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We present and analyze exact solutions of the Einstein-Maxwell and Einstein-Maxwell-dilaton equations
that describe static pairs of oppositely charged extremal black holes, i.e., black diholes. The holes are sus-
pended in equilibrium in an external magnetic field, or held apart by cosmic strings. We comment as well on
the relation of these solutions to brane-antibrane configurations in string and M theory.

PACS numbd(s): 04.40.Nr, 04.20.Jb, 04.70.Bw

Exact solutions of general relativity describing multiple though conical singularities will be present in general. For
black holes are few and far between. Indeed one would exsimplicity of presentation, and also because it is presumably
pect such configurations to have in general a very complithe most important case, we will study first the dihole in
cated structure. Luckily, there exist some simple solutiong=instein-Maxwell theory. The extension to dilaton theories
exhibiting remarkable properties. For instance, theWwill then be a rather straightforward task.
Majumdar-Papapetrou solutior[d] describe an arbitrary ~ Several years agf®] Bonnor constructed a solution of
number of static extremal charged black holes, all withEinstein-Maxwell theory describing a magnetic dipole, with
charges of the same sign. Equilibrium is possible due to th&etric
cancellation of the gravitational attraction against electric or M2 54
magnetic repulsion. In other cases, such as in the multi- dsz—(l——r) {—dt2+
Schwarzschild solution ifi2], the masses are arranged in a 3, [A+(M?+a?)sir? 6]°
linear configuration, and since the gravitational attraction be- 5 .
tween them is unbalanced, conical singularities arise along d—r+d92”+ Assir® 6
the symmetry axis. Other solutions describe black holes in (1—2Mr/3)2
relative motion, such as in the cosmological multi-black hole
solutions of[3] or in the C and Ernst metric$4,5], where  and gauge potential
two black holes accelerate apart. In this paper we want to
report on a different class of solutions, which describe two 2aMr sir? 0
static extremal magnetic black holes, this time with charges A= md% @
of opposite signs. The configuration therefore possesses a
magnetic dipole moment, and can be appropriately called @ith
dihole In order to maintain the black holes in static equilib-
rium an external force has to be provided. This will appear in A=r?-2Mr—a?
the form of a magnetic field aligned with the dihole. Other-
wise, conical singularitieévhich may be interpreted as cos- S =r?—a%co¢ 6. 3
mic strings will appear in the solution.

The diholes we will exhibit are solutions of Einstein- The solution is asymptotically flat, static and axially sym-
Maxwell theory, possibly coupled to a dilaton. The latter metric. From the asymptotic behavior gf; it is easy to
case includes in particular Kaluza-Klein theory, for which deduce that the mass of the solution 81 2The magnetic
the dihole consists of a monopole-antimonopole pair dedipole moment of the solutiony=2Ma, becomes evident
scribed previously ifi6]. Dipole configurations have become by examining the asymptotic form of the potentig).
of recent interest also within the broader context of stringChanging the sign o& amounts simply to reversing the ori-
and M theory, as describing brane-antibrane configurationgntation of the dipole, so we will consider, without loss of
[7]. Near the end, we will explain that much of what we will generality,a=0. For M=0 the solution is exactly flat. It
describe below has direct relevance in that context. Othewas noticed in[9] that singularities occur at=r,=M
recent papers studying self-gravitating dipole solutions int+ M?+a?, whereA vanishes. Our aim is, first, to study the
string theory includg8]. structure of the singularity at=r , , and show that it can be

The starting point in the construction of the new diholeremoved by the introduction of an external magnetic field.
solutions will be certain exact solutions that are known toThen, having the new solution with an external magnetic
carry magnetic dipole momef®,10]. We will see later that, field, we will argue that at the endpoints of the-r , line,
even in the absence of an external magnetic field, these soe., at ¢=r_,,0=0) and ¢=r_ ,0= ), lie two oppositely
lutions admit an interpretation as dihole configurations, al-charged extremal Reissner-Nordstrdlack holes; i.e., the

solution describes dihole It will be clear then that the role
played by the external magnetic field is to balance the attrac-
*Email address: roberto.emparan@durham.ac.uk tion, gravitational and magnetic, between the black holes.
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r=r, tonian approximation to the attraction between poles. Notice
0= 8=0 however that in the _Iirr_1ita—>0 the te_nsipn tends to a finite
limit T— 1/4. In this limit the magnetic dipole moment of the
FIG. 1. Axis of symmetry of the dipole solution. The lings  solution vanishes but nevertheless one does not recover the
=0,7 run alongr , <r <o, The segment=r . is parametrized by ~Schwarzschild solution. Rather, a nakedly singular solution
6 with range 0< #<r. appears, with higher mass multipoles.
The recourse to cosmic strings to account for the conical
Let us then study the locus of=r . . Crucially, observe singularities of the metric might appear as a rath@rhoc
that the axial Killing vectord,, vanishes there. This means prescription. From a physical standpoint it appears that an
thatr=r is to be thought of as part of the symmetry axis of external magnetic field aligned with the dipole should be
the solution. We are used to thinking of the lings 0, as  able to provide the necessary force to balance the attraction
forming the axis of symmetry. However, in the present situ-between the poles, by pulling apart the dipole endpoints. By
ation the endpoints of these two semi-axes do not come tadequately tuning the magnetic field, the stresses along the
join at a common point. Rather, the axis of symmetry isaxis should be made to disappear.

completed by the segment=r .. As 0 varies from O tor It is indeed possible to introduce such a magnetic field by
we move along this segment from one endpoint to the othemeans of a Harrison transformatiphl] on the solution. In
see Fig. 1. doing so we proceed in a manner entirely analogous to

The obvious thing to study now is whether conical singu-Ernst’s elimination of the conical singularities of tRemet-
larities appear on the different portions of the symmetry axisric [5]. The Harrison transformation of Einstein-Maxwell
If C is the proper length of a circumference around the axitheory takes an axisymmetric solution to another solution
and R is its proper radius, then the presence of a conicatontaining a magnetic field that asymptotes to the Melvin
deficit § means that {C/dR)|x_o=27— 5. Take ¢ to be  magnetic universgl2]. This is a flux tube that provides the
periodically identified with periodA¢. Then the conical best possible approximation to a uniform magnetic field in
deficit along the axe#=0,7 is general relativity.

For an axisymmetric solution of the Einstein-Maxwell

Apdyg,, theory withg;,=A;=0 for i # ¢, the Harrison transforma-
Som=2T— | ——, =2m—Ag (4)  tion acts as
gﬁﬁda 6=0,¢
and therefore would vanish with the standard chalcg gi;=Ng; for ij#e, 9,,=\°Q.,
= 2. However, the conical deficit along the lime=r
2 BA
Apdy M2\ 2 =2 4
5(”):277_’@—9%0 =2m—| 1+ _2) Ag, Ao AB(l 2 )+k'
Vg, dr a
5 . BA,|2 B? ,
does not cancel with that same choice fop. In fact Ag A o B RS ™

=21 gives a conical excess. That is, there is a strut along
the segment=r, . We can see the physical origin of the
strut as providing the internal streg¢pressurg needed to
counterbalance the attraction between the poles.

Instead of eliminating the conical defect outside the di-
pole, the period\ ¢ can be chosen to cancel the singularity
alongr=r . With such a choice one finds a conical deficit
running along the axeg#=0,7, from the endpoints of the

wherek is an arbitrary constant that can be chosen so as to
remove Dirac strings.

We apply now this transformation to the Bonnor solution,
Egs.(1) and(2), and obtain, after some algebra and choosing
k=-2/B,

dipole to infinity. We can view such defects as “cosmic > o .0 34 dr? 42
strings,” with tension =Af —dt+ (A+(M2+a)sir? 6)3 —» +adé
T— 5(0’77)_ 1 a.2 2 6 +ASin2 0d 2 8
“er 4t vEa? © Az de ®
The dipole is then suspended by open cosmic strings that d
pull from its endpoints. The line=r,, 0<#<, joining an
these is now completely non-singular.
Although the proper length of the segmentr, , 0<6 2Mra+ L B[(r2—a?)2+Aa?sir? 6]
< is infinite, the parametea gives, in a sense, an indica- A,=— AS sirt 6, (9)

tion of the separation between the poles. For large values of
a the force required to keep the dipole static beconfies
—M?/2a?, which decreases as 2 as expected from a New- whereA and3 are as in Eqs(3) and
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N A+a?sir? 6+ 2BMrasir? 6+ 1 B?sir? 6[(r?—a?)?+Aa’sir? 6]
= 2 .

(10

It is straightforward to see that as—o the solution ap- and takep to be much smaller than any other length scale
proaches the same limit as the Melvin universe with axialinvolved so as to get near the poles. In this limit the solution
magnetic fieldB. Let us investigate now the conical structure becomes, near&r, ,0=0),

along the symmetry axis. Along the outer semi-axés,

=0,m, we find the same value for the conical defect as in Eq. 2-_PF
(4), so, in order to seb,,,=0, we will chooseA p=21. ds’= - Q?
On the other hand, along the inner segment of the axis,

2 2
de2+ %dp2+ QX(d@?+sir? 6d¢?), (14)

=r,, we find now A,=-Q(1-cosf), (15
M2\ 2 BMr, .\~ *
O )=2m—|1+ = (1 +) Ag, (11 where
Mr .
and with the choicel ¢ =27 we see that the conical defect Q= N (18

can be cancelled if the magnetic field is chosen to be
This is precisely the Bertotti-Robinson solution, AdSS?,

+M?+a’—a 2M which describes the near horizon limit of an extreme
- Mr =+ (r.xa)? (120 Reissner-Nordstra black hole with charge- Q. In a similar

way, at the other endpoint €r, ,0= ) we find the same
geometry but this time with the opposite chafgEherefore,
the solution contains regular horizons at the poles, and it can
be continued beyongd=0.

Apparently, the fieldB has no effect down the throét4).
But, crucially, realize that in order to arrive at EHd.4) the
field B is required to take precisely the val(®?). It is illu-

There are two branches of solutions, one wih-0 and

another one witlB<<0 (recall that we are taking=0). For

the first branch, in the limia— o the field goes to zero like

B—M/2a?, whereas foa—0 the field tends to a non-zero

value B—1/(2M). In the second brancB— —2/M as a

—o0, An analogous branch structure was found 13] for - )

the Ernst metric, where the second branch was found to pinating to see how things ch_ang_e for other valueg.ol‘f

somewhat anomalous. We will not discuss that here, and i{’® keepB arblt_rary, then the limiting form of the solution

the following we will only consider the first branch of solu- near the poles is

tions (upper signs in Eg. (12). Observe that values d8 5 5 Qs g

larger _than Eq.(12) wogld have yielded a cosmic string dszzgz(a){—p—zdt% = dp2+Q2d#?| + — —de?,

stretching along the dipole, a “dumbbell” configuration Q p 9%(6)

similar to that considered ifl4]. (17)
We have therefore succeeded in removing the conical sin-

gularities of the Bonnor dipole solution. However, the metricwith Q as in Eq.(16) above, and where

still becomes singular at the endpoints of the dipole, (

=r,,0=0) and {=r,,0=m). Remarkably, we can show — 1

that these singularities are merely artifacts of the coordinate 9(0)= 2

system. In order to do so, let us study the geometry of the

region very close to these points. To this effect, change the

coordinates [, 6) to (p,6) as is a function such thag(6) =1 when the fieldB is tuned to
the value(12). The important point is that in general the
surfacep=0 is still a horizon, albeit not one of spherical
symmetry. Instead, the horizon is a prolate spheroid, which
is further distorted by a conical defect at either pole. We
want to stress that the horizons are present even for the case
Sirg 9= 1 p(1—cosh), (13) of the Bonnor dipoleleO).'As far as we know, this crpcial
M?+a? feature of the Bonnor solutiofl) has gone unnoticed in all
previous literature.

1+cosf+

2
a _
Ny +BQ) (1—cos#)

(18

r:r++g(1+cos§),

A similar change was performed fid] in a study of the Kaluza-
Klein dipole, which can be recovered as a particular case of solu- 2The signs of the charges would be reversed for the second branch
tions described below. in Eq. (12).
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The gauge field near the horizon is also distorted from its As a—0, though, there is the peculiarity that the black

monopolar form to holes in Eq(8) never appear to merge. Far0 the solution
o is non-singular(outside the horizons and is to be inter-
a 1—cosé 19 preted as the configuration of minimal separation between
A,=— +BQ —_—. 19 i
o=—Q M2+ a2 a(0) the black holes. It corresponds to a maximum valueQ@;

namely QB)max=1.

The physical magnetic charge of the hole can now be coms We have mentioned that the mass of the dipole was, for

i ) A 5 . Bonnor’'s asymptotically flat solution, equal tdv2 The so-
puted using Gauss's lavQ=(1/4m)[F (S” is any topo- |ion (8), (9) is instead asymptotic to the Melvin universe,

logical sphere surrounding the chargeo, in general, the |, jt is sill possible to compute its energy by taking the
actual physical charge of the hole is r@f but rather Melvin universe as the reference background, followib].
The result is that the energy is still equal tM2In the limit
Q: E[A (yz ) —A (32 0)] of large separatio_n the mass of each blacl_< 2l is M, so
4m =¥ ¢ the total energy is the sum of the energies of the separate
black holes. Thus, for infinite separation the interaction en-

:A_‘P Q (20) ergy vanishes, as could have been expected.
27 a/(YMZ+a%)+BQ’ Now, at finite values ofa we would expect to find a

non-vanishing interaction energy. Given that extremal black
The limiting geometries above were valid for arbitrary val- holes in isolation satisfyvl,,=Q, we can estimate the inter-
ues ofa, as long as we remain close enough to the pole. Ifaction energy in the dipole as
instead, we consider the limit of very largewhile keeping
r—r, andasir?é finite, the solution(8) tends to

2 2
-2 2 _ Eint=Etota— 2Mpp=2M —2Q= - ——=. (22
ds?=— 1+% dt2+(1+%) [dp2+ p?(d6? VM?+a?
+Sin2§d¢2)], (21)  This is negative, reflecting the attraction between the black

holes. For fixed black hole chard®, this energy is mini-
with Q—M, andA, as in Eq.(15). We recognize this as the mized whena=0. Notice that the value ag—0 is Ej,—
extremal Reissner-Nordstroblack hole. In the limita— —2M.
the magnetic field vanishes, consistently with the interpre-  Now let us turn to the generalization of these diholes to

tation that the poles are “infinitely apart” from each other theories with a dilaton fields. The action we consider is
and the force between them goes to zero. Incidentally, note

that if one wanted to consider an adiabatic process where the
two black holes held in equilibrium are taken apart, then the 1 Cow
magnetic field would obviously have to be adjusted at every I= 16776] d*xV=g[R-2(d¢p)*—e 2*’F?]. (23
moment in such a way that the field precisely balances the
forces for fixed values of the charge of each h@6).
So we conclude that our solutid8), (9) indeed describes For dilaton couplinge=0 we will recover the results dis-
a dihole. In general, for finite values af the geometry of cussed above. The case @f=3 corresponds to Kaluza-
the black holes is distorted from their asymptotically flatKlein theory, and in this case the solutions admit nice geo-
form (21), but for the particular value 0B in Eq. (12), the  metric interpretations. The Kaluza-Klein analogue of the
distortion becomes inappreciable well down the throatBonnor dipole was identified ifiL6]. The introduction of the
where we recover the near horizon geométd). Moreover,  background magnetic field, together with a thorough analysis
the infinite proper distance along the dipole liner is  of the structure of the solutions and extensions to higher
now seen as a consequence of the infinite throat characteridimensions, was undertaken [i@].
tic of extremal Reissner-Nordstroblack holes. For arbitrary values of the dilaton coupling, the counter-
The dihole character of the dipole solution brings aboutparts of the Bonnor dipole were obtained i®]. The conical
some interesting consequen¢asw we restrict ourselves to singularity along the axis was correctly identified there. In-
the solution withB given by the upper sign solution in Eq. deed, a straightforward calculation like the one in Eg).
(12)]. There is a non-vanishing area associated with the hoshows that the conical deficit is present for arbitrary values
rizon of each of the black holes and, therefore, an entropyof o. More importantly, we will find that the entire dihole
This is easily obtained from Eq14) asS=A,/4=mQ? for  structure reveals itself for any value ef in a manner en-
each hole. tirely analogous to the Einstein-Maxwell dihole. This is at
In the limit of large separation between the holes wevariance with the conclusions ji0], an issue we will return
would expect a Newtonian approximation to become reasonto below, after completing our analysis.

able. Indeed, for large, the magnetic fieldB exerts the right It is a straightforward matter to take the dipole solutions
force, T~QB~Q?%(2a?) to counterbalance the attraction in [10] and subject them to a dilatonic Harrison transforma-
between two particles at a distance of the ordea.of tion [17]. The resulting metric is
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41(1+ a?) 1
ds?= A201+aD)| _ g2+ e 22 A [2/(V1+ a®)]Mra+ EB[(rz—az)anAazsin2 6]
+ +a“)si e @ —
[A+( ) ] A,=— s
dr? X Asito _
X T+d0 + Wd(p , (24) X sir? 0, (25
the dilaton,e” = A*(1+9) and the gauge potential, with

Ao A+a?sir? 6+2\J1+ a’BMrasir? 6+ [(1+ a?)/4]B?sir? 0[ (r?—a?)?+ Aa?sir? 0]

s (26
|
andA andX still given by Eq.(3). now with
The analysis of these solutions can be carried out in the 2
same manner as above for the Einstein-Maxwell dihole, only (—): } 1+ cosat a n BQW
in this case at the poles we find extremal dilatonic holes, the 9 2 JMZ2+ a2
horizons being replaced by null singularities. The solutions
asymptote to the dilaton Melvin solutions [df8]. The value —
of the magnetic field that removes all conical singularities is X(1—cosb)|. (30)
2 M In these coordinates it is easy to compute the scalar curvature

B=
V1+a? (ry+a)?

(27 near the poles=r ., #=0,7 since these loci correspond to

p=0. One finds
(a second branch also exists for these casEse same co- f(0)
ordinate change as in E¢L3) yields, for largea, ~ D (31
p

Q —2/(1+a?) — . . S —
d<2= _(1+ x dt2 where f(6) is a certain function which is regular for<06
p <. We can see that the scalar curvature diverggs=a0
21+ ad except wherwe=0. Thusp=0 (i.e.,r=r, ,0=0,m) is, for

L 2, 2, Ty 2 a#0, a real singularity. But this is just the well-known null

+(1+ p) [dp®+p?(d6?+sir? 0de?)], singularity of extremal dilatonic holes. These holes do not

with a monopole potentiah, of chargeQ/y1+ a2, and di-

have any Bekenstein-Hawking entropy associated. The
proper distance between the holes do# 0 is finite, since in
that case the proper distance to teimgulay horizon of each
hole (28) is known to be finite. In addition, for values &f

(28

laton e¢=(1+Q/p)“/(l+“2). These solutions are the ex- other than Eq(27) the geometry around the singular horizon
tremal dilatonic holes of18].
In the same manner as we have done before in the ab- A very different interpretation of the geometry was pro-
sence of dilaton, we can also keafinite, but go to small posed in[10], where it was claimed that far=1 (and only
values ofp. In this way we recover the geometry near thefor that valug regular non-extremal horizonare present at
(singulay horizon p=0 of the extreme dilatonic hole, with the polesr=r ., #=0,m. The analysis of10] was based on
the parameter) defined as in Eq(16), and some angular @ study of certain two-dimensional sections of the solution,
distortion whenB takes values different from E¢27). That  in particular of the geometry of the two-dimensional section

IS,

dsz_)g(g)z/(u a?)

+

“

Q

Q

p

) 2/(1+ a?)

) 2/(1+ a?)

2/(1+ a?)
_ (ﬂ) dtz

Q

(dp?+ p2d6?)

p? sir? 6
g(g)z/(naz)d@z'

is angularly deformed in a manner similar to Efj7).

given byr=r_,, ¢=const. It was pointed out in that paper
that theintrinsic curvature of this two-dimensional metric is
divergent at#= 0,7 unlessa=1. However, such a restricted
two-dimensional study cannot be conclusive, if only for the
fact that singularities of a submanifold do not in general
correspond to singularities of the full manifold. The analysis
is indeed misleading: The full four-dimensional structure of
the solutions near the poles is manifested using the coordi-

nates {, p, 6, ¢) as introduced in Eq(13), and then Eq.
(29) (31) explictly shows that onlya=0 yields a non-singular
four-dimensional curvature gt=0. This is just as expected
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from the fact that we have recovered the geometries near the We have mentioned as well that, when held in an external
horizon ofextremalcharged dilatonic black holes, of which field, it does not appear to be possible to bring the black
only the pure Einstein-Maxwell case possesses a regular htvoles close enough to make them merge. Fixing the charge,
rizon. The standard analysis of the structure near the horizothere is an upper limiting value for the magnetic field, which
of the extremal Reissner-Nordstndolack hole and its limit-  is approached as— 0 for the branch wittB>0. In this limit

ing Bertotti-Robinson geometry can be equally well appliedthe two-black-hole structure still persists. This might be seen
to Eq.(14). In particular, future directed geodesics can crossas providing support for the cosmic censorship conjecture:
each of the horizons at each pole, so at both poles we hawthe merging of the Reissner-Nordstrablack holes, which
future horizons. Since the geometry is symmetric under timevould imply the annihilation of charge and possibly a
reversal, there are also past horizons. Also, the coordinatezhange in the spatial topology, might have led to a naked
can be extended in the standard manner beyond the horizorgingularity. Nevertheless, notice that for the Bonnor dihole
This forms the basis of our claim that the non-dilatonic so-kept in equilibrium by cosmic strings, the black holes actu-
lution describes &ime-symmetriconfiguration with two ex- ~ ally merge asa—0, and then form a singularity. However,
tremal black holes, each with a future and a past horizonthese “tests” must not be regarded as conclusive, since,
This is obviously at variance with the claim {i10] of a _glven_the instability of the solutions, a gedanken experiment
non-extremalhite hole (a past horizopat one pole and a in which the black holes are slowly _moved tO\_/vards one an-
black hole(a future horizohat the other pole forr=1 (and other does not appear to bg physically realizable. Related
a singularity fora#1). Actually, this time-asymmetric in- analyses of cosmic censorship can be foun[le]_. .
terpretation is another artifact of the restriction to the two- Several extensions of the work presented in this paper

dimensional submanifold mentioned above. We would alsGEe™ possible. First of all, it is clear that electric diholes can
' %e constructed simply by dualizing the magnetic field to an

like tO,StreS,S that our interpretation is in consonancg V_V'th th%Iectric field. More interesting are generalizations to theories
one given in[6] for the casea=13, and extends it in & \yith a richer field content, Dilaton black holes with coupling
natural way to other values af. _ ~ a=0,1/4/3,1,/3 are known to occur in the low energy de-
Let us now discuss some generic aspects of the diholgcription of string and M theory compactified down to four
solutions we have constructed. First of all, we have showrjimensions. They admit an interpretation in terms of branes
that the solutions of9] and[10] are properly interpreted, for intersecting in higher dimensions, with all the longitudinal
arbitrary values of the dilaton coupling, as diholes, with theand relative transverse coordinates being compactified. As
holes being kept in equilibrium by strings or struts. The ho-one example among many possible embeddings, the
rizon of each hole is deformed by the field created by thereissner-Nordstra black hole can be obtained as an inter-
other hole, as well as by the conical defect. We have foundection of, e.g., four equally charged D3-braf#®. We can
that an external field can be applied and tuned so as to bajift our solution (8) to ten dimensions by suitably adding flat
ance the system and remove the conical singularities. In thafimensions, and then interpret it as an intersecting brane-
case, the external field precisely cancels the field created ntibrane configuration. A similar lift can also be done for
the other hole, with the effect that the distortion disappearshe solutions with the other three special valuesrof
and the horizon is spherically symmetric. Now, when the charges of the branes are not equal to one
On the other hand, the conical defects that pull apart th@nother, the four dimensional black holes appear as solutions
holes in the Bonnor dihole can be made more physical byo theories with fourtU(1) gauge fields and three indepen-
regarding them as the limit of self—gravitating vortices thatdent scalar$23]. It is likely that dihole solutions for these
end on the black holes. Therefore they add to the catalog aheories can be constructed. Indeed, the existend@ arfid
solutions describing cosmic strings ending on black holegmst_type metrics in sucbl(1)* theories, describing pairs
[20,14. of black holes accelerating ap44], strongly suggests that
Another aspect to note is that the configurations are exjt should be possible to construct their static dihole
pected to be unstable. On physical grounds it is clear that gounterparts.
slight deviation from the equilibrium configuration should  QOn the other hand, it is less clear how to obtain non-
set the black holes either in runaway motion away from eaclxtreme diholes. Also, one might speculate on the possibility
other, or collapsing onto one another. As a matter of fact, thenat the dihole is held in equilibrium not by an external mag-
instability of the dihole is known to be present for the netic field, but rather by the expansion produced by a posi-
=0 solution in the Kaluza-Klein case=+/3. In that case tive cosmological constant. To our knowledge, such solu-
the solution can be related to the Euclidean Schwarzschilgons have not been constructed yet.

instanton, which is known to have an unstable mfeiH. ) . .
Indeed, the instability of these solutions fits in nicely with  Correspondence with Bert Janssen, Sudipta Mukherji and

the existence of instantons describing the pair creation oMakoto Natsuume is gratefully acknowledged. This work
black holes in an external fie[d.9] or in the breaking of a was supported by EPSRC through grar_lt GR/L3815K)
cosmic string20]. The diholes are to be seen as the sphale@nd by grant UPV 063.310-EB187/98pain.

rons sitting on top of the potential barrier, under which the

tunneling process takes place. Thus, the dihole solutions in

this paper are closely linked to thf@ and Ernst type of so-  3The term “dihole” has also been used in this contex{25] to
lutions that describe black holes accelerating apag,17. refer to a different type of solutions.
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