 (VG N3y (et 70) (7))
FIG. 4. The domain of integration over the parametsrsand x g~ mVeu Myml(mEmy(me ] - (4.20)

, bounded by the thick line, is the fundamental domaif’ . . . . . . . .
E y §2) The integrand is precisely that which arises in one-loop dia-

two-loop divergence. There are many sectors that contribug &M= 1N string theory co_mpact|f|ed ari where the Lorent-
Zian lattice is usually defined by

to subleading divergences. The simplest examples are thoSe

sectors in which the winding numbers conjugate to a particu- (7)™ 1 (Gys)
. . . . . 2 (n,n) 1J
lar winding parameter vanish. In those cases the integral di-
verges at the_endpomt Wher_e tha_t parameter reaches its upper _R Z o (VG 12 )l 7)) (i 7))
limit, which gives a subleading divergence. For example, the 1 '

i i ; A . (mh)ez?
& integral diverges in the, =0 sector and behaves &S if
& is cut off at the value\? (that was introduced in order to (4.21)
cut off the one-loop winding paramejeiSectors with less

than n vanishing winding numbers give non-divergent con-

trletlr%r;?ewgéﬂ ?:e'giiﬁesr}ge:ft fr:eag?(/g?tgfr?ces is greatl equate it to three times the integration over a single copy of
P Y 9 9 YZ. This invariance of the integrand can be seen by checking

fsae(zlrlé?tgi (kg)thse ;tr)::trrvatfaﬁ tizart_]é?zt' n;ﬁg;angrgﬂ;ssiﬁstsheesi% transformations undér and S (with V being inerj which
y y PP have a simple interpretation in terms of the original winding

\.p,& parametrization. This symmetry is made manifest byparameters. Th& transformation is given by
redefining the integration variables in E¢.15 so that the

In writing the integral(4.20 we have used the fact that the
integrand is invariant under SL@) transformations to

parameterp, A, and ¢, are replaced by the dimensionless AN——p, p—2p+tN, F—0+2p, (4.22
volumeV and complex structure= r,+i7, of a two-torus
72 defined by while Sis given by
N—o+2p, p——p, O—N+2p. (4.23
p VA )
n=—-7o, T=—_, V=IVA. (417 The divergences of the loop amplitude are particularly
ptA\ pt+A\

easy to classify in terms of integration oveandV (4.20.
The leading and subleading divergences arise from two dis-
The Jacobian for the change of variables fronX,p) to tinct kinds of boundaries of the integration domain.
(V,7) is (I) The leading divergence arises from the linvit-c
with arbitrary fixed values ofr; and r,. We will regulate
A 2 this by cutting off the upper limit at a valu&/=V°
d)\d&dﬁzZIl’deVZ—z, (4.18 =aA?l il (wherea is an arbitrary constanso that the am-
2 plitude is proportional to\8. This is the two-loop primitive
divergence which comes from the region in which the loop
whered’r=dr,dr,. It is easy to see how the domain of momenta are simultaneously of ordérand corresponds to
integration of the Schwinger variables translates into the inthe region in which all three Schwinger parameters approach
tegration domain fov and 7. The volumeV is integrated their lower endpoints.
over[0, ] and the domain of integration afis the funda- (I1) The three distinct kinds of subleading ultraviolet di-

mental domain of thel'o(2) subgroup of SL(Z) (the vergences arise from the region in whiech—o with V
shaded region in Fig.)4

2
_ E } "Which are the translatio: 7— 7+1 and the inversiorS:
T1 2 = 4 y (419

Fr=10<m <175+
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fixed, together with the SL(Z) images of this region ob- This expression can be analyzed by splitting it into orbits for
tained by the action o6 and TS These are the divergences the right action of SI(Z) on 7. There are three classes of
which arise when one of the winding parameters approachedDits. . _ _ .
its upper limit, which is cut off at\. From Eq.(4.17) this (1) Singular orbits are ones with=0. By inspection, it is
translates into a cutoff on the upper, limit at 7$ clegr that these give the éeadlng divergent contributions
wh|c2h a;re proportional toA® from the boundaryV=V*
=alf;A%.
(II) Degenerate orbits are those for which Aet0, A non-
. c 2. o zero. In this caseA can be transformed to the formA
sm<; STy, 5=1E (424 =(0)) by a SL(2Z) transformation that maps the fundamen-
tal domain to the strip. Again, by inspection these can be
It is easy to see that this includes all the subdivergences, &5€" 10 give the subdivergences proportionakfo
follows. Whenr, reaches its upper limit with fixed, bothp (I1) Nondegenerate orbits are ones with nonsingiar
e 2 s upp WIS, BOMP T An SL(2Z) transformation that maps the fundamental do-
and A approach zero whilé becomes infinite. This trans- majn to the upper half complex plane can be used toAdnt
lates, via Eq(4.13), into the region in whictp and\ vanish,  the form A= +(™ ) where 0<j=m-1, m>0, andn#0
which corresponds to the ultraviolet subdivergence at whiclj1g,19. The nondegenerate orbits are the ones that contrib-
q°—c. Similarly, the image unde of this limit is the  yte to the finite part of the two-loop integral after the diver-
boundary atr;=0, 7,=0 which corresponds to the subdi- gent terms have been subtracted out. Since the string cou-
vergence at whichg{+g)2—c. The image undeTSis the  pling constant appears ifd both the degenerate and the
boundary atr;=1, 7,=0 which corresponds to the subdi- nondegenerate cases will contribute to perturbative and non-
vergence at whiclp?— . perturbative string effects.
We will now see how this description of the divergencesThe singular tern{l) comes from the zero winding number
is particularly well adapted to compactification on a toroidalsector and does not depend on the shape of the torus. A term
target space since cagésand(ll) arise from distinct classes ©f thf[? ?ame form talso |atlg2$73§‘ tbythaddmlfng t? |005tl! tWWOOP
. ; s 2 counterterm proportional o the effective action. We
of SL(22) orbits in the mapping of into 7*. will argue later that consistency with string perturbation
theory actually requires this renormalized coefficient of this
B. Compactification on 72 interaction to vanish.

When the eleven-dimensional two-loop amplitude is com- If?rsotrd;;rfgisg:r?ﬁ;th:driiwaé?'qgecogr':);;onj 'ér's useful
pactified on a two-torusn=2) of volume) and complex , — ) i P i P i
structureQ) the exponential factof4.16) can be written as = 4{2dadq on the expressiofd.27) using the identity

) AQ(Tzr(z,z)) :47'35737( 7'2F(2,2)) =AL Tzr(z,z))-
(1OQ)A( 7-1)| —2W defA), (4.25 (4.28

=A21%,v~1, which means that the complex structure is in-
tegrated over the restricted fundamental domain,

Fre={-

N

0,

It follows that
where we have used the usual formula for the metric on a

27 [ve
two torus AQ|(V,Q):TJV dVVB [ d?r(d% +d%) D,
111 Jo T Y Y
. |y + My Q|2
G|Jm|mJ=|§1VQ—2, (4.2 Xex[{—ﬁﬂlXKlQ)A(Tl)'Z
2 72

and defined a & 2 matrix A with integer entries.

In this case the expressida.20 becomes iad de(A)), (4.29

o 2 so that ther integration at fixedV is simply the integral of a
T ve T ; i1t
|P+NP(Q) = E dVVsL surface term which gets contributions from the boundary of

T% the integration domaid—'rg at,= nglilAzlv. The expres-

sion (4.29 reduces to

13, ik
11 M. JO 75

X [{—w—v —V|(1Q)A( 1)|?
ex T 7
Q 2
272 AQI(VI(I') |8

VC
dV\Veo
11 JO

"2peM(2,22)
+2dee(A)) by

2 2
Xexr{ WQZ 7'2 (LQ)A(71)|

27 (ve d’r
=5 f dVV3j — ol 22V, 5V, 7).
1 J0 Fis T2

+27W de‘(A))

—C
ry=rj

(4.27)
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2m8Y ye as an integral over the upper-halplane. This is similar to
== dvv* the analysis in Ref[19], from which the result can be ex-
I 0 X
1 tracted in the form
2
y ) (|(1Q)A(Tl)| ) 43 " d?r
AcM(227) 2 ()5 |fin=|T > dv\V | —
11 m>0n#0 JO cCh 7
v 0o=j<m
Xexy{ T, T_§|(19)A( 1)|2 @~ (WIQ,mp)[mr+ (j+n0)| 2+ 2Wmn 4.35
In this case no cutoff is necessary and the result has a unique
+2mWV detA) . (430 hormalization. Ther; integration is Gaussian and can be
2573 carried out explicitly giving,
In the limit A®>— < all the terms in the sum are exponentially 47712 Q,
suppressed apart from the degenerate ono#s(g'k). In this lin= |§1 v O<J<m mj dvve
sector the exponent evaluated at the boundasy 75 m>0n+0

—A2|2

=A“l1,/V reduces to ~dr, 15 ,, ,

% 5 —2 @2V¥mng— (V1) (VI mp)(mra+nQ2)?
0 T \Y

E |+ kQ|?= ||+k9|2 v 4.3
W Q C | | QZ I_]_]_T, ( . :D (43@
so that Eq(4.30 reduces to Now settingx=V/7, andy=V 7, we have
27?2 [Q 1 (= e
278 (= [1+kQ|? L= =2 S | dxx| dyyM2
Agl(V,Q =—f dv\e —_— fin™8 V 0<Zm m y
O ( ) IﬁA“ 0 1600 Qz 11 n$>é;¢mo 0 0
Xe—m}(u+kQ|2/Qz)(u2/|§lA2) Xe—(|f1V/92)(m2y+nzn§x)
=270 (712 £(5) A3V ~5Eg(Q), =27%(3) (M BV 4 (4.37

(4.32
C. Contribution from one-loop and two-loop counterterms

where the upper limit is taken to infinity since the integral  The sum of the contributions to the amplitude from Figs.
converges. Sinc&g,(()) satisfies the Laplace equation 2(b) and Zc) will be denoted5A22)= 51A£12)+ 52A512)- The

15 term 51A512) corresponds to Fig.(B) and is proportional to
ApEsp(Q)=7-Es(Q2), (4.33  the one-loop counterterm so it has an overall factocpf
which has the value given by E(B.14). The direct evalua-
tion of this process would require a complicated sum over

we conclude that the two-loop integral has the form the different types of particles circulating in the loop. How-
N 5 . ever, it is easy to check that the prescription of R&f.for
I(V,Q)=aA8+7%((5) A3 PV g ( Q) + 1y expressing the one-loop and two-loop supergravity diagrams

(4.34 in terms of scalar field theory Feynman rules generalizes to

diagrams of this type, giving,
The first term, which has an undetermined value, is the lead-

ing regularized divergence and arises from the singular or- @_ w3k . 5 -

bits. Its coefficient is modified by the addition of the two- 1A |112(2 )22K(S +T?+U?)8yl, (439
loop S?R* counterterm with coefficient,. The second term

in Eq. (4.34) is the contribution of the degenerate orbits. Thisywhere the loop integrab,| is given by using scalar field
has aA-dependent coefficient to which must be added theyropagators and vertices in Figlb®,

contribution that comes from Fig.(l) which includes the

effect of the one-loop counterterm. As will be seen in Sec. " 1 1

IV C the combined coefficient is consistent with the equality ol = f d q? (q+k)Z (q+k,+Kkp)2 (4.39

of the type-IlA and -IIB string theory one-loop and two-loop

amplitudes. The normalization in Eq(4.38 can be obtained as a simple

The termly, in Eq. (4.34) is independent of the cutoff and consequence of unitarity.
is the finite term that comes from the nondegenerate orbits The evaluation of the integra#.39 compactified or7 2
and must satisfyAyl4,=0. It can be evaluated explicitly follows closely the discussion in Sec. Il of the box diagram.
using the “unfolding trick.” This allows one of the infinite The only difference is that in this case there are only three
sums in Eq(4.27) to be used to rewrite theintegral overF  internal propagators. The result is
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771/2 . Kllll R
61l =—=[(Al1)%+V ¥2£(5)I'(5/2)E5 i Q, Q)] A4+5A4=(2T)11K[I(S,T)+I(S,U)—I—I(T,U)]

5
(4.40 5
+i (leizzk[sm P(S,T)+INP(S,T)+1P(S,U)

The cutoff-dependent term comes from the zero winding sec- NP D @

tor, and upon inserting E@4.40 in Eq. (4.38, contributes a +HIT(S,U)) +perms]+ 5As" + 6:1A,

term proportional toA® to the V-independent part of the T+ 5,AR2 (4.43
amplitude. Its coefficient will be absorbed into a redefinition 2 '

of the coefficient of the leading two-loop divergence in Eq.

(4.34. The Q-dependent part of Eq4.40 has the same The results of Sec. Il show that the expansion up to order
form as theA 2 subdivergences of the two-loop amplitude in S 20f the one-loop supergravity amplitude compactified on
Eq. (4.34. After adding these two contributions and substi-Z * is given by

tuting the value ot; from Eg.(3.14) the net dependence on

the cutoff cancels, leaving a specific finite contribution that K‘l‘l [2¢3)  4¢2) 242
will be discussed in the following section. The contribution A 1)5A D= 2 )11' R3 R.R2. 3
to 5,A{?) from the two-loop local counterterm is equal to H Ho
2
a
+I1,(S*+ T2+ U o

2

6
s K(S+T2+U3?), (44D R,
X 4{(2)R11+2§(3)R—11 -

. Kq
52A512) = Iczw

|, (449

wherec, is a constant which, for the moment, is arbitrary. \here the ellipsis indicates the infinite seriesDefnstanton
contributions[4]. Converting into type-IIA string variables

_ _ _ _ this becomes
D. Comparison of eleven-dimensional supergravity

and type-Il string theories

We now turn to the comparison of the results of the A+ AL = (4785 r K| 2¢(3)e 24"+ 4§(2 )
eleven-dimensional calculations to those of the type-Il string A
theories. We will check that the normalization of the finite 2 w2
S?R* term (4.37) has precisely the value that is needed for + T+|g(32+t2+ u®) 5[45(2)92¢
the perturbative type-llA and -1IB string theories to be equal '
at the order of one string loop. Furthermore, the value of the )
one-loop counterterni3.14 will also be seen to lead to the +20(3)ral+ - (4.49
equality of the type-llA and -IIB string tree-level and two-
loop terms. This strongly supports the impression that the )
two-loop contribution tcS*R* does not get further contribu-  1he two-loop result can be written as
tions from higher-order Feynman diagrams.

In order to compare our two-loop supergravity results K8
with string theory it is necessary to carefully specify our AP + 5A? WXK(S%T% U?)|a(Aly)8+c,
conventions. In either of the two string theories the four-
graviton ampitude has the expansion at tree-level and one T 2g(5) 8
loop, 4 ( R?l 5(4) R11R

2
string_ 2 z| _ A—2¢ 10 i 1-oop, ... 2745(3)§(4)
A= 2 K| —e 24T+ 257T6|§' +--+], (4.42 + WJF'”}’ (4.49

where the terms in the square brackets are dimensionlesghere we have expanded the modular funcigp((2,() in
[recall that 2&0:(277)7@] as in the analysis of Ref20]. powers of(), 1=R;;/R;o. The constana is meant to repre-
The low-energy expansion of the tree-level and one-looent the sum of the primitive two-loop divergences that arise
termsT and|1'° are briefly described in the Appendix and from the zero winding number sectors of Fig. 3 and Fig.
in Ref. [20]. The one-loop and two-loop amplitudes in 2(b). These combine with the coefficient of the two-loop
eleven-dimensional supergravity, together with the effects otountertermc,. After conversion into type-IIA string vari-
the counterterms, are given by ables this becomes
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i . the loop amplitudes combined with the two-loop counterterm
AP+ 5A511):(4778|ﬁf/§l)WFAK@(SZHZﬁL u?) with coefficientc, and is independent of the parameters of
the two-tours. Translating into type-IIA string theory coordi-
nates this gives the term proportional t&Z,s*R*

=e*°?R4 in Eq. (4.47) which is not proportional to an

integer power ok2¢”. Therefore, it cannot possibly arise in

N 2m(3)4(4) N } string perturbation theory, which means that its coefficient
- -

776

X| (a(Al 1)+ cy)et® B+ :

2¢(5)e 24"

A
e??

8
+34(4) must vanish, i.e.,

7
A A

(4.47)

Now we can usd-duality to replace the last term in Eq.
(4.47), which has the dilaton dependence of a string one-loop, . Ao . .
term, by its type-11B equivalent, which is proportional rté A consequence O.f.th's. 'S t.ha_t e mteractlo_n van;sh‘les

] . . . — . in the decompactification limifR;;— 0 so there is nM*R
and is also identified as a one-loop string contribution. Usmq S . :
) ; . . nteraction in the eleven-dimensional theory.
the fact that the two string theories have identical four-
graviton loop amplitudegup to two loop$ we must identify

this term with trzle ter.m in parentheses in £4.45 that is V. CONCLUSION
proportional tora (which was deduced from a one-loop ef-
fect in eleven-dimensional supergrayityGratifyingly the In earlier work theR* interaction in the effective action

coefficients of these terms are indeed equading £(4) for (e_leven—dimensional M-theory compactified.d’n2 was
= 7%/90] which appears to be a rather nontrivial check onobtained by evaluating one-loop Feynman diagrams. Al-
our calculation. Similarly, we can check that the renormal-though the dependence on the complex structure was
ized value for the subleading divergences respects this syniiniquely determined by this supergravity calculation, in or-
metry between the type-IIA and -IIB theories since the termder to pin down the value of the one-loop counterterm it was
proportional 002%™ in Eq. (4.45 has the same coefficient as necessary to input Fhe extra information that the f_our-
. 20P graviton amplitudes in type-llA and type-1IB superstring
the term proportional te in Eqg. (4.47. Now we can

: . o }heories are equal at one string loop.
check the consistency further by comparing the coefficient o In this paper we have generalized these statements to ob-

the tree-level term proportional tg(5)e?"s*R* in EQ. tain the exact scalar field dependence of the coefficient of the
(447) with the coefficient of the tree-level term proportional 52R4 interaction based on consideration of tWO-IOOp Feyn_
to ¢(3)e2*"R* in Eq. (4.49. These coefficients agree with man diagrams for four-graviton scattering in eleven-
the coefficients deduced from the expansion of the fourdimensional supergravity. Using the value of the one-loop
graviton tree amplitude reviewed in the Appendix. counterterm determined from the one-loop analysis, we have

We also need to consider the value of the leading diverfound that the renormalized value of the two-loop amplitude
gent contribution to th&?R* interaction which arises from is

13 — 4
T dgw—GVD“R“( {(5)V gl 2,0)+ ;a:s)z:m)v“)

13 — 4
=—48X(4W)7fdgx\/—gBrBD“R“(g(5)e<”2)¢BE5,2(Q,Q)+ ;25(3)§(4)ré). (5.1

where the second equality expresses the amplitude in typ@ppear to be singular in the decompactification limt
IIB parameters, recalling from Eq2.9) thatD*R* is a sym- ~ —.c, sum up to form the appropriate massless threshold sin-
bolic way of representing the contraction of covariant deriva-gularity in ten dimensions. The dependence on the complex

tives and curvature tensors that gives rise to the kinematigy,cture of the toruéthe scalar field of the type-IIB theory

2 T2 2K i _ ; i i
Iiggr S+ T7+ UK in the four-graviton scattering ampli is contained entirely in the modular functidBs;({2,()

The term in parentheses in E&.1) that is independent of W_hiCh _survives the decompagtification limit to the ten-
Q matches a corresponding term that arises in the type-liAimensional type-1IB theory. This term has an expansion in
parametrization from the one-loop supergravity amplitude irthe couplinge?” that begins with a tree-level term followed
Eq. (3.32. It should be easy to evaluate the string one-loopby a two-loop term and then an infinite seriesDafnstanton
amplitude in nine dimensions and check the coefficient ofcontributions. We have seen that this is consistent with the
this term. We saw in Sec. Il that terms of this type, whichlittle that is known from string perturbation theory—the tree-
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level coefficient agrees with the string tree calculation re- |§ |§ |§
viewed in the appendix and the one string loop contribution 64 F( 1- ZS>F( 1- Zt rii1- Zu)
to the s?R* interaction in ten dimensions is absent as it T= 5 > > >
should be according to Ref20]. However, since no two- lsstu IS s s
loop string amplitudes have yet been evaluated, the value we i1+ ZS i1+ Zt i1+ 4 u
have obtained for the®R* interaction at two string loops is .
not yet testedalthough precise two-loop string calculations 64 20(2n+1) 12
are feasible in principl¢21]). The same is true for the infi- N @ex Z:l 2n+1 42”“(S it
nite sequence dd-instanton contributions to this interaction.
Although we saw in the last section that tB&R* term
cannot contribute to the eleven-dimensional theory in the +untt (A2)

decompactification limi)— o the next term in the deriva-
tive expansion of the two-loop amplitude may. This is the

term of the formS*R* which transAIates in type-llA string  Thys, the low-energy expansion of the amplitude begins with
parameters to a term of the fored? s*R* which would be  the terms

a string two-loop effect. WherV is finite there are other

supergravity two-loop contributions to the prefactor multi-

plying S*R* which come from the expansion of the planar

and nonplanar diagrantd4.10 and(4.11) to linear order irS, 64 £(5)

T, andU. The resulting expressions do not possess modular T = j55;; T 2¢(3)+ 1—6|§(52+t2+uz)

invariant integrands when expressed in terms of the integra- S

tion variablesV and r and we have not made sense of the

integrals. This §uggest_s that extra contributio.ns from higher- n {(3)? 15(s3+t3+ ud) + @I8(32+t2+u2)2+--- _
loop supergravity amplitudes are needed to give the full form 96 3 512 s
of the prefactor. Since there are good dimensional arguments
to expect this prefactor to be determined by supersymmetry (A3)
it would be of interest to disentangle these contributions.
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APPENDIX: THE STRUCTURE OF THE TREE-LEVEL £(3)? 6 3. 3. 113
AND ONE-LOOP STRING CONTRIBUTIONS + 9ere. |1(STF T HUT)
96R7;
The sum of the tree-level and one-loop contributions to (7
the four-graviton amplitude in ten dimensions has the form + —=—13,(SP+ T2+ U?)?, (A4)
[16,22,23 SIRy,
_ A The dynamical factof in the loop amplitude is given in
A= k2 K| —e 24T (s,t,u) terms of the scalar Green function on the torug;jn
Kio 2

Q _ _
- — : :
257008 ) 02 F(Q,Q;stu)|, (Al F(Q,Q;s,t,u)
d2Q > d2p)

where the functiond andF contain the dependence on the :f o7 Q—(X12X34)'gS(Xqus)'gt(Xlaxm)Ig”-
Mandelstam invariants of the tree-level and one-loop terms, T 382 i=1 282

respectively, Z2;=(2)71% is defined as in Ref[10] and (A5)
d2Q=dQ,dQ,.

The functionT contains the dynamical part of the tree
amplitude for the elastic scattering of two gravitons in eitherThe low-energy expansion of this expression is considered in
type-Il theory and is given Ref.[20] where the first few terms are shown to be
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2
~ | T
Agne—loop:K g +1_56|nonan1+0X|‘S‘(Sz+t2+u2)

8

2 |
5(3)|§(53+t3+ug)+ 2_':_S)6l nonanzt "

- 288

|2
™ 11

=K 5" Elnonan1+0><|§1(82+T2+ u?)

PHYSICAL REVIEW D61 104010

111
3)'?1(§+T3+U3)+2_56|n0nan2"'"' .

21

(A6)

The functionsl opan1 @Nd | honan2 @re nonanalytic terms that
contain logarithmic contributions to the two-particle normal
thresholds that are defined by in Eg. (3.15 and are given
more explicitly in Ref.[20].
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