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Two loops in eleven dimensions
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~Received 7 October 1999; published 24 April 2000!

The two-loop Feynman diagram contribution to the four-graviton amplitude of eleven-dimensional super-
gravity compactified on a two-torusT 2 is analyzed in detail. The Schwinger parameter integrations are

reexpressed as an integration over the moduli space of a second torusT̂ 2, which enables the leading low-

momentum contribution to be evaluated in terms of maps ofT̂ 2 into T 2. The ultraviolet divergences associ-
ated with boundaries of moduli space are regularized in a manner that is consistent with the expected duality
symmetries of string theory. This leads to an exact expression for terms of order]4R4 in the effective
M-theory action~whereR4 denotes a contraction of four Weyl tensors!, thereby extending earlier results for
the R4 term that were based on the one-loop eleven-dimensional amplitude. Precise agreement is found with
terms in type-IIA and -IIB superstring theory that arise from the low-energy expansion of the tree-level and
one-loop string amplitudes and predictions are made for the coefficients of certain two-loop string theory terms
as well as for an infinite set ofD-instanton contributions. The contribution at the next order in the derivative
expansion]6R4 is problematic, which may indicate that it mixes with higher-loop effects in eleven-
dimensional supergravity.

PACS number~s!: 04.50.1h, 04.65.1e
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I. INTRODUCTION

This paper continues the study of the interconnections
tween quantum supergravity in eleven dimensions@1# com-
pactified onT 2 and properties of perturbative and nonpe
turbative string theory@2,3#. In earlier papers@4–6# it was
shown that the one-loop diagrams of eleven-dimensional
pergravity that contribute to certain special amplitudes rep
duce terms in the effective type-II superstring actions t
may be described by integrals over sixteen Grassmann c
ponents, which is half the dimension of the type-II sup
space. These terms include theR4 term, which is a specific
contraction of four Weyl tensors that arises from the lead
behavior in the low-energy expansion of the four-gravit
amplitude.

The main objective of this paper is to extend this analy
to the evaluation of higher-derivative terms in the effect
action by considering the low-energy expansion of the tw
loop contribution to eleven-dimensional supergravity co
pactified on T 2. This seemingly awesome calculation
greatly facilitated by the observation in Ref.@7# that the two-
loop amplitude has a surprisingly simple expression as a
nematic factor multiplying a subset of the two-loop amp
tudes ofw3 scalarfield theory. This is a generalization of th
well-known structure of the one-loop amplitude.

Eleven-dimensional supergravity is only the long wav
length approximation to M theory and does not by its
define the short distance physics that is necessary for a
sistent quantum theory. This is evident from the fact that
quantum theory has nonrenormalizable ultraviolet beha
that can only be consistently interpreted with additional m
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croscopic input that is not contained in the supergrav
theory but should be built into a detailed microscopic theo
such as the matrix model. However, it was seen in Ref.@4#
that if some mild extra information is fed in from strin
theory the regularized value of the one-loop divergence
the four-graviton scattering amplitude is uniquely specifie
This mild information is the fact that the type-IIA and II-B
superstring theories have identical one-loop four-gravi
amplitudes. Similar statements hold for other interactions
the same dimension that are related to the four-graviton
teraction by supersymmetry@5#. We will see that requiring
the various string duality symmetries to hold will also s
verely restrict the form of special higher-dimension intera
tions that arise at two loops in eleven-dimensional sup
gravity and contribute higher-derivative terms in th
effective action.

In Sec. II we will give a schematic overview of the loo
amplitudes of eleven-dimensional supergravity compactifi
on a circle and on a two-dimensional torus, and their cor
spondence with terms in the string theory effective acti
The purpose of this section is to show how simple dime
sional arguments can hint at connections between th
quantum loop amplitudes and the structure of higher-or
terms in the effective action of type-II string theory in nin
and ten dimensions. An important point to be discussed
the end of Sec. II is that the four-graviton amplitudes in t
ten-dimensional type-IIA and type-IIB theories can be sho
to beequalup to two loops, even though the two-loop am
plitudes are notoriously difficult to evaluate in closed form
This rather non-obvious consequence of supersymmetry
lows from careful consideration of the effect of the inserti
of world-sheet supermoduli. In order to compare our resu
obtained from one and two-loop diagrams of eleve
dimensional supergravity onT 2 with the corresponding
string theory results, we include an appendix which conta
a brief review of the expansion of the four-graviton tree-lev
©2000 The American Physical Society10-1
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and one-loop string theory amplitudes in a series of der
tives.

Section III will review the detailed calculation of the on
loop four-graviton amplitude compactified onT 2 and its
contributions to the effective M-theory action, developi
the arguments in Refs.@8#, @9# concerning the momentum
dependence. The lowest order term in the momentum ex
sion determines the interaction of the form@10#

E d9xA2G~9!VR4S 4p

3
L3l 11

3 1V23/2f 1~V,V̄! D ,

~1.1!

whereG(9) is the nine-dimensional M-theory metric,V is the
dimensionless volume ofT 2, V5V11 iV2 is its complex

structure, andf 1(V,V̄) is a modular-function invariant
When translated into the nine-dimensional type-IIB stri
theory parameters the complex structure is identified with
complex coupling constant whereV1 is the Ramond-
Ramond (R^ R) scalar field andV25e2fB

, with fB the

type-IIB dilaton. The functionf 1(V,V̄) has a large-V2 ex-
pansion that begins with two power-behaved terms. Th
are interpreted in string theory as terms that arise from
tree-level string amplitude and from the one-loop string a

plitude. The remainder off 1(V,V̄) consists of an infinite
sequence of exponentially suppressed contributions of
form e22p(uKuV22 iKV1) which correspond to D-instanton con
tributions. The one-loop ultraviolet divergence is cubic in t
loop momentum and has been cut off in Eq.~1.1! at a mo-
mentum scaleL measured in units ofl 11

21, wherel 11 is the
eleven-dimensional Planck length. It was shown in Ref.@10#
that in order for Eq.~1.1! to be consistent with the equalit
of the one-loop four-graviton amplitudes in the type-IIA a
-IIB string theories the cutoff must be set to the val
(L l 11)

35p/2. Alternatively, a localR4 counterterm should
be added to the one-loop action with a coefficient chose
cancel theL dependence and give the appropriate fin
value.

The one-loop amplitude compactified onT 2 also contains
an infinite set of higher-derivative terms. Among these
the nonanalytic terms containing the nine-dimensional ma
less threshold singularities implied by unitarity which ha
the symbolic form (2 l s

2s)1/2 ~wheres represents any of the
Mandelstam invariants1!. After subtracting this term the loop
amplitude can be expanded in a series of powers of the
menta corresponding to higher derivative terms in the eff
tive action@8,9#. These higher-derivative terms translate in
terms in the type-IIA and -IIB string theory effective action
that have a dependence on the coupling constant that im
that they should be identified with multiloop string theo
effects. Among these terms are contributions of orders2R4

1We use lower-case letterss, t, u to denote the Mandelstam in
variants in the ten-dimensional theory in the string frame and up
case lettersS, T, Ufor the corresponding invariants in the eleve
dimensional theory.
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that have the dilaton dependence of string theory one-l
and two-loop contributions. These terms apparently viol
the equality of type-IIA and -IIB four-graviton amplitudes a
two string loops. However, we will see that the expect
equality is restored when two-loop supergravity effects
added.

Section IV will be concerned with the two-loop supe
gravity four-graviton amplitude compactified onT 2, making
use of its expression in terms of scalar field theory@7#. An
important feature of the two-loop and higher-loop contrib
tions is that they have overall kinematic factors of the fo
D4R4, so that they do not give extra contributions to t
one-loopR4 term.2 However, it is not known if theD4R4

andD6R4 terms, which get contributions from both one an
two loops in eleven dimensions, are protected from corr
tions arising from higher-loop diagrams. In a sense, the
sults of this paper indicate that theD4R4 terms are com-
pletely accounted for by the two-loop contributions a
should therefore not receive higher-order corrections.

We will be interested in the expression for the two-lo
amplitude compactified onT 2 so that each loop is associate
with an independent nine-dimensional momentum integ
and a sum over two Kaluza-Klein momentum componen
After performing the integration over the continuous lo
momenta the leading term in the low-energy expansion
the two-loop supergravity amplitude ofD4R4 will be ex-
pressed as an integral over three Schwinger parameters a
sum over the Kaluza-Klein charges. This needs to be re
larized in order to suppress the ultraviolet divergences wh
are of two kinds. One of these is the two-loop primitiv
divergence while the second comprises the three indepen
subdivergences that come from the divergences of one-
subdiagrams.

In order to describe these divergences in a system
manner we first perform Poisson resummations over
Kaluza-Klein momenta to rewrite the amplitude as a s
over the windings of the internal lines aroundT 2 as well as
an integral over three loop parameters. The leading div
gence arises, as expected, in the sector of zero winding n
ber while the one-loop subdivergences arise in sectors
which a subset of winding numbers vanish. In order to a
lyze these subdivergences we have found it very helpfu
make use of a hidden SL(2,Z) symmetry of the two-loop
supergravity integrand. This is made explicit by redefini
the three loop integration variables to be the volume a
complex structure of a second two torusT̂ 2. The ultraviolet
divergences are regularized in a natural manner that resp
the SL(2,Z) symmetry by introducing a cutoff at the bound
aries of the moduli space of this torus. The evaluation of
loop amplitude then involves mappings ofT̂ 2 into T 2.

In this manner we will be able to evaluate contributions
the effective action that have the form of a prefactor, wh
is a function of the moduli, multiplyingD4R4. There is a

r- 2This symbolic notation indicates a term in which there are fo
~covariant! derivatives and four factors of the Riemann curvatu
The precise pattern of index contractions will be specified later
0-2
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TWO LOOPS IN ELEVEN DIMENSIONS PHYSICAL REVIEW D61 104010
finite ~cutoff-independent! contribution to this prefactor tha
is independent of the string coupling and is interpreted a
string one-loop contribution. The dependence on the co
plex structure of the torus is encoded in a contribution to
prefactor that is again a modular invariant nonholomorp
Eisenstein series. This enters in the sectors that have
loop subdivergences proportional toL3, whereL is a mo-
mentum cutoff. These subdivergences are cancelled by a
tional one-loop four-graviton diagrams in which the one-lo
R4 counterterm~and its supersymmetric partners! is inserted
as one of the vertices. When translated into string the
coordinates the renormalized value of this prefactor conta
equal tree-level, one-loop and two-loop perturbative con
butions to the type-IIA and -IIB string theory four-gravito
amplitudes. The agreement between these type-IIA and
perturbative terms follows from detailed comparison b
tween the one-loop expressions of Sec. III and the two-lo
expressions of Sec. IV. The coefficients of these terms
also in precise agreement with the corresponding terms in
expansion of the string tree and one loop amplitudes give
the Appendix.

We will also argue on the basis of string dualities that
leading two-loop divergence can make no contribution to
D4R4 interaction, which means that its renormalized va
must be set equal to zero. However, it can contribute to
D6R4 interaction at string tree level. The analysis of t
eleven-dimensional two-loop contribution to this interacti
indeed appears to be a mess. This suggests that this int
tion may also receive contributions from higher-loop effe
in eleven-dimensional supergravity. Section V contains
summary and some concluding comments.

II. HIGHER ORDER TERMS IN ELEVEN DIMENSIONS

The derivative expansion of the M-theory action for t
eleven-dimensional theory compactified onT 2 starts with
the classical Einstein-Hilbert term

SEH5
1

2k11
2 E d11xA2G~11!R, ~2.1!

where 2k11
2 5(2p)8l 11

9 and l 11 is the eleven-dimensiona
Planck length.3 There is no coupling constant that can
tuned to a small value in the eleven-dimensional theory
there is no meaningful perturbative expansion. Therefore,
will only be able to make sense of ‘‘protected’’ quantitie
that receive only a finite number of perturbative contrib
tions. The dimensional ultraviolet cutoff is determined
units of the eleven-dimensional Planck scalel 11. Upon com-
pactification it will often be convenient to change to t
string theory parameters, which are given in units of
string scalel s . Compactification on a circle of radiusR11
gives rise to the type-IIA string theory where the string co
pling constant,gA5efA

~wherefA is the type-IIA dilaton!,

3With this convention the value of the tension of the fundamen
string is equal to the tension of theM2-brane wrapped on a circle o
radius 2pR11, i.e., TF52pR11l 11(2p2/k11

2 )1/3 @3,11#.
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is given byl 115(gA)1/3l s andR11
3 5e2fA

5(gA)2. Masses are
measured with the metric@12#

ds25GMN
~11!dxMdxN

5
l 11
2

l s
2R11

gmndxmdxn1R11
2 l 11

2 ~dx112Cmdxm!2,

~2.2!

wheregmn is the string frame metric. Since the compacti
cation radiusR11 depends of the string coupling constant t
Kaluza-Klein modes are mapped to the massless fundam
tal string states and the nonperturbativeD0-brane states
When expressed in terms of the type-IIA string theory p
rameters the compactified classical action becomes

SEH5
1

2k10
2 E d10xA2ge22fA

R, ~2.3!

where 2k10
2 5(2p)7l 5

8 and l 5 is the string length scale.4

More generally, we will be concerned with the compac
fication of eleven-dimensional supergravity onT 2. The dic-
tionary that relatesn andV to the nine-dimensional type-IIA
and type-IIB string theory parameters is@2,3#

V5R10R115expS 1

3
fBD r B

21/3, r B5
1

R10AR11

5r A
21,

~2.4!

V15C~0!5C9
~1! , V25

R10

R11
5exp~2fB!5r A exp~2fA!,

where r A and r B are the dimensionless radii of the ten
dimension as measured in the type-IIA and -IIB stri
frames, respectively. The one-formC(1) and the zero-form
C(0) are the respectiveR^ R potentials andfA,fB are the
type-IIA and -IIB dilatons.

The higher order corrections to the four-graviton intera
tion in the M-theory effective action compactified onT 2 can
be schematically represented by the expression,

S4;
1

l 11
E d9xA2G~9!Vh~V,V; l 11

2 ]2!R4, ~2.5!

where the expansion of the functionh summarizes genera
features of the higher order corrections to the action. T
lowest-order contribution of this type is theR4 term @10,13–
15,4#, which denotes the familiar contraction between fo
Weyl tensors

R4;tm1¯m8tn1¯n8Rm1n1m2n2
¯Rm7n7m8n8, ~2.6!

where the tensortm1¯m8 (m r50,1, . . . ,9) isdefined in Ref.
@16#. In the following we will be evaluating the scatterin
amplitude for four on-shell gravitons that contributes to

l
4In this convention the fundamental string tension is related to

string scale byTF
25p(2p l s)

4/k10
2 .
0-3
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MICHAEL B. GREEN, HWANG-H. KWON, AND PIERRE VANHOVE PHYSICAL REVIEW D61 104010
fective interactions of this type. Instead of specifying t
precise normalization constant in Eq.~2.6!, it will therefore
be more useful to define the linearized version of this int
action in momentum space, which is given by

K̂5tm1¯m8tn1¯n8)
r 51

4

zmrnr

~r ! kmr 14

~r ! knr 14

~r ! , ~2.7!

wherezmrnr

(r ) (r 51,2,3,4) are the polarization vectors for th

gravitons with momentakmr

(r ) satisfying the conditionsk(r )2

50 and( r 51
4 kr50.

In writing the effective action in the form~2.5! it is nec-
essary to first subtract the nonlocal threshold terms that a
from integration over the massless intermediate states in
loop amplitudes. In the nine-dimensional compactification
be considered later these thresholds generate square
branch points of the form (2s)1/2. Having subtracted this
behavior the amplitude has a power series expansion in p
ers of s, t, and u. This translates into an expansion of th
functionh in powers of]2, beginning with terms that we wil
write symbolicallyD4R4, which have the linearized form

]4R4;tm1¯m8tn1¯n8~]m2
]n2

hm1n1
!

3~]m4
]n4

hm3n3
!]4@~]m6

]n6
hm5n5

!~]m8
]n8

hm7n7
!#

~2.8!

The precise normalization of this term will be relevant la
when its contribution to the four-graviton amplitude will b
discussed. In that case we will defineD4R4 in such a manner
that it gives a four-graviton contact term that is equal to

~S21T21U2!K̂. ~2.9!

The possible term of order]2 vanishes by use of the equa
tions of motion ~the mass shell conditionS1T1U50).
There are expected to be higher order nonanalytic term
the form S3(2S)1/2 which will also need to be subtracte
before powers ofS4 and higher can be considered. Howev
the considerations of this paper will cover only the terms
order S2R4 ~together with a few comments about terms
order S3R4) so the higher-order thresholds will not be re
evant.

A. One-loop contributions

Some of the systematics of the correspondence betw
the loop calculations of eleven-dimensional supergrav
compactified on a circle or on a two torus can be underst
from dimensional arguments. For example, the one-lo
four-graviton diagram of Fig. 1 has dimension~momentum!
@11# but it actually only diverges cubically with momentum
This follows from the fact that an overall factor of the lin
earized approximation toR4 factors out of the amplitude an
this prefactor contains eight powers of the external mome
After accounting for this prefactor the dynamical part of t
loop calculation is identical to the box diagram ofw3 field
theory. Importantly, no other diagrams contribute. In partic
lar, there are no diagrams with vertices corresponding
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gravitational contact interactions. This simplification is
very special feature of the four-graviton amplitude and ot
related processes that are protected by supersymmetry@6#.

The box diagram can be expressed as a sum over
windings of the worldline of the particle circulating in th
loop, which gives an expression that is the sum of inte
winding numbers around the circle or the two torus. T
term with zero winding number, which is ultraviolet dive
gent, does not depend on the geometry of the torus. T
divergence will be regulated by introducing a cutoffL22 on
the Schwinger parameter conjugate to the loop momen
which suppresses the ultraviolet domain. This gives a con
bution to the amplitude proportional toL3. The dependence
on the cutoff can be cancelled by adding a localR4 counter-
term to the action. The sum over nonzero windings give
finite contribution which is necessarily proportional toR11

23

which has the dimensions~momentum! @3# where, for sim-
plicity, we are considering compactification on a circ
Comparing this to the expected result in the type-IIA theo

in which R11
3 5e2fA

, we see that the finite term is interprete
as a string tree-level effect while the regularized term~which

is independent ofefA
) is a string one-loop effect. Compac

tification of the loop on a two-torus gives a dependence
the modulus of the torus as well as its volume. In the limit
zero volume the ultraviolet divergent zero winding numb
term vanishes and the finite sum over nonzero windin
gives the finite result that corresponds to the type-IIB str
theory.

As will be explained in Sec. II C the four-graviton ampl
tudes of the type-IIA and -IIB string perturbation expansio
are equal up to and including two loops. This is not an a
tomatic property of the eleven-dimensional field theory c
culation but it is true if the coefficient of the counterterm
chosen to have an appropriate value. Furthermore, this is
same value that is required by supersymmetry~based on an
indirect argument given in Ref.@10#!.

In the next section we will consider terms of higher ord
in the derivative expansion that come from the expansion
the one-loop supergravity amplitude in powers ofS, T, and
U. When compactified on a circle this gives terms in t
effective action of the symbolic formR11

3nD2nR4, which con-

tribute to then-loop string action sinceR11
3 5e2fA

.

FIG. 1. ~a! The scalar field theory one-loop diagram contribu
ing to the four-graviton amplitude of compactified eleve
dimensional supergravity.~b! The one-loopR4 counterterm that
cancels the cubic ultraviolet divergence.
0-4
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B. Two-loop contribution

New primitive divergences arise at each order in pert
bation theory. For example, the two-loop Feynman diagra
contributing to the four-graviton amplitude in eleve
dimensional supergravity have the superficial degree of
vergenceL20. However, the amplitude has an expansion
powers of derivatives acting onR4 so there are at least eigh
powers of the external momenta, reducing the naive div
gence toL12, or less~depending on the number of deriva
tives!. According to Ref.@7# at two loops there is also a
additional factor ofS2 ~or T2 or U2) so that the naive two-
loop divergence isL8, which is the same as that ofw3 scalar
field theory. More generally, atn loops there is a new primi
tive divergences of the formL9n210S2R4. From the work of
Ref. @7# it is not yet clear whether extra overall powers ofS,
T, and U arise beyond two loops which would reduce t
naive degree of divergence still further~although it seems
unlikely that there will be a simple expression for high
loops in terms ofw3 field theory!. These ultraviolet diver-
gences come from the sector in which all winding numb
vanish and are independent of the geometry of the com
tified dimensions. Their cutoff dependence can therefore
subtracted by the inclusion of local counterterms prop
tional to powers of derivatives acting on four powers of t
curvature@as in Fig. 2~c!#. In Ref.@7# the two-loop amplitude
was evaluated by dimensional regularization, which pic
out the logarithmically divergent term. This arises from t
finite part of a term of the~symbolic! form S622eR4/e in
112e dimensions. Likewise, the diagram will contribu
nonanalytic threshold terms at orderS6. Dimensional regu-
larization discards the power divergences that have lo
powers ofS, which are precisely the terms we are interes
in this paper.

In translating to string theory we must use the relatio
between the string theory Mandelstam invariantss, t, andu,
and those of eleven-dimensional supergravity

s5S
l 11
2

l s
2R11

, t5T
l 11
2

l s
2R11

, u5U
l 11
2

l s
2R11

, ~2.10!

where the presence of the inverse powers ofR11 results from
the inverse metric in the definition of the invarian
@S52Gmn(k11k2)m(k11k2)n , T52Gmn(k11k4)m(k1
1k4)n , U52Gmn(k21k4)m(k21k4)n#.

FIG. 2. ~a! A scalar field theory two-loop diagram that contrib
utes to four-graviton scattering.~b! One-loop diagrams in which
one vertex is theR4 counterterm cancel the subdivergences of
two-loop diagrams.~c! A two-loop counterterm proportional to
S2R4.
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As in the case of one-loop diagrams the effects of
internal propagators winding around the compact direction~s!
leads to dependence on the geometry of the compact dim
sions. In this case these effects arise both in finite term
well as in terms that contain subdivergences. For exam
Fig. 2~a! shows an example of a two-loop supergravity d
gram which has dimension~momentum! @20#. After account-
ing for the twelve powers of the external momenta in t
overall S2R4 factor eight powers of momenta remain th
must be replaced either by powers ofL or appropriate pow-
ers of the dimensional parameters (R11)

21 ands5S/R11, t
5T/R11, or u5U/R11. When compactified on a circle o
radiusR11 this will contribute to the string tree level ampl
tude if it is proportional to (R11)

23. There are therefore two
possible kinds of term that contribute at the tree lev
namely, terms of the form

K1

R11
3 L3l 11

4 S S21T21U2

R11
2 D 5gA

22L3l s
4~s21t21u2!

~2.11!

and

K2

R11
3 l 11

6 S S31T31U3

R11
3 D 5gA

22l s
6~s31t31u3!, ~2.12!

whereK1 and K2 are constants. The second of these ter
does not depend on the cutoff and is a finite contribut
whereas the first term results from the one-loop subdiv
gences.

These subdivergences are cancelled by including the o
loop diagram of Fig. 2~b!, in which the vertex indicated by
the dot is the localR4 counterterm that was extracted fro
the one-loop diagram and has a coefficient that depend
the cutoff. Since the particles circulating in the loop inclu
all components of the supermultiplet, the supersymme
partners of theR4 vertices are also involved. These coup
the two external gravitons to two internal third-rank antisy
metric tensors, or two gravitini, in addition to two intern
gravitons. In practice, this complication will be avoide
since we will find that the consistency of the renormalizati
procedure requires Fig. 2~b! to be given in terms of scala
field theory in the same manner as the other one-loop
two-loop diagrams. This makes the diagram very easy
evaluate. Its dimension of~momentum! @17# is accounted for
by the cutoff-independent factorR11

23(S/R11)
2R4 that has the

same form as Eq.~2.11!. The sum of this diagram and Eq
~2.11! should give a specific overall coefficient that is ind
pendent of the cutoff. In fact, we will see from the explic
calculations in Sec. IV that the coefficient of theD4R4 term

is proportional, in the type-IIB limit, toE5/2(V,V̄), which is
the natural modular invariant completion of the tree-lev
term ~2.11!. As anticipated, the overall coefficient is pre
cisely determined by requiring that the type-IIA and type-I
string loop amplitudes are equal~up to two loops!.

The status of theS3R4 term ~2.12! will not be resolved in
this paper. It seems likely that a complete understanding
have to take into account higher-loop supergravity contri
tions. This is one of many complications in understanding

e
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detail the systematics of the correspondence between
higher-loop supergravity diagrams and string diagram
Whereas theR4 and related terms of the same dimension
integrals over half the superspace, terms with more der
tives are formally integrals over a higher fraction of the s
perspace. Each power of momentum is equivalent to
powers ofu so that terms with less than eight powers
momentum acting onR4 should be protected and may b
determined in this manner. This includes theS3R4;D6R4

term which should therefore also be determined by sim
considerations. Whether it is possible to go beyond this
relate terms in string perturbation theory at higher order
the momentum expansion to eleven-dimensional superg
ity is much less obvious.

C. Comparison of type-IIA and -IIB perturbation expansions

An important constraint on the structure of the results
the eleven-dimensional calculations that we will make use
is a relationship between the type-IIA and -IIB four-gravito
scattering amplitudes that holds up to and including t
loops. It is well known that the tree-level and one-loop fou
graviton amplitudes of the type-IIA and type-IIB superstri
theories are identical~ignoring the parity-violating part of
the loop amplitude, which vanishes in topologically trivi
backgrounds!. This property, which is also true for compa
tifications, is not an obvious consequence of the duality sy
metries. For example, T duality~which applies to all orders
in perturbation theory as well as nonperturbatively! only
identifies the two theories when one is compactified o
circle and the other on the inverse circle, whereas we
comparing the theories on circles of the same radius~which
may, for example, be infinite!. The question is how far this
generalizes to higher genus diagrams, which have not b
explicitly evaluated? Such equality can be seen by consi
ing the explicit construction of the four-graviton loops in th
two theories.5

Recall that the type-IIB theory differs from that of th
type-IIA by a flip of sign in the Gliozzi-Scherk-Olive~GSO!
projection for the odd spin structure of the left-moving fe
mions while the right-moving fermions have identical GS
projections. Therefore, loop amplitudes with external gra
tons, or any other massless states in the Neveu-Sch
^Neveu-Schwarz (NŜNS) sector, differ only in the sign o
the odd-odd spin structures—those spin structures that
odd both in the left-moving and in the right-moving secto
~we will again ignore the odd-even spin structures wh
vanish in the topologically trivial backgrounds that we a
considering!. Consider the scattering of gravitons with m
mentakmr

(r )(r 51,2,3,4), where( r 51
4 km

(r )50, and polarization

vectorshmrnr

(r ) which can be written in terms of left-movin

and right-moving vectors ahmrnr

(r ) 5( ihmr

(r ; i )h̃nr

(r ; i ) . For genus

l>1 these terms are associated with the product of two
silon tensorsem0¯m9ẽn0¯n9. The tensor indices can contra
with the three independent external momenta, the l

5This subsection is based on conversations with Nathan Berko
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moving and right-moving vectors in the polarization tenso
or with each other. At one loop there are no contractio
between the two epsilon tensors so the odd-odd spin st
tures vanish and the two theories are identical. At hig
loops there are insertions of 2l 22 supermoduli associate
with picture changing. Each one of these inserts a facto
]Xm]̄Xn which leads to a total of two contractions of th
form hmn between the two epsilon tensors. This is still n
enough to allow the sixteen remaining indices of these t
sors to be saturated by the external momenta and pola
tions. Whenl .2 there are more contractions between t
epsilon tensors due to the higher number of picture chang
operators, in which case the odd-odd spin structures giv
nonzero contribution.We conclude, therefore, that the fou
graviton amplitudes in the type-IIA and -IIB superstrin
theories are equal up to two loops, but not beyond. A corol-
lary is that amplitudes with five external gravitons are n
equal at two loops while those with more gravitons are
equal at one or two loops.

III. MOMENTUM DEPENDENCE OF THE ONE-LOOP
SUPERGRAVITY AMPLITUDE

The one-loop amplitude describing the elastic scatter
of two gravitons in eleven-dimensional Minkowski space
given by @4#

A4
~1!5

k11
4

~2p!11 K̂@ I ~S,T!1I ~S,U !1I ~U,T!#, ~3.1!

where the functionI has the form of a Feynman integral fo
a box diagram in massless scalarw3 field theory

I ~S,T!5E d11q
1

q2

1

~q1k1!2

1

~q1k11k2!2

1

~q2k4!2

~3.2!

and qm(m50, . . . ,10) is theeleven-dimensional loop mo
mentum. The numerical coefficient in Eq.~3.1! follows the
conventions of Ref.@7# @with a slight reshuffling of the pow-
ers of (2p)11# which will be convenient for later consider
ation of two-loop diagrams.

We want to consider this amplitude compactified onM9

3T 2 so that two components of the loop momentum a
proportional to integer Kaluza-Klein charges (l 1 andl 2). For
simplicity, we will choose a kinematic configuration i
which the external gravitons have their polarizations and m
menta oriented in directions transverse to the two torus.
ter representing the propagators as integrals of Schwin
parameters in the usual manner the compactified versio
Eq. ~3.2! can be written as

I ~S,T!5
1

l 11
2 V E )

r 51

4

ds rE d9q (
$ l 1l 2%

e2GIJl 1l Js2(r 51
4 pr

2sr,

~3.3!ts.
0-6
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wheres5S r 51
4 s r and pr5q1Ss51

r ks are the momenta in
the legs of the loop. The Schwinger parameterss r have di-
mension~length!.2

After a few manipulations@8,9,4# each of the three term
in the scalar integral~3.3! can be rewritten as

I ~S,T!5
2p9/2

l 11
2 V E

0

`

ds s23/2E
TST

)
r 51

3

dv r

3 (
$ l 1 ,l 2%

e2GIJl 1I Js2Q~S,T;vr !s, ~3.4!

where Q(S,T;v r)52Sv1(v32v2)2T(v22v1)(12v3).
The domain of integration indicated byTST is defined by 0
<v1<v2<v3<1. The other two terms in Eq.~3.3! come
from integration over the two remaining regionsTTU :
0<v3<v2<v1<1 andTSU : 0<v2<v1<v3<1. The in-
tegral ~3.4! is to be evaluated withS,T,0 where it con-
verges and then analytically continued to the physical reg
The amplitude can be split into a momentum-dependent
a momentum-independent part

I ~S,T!5I 01I 8~S,T!, ~3.5!

where

I 0[I ~0,0!5
p4

l 11
2 V E0

`

dss23/2 (
$ l 1 ,l 2%

e2pGIJl I l Js, ~3.6!

wheres has been rescaled by a factor ofp in passing from
Eq. ~3.4! to Eq. ~3.6!. This expression diverges for smalls,
which is the cubic ultraviolet divergence of the scalar b
diagram in eleven dimensions. We will regularize this div
gence by introducing a cutoff ons so that 1/L2<s. It is
convenient to carry out Poisson summations onl 1 and l 2
which replaces the Kaluza-Klein charges by winding nu
bers l̂ 1 and l̂ 2 . The divergence is now isolated in the ze
winding number term (l̂ 1 , l̂ 2)5(0,0). The result is

I 05
p3

2l 11
3 S 4p

3
~L l 11!

31V23/2f 1~V,V̄! D , ~3.7!

whereL3 is the regularized value of the zero winding num
ber term. In balancing the dimensions in this and other eq
tions it is important to note that we have defined all distan
as dimensionless multiples of the Planck distancel 11. In this
conventionV is dimensionless while the one-loop cutoffL
has dimension (length)21. In addition to the one-loop con
tribution there is the freedom to add the local counterte
d (1)S; l 11

23c1*d9xA2G(9)VR4, which adds a term

dA4
~1!5

k11
4

~2p!11 K̂dI 0 ~3.8!

to the amplitude, where

dI 05
p3

2l 11
3 c1 , ~3.9!
10401
n.
d

-

-

a-
s

andc1 is an arbitrary coefficient that will shortly be given
L-dependent value.

The L-independent term in Eq.~3.7! has coefficient

f 1(V,V̄)52z(3)E3/2, where the Eisenstein seriesEs is de-
fined by

2z~2s!Es5 (
~m,n!Þ~0,0!

V2
s

um1nVu2s . ~3.10!

The volume dependenceV23/2 of this term means that i
vanishes in the eleven-dimensional limitV→`. However,
this is the only term that survives in the limit that corr
sponds to the decompactified type-IIB theory,r B→` with
fixed efB

, while the cutoff dependent term in Eq.~3.7! gives
vanishing contribution. The complex structure ofT 2 is to be
identified with the complex type-IIB scalar field,V5V1
1 iV2 . ExpandingE3/2 for large V2 ~small type-IIB cou-
pling efB

) gives

2z~3!E3/252z~3!e23fB/21
2p2

3
efB/21nonperturbative.

~3.11!

The successive terms in this expansion can be identified
tree-level, one-loop, and nonperturbative terms in the coe
cient of the type-IIB string theoryR4 interaction. The non-
perturbative terms have the form of an infinite series
D-instanton terms where each charge-K D-instanton contri-
bution has an infinite series of perturbative fluctuations.

The total one-loop contribution to the amplitude com
from the combinationI 01dI 0 @the sum of Eqs.~3.9! and
~3.7!#. The dominant term in the largeV limit is proportional
to @4p(L l 11)

3/31c1# and is independent ofV so in the
string theory parametrization this term is independent of
dilaton and arises from one string loop in the type-I
theory. Although this coefficient is not determined by t
physics of quantized eleven-dimensional supergravity, i
determined by insisting that the four-graviton interactions
the type-IIA and type-IIB effective string actions should b
equal when the radiir A and r B are equal. As argued in Sec
II C this is known property of string perturbation theory up
and including two loops. More explicitly, the nine
dimensional effective actions that give rise to the moment
independent part ofI 1dI 0 haveR4 terms that are expresse
as

SR45
1

33~4p!7l 11
E d9xA2GVR4

3S 2z~3!V23/2E3/2~V,V̄!1c11
4p

3
~L l 11!

3D ,

~3.12!

which can be written in string theory coordinates and e
panded for small string coupling constant in the form
0-7
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SR45
1

33~4p!7l s
E d9xA2gBr BR4

3S 2z~3!e22fB
1

2p2

3
1

c114p~L l 11!
3/3

r B
2 1¯ D

5
1

33~4p!7l s
E d9xA2gBr AR4

3S 2z~3!e22fA
1

2p2

3

1

r A
2 1c11

4p

3
~L l 11!

31¯ D ,

~3.13!

in the type-IIA and type-IIB theories, respectively~ignoring
the nonperturbative contributions!. It follows that the only
consistent value forc1 which equates the type-IIA and -IIB
expression is

c15
2p2

3
2

4p

3
~L l 11!

3. ~3.14!

This is the value which is also consistent with supersymm
try @10#.

The momentum dependence ofI (S,T) in Eq. ~3.4! is con-
tained in the finite termI 8(S,T) in Eq. ~3.5!. We will sepa-
rate the term with zero Kaluza-Klein momentaI 0(S,T) ( l 1
5 l 250), from the rest by writing

I 8~S,T!5I 0~S,T!1 (
n52

`

I n~S,T!. ~3.15!

The termI 0(S,T), which contains the nonanalytic contribu
tion to the amplitude@8,9# has the form ind dimensions

l 11
2 VI d

0~S,T!

52pd/2E
0

`

ds s32d/2E
TST

)
r 51

3

dv r~e2Q~S,T;vr !s21!

52pd/2G~42d/2!

3E
TST

)
r 51

3

dv rQ~S,T;v r !
~d28!/2

52pd/2G~42d/2!~2GST!
~d28!/2, ~3.16!

whereGST
n is defined by

GST
n 5E

TST
)
r 51

3

dv r@2Q~S,T;v r !#
n. ~3.17!

Similarly, GTU
n andGUS

n will be defined by cyclically permut-
ing S, T, andU in the functionQ. Specializing tod59 gives

l 11
2 VI 0~S,T![28p5~2GST!

1/2

528p5E
TST

)
r 51

3

dv r@Q~S,T;v r !#
1/2.

~3.18!
10401
-

The terms in Eq.~3.15! with nonzero Kaluza-Klein charge
I n are homogeneous polynomials inS andT of degreen,

l 11
2 VI n~S,T!52p9/2

GST
n

n! E
0

` ds

s3/22n (
~ l 1 ,l 2!Þ~0,0!

e2GIJl I l Js

54p9/2GS n2
1

2D z~2n21!l 11
2n21V n21/2

3
GST

n

n!
En21/2~V,V̄!. ~3.19!

The Eisenstein series that enter this expression have
large-V2 expansion

En21/2~V,V̄!5e2~2n21!fB/2

1
ApG~n21!z~2n22!

G~n2 1
2 !z~2n21!

e~322n!fB/2

1nonperturbative. ~3.20!

The first term will contribute to the tree-level amplitud
when expressed in string coordinates and the second ter
a n-loop contribution. All the other terms are non
perturbativeD-instanton effects.

Using the expansion~3.20! and putting all the terms to
gether, the complete expression for theR4 term in the one-
loop effective action for eleven-dimensional supergravity
nine-dimensions is given by Eq.~2.5! with the functionh
defined by the amplitudeA4 in Eq. ~3.1!, where

I ~S,T!1I ~T,U !1I ~U,S!

5I 02
4p5

l 11
2 V ~2W!1/2

14p9/2(
n52

`

l 11
2n23 W nV n23/2

n!

3FGS n2
1

2D z~2n21!S R10

R11
D n21/2

1ApG~n21!z~2n22!S R10

R11
D 3/22nG

1nonperturbative ~3.21!

and

W n5GST
n 1GTU

n 1GUS
n . ~3.22!

There is non51 term after adding the contributions o
I (S,U) and I (T,U) to I (S,T) since the linear symmetric
combination vanishes after using the mass shell conditio

The nonanalytic term ~3.18! in nine-dimensional
M-theory comes from the same massless thresholds that
in either nine-dimensional type-II string theory@9,8# and
have square root branch cuts of the form (2S)1/2.
0-8
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The two infinite series of terms on the right-hand side
~3.21! have very obvious origins from the dimensional r
duction of the massless one-loop normal threshold of
eleven-dimensional loop. The first infinite series is a serie
ascending powers ofR10. Although such terms appear t
give singular behavior in the ten-dimensional IIA decomp
tification limit, R10→`, the series actually sums up to giv
the correct threshold behavior of the ten-dimensional the
schematically of the formS ln(2S). More explicitly, the sum
gives

2
4p5

l 11
2 V ~2W!1/214p9/2(

n52

`

l 11
2n23 W nV n23/2

n!

3GS n2
1

2D z~2n21!S R10

R11
D n21/2

52
4p5

l 11
3 V (

r PZ
S r 2

R10
2 2 l 11

2 WD 1/2

2
1

l 11
3 R11R10

2 4p5z~21!G~21/2!. ~3.23!

The last term on the right-hand side cancels against the

ond term in the expansion ofE3/2(V,V̄) in I 0 ~3.7! @using
Eq. ~3.11!#. The net result is that the sum of the first infini
series of terms in Eq.~3.21! is given by

E
Tst

)
r 51

3

dv rF2
8p2

l 11
3 V (

r PZ
S r 2

R10
2 1 l 11

2 Q~S,T;v r ! D 1/2G .
~3.24!

The sum overr can be evaluated in the large-R10 limit by
approximating it by an integral by lettingr /R10→y,

lim
R10→`

2
4p5

l 11
3 V (

r PZ
S r 2

R10
2 2 l 11

2 WD 1/2

52
8p5

l 11
3 R11

E
0

`

dy~y22 l 11
2 W!1/2

5
2p5

l 11R11
W @ ln~2W!22#, ~3.25!

where a constant has been absorbed into the implicit sca
the logarithm. This cancels out when the~S,T!, ~T,U!, and
~U,S! contributions are added. The result is that the se
sums up to the expected massless logarithmic threshol
ten dimensions of the form

R4~GST ln GST1GTU ln GTU1GUS ln GUS!

;R4~GST
s ln GST

s 1GTU
s ln GTU

s 1GUS
s ln GUS

s !,

~3.26!
10401
f

e
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s
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where the expressionsGST
s , GTU

s , and GUS
s are defined in

terms of the Mandelstam invariants of string theory, us
the relation between the M-theory and string theory Mand
stam invariants, Eq.~2.10!. Both Eqs.~3.18! and~3.26! have
imaginary parts corresponding to the massless normal thr
olds determined by unitarity. However, the real parts, wh
might have given rise to arbitrary constants, are here fixe
precise values. In addition to the threshold term~3.26!, the
tree-level part ofI 0 also survives the limitR10→` in the
type-IIA amplitude, but theD-instanton terms are infinitely
suppressed and disappear.

The second series of terms on the right-hand side of
~3.21! is an ascending series of powers ofR11. In the ten-
dimensional decompactification limitR10→` this sums to a
series of massive logarithmic thresholds of the te
dimensional theory

2p5(
n51

`

l 11
2n23 W nV n23/2

n!
G~n21!2z~2n22!S R10

R11
D 3/22n

5
2p5

l 11
3 R11

(
rÞ0

S r 2

R11
2 2 l 11

2 WD F lnS 12
R11

2

r 2 l 11
2 WD 22G .

~3.27!

This is a series of thresholds for the massive Kaluza-Kl
states of M-theory on a circle of radiusR11 which is to be
added to the massless threshold that comes from Eq.~3.25!.
This sum can be evaluated in the decompactification li
R11→` by approximatingr /R11 by a continuous variable
Including the massless threshold term~3.26!, the sum re-
duces to the eleven-dimensional threshold

l 11
2 VI 52p9/2E

0

`

dss3211/2E )
r 51

3

dv re
2sQ~vr !

5
8p5

3
@~2GST!

3/21~2GTU!3/21~2GUS!3/2#.

~3.28!

The tree-level type-IIA term vanishes in theR11→` limit.
Rewriting the result of the one-loop calculation~3.21! in

terms of the string theory parameters gives terms in the
fective action of nine-dimensional type-IIA and -IIB strin
theory with derivatives acting onR4 that can be written in
terms of the one-loop amplitude~3.1! as6

6These expressions correct certain coefficients in the corresp
ing formulas of Ref.@9#.
0-9
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A4
~1!5~4p8l 11

15r A
21!K̂r AF2z~3!e22fA

1
2p2

3r A
2

1
2p2

3
28p2r Al s~2W s!1/2

18p3/2(
n52

` S GS n2
1

2D z~2n21!
1

r A
2

r A
2n~ l s

2W s!n

n!

1ApG~n21!z~2n22!e22fA e2nfA
~ l s

2W s!n

n! D G
1nonperturbative ~3.29!

or

A4
~1!5~4p8l 11

15r B!K̂r BF2z~3!e22fB
1

2p2

3

1
2p2

3

1

r B
22

8p2

r B
3 l s~2W s!1/2

18p3/2(
n52

` S GS n2
1

2D z~2n21!
1

n!

~ l s
2W s!n

r B
2n12

1ApG~n21!z~2n22!
e22fB

n!

~ l s
2W s!ne2nfB

r B
2n12 D G

1nonperturbative, ~3.30!

where

Wsn
5~GST

s !n1~GTU
s !n1~GUS

s !n. ~3.31!

The overall factor of 4p8l 11
15r A

2154p8l 11
15r B that has been

factored out in these expressions cancels with a factor in
measure in transforming the effective action from elev
dimensional supergravity coordinates to string coordina
This makes it easy to see the dependence of the effec
interactions on the string-frame radius and the dilaton in
the remaining factors in Eqs.~3.29! and ~3.30!.

The infinite series of terms in the type-IIA theory a
related byT duality to the series in the type-IIB theory. How
ever, these terms appear asymmetrically between the
theories in Eqs.~3.29! and~3.30!. In particular, all the terms
in the series in the type-IIB action vanish in the limitr B
→` which is not true for the type-IIA series in the type-II
decompactification limit. Since we saw in Sec. II C that t
four-graviton amplitudes in the type-IIA and -IIB strin
theories are identical up to and including the contributio
from two string loops there must be some more contributi
that correct for this asymmetry. We will be concerned p
ticularly with the n52 terms on the right-hand side of th
type-IIA action in Eq.~3.29!,
10401
e
-
s.
ve
n

o

s
s
-

A4
~1!n5254p8l 11

19e2~4/3!fA
3p2~2z~3!r A

2

14z~2!e2fA
!~W s!2K̂

5
4p10

6!
l 11
19e2~4/3!fAS 2z~3!r A

21
2p2

3
e2fAD

3~s21t21u2!K̂, ~3.32!

where we have used

~GST
s !25E

Tst
)
r 51

3

dv r@2sv1~v32v2!

2t~v22v1!~12v3!#2

5
1

7!
~4s214t212st!. ~3.33!

The expression~3.32! has a dependence on the dilaton tha
characteristic of contributions in type-IIA string theory
one and two loops. Since the type-IIA and type-IIB strin
perturbation theories are identical up to two loops these ty
IIA terms must be matched by identical terms in the type-I
theory ~with r A→r B andfA→fB). We will see in the next
section that these missing contributions to the type-IIB
tion arise from the compactification of two-loop terms
eleven-dimensional supergravity.

IV. THE TWO-LOOP SUPERGRAVITY AMPLITUDE

The evaluation of two-loop amplitudes in eleve
dimensional quantum supergravity would normally be a f
midable task. However, it is known from the work of Re
@7# that the two-loop four-graviton amplitude in maximal
supersymmetric supergravity continues to have the fea
that it can be written in terms of scalar field theory diagram
The fact that the two-loop amplitude has such a simple
pression was motivated in Ref.@7# in dimensions< 10 by
use of the Kawai-Llewelyn-Tye~KLT ! rules for constructing
closed-string amplitudes out of open-string amplitudes@17#.
This was shown to imply that the two-loop amplitude in t
low-energy supergravity theory ind dimensions with maxi-
mum supersymmetry is given in terms of the two-loop a
plitude of supersymmetric Yang-Mills theory with maxim
supersymmetry. These rules were then independently der
by using unitarity in all channels. In eleven dimensions s

FIG. 3. The ‘‘S-channel’’ scalar field theory diagrams that co
tribute to the two-loop four-graviton amplitude of eleve
dimensional supergravity.~a! The ~S,T! planar diagramI P(S,T);
~b! the ~S,T! nonplanar diagramI NP(S,T).
0-10
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pergravity is not the low-energy limit of a string theory s
the strategy for determining the two-loop amplitude has to
a little different. In that case the expression may be de
mined by the requirement of unitarity and can also
checked by the requirement that it reduce to the low
dimensional expressions upon trivial dimensional reducti

The result is that the two-loop four-graviton amplitud
A4

(2)(S,T,U), is given in terms of the sum of particular dia
grams ofw3 scalar field theory illustrated in Fig. 3. These a
the planar diagramI P(S,T) and the nonplanar diagram
I NP(S,T), together with the other diagrams obtained by p
muting the external particles. The complete expression
tri
ig
er
ith

he
m
l
-

ar
e
W
o

a

10401
e
r-
e
r-
.

-
r

the amplitude is~with same conventions as in Ref.@7#!

A4
~2!5 i

k11
6

~2p!22 K̂$S2@ I P~S,T!1I P~S,U !1I NP~S,T!

1I NP~S,U !#1perms.%, ~4.1!

where ‘‘perms’’ signifies the sum of terms with permutatio
of S, T, andU. This expression has an overall factor ofR4

together with four powers of the momentum multiplying th
loop integrals which means that these diagrams are m
less divergent than they would naively appear. The loop
tegrals are given by
I P~S,T!5E d11pd11q
1

p2~p1k1!2~p1k11k2!2~p1q!2q2~q1k31k4!2~q1k4!2 ~4.2!

and

I NP~S,T!5E d11pd11q
1

p2~p1k1!2~p1q!2~p1q1k2!2q2~q1k31k4!2~q1k4!2 ~4.3!
which have ultraviolet divergences of order~momentum! @8#
that will need to be regularized.

In addition to these two-loop diagrams there is a con
bution to the amplitude from the one-loop diagram of F
2~b!, which is a triangle diagram in which there is one ins
tion of the linearized one-loop counterterm. Together w
two-loop counterterm of Fig. 2~c!, this will give an addi-
tional contributiondA4

(2) to the amplitude.

A. Evaluation of the two-loop amplitude onT n

We shall now consider the leading contribution to t
derivative expansion arising from these two-loop diagra
when compactified onT 2. As discussed earlier, this wil
contribute to theD4R4 interaction. For convenience our con
siderations will be restricted to situations in which the pol
ization tensors and momenta of the gravitons are in dir
tions transverse to torus and covariantize the final result.
will first be slightly more general and consider the case
compactification on ann-torusTn with metric GIJ and vol-
ume Vn , in which case the planar diagram with extern
momentakr r 51, . . . ,4 isgiven by the expression
-
.
-

s

-
c-
e
f

l

I P~S,T!5
1

l 11
2nV n

2 (
$mI ,nI %

E d112npd112nqE )
r 51

7

ds r

3e2FGIJ~smImJ1lnInJ1r~m1n!I ~m1n!J!1(
r 51

7

KrsrG ,
~4.4!

whereI ,J51,2 label the directions inT n. The vectorKr is
defined by

Kr5~p,p1k1 ,p1k3 ,q,q1k3 ,q1k4 ,p1q! ~4.5!

and

s5s11s21s3 , l5s41s51s6 , r5s7 . ~4.6!

The nonplanar diagram is given by
I NP~S,T!5
1

l 11
2nV n

2 (
$mI ,nI %

E d112npd112nqE )
r 51

7

ds re
2@GIJ~smImJ1lnInJ1r~m1n!I ~m1n!J!1(r 51

7 Kr8
2sr #, ~4.7!
0-11
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where

Kr85~p,p1k1 ,q,q1k3 ,q1k4 ,p1q1k2! ~4.8!

and

s5s11s2 , l5s31s41s5 , r5s61s7 . ~4.9!

The loop momentum integrals are performed in the st
er

s

e
tr

u

en
u

10401
-

dard manner by completing the squares in the exponent
lowed by Gaussian integration. We are envisioning introd
ing some sort of cutoff at large momenta by imposing
lower limit to the range of integration of the Schwinger p
rameters. The precise details will be clarified following su
able changes of variables below. Ignoring these for now,
resultant expressions for the planar and nonplanar loops
I P~S,T!5
p112n

l 11
2nV n

2 (
$mI ,nI %

E
0

`

dsdldr
s2l2

D@~112n!/2#

3e2GIJ@smImJ1lnInJ1r~m1n!I ~m1n!J#E
0

1

dv2dw2E
0

v2
dv1E

0

w2
dw1

3eT~slr/D!~v22v1!~w22w1!1S@~slr/D!~v12w1!~v22w2!1sv1~12v2!1lw1~12w2!# ~4.10!

and

I NP~S,T!5
p112n

l 11
2nV n

2 (
$mI ,nI %

E
0

`

dsdldr
2sl2

D@~112n!/2# e2GIJ@smImJ1lnInJ1r~m1n!I ~m1n!J#

3E
0

1

du1dv1dw2E
0

w2
dw1eT~slr/D!~w22w1!~u12v1!1S$@~s1r!l2/D#w1~12w2!1~slr/D!@w1~12u1!1v1~u12w2!#%

~4.11!
e
ng
nd-
the
is
~where the variablesu1 , v1 , v2 , w1 , andw2 are rescalings
of s i). These expressions can be expanded in powers ofS, T,
and U in order to determine their contributions to high
derivatives acting onS2R4.

The leading term in the low energy expansion~of order
S2R4) is obtained by setting the external momenta to zero
that S, T, and U are set equal to zero inI P and I NP. After
summing these two zero-momentum contributions follow
by a sum over all the diagrams required by Bose symme
zation the result is

I P~0!1I NP~0!5
p112n

3l 11
2nV n

2 (
$mI ,nI %

E
0

`

dsdldr2
1

D@~72n!/2#

3e2GIJ@~smImJ1lnInJ1r~m1n!I ~m1n!J!#,

~4.12!

which is symmetric in the parameterss, l, andr. The inte-
gration in Eq.~4.12! is divergent for every value ofmI ,nI

whenD;0, which requires at least two of the parametersl,
r, s to approach zero simultaneously. The sums contrib
additional divergences, which makes this representation
the amplitude rather awkward to analyze.

As in the case of the one-loop amplitude it is conveni
to analyze the divergences after performing a Poisson res
mation over the Kaluza-Klein modesmI ,nI , which trans-
forms them into winding numbersm̂I ,n̂I , and also to rede-
fine the Schwinger parameters by
o

d
i-

te
of

t
m-

ŝ5
s

D
, l̂5

l

D
, r̂5

r

D
, ~4.13!

where

D5sl1sr1lr5D̂215~ ŝl̂1ŝr̂1l̂ r̂ !21. ~4.14!

The amplitude~4.12! becomes

I P1NP~0!5
p7

3 (
$mI ,nI %

E
0

`

dŝdl̂dr̂D̂1/2e2pEv,

~4.15!

where the exponent is defined by

Ew~ ŝ,l̂,r̂ !5GIJ@ l̂m̂Im̂J1ŝn̂I n̂J1 r̂~m̂1n̂! I~m̂1n̂!J#,
~4.16!

and is a function of the winding numbers. The parametersf̂,
l̂ and r̂ will be referred to as ‘‘winding parameters.’’ Th
classification of the divergences is simplified in the windi
number basis. For example, the sector in which all the wi
ing numbers vanish diverges at the end-point where all of
winding parameters reach their upper limits. This term
independent of the metricGIJ and is the primitive
0-12



u
ho
icu
l d
p
th

o

n

tl
es
e
b

ss

f
in

op-

of

ia-

e

of
ing

ng

rly

dis-

op

ach

i-

TWO LOOPS IN ELEVEN DIMENSIONS PHYSICAL REVIEW D61 104010
two-loop divergence. There are many sectors that contrib
to subleading divergences. The simplest examples are t
sectors in which the winding numbers conjugate to a part
lar winding parameter vanish. In those cases the integra
verges at the endpoint where that parameter reaches its u
limit, which gives a subleading divergence. For example,
ŝ integral diverges in then̂I50 sector and behaves asL3 if
ŝ is cut off at the valueL2 ~that was introduced in order t
cut off the one-loop winding parameter!. Sectors with less
than n vanishing winding numbers give non-divergent co
tributions which are independent of any cutoff.

A more complete analysis of the divergences is grea
facilitated by the observation that the integrand possess
secret SL(2,Z) symmetry that is not at all apparent in th
l̂,r̂,ŝ parametrization. This symmetry is made manifest
redefining the integration variables in Eq.~4.15! so that the
parametersr̂, l̂, and f̂, are replaced by the dimensionle
volumeV and complex structuret5t11 i t2 of a two-torus
T̂ 2 defined by

t15
r̂

r̂1l̂
, t25

AD

r̂1l̂
, V5 l 11

2 AD̂. ~4.17!

The Jacobian for the change of variables from (ŝ,l̂,r̂) to
(V,t) is

dl̂dŝdr̂52l 11
26dVV2

d2t

t2
2 , ~4.18!

where d2t5dt1dt2 . It is easy to see how the domain o
integration of the Schwinger variables translates into the
tegration domain forV and t. The volumeV is integrated
over @0, `# and the domain of integration oft is the funda-
mental domain of theG0(2) subgroup of SL(2,Z) ~the
shaded region in Fig. 4!,

FG0~2!5H 0<t1<1,t2
21S t12

1

2D 2

>
1

4J , ~4.19!

FIG. 4. The domain of integration over the parameterst1 and
t2 , bounded by the thick line, is the fundamental domain ofG0(2).
10401
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which consists of the sectorsF % F8% g% g8% f % f 8. As is
clear from the Fig. 4 this domain covers precisely three c
ies ofF5F % F9, the fundamental domain of SL(2,Z). More
concretely, in terms of the conventional generators
SL(2,Z):7 region g is mapped intoF9 by S; region g8 is
mapped intoF by ST21; region f is mapped intoF by TS;
region f 8 is mapped intoF9 by T21ST21; region F8 is
mapped intoF9 by T21.

Substituting the change of variables~4.17! into the inte-
gral ~4.15! gives

I P1NP~0!5
2p7

l 11
8 (

$mI ,nI %
E

0

`

dVV3E
F

d2t

t2
2

3e2p~VGIJ / l 11
2 t2!@~m̂1tn̂!I ~m̂1 t̄n̂!J#. ~4.20!

The integrand is precisely that which arises in one-loop d
grams in string theory compactified onT n where the Lorent-
zian lattice is usually defined by

~t2!n/2G~n,n!~GIJ!

5R11
n (

~m̂,n̂I !PZ2
e2p~VGIJ / l 11

2 t2!@~m̂1tn̂!I ~m̂1 t̄n̂!J#.

~4.21!

In writing the integral~4.20! we have used the fact that th
integrand is invariant under SL(2,Z) transformations to
equate it to three times the integration over a single copy
F. This invariance of the integrand can be seen by check
its transformations underT andS ~with V being inert! which
have a simple interpretation in terms of the original windi
parameters. TheT transformation is given by

l̂→2 r̂, r̂→2r̂1l̂, ŝ→ŝ12r̂, ~4.22!

while S is given by

l→ŝ12r̂, r̂→2 r̂, ŝ→l̂12r̂. ~4.23!

The divergences of the loop amplitude are particula
easy to classify in terms of integration overt andV ~4.20!.
The leading and subleading divergences arise from two
tinct kinds of boundaries of the integration domain.

~I! The leading divergence arises from the limitV→`
with arbitrary fixed values oft1 and t2 . We will regulate
this by cutting off the upper limit at a valueV5Vc

5aL2l 11
2 ~wherea is an arbitrary constant! so that the am-

plitude is proportional toL8. This is the two-loop primitive
divergence which comes from the region in which the lo
momenta are simultaneously of orderL and corresponds to
the region in which all three Schwinger parameters appro
their lower endpoints.

~II ! The three distinct kinds of subleading ultraviolet d
vergences arise from the region in whicht2→` with V

7Which are the translationT: t→t11 and the inversionS: t
→21/t.
0-13
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fixed, together with the SL(2,Z) images of this region ob
tained by the action ofS andTS. These are the divergence
which arise when one of the winding parameters approac
its upper limit, which is cut off atL. From Eq.~4.17! this
translates into a cutoff on the uppert2 limit at t2

c

5L2l 11
2 V21, which means that the complex structure is

tegrated over the restricted fundamental domain,

Ft
2
c5$2 1

2 <t1< 1
2 ,t2<t2

c ,t1
21t2

2>1%. ~4.24!

It is easy to see that this includes all the subdivergences
follows. Whent2 reaches its upper limit with fixedV, bothr̂

and l̂ approach zero whileŝ becomes infinite. This trans
lates, via Eq.~4.13!, into the region in whichr andl vanish,
which corresponds to the ultraviolet subdivergence at wh
q2→`. Similarly, the image underS of this limit is the
boundary att150, t250 which corresponds to the subd
vergence at which (p1q)2→`. The image underTS is the
boundary att151, t250 which corresponds to the subd
vergence at whichp2→`.

We will now see how this description of the divergenc
is particularly well adapted to compactification on a toroid
target space since cases~I! and~II ! arise from distinct classe
of SL(2,Z) orbits in the mapping ofT̂ into T 2.

B. Compactification onT 2

When the eleven-dimensional two-loop amplitude is co
pactified on a two-torus (n52) of volumeV and complex
structureV the exponential factor~4.16! can be written as

Ew5
VV

V2t2
u~1V!A~t1!u222VV det~A!, ~4.25!

where we have used the usual formula for the metric o
two torus

GIJm̂Im̂J5 l 11
2 V um̂11m̂2Vu2

V2
, ~4.26!

and defined a 232 matrix A with integer entries.
In this case the expression~4.20! becomes

I P1NP~0!5
2p7

l 11
8 (

m̂I ,n̂I

E
0

Vc

dVV3E
Ft2

c

d2t

t2
2

3expS 2p
V

V2

V

t2
u~1V!A~t1!u2

12pVV det~A! D
5

2p7

l 11
8 E

0

Vc

dVV3E
Ft2

c

d2t

t2
2 t2G~2,2!~V,V;V,t!.

~4.27!
10401
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This expression can be analyzed by splitting it into orbits
the right action of Sl(2,Z) on t. There are three classes o
orbits.

~I! Singular orbits are ones withA50. By inspection, it is
clear that these give the leading divergent contributio
which are proportional toL8 from the boundaryV5Vc

5al11
2 L2.

~II ! Degenerate orbits are those for which detA50, A non-
zero. In this caseA can be transformed to the formA
5(0 k

0 l ) by a SL(2,Z) transformation that maps the fundame
tal domain to the strip. Again, by inspection these can
seen to give the subdivergences proportional toL3.

~III ! Nondegenerate orbits are ones with nonsingularA.
An SL(2,Z) transformation that maps the fundamental d
main to the upper half complex plane can be used to putA in
the form A56(0 n

m j) where 0< j <m21, m.0, andnÞ0
@18,19#. The nondegenerate orbits are the ones that con
ute to the finite part of the two-loop integral after the dive
gent terms have been subtracted out. Since the string
pling constant appears inV both the degenerate and th
nondegenerate cases will contribute to perturbative and n
perturbative string effects.
The singular term~I! comes from the zero winding numbe
sector and does not depend on the shape of the torus. A
of the same form also arises by adding a local two-lo
counterterm proportional toS2R4 to the effective action. We
will argue later that consistency with string perturbati
theory actually requires this renormalized coefficient of t
interaction to vanish.

In order to extract the remaining contributions it is use
to first consider the action of the Laplace operatorDV

54V2
2]V]̄V on the expression~4.27! using the identity

DV~t2G~2,2!!54t2
2]t]̄t~t2G~2,2!!5Dt~t2G~2,2!!.

~4.28!

It follows that

DVI ~V,V!5
2p7

l 11
8 E

0

Vc

dVV3E
Ft2

c
d2t~]t1

2 1]t2

2 ! (
$mI ,nI %

3expS 2p
V

V2

V

t2
u~1V!A~t1!u2

12pVV det~A! D , ~4.29!

so that thet integration at fixedV is simply the integral of a
surface term which gets contributions from the boundary
the integration domainFt

2
c at t25t2

c[ l 11
2 L2/V. The expres-

sion ~4.29! reduces to

DVI ~V,V!5
2p7

l 11
8 E

0

Vc

dVV3]t2 (
APM ~2,2,Z!

3expS 2p
V

V2

V

t2
u~1V!A~t1!u2

12pVV det~A! D U
r 25r

2
c

0-14
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52
2p8V

l 11
8 E

0

Vc

dVV4

3 (
APM ~2,2,Z!

]t2S u~1V!A~t1!u2

t2V2
D

3expS 2p
V

V2

V

t2
c u~1V!A~tc1!u2

12pVV det~A! DU
t25t

2
c

. ~4.30!

In the limit L2→` all the terms in the sum are exponentia
suppressed apart from the degenerate orbitsA5(0

0
k
l ). In this

sector the exponent evaluated at the boundaryt25t2
c

5L2l 11
2 /V reduces to

Ew5
VV

V2t2
c u l 1kVu25V u l 1kVu2

V2

V2

l 11
2 L2 , ~4.31!

so that Eq.~4.30! reduces to

DVI ~V,V!5
2p8V
l 11
12L4 E

0

`

dVV6 (
~ l ,k!Þ~0,0!

u l 1kVu2

V2

3e2pV~ u l 1kVu2/V2!~v2/ l 11
2 L2!

52p9/2G~7/2!z~5!L3l 11
25V 25/2E5/2~V!,

~4.32!

where the upper limit is taken to infinity since the integ
converges. SinceE5/2(V) satisfies the Laplace equation

DVE5/2~V!5
15

4
E5/2~V!, ~4.33!

we conclude that the two-loop integral has the form

I ~V,V!5aL81p5z~5!L3l 11
25V 25/2E5/2~V!1I fin .

~4.34!

The first term, which has an undetermined value, is the le
ing regularized divergence and arises from the singular
bits. Its coefficient is modified by the addition of the tw
loop S2R4 counterterm with coefficientc2 . The second term
in Eq. ~4.34! is the contribution of the degenerate orbits. Th
has aL-dependent coefficient to which must be added
contribution that comes from Fig. 2~b! which includes the
effect of the one-loop counterterm. As will be seen in S
IV C the combined coefficient is consistent with the equa
of the type-IIA and -IIB string theory one-loop and two-loo
amplitudes.

The termI fin in Eq. ~4.34! is independent of the cutoff an
is the finite term that comes from the nondegenerate or
and must satisfyDVI fin50. It can be evaluated explicitly
using the ‘‘unfolding trick.’’ This allows one of the infinite
sums in Eq.~4.27! to be used to rewrite thet integral overF
10401
l

d-
r-

e

.

ts

as an integral over the upper-halft plane. This is similar to
the analysis in Ref.@19#, from which the result can be ex
tracted in the form

I fin5
4p3

l 11
8 (

m.0,nÞ0
0< j ,m

E
0

`

dVV3E
C1

d2t

t2
2

3e2~VV/V2t2!umt1~ j 1nV!u212VVmn. ~4.35!

In this case no cutoff is necessary and the result has a un
normalization. Thet1 integration is Gaussian and can b
carried out explicitly giving,

I fin5
4p7/2

l 11
8 AV2

V (
0< j ,m

m.0,nÞ0

1

m E
0

`

dVV3

3E
0

` dt2

t2
2 At2

V
e2VVmne2~V/V2!~V/t2!~mt21nV2!2

.

~4.36!

Now settingx5V/t2 andy5Vt2 we have

I fin5
2p7/2

l 11
8 AV2

V (
0< j ,m

m.0,nÞ0

1

m E
0

`

dxxE
0

`

dyy1/2

3e2~ l 11
2 V/V2!~m2y1n2V2

2x!

52p4z~3!z~4!l 11
28V 24. ~4.37!

C. Contribution from one-loop and two-loop counterterms

The sum of the contributions to the amplitude from Fig
2~b! and 2~c! will be denoteddA4

(2)5d1A4
(2)1d2A4

(2) . The
term d1A4

(2) corresponds to Fig. 2~b! and is proportional to
the one-loop counterterm so it has an overall factor ofc1 ,
which has the value given by Eq.~3.14!. The direct evalua-
tion of this process would require a complicated sum o
the different types of particles circulating in the loop. How
ever, it is easy to check that the prescription of Ref.@7# for
expressing the one-loop and two-loop supergravity diagra
in terms of scalar field theory Feynman rules generalizes
diagrams of this type, giving,

d1A4
~2!5 l 11

3
p3k11

6

2~2p!22 K̂~S21T21U2!d1I , ~4.38!

where the loop integrald1I is given by using scalar field
propagators and vertices in Fig. 2~b!,

d1I 5E d11q
1

q2

1

~q1k1!2

1

~q1k11k2!2 . ~4.39!

The normalization in Eq.~4.38! can be obtained as a simp
consequence of unitarity.

The evaluation of the integral~4.39! compactified onT 2

follows closely the discussion in Sec. III of the box diagra
The only difference is that in this case there are only th
internal propagators. The result is
0-15
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d1I 5
p1/2

l 11
5 @~L l 11!

51V 25/22z~5!G~5/2!E5/2~V,V̄!#.

~4.40!

The cutoff-dependent term comes from the zero winding s
tor, and upon inserting Eq.~4.40! in Eq. ~4.38!, contributes a
term proportional toL8 to the V-independent part of the
amplitude. Its coefficient will be absorbed into a redefiniti
of the coefficienta of the leading two-loop divergence in Eq
~4.34!. The V-dependent part of Eq.~4.40! has the same
form as theL3 subdivergences of the two-loop amplitude
Eq. ~4.34!. After adding these two contributions and subs
tuting the value ofc1 from Eq.~3.14! the net dependence o
the cutoff cancels, leaving a specific finite contribution th
will be discussed in the following section. The contributio
to d2A4

(2) from the two-loop local counterterm is equal to

d2A4
~2!5 ic2

k11
6

~2p!22l 11
8 K̂~S21T21U2!, ~4.41!

wherec2 is a constant which, for the moment, is arbitrary

D. Comparison of eleven-dimensional supergravity
and type-II string theories

We now turn to the comparison of the results of t
eleven-dimensional calculations to those of the type-II str
theories. We will check that the normalization of the fin
S2R4 term ~4.37! has precisely the value that is needed
the perturbative type-IIA and -IIB string theories to be equ
at the order of one string loop. Furthermore, the value of
one-loop counterterm~3.14! will also be seen to lead to th
equality of the type-IIA and -IIB string tree-level and two
loop terms. This strongly supports the impression that
two-loop contribution toS2R4 does not get further contribu
tions from higher-order Feynman diagrams.

In order to compare our two-loop supergravity resu
with string theory it is necessary to carefully specify o
conventions. In either of the two string theories the fo
graviton ampitude has the expansion at tree-level and
loop,

A4
string5k10

2 K̂F2e22fT1
k10

2

25p6l s
8 I 1-loop1¯G , ~4.42!

where the terms in the square brackets are dimension
@recall that 2k10

2 5(2p)7l s
8# as in the analysis of Ref.@20#.

The low-energy expansion of the tree-level and one-lo
termsT and I 1-loop are briefly described in the Appendix an
in Ref. @20#. The one-loop and two-loop amplitudes
eleven-dimensional supergravity, together with the effects
the counterterms, are given by
10401
c-

-

t

g

r
l
e

e

-
ne

ss

p

f

A41dA45
k11

4

~2p!11 K̂@ I ~S,T!1I ~S,U !1I ~T,U !#

1 i
k11

6

~2p!22 K̂@S2~ I P~S,T!1I NP~S,T!1I P~S,U !

1I NP~S,U !!1perms.#1dA4
~1!1d1A4

~2!

1d2A4
~2! . ~4.43!

The results of Sec. III show that the expansion up to or
S2 of the one-loop supergravity amplitude compactified
T 2 is given by

A4
~1!dA4

~1!5
k11

4

~2p!11l 11
4 K̂F2z~3!

R11
3 1

4z~2!

R11R10
2 1

2p2

3

1 l 11
4 ~S21T21U2!

p2

6!

3S 4z~2!R1112z~3!
R10

2

R11
D 1¯G , ~4.44!

where the ellipsis indicates the infinite series ofD-instanton
contributions@4#. Converting into type-IIA string variables
this becomes

A4
~1!1dA4

~1!5~4p8l 11
15r A

21!r AK̂F2z~3!e22fA
1

4z~2!

r A
2

1
2p2

3
1 l s

4~s21t21u2!
p2

6!
@4z~2!e2fA

12z~3!r A
2 #1¯G . ~4.45!

The two-loop result can be written as

A4
~2!1dA4

~2!5 i
k11

6

~2p!22l 11
8 3K̂~S21T21U2!Fa~L l 11!

81c2

1
p6

4 S 2z~5!

R11
5 1

8

3
z~4!

1

R11R10
4 D

1
2p4z~3!z~4!

~R10R11!
4 1¯G , ~4.46!

where we have expanded the modular functionE5/2(V,V̄) in
powers ofV2

215R11/R10. The constanta is meant to repre-
sent the sum of the primitive two-loop divergences that ar
from the zero winding number sectors of Fig. 3 and F
2~b!. These combine with the coefficient of the two-loo
countertermc2 . After conversion into type-IIA string vari-
ables this becomes
0-16
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A4
~2!1dA4

~1!5~4p8l 11
15r A

21!
i

8p6 r AK̂l s
4~s21t21u2!

3F ~a~L l 11!
81c2!e4fA/31

p6

4 S 2z~5!e22fA

1
8

3
z~4!

e2fA

r A
4 D 1

2p4z~3!z~4!

r A
4 1¯G .

~4.47!

Now we can useT-duality to replace the last term in Eq
~4.47!, which has the dilaton dependence of a string one-lo
term, by its type-IIB equivalent, which is proportional tor B

2

and is also identified as a one-loop string contribution. Us
the fact that the two string theories have identical fo
graviton loop amplitudes~up to two loops! we must identify
this term with the term in parentheses in Eq.~4.45! that is
proportional tor A

2 ~which was deduced from a one-loop e
fect in eleven-dimensional supergravity!. Gratifyingly the
coefficients of these terms are indeed equal@using z(4)
5p4/90# which appears to be a rather nontrivial check
our calculation. Similarly, we can check that the renorm
ized value for the subleading divergences respects this s
metry between the type-IIA and -IIB theories since the te
proportional toe2fA

in Eq. ~4.45! has the same coefficient a
the term proportional toe2fA

in Eq. ~4.47!. Now we can
check the consistency further by comparing the coefficien
the tree-level term proportional toz(5)e2fA

s2R4 in Eq.
~4.47! with the coefficient of the tree-level term proportion
to z(3)e2fAR4 in Eq. ~4.45!. These coefficients agree wit
the coefficients deduced from the expansion of the fo
graviton tree amplitude reviewed in the Appendix.

We also need to consider the value of the leading div
gent contribution to theS2R4 interaction which arises from
yp

va
at
-

f
-II

i
o
o

ch

10401
p

g
-

-
m-

f

r-

r-

the loop amplitudes combined with the two-loop counterte
with coefficientc2 and is independent of the parameters
the two-tours. Translating into type-IIA string theory coord
nates this gives the term proportional toR11

2 s2R4

5e4f /3
s2R4 in Eq. ~4.47! which is not proportional to an

integer power ofe2fA
. Therefore, it cannot possibly arise i

string perturbation theory, which means that its coefficie
must vanish, i.e.,

c21a~L l 11!
850. ~4.48!

A consequence of this is that theD4R4 interaction vanishes
in the decompactification limit,R11→` so there is noD4R4

interaction in the eleven-dimensional theory.

V. CONCLUSION

In earlier work theR4 interaction in the effective action
for eleven-dimensional M-theory compactified onT 2 was
obtained by evaluating one-loop Feynman diagrams.
though the dependence on the complex structure
uniquely determined by this supergravity calculation, in o
der to pin down the value of the one-loop counterterm it w
necessary to input the extra information that the fo
graviton amplitudes in type-IIA and type-IIB superstrin
theories are equal at one string loop.

In this paper we have generalized these statements to
tain the exact scalar field dependence of the coefficient of
S2R4 interaction based on consideration of two-loop Fey
man diagrams for four-graviton scattering in eleve
dimensional supergravity. Using the value of the one-lo
counterterm determined from the one-loop analysis, we h
found that the renormalized value of the two-loop amplitu
is
SD4R4
5

l 11
3

483~4p!7 E d9xA2GVD4R4S z~5!V 25/2E5/2~V,V̄!1
4

p2 z~3!z~4!V 24D
5

l s
3

483~4p!7 E d9xA2gBr BD4R4S z~5!e~1/2!fB
E5/2~V,V̄!1

4

p2 z~3!z~4!r B
2 D , ~5.1!
sin-
lex

n-
in

d

the
e-
where the second equality expresses the amplitude in t
IIB parameters, recalling from Eq.~2.9! thatD4R4 is a sym-
bolic way of representing the contraction of covariant deri
tives and curvature tensors that gives rise to the kinem
factor (S21T21U2)K̂ in the four-graviton scattering ampli
tude.

The term in parentheses in Eq.~5.1! that is independent o
V matches a corresponding term that arises in the type
parametrization from the one-loop supergravity amplitude
Eq. ~3.32!. It should be easy to evaluate the string one-lo
amplitude in nine dimensions and check the coefficient
this term. We saw in Sec. III that terms of this type, whi
e-

-
ic

A
n
p
f

appear to be singular in the decompactification limitr B

→`, sum up to form the appropriate massless threshold
gularity in ten dimensions. The dependence on the comp
structure of the torus~the scalar field of the type-IIB theory!

is contained entirely in the modular functionE5/2(V,V̄)
which survives the decompactification limit to the te
dimensional type-IIB theory. This term has an expansion
the couplingefB

that begins with a tree-level term followe
by a two-loop term and then an infinite series ofD-instanton
contributions. We have seen that this is consistent with
little that is known from string perturbation theory—the tre
0-17
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level coefficient agrees with the string tree calculation
viewed in the appendix and the one string loop contribut
to the s2R4 interaction in ten dimensions is absent as
should be according to Ref.@20#. However, since no two-
loop string amplitudes have yet been evaluated, the value
have obtained for thes2R4 interaction at two string loops is
not yet tested~although precise two-loop string calculation
are feasible in principle@21#!. The same is true for the infi
nite sequence ofD-instanton contributions to this interaction

Although we saw in the last section that theS2R4 term
cannot contribute to the eleven-dimensional theory in
decompactification limitV→` the next term in the deriva
tive expansion of the two-loop amplitude may. This is t
term of the formS3R4 which translates in type-IIA string
parameters to a term of the forme2fA

s3R4 which would be
a string two-loop effect. WhenV is finite there are othe
supergravity two-loop contributions to the prefactor mu
plying S3R4 which come from the expansion of the plan
and nonplanar diagrams~4.10! and~4.11! to linear order inS,
T, andU. The resulting expressions do not possess mod
invariant integrands when expressed in terms of the inte
tion variablesV and t and we have not made sense of t
integrals. This suggests that extra contributions from high
loop supergravity amplitudes are needed to give the full fo
of the prefactor. Since there are good dimensional argum
to expect this prefactor to be determined by supersymm
it would be of interest to disentangle these contributions.
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APPENDIX: THE STRUCTURE OF THE TREE-LEVEL
AND ONE-LOOP STRING CONTRIBUTIONS

The sum of the tree-level and one-loop contributions
the four-graviton amplitude in ten dimensions has the fo
@16,22,23#

A4
string5k10

2 K̂F2e22fT~s,t,u!

1
k10

2

25p6l s
8 EF

d2V

V2
2 F~V,V̄;s,t,u!G , ~A1!

where the functionsT andF contain the dependence on th
Mandelstam invariants of the tree-level and one-loop ter
respectively, 2k10

2 5(2p)7l s
8 is defined as in Ref.@10# and

d2V5dV1dV2 .
The functionT contains the dynamical part of the tre

amplitude for the elastic scattering of two gravitons in eith
type-II theory and is given
10401
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T5
64

l s
6stu

GS 12
l s
2

4
sDGS 12

l s
2

4
t DGS 12

l s
2

4
uD

GS 11
l s
2

4
sDGS 11

l s
2

4
t DGS 11

l s
2

4
uD

5
64

l s
6stu

expS (
n51

`
2z~2n11!

2n11

l s
4n12

42n11 ~s2n111t2n11

1u2n11!D . ~A2!

Thus, the low-energy expansion of the amplitude begins w
the terms

T5
64

l s
6stu

12z~3!1
z~5!

16
l s
4~s21t21u2!

1
z~3!2

96
l s
6~s31t31u3!1

z~7!

512
l s
8~s21t21u2!21¯ .

~A3!

This can be rewritten in terms of the coordinates of t
eleven-dimensional theory by using the dictionary~2.4!.
When expressed in terms of the Mandelstam invariants in
M-theory metric the expression~A3! has the low-energy ex
pansion

TR11
235

64

l 11
6 STU

1
2z~3!

R11
3 1

z~5!

16R11
5 l 11

4 ~S21T21U2!

1
z~3!2

96R11
6 l 11

6 ~S31T31U3!

1
z~7!

512R11
7 l 11

8 ~S21T21U2!2, ~A4!

The dynamical factorF in the loop amplitude is given in
terms of the scalar Green function on the torus lnxij ,

F~V,V̄;s,t,u!

5E
T 2

d2V

V2
2 )

i 51

3
d2n~ i !

V2
~x12x34!

l s
2s~x14x23!

l s
2t~x13x24!

l s
2u.

~A5!

The low-energy expansion of this expression is considere
Ref. @20# where the first few terms are shown to be
0-18
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A4
one-loop5K̂S p

6
1

l s
2

16
I nonan1103 l s

4~s21t21u2!

2
2p

288
z~3!l s

6~s31t31u3!1
l s
8

256
I nonan21¯ D

5K̂S p

6
1

l 11
2

16
I nonan1103 l 11

2 ~S21T21U2!
s

S.

a

In

te
d

10401
2
2p

288
z~3!l 11

6 ~S31T31U3!1
l 11
4

256
I nonan21¯ D .

~A6!

The functionsI nonan1 and I nonan2 are nonanalytic terms tha
contain logarithmic contributions to the two-particle norm
thresholds that are defined byI 8 in Eq. ~3.15! and are given
more explicitly in Ref.@20#.
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