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Exotic spacetimes, superconducting strings with linear momentum, and„not quite… all that

Reinaldo J. Gleiser* and Manuel H. Tiglio†

Facultad de Matema´tica, Astronomı´a y Fı́sica, Universidad Nacional de Co´rdoba, Ciudad Universitaria, 5000 Co´rdoba, Argentina
~Received 5 August 1999; published 17 April 2000!

We derive the general exact vacuum metrics associated with a stationary~nonstatic!, nonrotating, cylindri-
cally symmetric source. An analysis of the geometry described by these vacuum metrics shows that they
contain a subfamily of metrics that, although admitting a consistent time orientation, displays ‘‘exotic’’ prop-
erties, such as ‘‘trapping’’ of geodesics and closed causal curves through every point. The possibility that such
spacetimes could be generated by a superconducting string, endowed with a neutral current and momentum,
has recently been considered by Thatcher and Morgan. Our results, however, differ from those found by
Thatcher and Morgan, and the discrepancy is explained. We also analyze the general possibility of constructing
physical sources for the exotic metrics, and find that, under certain restrictions, they must always violate the
dominant energy condition~DEC!. We illustrate our results by explicitly analyzing the case of concentric
shells, where we find that in all cases the external vacuum metric is nonexotic if the matter in the shells satisfies
the DEC.

PACS number~s!: 04.20.Jb, 04.20.Gz, 98.80.Cq
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I. INTRODUCTION

The possibility that the spacetime around a supercond
ing cosmic string with constant momentum is endowed w
exotic properties has been indicated in a recent article
Thatcher and Morgan@1#. In accordance with the analys
carried out in@1#, in the resulting string spacetime, test pa
ticles are deflected as they approach the string, effectiv
isolating the defect from the outside universe. This and ot
strange properties of the metric, such as the possibility
causal violations, would imply that the inclusion of gravi
into models of charged strings and vortons may have sig
cant consequences as regards their possible role in a co
logical context.

Because of the very peculiar nature of the results obtai
in @1#, and since the analysis is carried out, at least in p
through approximations or numerical integration of so
complex system of equations, it seems appropriate to try
a check, to reobtain those results through a different
proach, and also to extend the analysis of the propertie
the associated metrics, as regards their causal and other
erties. Therefore, in this paper we start, in Sec. II, with
derivation of the general form of the vacuum metrics ext
nal to an infinite, nonrotating, axisymmetric stationary cyl
der. Depending on the choice of the integration consta
that appear in solving Einstein’s equations, these turn ou
be members of either two families of exact solutions of
form of the Lewis metrics, one of which can be interpreted
a ‘‘boosted’’ Levi-Cività metric ~static metrics!, and the
other one is similar~but not quite equal! to the ‘‘exotic’’
metrics found in@1# ~stationary but not static metrics!.

The ‘‘boosted’’ Levi-Cività metrics can be brought to
standard diagonal form by a coordinate transformation,
the spacetime they describe has ordinary properties. In
case of the ‘‘exotic’’ metrics this is not possible, and we fi
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that nonspacelikegeodesicsare always trapped; i.e., the
radial coordinate cannot take arbitrarily large~or small! val-
ues. Moreover, we show that although it is possible to ass
a well-defined time orientation, so that we may distingu
between future and past directed causal curves at any p
there are causal curves through every point in these sp
times, whose extensions to the past and to the future eve
ally self-intersect, and that it is possible to construct no
pacelikecurvesjoining any two points in that spacetime. In
particular, there are closed timelike curves connectingany
pair of points in the spacetime. Since the metrics are sing
on the symmetry axis, we might expect that the singular
as in the case of some of the Levi-Civita` metrics, can be
replaced by a cylindrical source, satisfying regularity a
other physical requirements. We would therefore have
physically admissible source for an ‘‘exotic’’ spacetim
That such a noncausal behavior results from a phys
source cannot be dismissed in principle, since it is w
known that closed timelike curves appear in spacetimes c
taining cosmic strings in relative motion@2# ~see @14# for
some general results on causality violation in 211!. Unfor-
tunately, as we show in Sec. III, the construction given in@1#
does not give a positive answer to the question of the e
tence of such physical sources for the exotic metric. As
indicate in that section, the ansatz given in@1# can be solved,
once a simple coordinate transformation is introduced, b
diagonal metric, and therefore there is no exotic behav
Basically, since the momentum is constant, one can alw
choose a new coordinate frame in which it is zero.

In Sec. IV we extend the results of@3#, relating properties
of the metric coefficients to those of the source, to the n
diagonal case, the main result being that a source for
‘‘exotic’’ metrics must violate the dominant energy cond
tion ~DEC! under quite general conditions. In Sec. V w
exemplify these results by considering the possibility of ha
ing an ‘‘exotic’’ metric outside one or more concentric c
lindrically symmetric shells with regular axis, and showin
explicitly that this requires that the DEC be violated by t
matter making up the shells.
©2000 The American Physical Society06-1
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We use geometrized units (G5c51), the signature of the
metric is (2111), and ~sometimes! we use abstract in
dexes.

II. CYLINDRICALLY SYMMETRIC, NONROTATING,
STATIONARY VACUUM METRICS

We consider first the vacuum spacetime external to a n
rotating, cylindrically symmetric distribution of mass
energy, in a stationary state of motion along the symme
axis. This may be described, in general, by a metric of
form

ds25dr21guudu21gzzdz212gtzdzdt2gttdt2, ~1!

whereguu ,gzz,gtt ,gtz are functions ofr. The general solu-
tion of the vacuum Einstein equations corresponding to
~1! may be written in the form

guu5C5~r 2r 0!2k1,

gzz5~C1!2ur 2r 0u2k22~C3!2ur 2r 0u2k3, ~2!

gtt52~C2!2ur 2r 0u2k21~C4!2ur 2r 0u2k3, ~3!

gtz5C1C2ur 2r 0ur 2k22C3C4ur 2r 0u2k3, ~4!

where r 0 is a real constant, and the constantski ( i
51, . . . ,3) must satisfy

k11k21k351, ~k1!21~k2!21~k3!251. ~5!

We must also choose the constantsCi , such that

C1C4ÞC2C3 ; ~6!

otherwise the metric would be degenerate. We shall ass
thatu is restricted to 0<u<2p, with u50 andu52p iden-
tified, consistent with the interpretation of cylindrical sym
metry. In this contextr and z would, in principle, be the
remaining ‘‘cylindrical coordinates,’’ but as we show below
this needs closer examination in general.

For any choice ofreal ki , Ci satisfying Eqs.~5! and ~6!,
we may parametrize the constantski by a real parameterD,

k152
2~D21!

~D213!
, k25

2~D11!

~D213!
, k35

~D221!

~D213!
,

and introduce a linear transformation of the coordinates (z,t)
of the form

z→C1z1C2t, t→C3z1C4t, ~7!

which puts the metric~1! in the usual diagonal Levi-Civita`
form,

ds25dr21p1~ar2r 0!24(D21)/(D213)du2

1p2~ar2r 0!4(D11)/(D213)dz2

2p3~ar2r 0!2(D221)/(D213)dt2,
10400
n-

y
e

q.

e

with p1 , p2, and p3 arbitrary real and positive constant
Therefore, in this case the metric given by~2,3,4,4! is just a
‘‘boosted’’ form of the Levi-Civitàmetric.

We notice, however, that the Einstein equations are a
satisfied if we choosek1 real, and (k2 ,k3) as a complex
conjugate pair, such that Eqs.~5! are satisfied. We must als
choose

C35 i ~C1!* , C45 i ~C2!* ,

where an asterisk indicates complex conjugation, so that
resulting metric is real. After some appropriate renaming
constants, the metric can be written in the form~1!, with the
coefficients given by

guu5c1ur 2r 0u2q1, ~8!

gzz5c2
2ur 2r 0u2q2cos@2k ln~ ur 2r 0u!12f1!],

~9!

gtt52c3
2ur 2r 0u2q2cos@2k ln~ ur 2r 0u!12f2#,

~10!

gtz5c2c3ur 2r 0u2q2cos@2k ln~ ur 2r 0u!1f11f2#,
~11!

wherea, k, c1 , c2 , c3 , f1, andf2 are arbitrary real con-
stants, and

q15
1

3
@112s~113k2!1/2#, q25

1

3
@12s~113k2!1/2#,

s561.

The determinant of the metric is

c1c2c3~r 2r 0!2@cos~2f122f2!21#,

and, thus, the metric is nondegenerate if and only if~for r
Þr 0)

c1 ,c2 ,c3Þ0 and f12f2Þnp ~nPZ!. ~12!

It is static only whenk50, corresponding to a Levi-Civita`
spacetime withD561 or 63 if s51 or s21, respectively
~Levi-Cività metrics with opposite values ofD are isomet-
ric!.

This type of metric@satisfying Eq.~12! and with kÞ0#,
which, following @1#, we shall call ‘‘exotic’’ hereafter, is of
Lewis type@4#, and has been usually analyzed in relation
rotating cylinders~i.e., the nonvanishing crossed coefficie
of the metric isgtu) @5,6#. The procedure here used to obta
these solutions is similar to that used to obtain the ‘‘windm
solutions’’ of McIntosh@7#.

A. Some properties of the exotic metrics

To justify the name ‘‘exotic metric’’ we consider her
~see also@1#! several classes of nonspacelike curves, b
geodesics and nongeodesics. We first notice that by ap
priate rescalings and linear transformations of coordina
we may write the metric in the form
6-2
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EXOTIC SPACETIMES, SUPERCONDUCTING STRINGS . . . PHYSICAL REVIEW D 61 104006
ds25dr21r 2q1du21r 2q2@cos~2k lnr !dz22cos~2k lnr !dt2

12 sin~2k lnr !dtdz#, ~13!

and, therefore, the constantsci andf i are irrelevant, as far a
the geometrical properties of the metric are concerned. N
from Eq.~13!, that the sign ofk can be freely chosen; we wil
take advantage of this freedom later in Secs. IV and V.

As already noticed in@1#, for a metric of the form~13!,
the Killing vectors] t and]z change from spacelike to time
like and vice versa as one moves along ther coordinate~for
fixed u). In other words, if, for fixedu, we consider a fixed
coordinate grid, where (r ,t,z) are taken as Cartesian coord
nates, the local light cones appear to ‘‘rotate’’ along ther
axis, while they have fixed directions in a given (t,z)
‘‘plane’’ @i.e., a constant (r ,u) surface#. Nevertheless, the
form ~13! for the metric immediately shows that, since t
light cones are well defined everywhere~except, of course
for r 50), we may, in spite of this ‘‘rotation’’ of the light
cones, impose a definite time orientation on the spacet
by simply defining a future direction at a given point, a
then extending this definition by continuity to all oth
points.

A definite time orientation on the spacetime, howev
does not preclude the possibility of the existence of clo
causal~i.e., nonspacelike! curves. Some peculiar behavio
regarding null curves was already noticed in@1#. We there-
fore start our analysis by considering geodesic curves.
lindrical symmetry implies that there is a subfamily of ge
desics with constantu. Restricting ourselves to this type o
geodesics, we may write their tangent vector in the form

ua5uz~]z!
a1ut~] t!

a1ur~] r !
a.

Since (] t)
a and (]z)

a are Killing vectors andua is geode-
sic, we have

ua~]z!
a5p, ua~] t!

a52E,

whereE andp are constants. From these relations, we fin

uz5 ż5~E21p2!1/2r 22q2 cos~2k ln r 2a!, ~14!

ut5 ṫ5~E21p2!1/2r 22q2 sin~2k ln r 2a!, ~15!

~ur !25 ṙ 252U~r !,
~16!

U~r !5s2~E21p2!r 22q2 cos~2k ln r 22a1p!,

wherea5arctan(E/p), s50 (s51) for null ~timelike! geo-
desics, and an overdot indicates derivation with respec
the affine parameter, e.g.,ż5dz/dt.

For null geodesics, we may rescalet to set (E21p2)1/2

51, and therefore, without loss of generality we may th
write

dr

dt
56r 2q2/2@cos~2k ln r 22a1p!#1/2, ~17!
10400
e,

e,

,
d
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n

where the plus-minus sign corresponds, respectively,
‘‘outgoing’’ and ‘‘ingoing’’ geodesics. Notice that this im-
plies that all null geodesics have ‘‘turning points’’ inr
@points where cos(2k ln r22a1p)50#, and therefore, the cor
responding values ofr are restricted to a finite segment of th
r axis, where cos(2k ln r22a1p)>0. Upon reaching a turn-
ing point the sign ofdr/dt is changed, and the sense of th
motion along ther axis is reversed, but there is no associa
singularity in the metric. Turning points are properties
individual null geodesics; i.e., they change when we consi
different null geodesics going through the same point, a
therefore there are no horizons or any other peculiar g
metrical property associated with the turning points of
given null geodesic.

Since null geodesics going through a certainr eventually
come back to the same value ofr, it is important to compute
the corresponding change int andz. These may be obtaine
by eliminating the affine parametert, and looking essentially
at the corresponding trajectories in spacetime. From E
~17! and ~14!–~16!, we have

dz

dr
56r 2q2/2

cos~2k ln r 2a!

Acos~2k ln r 22a1p!
, ~18!

dt

dr
56r 2q2/2

sin~2k ln r 2a!

Acos~2k ln r 22a1p!
, ~19!

where the plus-minus sign is determined from Eq.~17!. After
an integration by parts of the right hand sides of Eqs.~18!
and ~19!, we obtain the following expressions for th
changes inz andt, corresponding to a null geodesic that go
from an initial point inr 5r 0 to a turning point atr 5r 1, and
comes back tor 5r 0:

Dt52@ t~r 1!2t~r 0!#56@2aI22k21r 0h~r 0!cosa#,

Dz52@z~r 1!2z~r 0!#56@2bI12k21r 0h~r 0!sina#,

with

I5E
r 0

r 1
h~r !dr, h~r !5r 2q2/2 cos1/2~2k ln r 22a1p!,

and

a52sina2m cosa, b52cosa1m sina,

m5
1

2k
~2q212!.

To see if the end point can be in the causal past of
initial point, using the same arguments as those leading
the form~13! for the metric, we may choose, without loss
generality,r 051, and assume that a future directed vector
r 51 has ṫ.0. Then, the end point will be in either th
causal past or future of the starting point ifD l 252Dt2

1Dz2<0. But we have
6-3
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REINALDO J. GLEISER AND MANUEL H. TIGLIO PHYSICAL REVIEW D61 104006
D l 25
4ṙ 0

2

k2
@Imk1h~r 0!#214I 2~3 sin2 a1cos2 a!

28uIu ṫ0Dt,

so that a necessary condition forD l 2<0 is ṫ0Dt.0, and
therefore the end point is causally connected to the star
point only if Dt.0. We conclude that a null geodesics ca
not return to its causal past, and sinceDt50 implies D l 2

.0, null geodesics cannot self-intersect.
We have seen that null geodesics necessarily have tur

points. We may similarly show that timelike geodesics n
essarily have turning points as well. Since these are not
rizons, we may ask whether turning points necessarily app
also for general~i.e., nongeodesic! causal curves. That this i
not so can be illustrated with a simple example. Conside
curve parametrized so that its tangent vector satisfies

ur5s, uz5r B cosb21 cos@ ln~r B sin b!2b#,

ut5r B cosb21 sin@ ln~r B sin b!2b#,

whereb andB are related tok andq2 in Eq. ~13! by

s561, k5B sinbÞ0, q25222B cosb. ~20!

Without loss of generality we may chooseB.0 and sinb
.0. We may easily check that, for either choice ofs, this
represents a null curve, well defined for all values ofr, where
r monotonically increases (s511) or decreases (s521),
without turning points.

We may obtain the trajectory~world line! corresponding
to this curve integratingt andz as functions ofr. The result
is

t~r !5s$r B cosb cos@ ln~r B sin b!2b#1C1%B
21,

z~r !52s$r B cosb sin@ ln~r B sin b!2b#1C2%B
21,

whereC1 andC2 are integrations constants. Again, with su
ficient generality, we may choose these constants such
t5z50 for r 51. This corresponds toC15cosb, C25
2sinb. As indicated, for fixeds these curves have no turnin
points. We may, however, at any pointr 5r 1, match a por-
tion of this curve with, say,s511, with a portion of a
similar curve withs521, the same values ofB andb, and
where we chooseC1 and C2 in such a way thatr, t, z, ut ,
anduz are continuous andur changes sign. Since this is sti
a null curve, for a photon this would correspond to ‘‘boun
ing off a mirror,’’ whose normal points in ther direction.
More geometrically, we may always ‘‘round corners,’’ with
out changing the nonspacelike nature of the curve@8#, so that
the sharp change inur is used only to simplify the computa
tions, but has no special significance.

We may compute now the changes int, Dt5t(r 1)
2t(1), and inz, Dz5z(r 1)2z(1), in the‘‘round trip’’ from
r 51 to r 5r 1 and back tor 51, along the resulting nul
10400
g
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ar

a

at

-

curve. These are simply twice the changes int andz in going
from r 51 to r 5r 1, i.e., Dt52@ t(r 1)2t(1)# and Dz
52@z(r 1)2z(1)#. We define

y5 ln~r B sin b!2b, x5r B cosb.

We then have three possible cases, depending on the
of cos(b):

~i! First, if cosb.0, the functionx(r ) is increasing withr,
and, therefore, the equationz(r )50 has solutions for suffi-
ciently larger. Moreover, for sufficiently larger, these zeros
of z correspond toy.np, sincex is unbounded. Then, agai
for sufficiently larger, and for the same reason, the zeros
z correspond alternatively to positive or negative values ot.
So we may always chooser 1 such thatz(r 1)50 and t(r 1)
,0. But then the return point onr 51 is in the causal past o
the initial point, and we may construct a closed, everywh
future directed, nonspacelike curve, by simply joining t
end point and the initial point with the timelike, future d
rected curve whose trajectory corresponds tor 51, z50.

~ii ! In the case cos(b),0, the functionx(r ) increases asr
decreases. The same type of reasoning indicates that in
case there are pointsr 1 ~with r 1,1), such thatz(r 1)50,
with t(r 1),0, and therefore we may also construct clos
nonspacelike, everywhere future directed null curves.

~iii ! Finally, if cos(b)50, points withz(r 1)50 correspond
also to t(r 1)50, and the return portion of the curve inte
sects the initial portion, resulting directly in a closed curv

Although, for simplicity, we used the example of a nu
curve, since this is not geodesic, we conclude that there
closed, nonspacelike~either null or timelike!, everywhere fu-
ture directed curves through every point of the manifold~see,
e.g.,@8#!. This last result follows by taking into account th
the metric at any point on the manifold can be put in t
form ~13!, in a coordinate patch where the coordinates of
point are (r 51, t50, z50).

A further consequence, which is not difficult to prove,
that any pair of points in the manifold can be joined by
future directed, nonspacelike curve, irrespective of the or
of the points~note that, by a simple extension of the previo
discussion, given any point, we may reach a point arbitra
in its past by an appropriate choice ofr 1).

B. Comment on the metric given by Thatcher and Morgan

For completeness, and to clarify a point related to
regularity of the metrics, let us now compare the metric~13!
with the one given in@1#:

ds25cosF8m

d
lnS r

d D G~2dt21dz2!12 sinF8m

d
lnS r

d D Gdtdz

1dr21~128E!r 2du2. ~21!

Contrary to what is stated in@1#, this is not a vacuum solu
tion ~unlessm50, which gives a flat metric!, because the
Ricci tensor has a~unique! nonvanishing component:

Rrr 532
m2

d2r 2
.

6-4
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The identification of Eq.~21! as a vacuum metric made in@1#
is based on the assumption that if, for a metric of the fo
~1! and a certain tensorTab having the same symmetries a
gab and whose divergence vanishes~i.e., ¹aTab50), the
equations

Rtt5Srr , Rzz5Szz, Rtz5Stz ,
~22!

Ruu5Suu Fwith Sab58pS Tab2
1

2
gabTD G

are satisfied, then we necessarily haveRrr 5Srr . In particu-
lar, this would imply that if Eqs.~22! are satisfied forTab
50, then we necessarily have a vacuum solution. This, h
ever, is incorrect. In fact, following Garfinkle@9#, we may
define the tensor

Qab5Rab2Sab .

Then, Eqs.~22! imply that Qab has nonvanishing compo
nents only inrr , i.e.,

Qab5J¹ar¹br ,

with J a function of r. Using now the contracted Bianch
identities, ¹aRab5 1

2 ¹bR, together with the assumptio
¹aTab50, we find

¹aQab5
1

2
¹bQ ~Q[Qa

a!.

For a metric of the form~1!, this reduces to (Jg)850,
where (2g) is the determinant of the metric, and, therefo
we have

J5k/g, ~23!

with k a constant. Then, if the metric satisfies regularity co
ditions on the symmetry axis,

gtt5211O~r 2!, gzz511O~r 2!,
~24!

guu5r 21O~r 4!, gtz5O~r 2!,

taking the limitr→0 in Eq.~23!, we obtaink50 ~otherwise
we would haveJ→`, corresponding to a singular metric
the axis!, i.e.,J50 andQab50, butJ need not vanish if the
metric is not regular forr 50.

III. SUPERCONDUCTING STRINGS
WITH CONSTANT MOMENTUM

As indicated above, it was suggested in@1# that exotic
metrics of the type described in the previous section may
associated with the spacetime external to a supercondu
string with constant momentum. The construction given
@1# proceeds as follows. The metric is assumed to have
form ~1!, the matter fields are written asF5Reic, and s
5Seif, and their Lagrangian is
10400
-

,

-

e
ng
n
e

Lmatter52
1

2
¹aR¹aR2

1

2
¹aS¹aS2

1

2
R2~¹ac1eAa!

3~¹ac1eAa!2
1

2
S2¹af¹af2l~R22h2!2

2
1

16p
FabF

ab2 f R2S22
1

4
l2S41

1

2
m2S2. ~25!

Then, the following ansatz for these fields is proposed in@1#:

R5R~r !, c5u, Aa5
1

e
@P~r !21#¹au,

S5S~r !, f5kz2vt.

The form assumed forf is consistent with the idea of en
dowing the string with a nonvanishing momentum. Wi
these assumptions the equations resulting from the Lagr
ian ~25! are

¹a¹aR2R@4l~R22h2!1~¹ac1eAa!

3~¹ac1eAa!12 f S2#50, ~26!

¹a¹aS2S@¹af¹af12 f R21l2S22m2#50, ~27!

¹a@R2~¹ac1eAa!#50, ~28!

¹a@S2¹af#50, ~29!

¹aFab24peR2~¹bc1eAb!50. ~30!

Now suppose, as in@1#, that¹af is timelike at the axis, i.e.,
v22k2.0. Performing the change of variables

z→~v22k2!21/2~vz2kt!, t→~v22k2!21/2~kz2vt !,

the conditions at the axis remain unaltered butf→(v2

2k2)1/2t. Thus, without loss of generality we may~and we
do! assumek50.

Equations~28! and~29! are automatically satisfied and th
other three are

~R8g1/2!8g21/22RF1

2
l~R22h2!1

P2

guu
12 f S2G50,

~31!

~S8g1/2!8g21/22SF2
v2guugzz

g
12 f R21l2S22m2G50,

~32!

S P8g1/2

guu
D 8

guug21/224peR2P50.

~33!

The Einstein equation,Rab58p(Tab2 1
2 Tgab), can be writ-

ten as~for briefness, we do not write down the explicit ex
pressions for the Ricci tensor!
6-5
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Rtt52gttF 1

e2guu

P822lp~R22h2!2

22pS2S 4 f R21l2S222m21
4v2

gtt
D G , ~34!

Rzz5gzzF2
1

e2guu

P821lp~R22h2!2

12pS2~4 f R21l2S222m2!G , ~35!

Rrr 58p~R821S82!1lp~R22h2!2

12pS2~4 f R21l2S222m2!1
1

e2guu

P82, ~36!

Ruu5guuF 1

guu
S 1

e2
P8218pR2P2D 1lp~R22h2!2

12pS2~4 f R21l2S222m2!G , ~37!

Rtz5gtzF2
1

e2guu

P821lp~R22h2!2

12pS2~4 f R21l2S222m2!G . ~38!

Suppose that we have a solution of Eqs.~31!, ~32!, ~33!,
~34!, ~35!, ~36!, ~37!, ~38!, that satisfies the regularity cond
tions ~24!. We will now show thatgtz50. For that purpose
we first define

p5E
0

r F2
h8gzzgtt

2h2
1

gtz

gtz8
S 2t tz1

gtt8gzz8

h D G and

q5gtz8 guu
1/2expS 2gzzgtt

2h D ,

with h and t tz given by

h5gttgzz2gtz
2 ,0,

t tz52
1

e2guu

P821lp~R22h2!2

12pS2~4 f R21l2S222m2!.

The convergence for smallr of the integral that definesp is
guaranteed by the regularity of the metric~and its nondegen
eracy! and of the matter fields. With these definitions, E
~38! implies that, forr .0,

qep5C, ~39!
10400
.

with C a constant. Taking the limitr→0 on the left-hand
side~LHS! of Eq. ~39! and using the conditions~24!, we find
that C50, i.e.,gtz50;r .

Thus, we have shown that the ansatz for the fields gi
in @1#, plus regularity conditions on the axisr 50, implies
that the metric can be made everywhere diagonal, and
excludes the possibility of ‘‘exotic’’ behavior. Therefore, w
must conclude that the ansatz of@1# does not lead to a sourc
for the ‘‘exotic’’ metrics. The exotic behavior observed
@1# would then have to be ascribed to some peculiarity
their numerical procedures, possibly leading to a failure
strictly satisfying the regularity conditions forr 50.

IV. SOURCES FOR THE EXOTIC METRIC

In this section we consider some general properties
cylindrically symmetric and stationaryregular sources that
satisfy the DEC and which are confined to a cylinder
arbitrary radiusR1. We assume that the spacetime exter
to the source is vacuum, and obtain restrictions on the p
sible form of the metrics representing that part of the spa
time. We shall assume that in the source region, consis
with cylindrical symmetry, there exist two Killing vecto
fields, one of them timelike and the other spacelike, wh
are not necessarily orthogonal to each other. We also req
that these Killing fields remain timelike and spacelike, r
spectively, i.e., that their norm does not vanish. Then,
metric can be written as

ds252eAdt21eBdz212D~r !e(A1B)/2dtdz1dr21eCdu2,
~40!

with A,B,C,D functions ofr. We shall see that this kind o
sources cannot give rise to exotic spacetimes. The first
of the proof consists in recalling certain inequalities that
DEC imposes on the eigenvalues ofTa

b . We then rewrite
one of these inequalities as a differential one that can
integrated and seen not to be satisfied by the exotic met
Without loss of generality, we assume that the latter havk
,0.

A. DEC, eigenvalues and eigenvectors

For metrics of the type~1!, the nontrivial equations for the
eigenvalues and eigenvectors ofTa

b correspond to thet-z
sector. For the analysis of this subsection, it is convenien
choose an orthonormal basis (t̂ a,ẑa) at the point where the
analysis is carried out, i.e.,gtz50, gtt521, and gzz51.
Then, the eigenvalues are given by

l (e)5
1

2
@~Tzz2Ttt!1eg1/2#, g5~Tzz1Ttt!

224Ttz
2 ,

e561.

The DEC states that, for any timelike and future direct
m̂a, na52Tabm̂

a is future directed and causal. It is easy
see, writingm̂a5 t̂ a coshj1ẑa sinhj, that, if the eigenvalues
are complex (g,0), na is always spacelike ifTzz2Ttt50,
and it is spacelike for somej if Tzz2TttÞ0.
6-6
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On the other hand,na is future directed;j if and only if

nat̂ a5~Tzz1Ttt!sinh2 j1Ttt>0,

a condition that is satisfied;j if and only if Ttt>0 and
Tzz1Ttt>0.

Suppose that the DEC is satisfied, theng>0 and there are
two real eigenvalues. The norms of their correspond
eigenvectors,e(e)

a , are then given by

e(e)
a e(e)a5

e

2
g1/2~Tzz1Ttt1g1/2!.

If g50, there is a unique~null! eigenvector,t̂ a1 ẑa, with
multiplicity 2, and the energy momentum tensor is of type
in the classification of@10#. If g.0, one of the eigenvector
is timelike and the other one spacelike. In this case the st
tensor is of type I in the classification of@10#.

B. Proof

In a nonorthogonal system of coordinates, such as tha
Eq. ~40!, the eigenvalues ofTa

b are

l5~2h!21$Tttgzz1Tzzgtt22Ttzgtz6@~Tttgzz2Tzzgtt!
2

24~Tzzgtz2Ttzgzz!~Ttzgtt2Tttgtz!#
1/2%.

The reality of the eigenvalues is thus equivalent to

a[~Tttgzz2Tzzgtt!
224~Tzzgtz2Ttzgzz!~Ttzgtt2Tttgtz!

>0. ~41!

For the metric~1!, we have

a5
1

64p2
~a1

22a2
2!,

with

a15
1

2
~11D2!e(A1B2C)/2@~A2B!8e(A1B1C)/2

3~11D2!21/2#8,

a25e(A1B2C)/2~11D2!1/2@D8e(A1B1C)/2

3~11D2!21/2#82
D

4
e(A1B)~A2B!82.

It can also be seen that

a158p~11D2!1/2e(A1B)~Tabt̂
at̂ b1Tabẑ

aẑb!, ~42!

so the weak energy condition~WEC!⇒a1>0. Although it is
not related to our proof, let us show something else. Fr
Eq. ~42! we obtain
10400
g

I

ss

of

~A2B!8e(A1B1C)/2~11D2!21/2

516pE
0

r

e(A1B1C)/2~11D2!21/2~Tabt̂
at̂ b1Tabẑ

aẑb!,

and the WEC⇒(A2B)8>0. Recalling that (A2B) r 5050,
we haveugttu>gzz;r .

Returning to our proof, the point is that the non-negativ
of a1 implies that Eq.~41! can be written asa12ua2u>0.
But a12ua2u>0⇒a12a2>0. And we have

a12a25
1

2
~11D2!e(A1B2C)/22F~qeF!8,

with

q5A82B822D8~11D2!21/2,

F5E
0

r D@~A2B!8~11D2!1/212D8#

2~11D2!e(A1B)/2

@convergence of the integral that definesF is guaranteed by
Eqs.~24!#. Thus the DEC is equivalent to

~qeF!8>0. ~43!

Integrating Eq.~43! and using once again Eqs.~24!, we have
q>0;r . In particular, q>0 at the radius of matching,r
5R1. By regularity, q, which is made up of the metric com
ponents and its first derivatives, is continuous, and, theref
at r 5R1 it can be evaluated using the exotic metrics, findi

qur 5R1
5

2k@~11sina1!cosa21~12sina2!cosa1#

~R12r 1!cosa1cosa2
>0,

~44!

with

a1[2k ln~R12r 1!12f1 ,

a2[2k ln~R12r 1!12f22p.

Let us now analyze the RHS of Eq.~44!. In order for the
exterior ~exotic! metric to be regular,R12r 1.0. We also
have that cosa1.0 and cosa2.0, since the metric coeffi-
cients atr 5R1 are

gzz5c2
2~R12r 1!2q2 cosa1.0,

gtt52c3
2~R12r 1!2q2 cosa2,0.

Sincek,0, the inequality~44! is equivalent to

@~11sina1!cosa21~12sina2!cosa1#<0,

but this condition cannot be satisfied if cosa1.0 and
cosa2.0.
6-7
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V. SHELLS

In this section we construct and analyze the spaceti
corresponding to one or more concentric shells matche
an exotic exterior, and explicitly show that the DEC is vi
lated. As we shall see, the interior metric can be diagon
ized, so the corresponding hypothesis of the previous sec
trivially holds. However, the distribution of matter is no
regular and, in particular, the functionq is not continuous at
r 5R1, as we have assumed in the previous section. Ne
theless, one can take into account the fact that we are de
with shells, make minor changes on the proof above giv
and see that the final result still holds.

For the discussions of energy conditions it is conveni
to introduce a normalized base:

r̂ a5~] r !
a, ûa5guu

21/2~]u!a, ẑa5gzz
21/2~]z!

a,

t̂ a5ugttu21/2~] t!
a.

As in the previous section, we choosek,0.

A. One shell

In this subsection we analyze the case in which ther
just one shell of radius, say,R0. The interior metric must be
flat; otherwise it would be singular. It can be seen that, if
exterior metric is exotic, the shell must violate the DEC. W
leave the proof of this statement for the following subs
tion. Thus, the exterior geometry of a physically reasona
shell is described by a Levi-Civita` metric. The regularity at
the axis plus the matching conditions at the shell implies t
both the exterior and interior metrics can besimultaneously
diagonalized; we use this fact to write

ds25dr21r 2du21dz22dt2, 0<r<R0 , ~45!

ds25dr21R0
2S r 2r 0

R02r 0
D 24(D21)/(D213)

du2

1S r 2r 0

R02r 0
D 4(D11)/(D213)

dz2

2S r 2r 0

R02r 0
D 2(D221)/(D213)

dt2, R0<r . ~46!

In the above expressions~and for the rest of the paper! we
assume, for simplicity,R0.r 0; the analysis forR0,r 0 is
similar, and one can see that the results that we are intere
on also hold in that case. We now write down the comp
nents ofTab that are obtained when the metric defined
Eqs. ~45!,~46! is used to evaluate the LHS of the Einste
equation,Gab58pTab . We shall need them in the next su
section. The results are

Tabû
aûb5

~D11!2

8p~R02r 0!~D213!
d~r 2R0!, ~47!
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Tabẑ
aẑb52

2R0~D11!2r 0~D213!

8pR0~R02r 0!~D213!
d~r 2R0!,

~48!

Tabt̂
at̂ b5

R0~D221!2r 0~D213!

8pR0~R02r 0!~D213!
d~r 2R0!,

~49!

and the trace of this stress-energy tensor is

T5
r 0d~r 2R0!

4pR0~R02r 0!
,

so r 050⇒T50. That is, althoughr 0 locally corresponds to
a simple shift in ther coordinate, it provides nontrivial in-
formation about the invariantT. Thus, one cannot choos
r 050 without loss of generality. Something similar led
the belief that a rotating cylinder can only exist in gene
relativity for ‘‘incoherent ~traceless! matter’’ @5# ~more on
rotating cylindrical shells can be found in@6#!.

The SEC,Tabm̂
am̂b1 1

2 T>0 for all unit timelikem̂a, im-
plies in this case~choosingm̂a5 t̂ a),

Tabt̂
at̂ b1

1

2
T5

~D221!

8p~D213!~R02r 0!
d~r 2R0!>0,

and it is satisfied if and only ifD2.1 ~the inequality must be
reversed ifR0,r 0). It is easy to see that this is a gener
property of Levi-Civitàmetrics; e.g., it does not depend o
the fact that we are dealing with shells@3# ~see the last sec
tion for further comments on the SEC!.

Similarly, as a necessary condition for the WEC, we ha

Tabt̂
at̂ b1Tabẑ

aẑb5
~D11!~D23!

8p~D213!~R02r 0!
d~r 2R0!>0.

~50!

In Sec. IV we saw that the WEC⇒ugttu>gzz under general
conditions. Let us explicitly check this property: writing

gtt1gzz5S r 2r 0

R02r 0
D 2(D221)/(D213)

3F12S r 2r 0

R02r 0
D 22(D11)(D23)/(D213)G ,

we notice that Eq.~50! ⇒gtt1gzz>0.

B. Concentric shells

We now consider a model consisting of two concent
shells. As discussed in the previous subsection, assum
that the interior of the innermost shell is empty and regu
and that it is made out of matter and~or! fields satisfying the
DEC, the metric between the innermost and outermost sh
must be taken to be of the Levi-Civita` form. Our problem
then is to analyze the matching of the Levi-Civita` metric~46!
6-8
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with a metric of the form given by Eqs.~8!, ~9!, ~10!, ~11!,
through a singular shell atr 5R1.R0. We obtain

guu5R 0
2S R12r 0

R02r 0
D 24(D21)/(D213)S r 2r 1

R12r 1
D 2q1

,

gzz5
1

cosa S R12r 0

R02r 0
D 4(D11)/(D213)S r 2r 1

R12r 1
D 2q2

3cos@2k ln~r 2r 1!12f1#,

gtt52
1

cosa S R12r 0

R02r 0
D 2(D221)/(D213)S r 2r 1

R12r 1
D 2q2

3cos@2k ln~r 2r 1!24k ln~R12r 1!22f1#,

gtz5
1

cosa S R12r 0

R02r 0
D (D11)2/(D213)S r 2r 1

R12r 1
D 2q2

3sin@2k ln~r 2r 1!22k ln~R12r 1!#,

with a52k ln(R12r 1)12f1 such that cosa.0.
The components of the energy-momentum tensor for

innermost shell are given by Eqs.~47!, ~48!, ~49!, and for the
outermost one by

Tabû
aûb5

1

8p F2~12sA113k2!

3~R12r 1!
2

~D11!2

~D213!~R12r 0!
G

3d~r 2R1!,

Tabẑ
aẑb5

1

8p F 1

3~R12r 1!
~21sA113k213k tana!

2
~D21!2

~D213!~R12r 0!
Gd~r 2R1!,

Tabt̂
at̂ b5

1

8p F 1

3~R12r 1!
~222sA13k213k tana!

1
4

~D213!~R12r 0!
Gd~r 2R1!,

Tabt̂
aẑb5

2k

8p~R12r 1!cosa
d~r 2R1!,

whereas its trace is

T5
~r 12r 0!

4p~R12r 1!~R12r 0!
d~r 2R1!,

and, similar to what happens for a single shell,r 15r 0⇒T
50.

As a necessary condition for the WEC on the outerm
shell,
10400
e

t

Tabt̂
at̂ b1Tabẑ

aẑb5
1

8p F 2k tana

~R12r 1!
2

~D11!~D23!

~D213!~R12r 0!
G

3d~r 2R1!

>0. ~51!

Combining Eq.~51! with the analogous equation for th
innermost shell, Eq.~50!, we obtain

I15E
0

R 1
g1/2~Tabt̂

at̂ b1Tabẑ
aẑb!

5
R0~R12r 0!k tana

4p~R02r 0!~R12r 0!

>0. ~52!

The other integral we need is

I25E
0

R 1
g1/2Tabt̂

aẑb5
2kR0~R12r 0!

8p~R02r 0!~R12r 0!cosa
,

~53!

which is also positive, not because of any energy conditi
but rather due to the range of the constants that appear o
Finally, the DEC implies thatI1>2I2, an inequality that
cannot be satisfied ifk,0 and both Eqs.~52! and ~53! are
positive. Therefore, as stated, the DEC is necessarily viola
if the matching to the exotic metric is nontrivial.

VI. FINAL COMMENTS

The possibility of the existence of an exotic metric ass
ciated with a physical source is of course very intriguing.
a general sense, it would amount to some form of ‘‘fram
dragging’’ that results from the presence of a moment
flux in the source, such that the stress-energy-momen
tensor cannot be diagonalized in general, in some way re
niscent of the frame dragging effect for a source endow
with rotation. Unfortunately, in all the examples analyzed
this paper, we have not been able to construct such a so
if we also impose the dominant energy condition. We ha
also constructed a general proof of the nonexistence
sources satisfying the usual physical requirements, but o
under some restrictions. In particular, the main assump
of the proof given in Sec. IV is that there is a Killing vecto
field that iseverywherespatial in the source region, and a
other one that iseverywheretimelike, in the same region. I
applies, in particular, to sources that have small relat
~nontrivial! flux of momentum, but it is not the general cas
For example, the exotic metrics do not satisfy this condit
~though, of course, they cannot be used as sources bec
they are not regular at the axis!. It would be interesting to
have some result concerning sources that do not satisfy
hypothesis, either showing that they can generate exotic m
rics or extending the present proof to those cases.

The other important assumption in Sec. IV is that t
matter satisfies the DEC. This is usually considered to b
physically reasonable assumption, satisfied by nontachy
6-9
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matter, in particular by topological defects. We notice, ho
ever, that some of the latter violate another energy condit
the so-called strong energy condition. There are differ
ways of realizing that sources for a given spacetime m
violate it. For example@following the notation of Eq.~40!
with D50#, if one looks at the geodesic equation, one n
tices thatA8,0 corresponds to a ‘‘repulsive’’ gravitationa
field, a situation in which one would suspect that the SEC
being violated. This is indeed the case, the component
the Ricci tensor are

Rabt̂
at̂ b5

1

2
@A8e(A1B1C)/2#8e2(A1B1C)/2,

Rabẑ
aẑb52

1

2
@B8e(A1B1C)/2#8e2(A1B1C)/2,

Ruuûaûb52
1

2
@C8e(A1B1C)/2#8e2(A1B1C)/2,

Rabr̂
ar̂ b52

1

2
~A1B1C!92

1

4
~A821B821C82!,

and, thus, aregular solution of Einstein equations satisfies

A8516pe2(A1B1C)/2E
0

r

e(A1B1C)/2SEC, ~54!

whereSEC5Tabt̂
at̂ b1T/2. From Eq.~54! we can see that if

A8,0, thenSEC,0 ~at a set of finite measure!, and the SEC
is violated.
,

10400
-
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t
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In general, topological defects that violate the SEC hav
global symmetry. For example, following the notation
Sec. III, for aU(1) global string we have

SEC52
1

8
l~R22h2!2,

which is manifestly negative, so the SEC iseverywherevio-
lated. Similarly, global monopoles@11# and global vacuum-
less defects@12# have repulsive gravitational fields that su
gest that the SEC is violated. In the case of gauge defec
is usually supposed that they satisfy the SEC. But in s
cases, we face the difficulty thatSEC does not have a definite
sign, and, therefore, we do not know whether at a given po
it is positive or not without knowledge of the solution of th
field equations. Nevertheless, there might be an interes
exception to the general belief that gauge defects satisfy
SEC, an exception that seems not to have been noticed u
present. Amsterdamski and Laguna Castillo have num
cally solved the equations describing a gravitating superc
ducting string@13# and, interestingly, if one observes Fig.
of that paper, one notes thatgtt clearly has a local minimum
According to Eq. ~54!, this means that superconductin
strings violate the SEC.
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