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Exotic spacetimes, superconducting strings with linear momentum, andnot quite) all that
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We derive the general exact vacuum metrics associated with a statiomarstati¢, nonrotating, cylindri-
cally symmetric source. An analysis of the geometry described by these vacuum metrics shows that they
contain a subfamily of metrics that, although admitting a consistent time orientation, displays “exotic” prop-
erties, such as “trapping” of geodesics and closed causal curves through every point. The possibility that such
spacetimes could be generated by a superconducting string, endowed with a neutral current and momentum,
has recently been considered by Thatcher and Morgan. Our results, however, differ from those found by
Thatcher and Morgan, and the discrepancy is explained. We also analyze the general possibility of constructing
physical sources for the exotic metrics, and find that, under certain restrictions, they must always violate the
dominant energy conditiodlDEC). We illustrate our results by explicitly analyzing the case of concentric
shells, where we find that in all cases the external vacuum metric is nonexotic if the matter in the shells satisfies
the DEC.

PACS numbe(s): 04.20.Jb, 04.20.Gz, 98.80.Cq

[. INTRODUCTION that nonspacelikeggeodesicsare always trapped; i.e., their
radial coordinate cannot take arbitrarily lar@e smal) val-

The possibility that the spacetime around a superconducties. Moreover, we show that although it is possible to assign
ing cosmic string with constant momentum is endowed witha well-defined time orientation, so that we may distinguish
exotic properties has been indicated in a recent article bpetween future and past directed causal curves at any point,
Thatcher and Morgafl]. In accordance with the analysis there are causal curves through every point in these space-
carried out in[1], in the resulting string spacetime, test par- times, whose extensions to the past and to the future eventu-
ticles are deflected as they approach the string, effectivelglly self-intersect, and that it is possible to construct nons-
isolating the defect from the outside universe. This and othepacelikecurvesjoining any two points in that spacetime. In
strange properties of the metric, such as the possibility oparticular, there are closed timelike curves connectng
causal violations, would imply that the inclusion of gravity pair of points in the spacetime. Since the metrics are singular
into models of charged strings and vortons may have signifien the symmetry axis, we might expect that the singularity,
cant consequences as regards their possible role in a cosmas in the case of some of the Levi-Civitaetrics, can be
logical context. replaced by a cylindrical source, satisfying regularity and

Because of the very peculiar nature of the results obtainedther physical requirements. We would therefore have a
in [1], and since the analysis is carried out, at least in partphysically admissible source for an “exotic” spacetime.
through approximations or numerical integration of someThat such a noncausal behavior results from a physical
complex system of equations, it seems appropriate to try, asource cannot be dismissed in principle, since it is well
a check, to reobtain those results through a different apknown that closed timelike curves appear in spacetimes con-
proach, and also to extend the analysis of the properties afining cosmic strings in relative motior2] (see[14] for
the associated metrics, as regards their causal and other prgggme general results on causality violation 1. Unfor-
erties. Therefore, in this paper we start, in Sec. Il, with atunately, as we show in Sec. Ill, the construction giveplih
derivation of the general form of the vacuum metrics exter-does not give a positive answer to the question of the exis-
nal to an infinite, nonrotating, axisymmetric stationary cylin-tence of such physical sources for the exotic metric. As we
der. Depending on the choice of the integration constantidicate in that section, the ansatz giverjihcan be solved,
that appear in solving Einstein’s equations, these turn out tonce a simple coordinate transformation is introduced, by a
be members of either two families of exact solutions of thediagonal metric, and therefore there is no exotic behavior.
form of the Lewis metrics, one of which can be interpreted asBBasically, since the momentum is constant, one can always
a “boosted” Levi-Civita metric (static metrics and the choose a new coordinate frame in which it is zero.
other one is similafbut not quite equalto the “exotic” In Sec. IV we extend the results [8], relating properties
metrics found in1] (stationary but not static metrics of the metric coefficients to those of the source, to the non-

The “boosted” Levi-Civitametrics can be brought to a diagonal case, the main result being that a source for the
standard diagonal form by a coordinate transformation, séexotic” metrics must violate the dominant energy condi-
the spacetime they describe has ordinary properties. In thigon (DEC) under quite general conditions. In Sec. V we
case of the “exotic” metrics this is not possible, and we find exemplify these results by considering the possibility of hav-

ing an “exotic” metric outside one or more concentric cy-

lindrically symmetric shells with regular axis, and showing
*Email address: gleiser@fis.uncor.edu explicitly that this requires that the DEC be violated by the
"Email address: tiglio@fis.uncor.edu matter making up the shells.
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We use geometrized unit&Ec=1), the signature of the with py, p,, and p; arbitrary real and positive constants.
metric is (—+ + +), and (sometimels we use abstract in- Therefore, in this case the metric given {&3,4,9 is just a
dexes. “boosted” form of the Levi-Civitametric.

We notice, however, that the Einstein equations are also

Il. CYLINDRICALLY SYMMETRIC, NONROTATING, satisfied if we choosé; real, and k;,ks) as a complex

STATIONARY VACUUM METRICS conjugate pair, such that Eq%) are satisfied. We must also

choose
We consider first the vacuum spacetime external to a non-
rotating, cylindrically symmetric distribution of mass- C3=i(Cy)*, C4u=i(Cy)*,
energy, in a stationary state of motion along the symmetry R _ )
axis. This may be described, in general, by a metric of théVhere an asterisk indicates complex conjugation, so that the
form resulting metric is real. After some appropriate renaming of

constants, the metric can be written in the fofhh, with the
ds?=dr?+g,,d62+g,d7°+ 2g,,dzdt—g,dt?, (1) coefficients given by

whereg,,,9,,,9: 0, are functions of. The general solu- o= Calr —1o/?%, (8)

tion of the vacuum Einstein equations corresponding to Eq. 5 5

(1) may be written in the form 02,=Cy|r —ro|*%2cog 2k In(|r —rq|) +21)], ©
9

9po=Cs(r —ro)*, 2
gu= — C3|r —ro|?%2cog 2k In(|r —ro|) + 2451,

927=(C1)?|r —r|?2=(Cg)?|r —r |, 2 (10
U=~ (C2)?[r — 1|22+ (Cy)?[r —ro|?3, (3 Uiz = CaCs|r —ro?%2cog 2K In(|r —1g|) + ¢y + ¢2(]il)
Otz= C1Co|r —1o|r22—C3Cylr —r|*3, (4)

wherea, K, ¢4, C,, C3, ¢q, and ¢, are arbitrary real con-

where ry is a real constant, and the constarks(i stants, and

=1,...,3)must satisfy 1 1
A1=3[1+2s(1+3k*)],  gp=3[1-s(1+3k)¥2,

kitkotka=1, (kp+(kp?+(ky)?=1.  (5) 3
We must also choose the consta@is such that s==*1.
C,C,#C,C3; (6)  The determinant of the metric is
otherwise the metric would be degenerate. We shall assume C1C2Ca(r —1o)’[COY2¢h1—26h5) — 1],

that 6 is restricted to 8 <2, with 6=0 andf= 2 iden-
tified, consistent with the interpretation of cylindrical sym-
metry. In this contextr and z would, in principle, be the
remaining “cylindrical coordinates,” but as we show below, €1,C5,Cs#0 and ¢,—dr#nm (neZ). (12
this needs closer examination in general.
For any choice ofeal k;, C; satisfying Eqs(5) and(6), It is static only wherk=0, corresponding to a Levi-Civita
we may parametrize the constakisby a real parametek,  spacetime witlh=+1 or +3 if s=1 ors—1, respectively
(Levi-Civita metrics with opposite values of are isomet-
2(A-1) 2(A+1) (A%-1) ric).
N (A2+3)’ 2= (A2+3)" 3_(A2+3)’ This type pf metric[ satisfying Eq.(12_) and with kq&_o],
which, following [1], we shall call “exotic” hereafter, is of
and introduce a linear transformation of the coordinatey ( Lewis type[4], and has been usually analyzed in relation to
of the form rotating cylinders(i.e., the nonvanishing crossed coefficient
of the metric isg;,) [5,6]. The procedure here used to obtain
z—Cz+Cyt, t—Ciz+Cyt, (7)  these solutions is similar to that used to obtain the “windmill
solutions” of Mclntosh[7].
which puts the metri¢1) in the usual diagonal Levi-Civita

and, thus, the metric is nondegenerate if and onlgfaf r
#Ig)

l:

form, A. Some properties of the exotic metrics
dszzdr2+pl(ar_r0)74(A71)/(A2+3)d02 To justify the name *“exotic metric” we _consider here
(see alsd1]) several classes of nonspacelike curves, both
+pz(ar—ro)“(A*l)’(AZ*S)dzz geodesics and nongeodesics. We first notice that by appro-
priate rescalings and linear transformations of coordinates
— pa(ar—rp)2@* DA% 3)ge2, we may write the metric in the form
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ds?=dr?+r2%1d 6+ r292[ coq 2k Inr)dz2— coq 2k Inr ) d t? where the plus-minus sign corresponds, respectively, to
“outgoing” and “ingoing” geodesics. Notice that this im-
+2 sin2kInr)dtdz], (13)  plies thatall null geodesics have “turning points” im
[points where cos@n r—2a+)=0], and therefore, the cor-
and, therefore, the constam{sand¢; are irrelevant, as far as responding values afare restricted to a finite segment of the
the geometrical properties of the metric are concerned. Notg, axis, where cosf@n r—2a+m)=0. Upon reaching a turn-
from Eq.(13), that the sign ok can be freely chosen; we will jng point the sign ofir/d is changed, and the sense of the
take advantage of this freedom later in Secs. IV and V. motion along the axis is reversed, but there is no associated
As already noticed if1], for a metric of the form(13),  gingularity in the metric. Turning points are properties of
the Killing vectorsd; andd, change from spacelike to time- individual null geodesics; i.e., they change when we consider
like and vice versa as one moves along tfewordinate(for  gifferent null geodesics going through the same point, and
fixed 0) In other WordS, |f, for fixed9, we consider a fixed therefore there are no horizons or any other pecu”ar geo-
coordinate grid, wherer(t,z) are taken as Cartesian coordi- metrical property associated with the turning points of a
nates, the local light cones appear to “rotate” along the given null geodesic.
axis, while they have fixed directions in a given,2) Since null geodesics going through a certaieventually
“plane” [i.e., a constantr(#) surfacd. Nevertheless, the come back to the same valuemft is important to compute
form (13) for the metric immediately shows that, since thethe corresponding change trandz. These may be obtained
light cones are well defined everywheiexcept, of course, py eliminating the affine parametey and looking essentially
for r=0), we may, in spite of this “rotation” of the light at the corresponding trajectories in spacetime. From Egs.
cones, impose a definite time orientation on the spacetimeg]7) and(14)—(16), we have
by simply defining a future direction at a given point, and

then extending this definition by continuity to all other dz cog2kInr—a)

points. —= %P2 , (18)
A definite time orientation on the spacetime, however, dr \/cos(2klnr—2a+ )

does not preclude the possibility of the existence of closed

causal(i.e., nonspacelikecurves. Some peculiar behavior dt sin(2kInr —a)

regarding null curves was already noticed[i. We there- — = P2 , (19

fore start our analysis by considering geodesic curves. Cy- dr \/cos(ZkInr—2a+ )

lindrical symmetry implies that there is a subfamily of geo- . o .
desics with constanf. Restricting ourselves to this type of Where the plus-minus sign is determined from E). After

geodesics, we may write their tangent vector in the form an integration by parts of the right hand sides of Ed8)
and (19), we obtain the following expressions for the

ud=u?d,)2+u'(d)2+u'(a,)% changes irz andt, corresponding to a null geodesic that goes
from an initial point inr =r, to a turning point at =r,, and
Since @,)® and (9,)® are Killing vectors andi® is geode- comes back to=r:
sic, we have
At=2[t(ry)—t(rg)]=*[2aZ— 2k *roh(ry)cosa],
Ua(ﬁz)a=p, Ua(ﬁt)a=—E, )
Az=2[z(rq)—2(ro)]= *[2BZ+ 2k ryh(rg)sina]l,
whereE andp are constants. From these relations, we find i
wi
u?=z=(E2+p?) Y% 292 cog2kInr—a), (14) ;
I:f 1h(r)dr, h(r)=r"%?cod’¥2kInr—2a+ ),
"o

ul=t=(E?+p?) Y% ~2%sin2kInr —a), (15)
: and
(U")?=r?=—-U(r),
(16 a=—sina—u cosa, B=-—cosa+usina,
U(r)y=s—(E?+p?)r 2%2cog2kInr—2a+ ),
1

wherea=arctanE/p), s=0 (s=1) for null (timelike) geo- M= ﬂ(—QzﬁL 2).
desics, and an overdot indicates derivation with respect to
the affine parameter, e.@=dz/dr. To see if the end point can be in the causal past of the

For null geodesics, we may rescateto set €2+ p?)¥2  initial point, using the same arguments as those leading to
=1, and therefore, without loss of generality we may thenthe form(13) for the metric, we may choose, without loss of

write generality,ro=1, and assume that a future directed vector at

] r=1 hast>0. Then, the end point will be in either the
r . . . 2:_ 2
= %2 cog2KInr —2a+ m)]Y2 (17) iaxiglggasgu?rwl;utﬁseof the starting point Af At
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4r2 curve. These are simply twice the changesandzin going
AI2=—20[I,uk+h(ro)]2+4IZ(3sir?a+c052a) from r=1 to r=ry, ie, At=2[t(r;)—t(1)] and Az

K —2[2(ry)—2(1)]. We define

_8|I|i:0At- y=|n(rBSi”b)—b, x =B cosb.

so that a necessary condition fan?<0 is t,At>0, and We then have three possible cases, depending on the sign

therefore the end point is causally connected to the startin8f cosp):

point only if At>0. We conclude that a null geodesics can- (i) First, if cosb>0, the functionx(r) is incrgasing With’.
not return to its causal past, and sinteé=0 implies Al2 a_nd, therefore, the equatuzr@r):_o_ has solutions for suffi-
>0, null geodesics cannot self-intersect ciently larger. Moreover, for sufficiently large, these zeros

We have seen that null geodesics necessarily have turnir% z cor_rgspond ty=n, sincex is unbounded. Then, again
points. We may similarly show that timelike geodesics nec- r sufficiently Iarger,_and for the_game reason, the zeros of
essarily have turning points as well. Since these are not hd: correspond alternatively to positive or negative values of
rizons, we may ask whether turning points necessarily appeat®. W& may always choosg such thatz(r,) =0 andt(r)

also for generafi.e., nongeodesjacausal curves. That this is <0'_ B_L_’t ther_1 the return point an=1 is in the causal past of
not so can be illustrated with a simple example. Consider &€ initial point, and we may construct a closed, everywhere

curve parametrized so that its tangent vector satisfies uture Qirected, nons_paceliKe curve, by.sim_ply joining the
end point and the initial point with the timelike, future di-

— _ (Bcosb—1 B sinby _ rected curve whose trajectory corresponds 4dl, z=0.
Ur=s, Uz=T cogIn(r )=b], (i) In the case cobj<0, the functionx(r) increases as
decreases. The same type of reasoning indicates that in this
case there are points (with r;<1), such thatz(r,)=0,
) with t(r,)<0, and therefore we may also construct closed,
whereb andB are related tk andq in Eq. (13) by nonspacelike, everywhere future directed null curves.
) (iii ) Finally, if cos)=0, points withz(r,)=0 correspond
s=*1, k=Bsinb#0, 0,=2-2Bcosb. (20) g5 tot(r;)=0, and the return portion of the curve inter-
sects the initial portion, resulting directly in a closed curve.
Without loss of generality we may choo&>0 and sirb Although, for simplicity, we used the example of a null
>0. We may easily check that, for either choicespfthis  curve, since this is not geodesic, we conclude that there are
represents a null curve, well defined for all values,offhere  closed, nonspacelik@ither null or timelikg, everywhere fu-
r monotonically increasess¢€ +1) or decreasessE —1),  ture directed curves through every point of the manifsiee,
without turning points. e.g.,[8]). This last result follows by taking into account that
We may obtain the trajectorfworld line) corresponding the metric at any point on the manifold can be put in the
to this curve integrating and z as functions of. The result  form (13), in a coordinate patch where the coordinates of the

ut:rB COSb_lSirﬂn(rBsmb)—b],

IS point are (=1, t=0, z=0).
A further consequence, which is not difficult to prove, is
t(r)=s{r®st cogIn(r8snb)—p]+C,}B 71, that any pair of points in the manifold can be joined by a
future directed, nonspacelike curve, irrespective of the order
2(r)=—s{rBeosb gi In(rBsinb) —p]+C,}B L, of the points(note that, by a simple extension of the previous

discussion, given any point, we may reach a point arbitrarily

whereC, andC, are integrations constants. Again, with suf- in its past by an appropriate choice mj.
ficient generality, we may choose these constants such that o
t=z=0 for r=1. This corresponds t&,=cosb, C,= B. Comment on the metric given by Thatcher and Morgan
—sinb. As indicated, for fixed these curves have no turning For completeness, and to clarify a point related to the
points. We may, however, at any pointr,, match a por-  regularity of the metrics, let us now compare the meti®)
tion of this curve with, says=+1, with a portion of a with the one given irf1]:
similar curve withs= —1, the same values @& andb, and g g
where we choos€,; andC, in such a way that, t, z, u;, m [r _jem [T
andu, are continuous and, changes sign. Since this is still dg:c“{?'”(g) }(—dt2+dzz)+2 S"{?'”(E) }dtdz
a null curve, for a photon this would correspond to “bounc- 5 S
ing off a mirror,” whose normal points in the direction. +dro+ (1-8E)rode”. (21)
More geometrically, we may always “round corners,” with-
out changing the nonspacelike nature of the cliBieso that
the sharp change in, is used only to simplify the computa-
tions, but has no special significance.

We may compute now the changes in At=t(r,) 2
—1(1), and inz, Az=2z(r;)—z(1), in the*round trip” from R”:32m_
r=1 tor=ry, and back tor=1, along the resulting null

Contrary to what is stated ifl], this is not a vacuum solu-
tion (unlessm=0, which gives a flat metrj¢ because the
Ricci tensor has &unique nonvanishing component:
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The identification of Eq(21) as a vacuum metric made|if]

is based on the assumption that if, for a metric of the form  Lmater™

(1) and a certain tensdr,, having the same symmetries as
dap and whose divergence vanishése., V37,,=0), the
equations

Rt'[=Srr ’

R,~=S,;, Riu=Sy,

(22)

_ 1
Rgo= Spe [W”h Sab:877(7ab_ EgabT)

are satisfied, then we necessarily h&e=S,, . In particu-
lar, this would imply that if Eqs(22) are satisfied forZ,

PHYSICAL REVIEW D 61 104006
1 a 1 a 1 2
- EV RVaR— EV SVaS— ER (Valﬂ‘l‘eAa)
1
X(Vig+eA) = 5 SV, V- N(R? = 7°)?

1
~—F

1 1
To- FanF P~ fRZS?— 20,S'+5mPS%. (25)

Then, the following ansatz for these fields is proposed.in

R=R(r), =0, Aazé[P(r)—l]Vaﬁ,

=0, then we necessarily have a vacuum solution. This, how-

ever, is incorrect. In fact, following Garfinklg9], we may
define the tensor

Qab=Rap— Sap-

Then, Egs.(22) imply that Q,, has nonvanishing compo-
nents only inrr, i.e.,

QaDZJVaerr,

with J a function ofr. Using now the contracted Bianchi
identities, V®R,,=3V R, together with the assumption
VaT,,=0, we find

1
VeQap=35VsQ (Q=Qz").

For a metric of the form(1), this reduces toJg)’' =0,
where (— Q) is the determinant of the metric, and, therefore,
we have

J=k/g, (23

with k a constant. Then, if the metric satisfies regularity con-

ditions on the symmetry axis,
gtt:_1+o(r2)a gzz:1+o(r2)y

(24)
Upe=r>+0(r"), g,=0(r?),
taking the limitr — 0 in Eq.(23), we obtaink=0 (otherwise
we would havel—«, corresponding to a singular metric at
the axig, i.e.,J=0 andQ,,=0, butJ need not vanish if the
metric is not regular for=0.

IIl. SUPERCONDUCTING STRINGS
WITH CONSTANT MOMENTUM

As indicated above, it was suggested[ij that exotic
metrics of the type described in the previous section may b

associated with the spacetime external to a superconducting

S=9(r),

The form assumed fog is consistent with the idea of en-
dowing the string with a nonvanishing momentum. With
these assumptions the equations resulting from the Lagrang-
ian (25) are

d=kz— wt.

V.V3R— R[4\ (R?— 7?)+ (V i+ eA,)

X (V3y+eA?)+2fS?]=0, (26)

V. V3S—gV,_ pV2p+2fR2+\,S2—m?]=0, (27
VIR?(Vay+eA?)]=0, (28)

Vo [SV2¢]=0, (29

VaF,,— 4meR(Vy+eA,)=0. (30)

Now suppose, as ifl], thatV,¢ is timelike at the axis, i.e.,
w?—k?>0. Performing the change of variables
z— (02— k?) Y wz—kt), t—(w’—k?® YAkz—wt),

the conditions at the axis remain unaltered it (w?
—k?)Y%. Thus, without loss of generality we magnd we
do) assumek=0.

Equationg28) and(29) are automatically satisfied and the
other three are

1 p2 ]
(Rrg1/2)rgl/2_R{_)\(R2_ 7°)+ —+2fS?|=0,
2 SPY;
(32)
5 -
(SrglIZ)rglIZ_S[_ w gﬁﬁgzz+2fR2+)\252_m2 =0,
(32
p’ 1/2\
. ( 2 ) Uped 2~ 4meRP=0.
)

(33

string with constant momentum. The construction given in
[1] proceeds as follows. The metric is assumed to have th&he Einstein equatiorR,,=87(Ta— 3 Tdab), Can be writ-

form (1), the matter fields are written ab=Rée”, and o
=Séd?, and their Lagrangian is

ten as(for briefness, we do not write down the explicit ex-
pressions for the Ricci tensgor
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P,Z_)\’TI'(RZ_ 772)2

Ri=—0u| -

00

4 2
—27782<4fR2+ N,S2— 2m?+ gi) ]
tt

1
Rzz:gzz[_ > P/2+)\7T(R2_ 772)2
€°Jyo

+27SP(4FR2+ N\ ,S?—2m?)

Ry =87m(R'?+S'?) + N 7(R*~ 5%)?

1
+27S?(AFR2+ N\ ,S?—2m?) + - p2

€°Jgg

11
R%:g%{—(—zp'% szZPZ) +Nm(R?— n?)?

Joo \ e

+27S?(4FR2+ N\ ,S?— 2m?)

1
th=gtz{ — —— P24 \m(RP= 7)?

€70y

+27SP(4fR2+ N\, —2m?)

(34)

(39

(36)

(37

(38)

Suppose that we have a solution of E(&l), (32), (33),

(34), (35), (36), (37), (38), that satisfies the regularity condi-
tions (24). We will now show thatg,,=0. For that purpose

we first define

r
al
0

h? h

tz

, — 09201
q=9tzgé’5€xp( oh )
with h andt,, given by

h= 0tt9z2— gt22<01

t,=—
2
€70y

+27S2(4fR2+ N\ ,S%—2m?).

P2+ \m(R?*— 772)2

The convergence for smallof the integral that defingg is
guaranteed by the regularity of the metfand its nondegen-
eracy and of the matter fields. With these definitions, Eq.

(38) implies that, forr>0,

qep: C,

h/ ! !
_ ;:Jzzgtt +g_t,z<2ttz+ gttgzz” and

(39

PHYSICAL REVIEW D61 104006

with C a constant. Taking the limit—0 on the left-hand
side(LHS) of Eq. (39) and using the condition@4), we find
thatC=0, i.e.,g;,=0Vr.

Thus, we have shown that the ansatz for the fields given
in [1], plus regularity conditions on the axis=0, implies
that the metric can be made everywhere diagonal, and this
excludes the possibility of “exotic” behavior. Therefore, we
must conclude that the ansatz[@] does not lead to a source
for the “exotic” metrics. The exotic behavior observed in
[1] would then have to be ascribed to some peculiarity in
their numerical procedures, possibly leading to a failure in
strictly satisfying the regularity conditions for=0.

IV. SOURCES FOR THE EXOTIC METRIC

In this section we consider some general properties of
cylindrically symmetric and stationamegular sources that
satisfy the DEC and which are confined to a cylinder of
arbitrary radiusR,. We assume that the spacetime external
to the source is vacuum, and obtain restrictions on the pos-
sible form of the metrics representing that part of the space-
time. We shall assume that in the source region, consistent
with cylindrical symmetry, there exist two Killing vector
fields, one of them timelike and the other spacelike, which
are not necessarily orthogonal to each other. We also require
that these Killing fields remain timelike and spacelike, re-
spectively, i.e., that their norm does not vanish. Then, the
metric can be written as

ds?’=—e’dt?+eBdZ2+2D(r)eA T B2dtd z+ dr?+ eCd 62,
(40)

with A,B,C,D functions ofr. We shall see that this kind of
sources cannot give rise to exotic spacetimes. The first part
of the proof consists in recalling certain inequalities that the
DEC imposes on the eigenvalues Bf°. We then rewrite
one of these inequalities as a differential one that can be
integrated and seen not to be satisfied by the exotic metrics.
Without loss of generality, we assume that the latter Have
<0.

A. DEC, eigenvalues and eigenvectors

For metrics of the typél), the nontrivial equations for the
eigenvalues and eigenvectors Bf® correspond to the-z
sector. For the analysis of this subsection, it is convenient to
choose an orthonormal basi%a,(ia) at the point where the
analysis is carried out, i.eg,=0, gx=—1, andg,,=1.
Then, the eigenvalues are given by

1
)\(E)ZE[(TZZ_ Ttt)+5')’l/2]v 7’:(Tzz+Ttt)z_‘]'-rtzz7

e=*+1.

The DEC states that, for any timelike and future directed
m?, n®= —T,,m? is future directed and causal. It is easy to

see, writingm?= t2 coshé+Z2sinh¢, that, if the eigenvalues
are complex ¢<0), n? is always spacelike iT,,— T;=0,
and it is spacelike for somgif T,,—T,;#0.
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On the other handh? is future directedv & if and only if ~ (A—B)’e(ATB+C)2(1 4+ p2)~12

N%ta= (T, + Ty)sink? £+ T =0, = 16wfre(A+B+°>’2(1+ D?) VAT, t3°+ T,,2%2°),
0

a condition that is satisfie® ¢ if and only if T,=0 and
T,,+ T=0. and the WEG>(A—B)'=0. Recalling that A—B),_-,=0,
Suppose that the DEC is satisfied, ther0 and there are we have|gy|=g,,Vr.
two real eigenvalues. The norms of their corresponding Returning to our proof, the point is that the non-negativity
eigenvectorse?e), are then given by of a; implies that Eq.(41) can be written asy;—|a,|=0.
But a;—|ay|=0=a;— a@,=0. And we have

€
a R V) 1/
elgCaa=5 7" A Tazt Tut ¥, al—a2=%<1+D2>e<A*B*C>’2*F(qu>”

If y=0, there is a uniquénull) eigenvectort?+z2, with
multiplicity 2, and the energy momentum tensor is of type II
in the classification of10]. If y>0, one of the eigenvectors
is timelike and the other one spacelike. In this case the stress
tensor is of type | in the classification pfO0].

with

q=A'—-B’'-2D'(1+D?% 7

I:_frD[(A—B)'(HD2)1’2+2D’]
B. Proof 0 2(1+D?)eA*B)2

In a nonorthogonal system of coordinates, such as that of _ o
Eq. (40), the eigenvalues OTab are convergence of the integral that defirfess guaranteed by

Eqgs.(24)]. Thus the DEC is equivalent to
A=(2h) YTy, T, 00— 2T 1,905 [(TeGz— T2 00)?

(qef)'=0. (43
- 4(Tzzgtz_ thgzz)(Tttht - Tttgtz)]llz}'

Integrating Eq(43) and using once again Eq24), we have

The reality of the eigenvalues is thus equivalent to q=0Vr. In particular,q=0 at the radius of matching;,
) ='R,. By regularity, g, which is made up of the metric com-
a=(Tu0z;~ T2 8u) "~ 4(T2 8t~ T1292) (Tez9u— Tet9t) ponents and its first derivatives, is continuous, and, therefore,

~0. (41) atr=7R, it can be evaluated using the exotic metrics, finding

2K[ (1+sinaq)cosa,+ (1—sina,)cosa | 0
=

For the metric(1), we have
(R4—r1)COSa1COS,

Q|r=721:

(44)

2 2
(al— az),

a= .
6472 with

with a;=2KIn(R1—r1)+2¢1,
a252k |n(R1— r1)+2¢2_ .

1
= §(1+ DZ)e(AJrB*C)/Z[(A_ B)/e(A+B+C)/2
Let us now analyze the RHS of E@4). In order for the

X(1+D?) "), exterior (exoti metric to be regularR,—r,;>0. We also
have that cog;>0 and cosx>0, since the metric coeffi-
ap=eAtB=C)I2(1 4 D2) U D’ g(ATB+C)12 cients atr =R, are
X (1+ D2)—l/2]/ _ %e(A-FB)(A_ B)Iz. 9,7~ Cg(Rl_ r1)2q2 COSa1>0,

gu=—C3(R1—r1)?%2 cosa,<0.
It can also be seen that
Sincek< 0, the inequality(44) is equivalent to
a,=8m(1+D?)Y2eATB (T, 131+ T,,2%2%), (42
[(1+sina;)cosa,+ (1—sina,)cosa,]<0,

so the weak energy conditiddVEC)= «,=0. Although it is
not related to our proof, let us show something else. Fronbut this condition cannot be satisfied if aes>0 and
Eq. (42) we obtain COoSay,>0.
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V. SHELLS rp | 2Ro(A+1)—ro(A%+3)

In this section we construct and analyze the spacetimes apZ £7= " 87R(Ro— o) (A2+3) (r=Ro),
corresponding to one or more concentric shells matched to (48)
an exotic exterior, and explicitly show that the DEC is vio-

!ated. As we shall see,_the interior metric can b_e diagonf_;ll- o Ro(A2=1)—ry(A2+3)

ized, so the corresponding hypothesis of the previous section Tapt2tP= 5 8(r—mRe),
trivially holds. However, the distribution of matter is not 87 Ro(Ro—T0)(A+3)

regular and, in particular, the functianis not continuous at (49

r=7R,, as we have assumed in the previous section. Never-
theless, one can take into account the fact that we are dealir?d‘
with shells, make minor changes on the proof above given, FoS(r —Ro)
and see that the final result still holds. 07V ™

For the discussions of energy conditions it is convenient 47Ro(Ro—To)’
to introduce a normalized base:

d the trace of this stress-energy tensor is

sor,=0=T=0. That is, although locally corresponds to
a simple shift in ther coordinate, it provides nontrivial in-

“a__ _ ~— 12 Za_ ~—112 3 . .
rf=(3)%  0°=0y9 (99)%, Z2°=0,, (d7)% formation about the invarianf. Thus, one cannot choose
ro=0 without loss of generality. Something similar led to
fa:|g“|71/2((9t)a_ the belief that a rotating cylinder can only exist in general

relativity for “incoherent (tracelesy matter” [5] (more on
rotating cylindrical shells can be found [6]).

The SECT,,m2m°+3T=0 for all unit timelikem?, im-
plies in this caséchoosingm?=1?),

As in the previous section, we chooke& 0.

A. One shell

In this subsection we analyze the case in which there is
just one shell of radius, saRy. The interior metric must be
flat; otherwise it would be singular. It can be seen that, if the
exterior metric is exotic, the shell must violate th.e DEC. We_q it is satisfied if and only 2> 1 (the inequality must be
leave the proof of this statement for the following subsec-

) \ X reversed ifRy<rg). It is easy to see that this is a general
tion. Thus, the exterior geometry of a physically reasonabl%roperty of Levi-Civitametrics; e.g., it does not depend on
shell is described by a Levi-Civitmetric. The regularity at

the fact that we are dealing with she|l3] (see the last sec-
the axis plus the matching conditions at the shell implies th W ing with shefls] (s sts

. . . . . afion for further comments on the SEC
both the exterior and interior metrics can sienultaneously Similarly, as a necessary condition for the WEC, we have
diagonalized; we use this fact to write ' '

a1 A%-1
Tapt?tP+ - T= ( )

S(r—Ry)=0,
2 8m(A%+3)(Ry—ry) (r=Ro)

ds?’=dr?+r2d@*+dz2—dt?>, O<r<R,, (45 T30+ T 2820 = (Ajl)(A_:)') S(r—Rg)=0.
8m(A“+3)(Ro—rp)
2 iy R r—ro —4(A-1)/(A%+3) , (50
ds"=dr°+R de
0 Ro—ro) In Sec. IV we saw that the WEE|g,;|=g,, under general
=1, 4(A+1)/(02+3) conditions. Let us explicitly check this property: writing
(Ro_fo> dz* . _( r—rg )2(A2—1)/(A2+3)
F—r, 2(A2-1)/(A2+3) , Gu™ 92z Ro—To
X —
Ro—To '

In the above expressioriand for the rest of the papewe

assume, for simplicityRo>r,; the analysis forRg<rq is  we notice that Eq(50) =g+ 9,~=0.
similar, and one can see that the results that we are interested
on also hold in that case. We now write down the compo-
nents ofT,, that are obtained when the metric defined by i o ]
Egs. (45),(46) is used to evaluate the LHS of the Einstein We now consider a model consisting of two concentric

equationG,,=87T,,. We shall need them in the next sub- Shells. As discussed in the previous subsection, assuming
section. The results are that the interior of the innermost shell is empty and regular,

and that it is made out of matter afat) fields satisfying the
(A+1)? DEC, the metric between the inn_errnc_)st and outermost shells
8(r—Ry), (479 ~ must be taken to be of the Levi-Civiarm. Our problem
8m(Ro—Tro)(A%+3) then is to analyze the matching of the Levi-Civitetric (46)

B. Concentric shells

Tabbabb:
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with a metric of the form given by Eqs$8), (9), (10), (11),
through a singular shell at=7R,>R,. We obtain

24,

_ _ 2
g%:Rg(Rl_ro) 4(A—1)/(A +3)( r—r,
Ro—ro Ryi—r4

1 [Ry—1g 4(A+1)/(A%+3) r—r, |20
_COSa Ro_ro Rl_rl

xcog2kIn(r—rq)+2¢,],

gZZ

1 (Ry—rg 2(A2-1)/(A%+3) r—ry 24,
Ou=—

Ro_ro 'Rl—l’l
Xcog2kIn(r—rq)—4kIn(Ry—r1) —2¢4],

COSsa

1 (Ry—to (A+1)2/(A%+3) r—ry 2q,
927 Cosa | Ro—rg Ri—1,

xsin2kIn(r—ry)—2kIn(R,—r)],

with a=2kIn(R;—r;)+2¢; such that cog>0.

The components of the energy-momentum tensor for the

innermost shell are given by Eq4.7), (48), (49), and for the
outermost one by

2(1—sy1+3k?)

3(R1—r1)

nn 1
aph_ _—
T,,0%0 87

(a1 ]
(A2+3)(Ry—r1p)
X 8(r—Ry),

~n 1
TabZaZb = g

(2+sy1+3k?+ 3ktana)

1
3(Ry—r1)

(A-1)2
(A2+3)(Ry—To)

o(r—Rq),

1

- (_o_ 2
3(R1—f1)( 2—sy+3k"+3ktana)

Tatb__ _—
Taptot 8

8(r—Ra),

+
(A243)(Ry—T)

Tabf a%b —

~ 8m(Ry—r,)cOSa o(r=Ra),

whereas its trace is

_ (ri—ro) B
T I Ri— ) (Ra—rg) )

and, similar to what happens for a single she|l=ro=T
=0.

PHYSICAL REVIEW D 61 104006

T ratny 1 e L[ 2K@na  (A+1)A-3)
ab ab 87| (R1—r1)  (A24+3)(Ry—ro)
X5(r_R1)

=0. (51)

Combining Eq.(51) with the analogous equation for the
innermost shell, Eq(50), we obtain

R1 ~n n~n
lej gYA(T 1pt 2P+ Top2%2°)
0

_ Ro(Ri—roktana
4m(Ro—T0)(R1—To)

=0. (52
The other integral we need is
R an —KkRo(R1—r1
Izzj 191/2Tabta b= ol R~ ro) )
0 87(Ro—rp)(R1—rg)COSc
(53

Which is also positive, not because of any energy condition,
but rather due to the range of the constants that appear on it.
Finally, the DEC implies thafZ;=27,, an inequality that
cannot be satisfied k<0 and both Eqgs(52) and(53) are
positive. Therefore, as stated, the DEC is necessarily violated
if the matching to the exotic metric is nontrivial.

VI. FINAL COMMENTS

The possibility of the existence of an exotic metric asso-
ciated with a physical source is of course very intriguing. In
a general sense, it would amount to some form of “frame
dragging” that results from the presence of a momentum
flux in the source, such that the stress-energy-momentum
tensor cannot be diagonalized in general, in some way remi-
niscent of the frame dragging effect for a source endowed
with rotation. Unfortunately, in all the examples analyzed in
this paper, we have not been able to construct such a source
if we also impose the dominant energy condition. We have
also constructed a general proof of the nonexistence of
sources satisfying the usual physical requirements, but only
under some restrictions. In particular, the main assumption
of the proof given in Sec. IV is that there is a Killing vector
field that iseverywherespatial in the source region, and an-
other one that igverywherdimelike, in the same region. It
applies, in particular, to sources that have small relative
(nontrivial) flux of momentum, but it is not the general case.
For example, the exotic metrics do not satisfy this condition
(though, of course, they cannot be used as sources because
they are not regular at the axidt would be interesting to
have some result concerning sources that do not satisfy this
hypothesis, either showing that they can generate exotic met-
rics or extending the present proof to those cases.

The other important assumption in Sec. IV is that the

As a necessary condition for the WEC on the outermostnatter satisfies the DEC. This is usually considered to be a

shell,

physically reasonable assumption, satisfied by nontachyonic
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matter, in particular by topological defects. We notice, how- In general, topological defects that violate the SEC have a
ever, that some of the latter violate another energy conditionglobal symmetry. For example, following the notation of
the so-called strong energy condition. There are differenSec. Ill, for aU(1) global string we have

ways of realizing that sources for a given spacetime must
violate it. For exampldfollowing the notation of Eq(40)

with D=0], if one looks at the geodesic equation, one no-
tices thatA’ <0 corresponds to a “repulsive” gravitational o ) ) ) )
field, a situation in which one would suspect that the SEC igvhich is manifestly negative, so the SECeigerywherevio-

being violated. This is indeed the case, the components d@ted. Similarly, global monopoles1] and global vacuum-
the Ricci tensor are less defect$12] have repulsive gravitational fields that sug-

gest that the SEC is violated. In the case of gauge defects, it
is usually supposed that they satisfy the SEC. But in such
cases, we face the difficulty th&€C does not have a definite
sign, and, therefore, we do not know whether at a given point
it is positive or not without knowledge of the solution of the
field equations. Nevertheless, there might be an interesting
exception to the general belief that gauge defects satisfy the
o 1 SEC, an exception that seems not to have been noticed up to
Rﬂﬁaaab:—E[C’e(’”‘“c)’z]’e*(“B*C)’Z, present. Amsterdamski and Laguna Castillo have numeri-
cally solved the equations describing a gravitating supercon-
ducting string[13] and, interestingly, if one observes Fig. 7
non 1 1 S
Rapf2rP=— = (A+B+C)"— ~(A'2+B'2+C'?), of that paper, one notes thgy clearly has a local minimum.
2 4 According to Eq.(54), this means that superconducting
strings violate the SEC.

1
SEC= = gMRP=7)?,

Rabfafb: %[A’e(’“ B+C)/2] ref(AJr B+ C)/2’

Zasb_ E[B/e(A+B+C)/2]Ie—(A+B+C)/2
2 1

and, thus, aegular solution of Einstein equations satisfies
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