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Three-dimensional gravity with a conformal scalar field and asymptotic Virasoro algebra
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Strominger has derived the Bekenstein-Hawking entropy of the BTZ black hole using asymptotic Virasoro
algebra. We apply Strominger’s method to a black hole solution found by Martı´nez and Zanelli. This is a
solution of three-dimensional gravity with a conformal scalar field. The solution is not anti–de Sitter (AdS3),
but it is asymptotically AdS3; therefore, it has the asymptotic Virasoro algebra. We compute the central charge
for the theory and compare Cardy’s formula with the Bekenstein-Hawking entropy. It turns out that the
functional form does agree, but the overall numerical coefficient does not. This is because this approach gives
the ‘‘maximum possible entropy’’ for the numerical coefficient.

PACS number~s!: 04.70.Dy, 04.60.Kz, 11.25.Hf
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I. INTRODUCTION

Using D-brane technology@1#, one now believes that th
Bekenstein-Hawking entropy of a black hole is a true sta
tical entropy. There remain many issues, however.

For example, the D-brane approach depends on the de
of D-brane dynamics and is complicated. However, bla
hole thermodynamics is a universal feature of metric theo
of gravity @2#. Moreover, the Bekenstein-Hawking entrop
was originally derived using quantum field theory on curv
spacetime. Therefore, any microscopic theory should re
duce the Bekenstein-Hawking entropy if its low-energy a
tion is written in terms of the metric. A derivation of th
black hole entropy is just a consistency check of a mic
scopic theory.

Thus, the details of a microscopic theory should not
relevant in order to understand the entropy. One would
to know the necessary and sufficient ingredients to und
stand the entropy. Strominger’s work is an important step
this respect@3#.

Three-dimensional anti–de Sitter space (AdS3) has the
asymptotic symmetry group which is generated by two c
ies of Virasoro algebra@4#. The central charge of the algeb
is given by

c5
3l

2G
, ~1!

whereG is the three-dimensional Newton’s constant andL
521/l 2 is the cosmological constant. Then, if one consid
quantum gravity on AdS3, the physical states at infinity mus
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form a representation of this algebra. The asymptotic den
of states of a conformal field theory~CFT! is given by
Cardy’s formula

Sasymp52pAcD

6
12pAcD̄

6
, ~2!

whereD and D̄ are the eigenvalues ofL0 and L̄0. Applying
this formula to the Ban˜ados-Teitelboim-Zanelli~BTZ! black
hole @5#, Strominger has obtained the Bekenstein-Hawk
entropy for the black hole with a precise numerical coe
cient. For the BTZ black hole,D and D̄ are given by the
mass and angular momentum as follows:

D5
1

2
~ lM 1J!, ~3!

D̄5
1

2
~ lM 2J!. ~4!

The derivation is very powerful and does not depend
the details of the microscopic theory. However, there
many problems as well@6#. One of the most important prob
lems is the relevance of the asymptotic geometry and wh
the degrees of freedom actually live.

Strominger’s argument depends on the asymptotic s
metries at spatial infinity. On the contrary, the Bekenste
Hawking entropy depends only on the area of a black h
horizon. One usually regards this as an indication that
degrees of freedom relevant for the entropy live on the h
zon. If so, what is really important is the near-horizon geo
etry and not the asymptotic geometry. In fact, Strominge
argument has been applied to various higher-dimensio
black holes whose near-horizon geometries are the B
black hole and has reproduced the correct entropy@7#. There
are several possibilities why it works.
©2000 The American Physical Society05-1
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~1! In light of AdS/CFT correspondence@8–10#, there are
two possibilities.

~a! The branes are indeed located there. This could
possible since asymptotic infinity is not really infinity; on
only looks at the near-horizon geometry.

~b! Martinec points out another possibility@11#; the en-
tropy comes from brane dynamics at the horizon, but
conformal anomaly of the branes is transported at spa
infinity by an ‘‘anomaly inflow mechanism.’’

~2! From the viewpoint of pure gravity, this may be b
cause of the trivial nature of three-dimensional gravity wh
has no bulk degrees of freedom. For instance, thr
dimensional gravity can be written as a boundary Liouv
theory @12#.

Of course, the Liouville theory has too few degrees
freedom to account for the entropy; its effective cent
charge isceff51. But we regard this as an indication that t
Liouville theory is just the master field, not the microscop
description@6,11,13#.

Even though three-dimensional pure gravity has no b
degrees of freedom, the entropy could be nonzero. O
should distinguish the low-energy degrees of freedom
cussed here and the microscopic degrees of freedom w
constitute the Bekenstein-Hawking entropy. The Bekenst
Hawking entropy predicts that any sensible quantum gra
must have the degrees of freedom which are necessa
account for the entropy. How such degrees of freedom
actually realized may differ for each quantum theory. F
example, it may come from the massive stringy degrees
freedom@14#. Or it may come from the twisted sectors
pure gravity@15#. It would be interesting to find how suc
degrees of freedom actually explain the central charge~1!,
but as far as Strominger’s approach concerns, it is not re
necessary.

In this paper, we consider three-dimensional gravity w
a conformal scalar field. We apply Strominger’s argumen
a black hole solution of the theory, the Martı´nez and Zanelli
~MZ! solution@16#. The solution is not AdS3 but it is asymp-
totically AdS3 ~see Sec. III A for the definition of ‘‘asymp
totically AdS3’’ !; therefore, it has the asymptotic Viraso
algebra. If Strominger’s method works due to the triviality
three-dimensional gravity, it will not work for such a theor
Thus, our approach is somewhat different from Strominge
one.

In Sec. II, we review the MZ solution and discuss t
properties of the solution. In Sec. III, we discuss the Ham
tonian formalism and calculate the central charge in the m
ner of Brown-Henneaux. In Sec. IV, using these results,
compare Cardy’s formula with the Bekenstein-Hawking e
tropy. We found that the functional form agrees with t
boundary CFT prediction. The overall numerical coefficie
does not agree however; this is because this approach g
the ‘‘maximum possible entropy’’ for the numerical coeffi
cient @17#. In this sense, the discrepancy in the numeri
coefficient may indicate that this method does not work p
fectly when there are bulk low-energy degrees of freed
and may support possibility~2!. In Appendix A, we summa-
rize a number of different expansions considered in this
per. In Appendix B, we discuss AdS/CFT correspondence
10400
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obtain the central charge. This is the first attempt to stu
Strominger’s method applied to asymptotically AdS3 black
holes other than the BTZ black hole.

II. THE MARTI ´NEZ-ZANELLI BLACK HOLE

If Ricci scalar is constant, a metric satisfies Brow
Henneaux’s boundary conditions@4#. Solving the constant
Ricci scalar for a three-dimensional static metric, one c
easily see that the metric satisfies the boundary conditio
Now, since the field equation can be written as

Rmn2
1

2
gmnR2

1

l 2
gmn58pGTmn , ~5!

the Ricci scalar is in fact constant if the matter stress ten
Tmn is traceless:

R52
6

l 2
. ~6!

This is a reason why we consider the conformal scalar;
conformal scalar has a traceless stress tensor.

We consider the action given by

S5E
M

d3xA2gH R12l 22

16pG
2

1

2
~¹f!22

j

2
Rf2J 1B8,

~7!

wherej5d22/4(d21)5 1
8 . The surface termB8 should be

included so as to eliminate the second derivatives of the m
ric. The field equations are given by Eq.~5! and the matter
field equation:

¹2f2jRf50. ~8!

The matter stress tensorTmn is given by

Tmn5¹mf¹nf2
1

2
gmn~¹f!2

1jH gmn¹22¹m¹n1Rmn2
1

2
gmnRJ f2. ~9!

One can easily check that the matter stress tensor~9! is trace-
less.

The MZ solution is

ds252
1

l 2 S r 1
r 1

2 D 2S 12
r 1

r Ddt2

1
l 2dr2

S r 1
r 1

2 D 2S 12
r 1

r D 1r 2dw2, ~10!

f5A r 1

pG~2r 1r 1!
, ~11!

wherer 5r 1 is the horizon which is related to the mass b
5-2
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M5
3

32G S r 1

l D 2

. ~12!

We make a couple of comments on the solution. First,
metric ~10! approaches AdS3 asymptotically. However, the
solution is not AdS3 in general. To see this, note that AdS3 is
conformally flat. The standard Weyl tensor vanishes ide
cally in three dimensions, so it is not suitable for our pu
pose. But there is a conformally invariant tensor which pla
a role analogous to that of the Weyl tensor@18#

Clmn5¹nRlm2¹mRln2
1

4
~glm]n2gln]m!R. ~13!

A three-geometry is conformally flat if and only ifClmn

50. For the metric~10!, the tensorClmn vanishes only as-
ymptotically.

Second, since we have a constant Ricci scalar, the con
mal scalarf hasm2523/4l 2 from Eq. ~8!; the scalar is a
tachyon. This is not a problem. The stability on AdSd only
requires thatm2>2(d21)2/4l 2 @19#. Conformal scalars in
any dimensions satisfy the bound sincem252d(d22)/4l 2.
However, the MZ black hole is not stable under linear p
turbations of the metric@20#. This could cause a problem
one wants to discuss its thermodynamics. This is not re
our purpose however; for our purpose, it is sufficient if t
entropy makes sense.

Third, the solution has a non-trivial scalar field; moreov
the scalar field is regular everywhere. On the other hand,
no-hair theorems require that scalar fields which are reg
be vanished@21#. This is partly due to the fact that the spac
time in question is not asymptotically flat.

Bekenstein’s proof is for four-dimensional spacetim
without a cosmological constant. However, the setup, its
can be used for any dimensions and for the cases wi
cosmological constant. His proof uses the fact that the v
ume integral of a positive definite function which is ma
from scalar fields is equal to surface integrals at the hori
and at asymptotic infinity. The surface integral at infin
vanishes for asymptotically flat solutions. The surface in
gral at the horizon vanishes for the scalar fields bounded
the horizon. Therefore, the volume integral has to vanish
the only way is for the scalar fields to vanish identical
Thus, any nontrivial scalar field has to diverge at the horiz
However, the surface integral at asymptotic infinity does
vanish for the MZ solution; therefore, the scalar fields do
vanish in general.

Now, the entropy of the black hole is given by

SBH5
pr 1

3G
~14!

or

SBH5
4p

3
lA2M

3G
~15!
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in terms of the mass. The entropy does not satisfy the a
law SBH5A/(4G). This is because the action~7! is not in the
Einstein-Hilbert action form. Rather, the action~7! is written
as

S5
1

16pGE
M

d3xA2g~12pGf2!R1•••. ~16!

One can understand that the discrepancy arises because
ton’s constant at the horizon is scaled by the factor
2pGf2). By a conformal transformation to the Einste
metric,

gmn
E 5~12pGf2!2gmn , ~17!

one can check the area law is satisfied in the Einstein me
The mass and the Hawking temperature of a black h

are physical quantities. These quantities do not change u
a conformal transformation@22#; the conformal transforma
tion is just a change of variables. So, the black hole entr
is a physical quantity as well by the first law of black ho
thermodynamics. However, the horizon area does change
der the transformation. Therefore, the area law is not sa
fied in all frames; it is satisfied only in the Einstein metri
The area law in a general frame is given by Wald’s formu
@2#

SBH522pE
s

dL
dRmnrs

nmnnrs , ~18!

whereL is a Lagrangian,nmn is the binormal to the horizon
s with the normalizationn2522, and the functional deriva
tive is taken by formally regarding the Riemann tensor a
field which is independent of the metric.1 Applying the for-
mula to the action~7!, we get

SBH5
~12pGf1

2 !A

4G
, ~19!

wheref1 is the value of the conformal scalar at the horizo
This expression agrees with Eq.~14!.

III. HAMILTONIAN FORMULATION

In this section, we summarize the asymptotic symme
and the Hamiltonian formulation@23# of three-dimensional
Einstein gravity with a conformal scalar field. We then com
pute the central charge of the theory.

A. Asymptotically anti –de Sitter space

We are interested in any black hole solutions which
AdS3 asymptotically, so we first define ‘‘asymptoticall
AdS3’’: ~i! They should contain the MZ black hole solutio
~ii ! they should be invariant under the AdS3 groupO(2,2) at
spatial infinity; ~iii ! they should make the surface integra

1Strictly speaking,SBH defined by Wald’s formula has not bee
proven to satisfy the second law of black hole thermodynamics@2#.
5-3
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MAKOTO NATSUUME, TAKASHI OKAMURA, AND MASAMICHI SATO PHYSICAL REVIEW D 61 104005
associated with the generators ofO(2,2) finite. These are the
same conditions as imposed by Henneaux and Teitelboim
asymptotically AdS4 @24#.

We henceforth use the zero-mass black hole as the re
ence spacetime. Although the reference spacetime is
source of a number of issues~see Sec. IV B!, we adopt it for
the time being. In order to explicitly represent the asympto
cally AdS3 conditions, consider the coordinate system
which the zero-mass black hole reads

ds25g° mndxmdxn52
r 2

l 2 dt21
l 2

r 2 dr21r 2dw2. ~20!

Then, the components of the AdS3 Killing vector h behave
as

(3)h t5O~1!, (3)h r5O~r !, (3)hw5O~1!,
~21!

] r
(3)h t5O~r 23!, ] r

(3)h r5O~1!, ] r
(3)hw5O~r 23!,

where (3)ha (a5t,r ,w) are the components of the vectorh
in the spacetime coordinateh5 (3)ha ]a . We will also use
hm (m5',r ,w) for the components of the same vectorh,
which is decomposed intoh5h'n1h i] i ( i 5r ,w) wheren
is a unit normal vector to the time slice. The componentsh'

and h i describe the normal and tangential components o
hypersurface deformation. Using the lapseN' and the shifts
Ni , they are related to the spacetime components by

h'5N' (3)h t, ~22!

h i5 (3)h i1
Ni

N' h'. ~23!

From the conditions~i! and~ii !, we are led to the bound

ary conditions for the metric perturbationqmn5gmn2g° mn ,

qab5O~1!, qra5O~r 23!, qrr 5O~r 24!, ~24!

wherea,b5t,w and

f5O~r 21/2!. ~25!

The asymptotic behavior off is motivated by the MZ solu-
tion and is kept by the coordinate transformation of the Ad3
group.

By using Eq.~24!, the asymptotic behavior of the AdS3
Killing vector ~21! is rewritten in terms ofhm by

h'5O~r !, h r5O~r !, hw5O~1!,
~26!

] rh
'5O~1!, ] rh

r5O~1!, ] rh
w5O~r 23!.

As Brown and Henneaux showed for pure gravity@4#, the
asymptotic symmetry which preserves the asymptotic co
tions ~24! and ~25! is actually extended into the pseud
conformal group in two dimensions:
10400
or

r-
he

i-

a

i-

(3)h t5 l FT1~x1!1T2~x2!1
l 2

2r 2 ~]1
2 T11]2

2 T2!G
1O~r 24!,

(3)h r52r ~]1T11]2T2!1O~r 21!, ~27!

(3)hw5T12T22
l 2

2r 2 ~]1
2 T12]2

2 T2!1O~r 24!,

where

x65
t

l
6w. ~28!

One can indeed check that the above diffeomorphisms o
the Virasoro algebra. Denoting the diffeomorphisms w
Ti

6( i 51,2,3) ash i , one finds

T3
652~T1

6]6T2
62T2

6]6T1
6!, ~29!

where h35@h1 ,h2#. Therefore,Ln and L̄n (2`,n,`)
which generate the diffeomorphisms withT15einx1

/2 and
T25einx2

/2, respectively, obey the algebra

i @Ln ,Lm#5~n2m!Ln1m , ~30!

i @ L̄n ,L̄m#5~n2m!L̄n1m , ~31!

@Ln ,L̄m#50. ~32!

Since by definition

] t5
L01L̄0

l
, ~33!

]w5L02L̄0 , ~34!

the mass and angular momentum of a black hole are rel
to the charges associated withL0 and L̄0 as

M5
L01L̄0

l
, ~35!

J5L02L̄0 . ~36!

B. Canonical realization of asymptotic symmetry

Our task now is to calculate the central charge in
canonical realization of the algebra. Using the stand
Arnowitt-Deser-Misner~ADM ! decomposition, we obtain
the bulk Hamiltonian

H@N#5E d2x@N'H'1NiHi #, ~37!

whereN' and Ni are the lapse and the shift functions, r
spectively. The Hamiltonian and momentum constraints
given by
5-4
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H'5
1

2Ah
~p i j p!M 21S pkl

p D 1Ah V, ~38!

Hi522AhDj S p i
j

Ah
D 1pDif, ~39!

wherep i j andp are the canonical conjugate momenta ofhi j
andf, respectively, and

M 215S 32pG

U
Gi jkl 1

4U82

U
hi j hkl 22U8hi j

22U8hkl U
D ,

~40!

Gi jkl 5hi (khl ) j2hi j hkl , U512
j

2
~16pG!f2, ~41!

V52
1

16pG
~U (2)R12l 22!1

1

2
~Df!22jDf2. ~42!

Here, U85]U/]f and (2)R is the two-dimensional Ricc
scalar.

Since we consider spacetimes with open spacelike
faces, we must pay attention to boundary terms. The bou
ary terms are necessary in order to make the functional
rivative of the Hamiltonian well-defined. From Eqs.~24! and
~25!, we can read off the boundary conditions for the cano
cal variables as

qrr 5O~r 24!, qrw5O~r 23!, qww5O~1!,

p rr 5O~r 21!, p rw5O~r 22!, pww5O~r 25!, ~43!

f5O~r 21/2!, p5O~r 23/2!.

Under the asymptotic behavior of the canonical variab
~43! and the surface deformation vectorh ~26!, the boundary
terms become

dJ@h#5dJ@h#2j R dS° i~h'f2!2Di H d~f22!

h' J , ~44!

J@h#5 R dS° iF2
~h jp

i j !

Ah°
1

1

16pG
G° i jkl

3$h'D° jqkl2qkl~D° jh
'!%G , ~45!

whered is any variation in the configuration space of asym
totically AdS3. NoteJ@hm# is the surface term which arise
for pure gravity.

In general, we may not be able to write the second term
Eq. ~44! in terms of a total derivative. However, the M
solution has ‘‘no scalar hair,’’ which means that the seco
term in Eq.~44! vanishes. Thus, we impose the ‘‘no-sca
hair’’ condition:
10400
r-
d-
e-
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s
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f

d

dB~ t,w!50, ~46!

1

f2 5rA~ t,w!1B~ t,w!1O~r 21!. ~47!

We must check whether the ‘‘no-scalar hair’’ condition
preserved under the action of the conformal group~27!. Sup-
posedB50 in some coordinate system satisfying Eqs.~24!
and ~25!. Using the transformation~27!, we obtain

dLie~f22!52L hf22,

52r S T1]11T2]22
]1T11]2T2

2 DA~ t,w!

12~T1]11T2]2!B~ t,w!1O~r 21!. ~48!

Thus the transformedf also satisfies the ‘‘no-scalar hair’
condition. Therefore, the HamiltonianĤ with the well-
defined functional derivative is

Ĥ@h#5H@h#1J@h# ~49!

under the asymptotically AdS3 conditions and the ‘‘no-scala
hair’’ condition. Note that we need only the leading ord
terms ofh in 1/r to evaluate the chargesJ@h#.

The mass and angular momentum of a black hole
given by

M5J@] t#5
J@L0#1J@ L̄0#

l
, ~50!

J5J@]w#5J@L0#2J@ L̄0#. ~51!

Because we use the zero-mass black hole as the refer
geometry,M521/8G for the globally AdS3.

We obtain the same surface term as the one for pure g
ity; thus the central charge coincides with the pure grav
one by applying the same argument as Brown and Henne
We present their argument for completeness. Using the D
bracket$ , %DB for the constraintsHm'0, the algebra of the
asymptotic symmetry becomes

$J@h1#,J@h2#%DB5J@@h1 ,h2##1K@h1 ,h2#, ~52!

whereK@h1 ,h2# is the central charge. The left-hand side
just the change in the chargeJ@h1# under the surface defor
mation generated byJ@h2#, that is,

$J@h1#,J@h2#%DB5Lh2
J@h1#52dLie(h2)J@h1#. ~53!

The central charge may be obtained from Eq.~52!, which is
most easily evaluated on thet50 surface of the referenc

spacetimeg° mn . Because the charge has been chosen so
it vanishes for the reference spacetime, thenJ@@h1 ,h2##
50 and the chargeJ@h1#, before the surface is deformed,

also zero. Thus, substitutingqmn5dLie(h2)g
°

mn into Eq. ~45!,
we get
5-5
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K@h1 ,h2#52dLie(h2)J@h1#

5 R dS° iF 2
h1 j~Lh2

p° i j !

Ah°
1

1

16pG
G° i jkl

3$h1
'D° j~Lh2

g° kl!2~Lh2
g° kl!~D° jh1

'!%G
2~h1↔h2!. ~54!

Using Eq.~27!, we obtain the central charge for the Viraso
generators

iK @Ln ,Lm#5 iK @ L̄n ,L̄m#5
c

12
n3dn1m,0 , ~55!

c5
3l

2G
, ~56!

that is,

i $J@Ln#,J@Lm#%DB5~n2m!J@Ln1m#1
c

12
n3dn1m,0 .

~57!

The same holds forL̄n . Thus we have the same centr
chargec53l /2G as pure gravity.

Note that the Virasoro algebra~57! has a nonstandar
form @25#. This is because the zero-mass black hole is u
as the reference spacetime. If we take the globally AdS3 as
the reference spacetime, thenJ NS@L0#5J@L0#1c/24,
whereJ NS is the new charge using the globally AdS3 as the
reference. The new chargesJ NS@Lm#5J@Lm#1dn,0c/24
have the usual form of the Virasoro algebra

i $J NS@Ln#,J NS@Lm#%DB5~n2m!J NS@Ln1m#

1
c

12
n~n221!dn1m,0 . ~58!

IV. DISCUSSION

We found that the central charge and theL0 eigenvalues
of the black hole are unchanged from pure gravity resu
Thus, if one simply applies Strominger’s derivation, t
asymptotic density of states estimated by the asympt
symmetry group is the same as the pure gravity result:

Sasymp54pAcD

6
52p lAM

2G
. ~59!

Thus, the functional form agrees with Eq.~15!, but the over-
all numerical coefficient does not.

A. Maximum possible entropy

NoteSasymp.SBH ; this is becauseSasympgives the ‘‘maxi-
mum possible entropy’’@17#. There is another solution in
10400
d

s.

ic

this theory, the BTZ black hole, which saturates the bou
Sasymp5SBH . Since Strominger’s argument is insensitive
the details of the interior structure, the Virasoro algebra p
dicts the same answer for the BTZ black hole and for the M
black hole. So, the CFT answer cannot be true for both
lutions. The CFT prediction gives the numerical value of t
larger entropy solution for a given mass.

Then, one may be tempted to think that all we have do
is just to rederive the BTZ black hole entropy in this theo
not the MZ black hole. However, if the CFT prediction sim
ply gives the maximum possible entropy, the entropy of
MZ black hole does not have to have the same functio
form as Cardy’s formula. We believe that the fact that t
functional form of the MZ black hole entropy agrees with t
CFT prediction indicates that the CFT prediction gives t
correct functional form even if a black hole entropy does n
saturate the boundSasymp>SBH .

There still remains the question why the approach gi
the maximum possible entropy. One possible answer is
we are counting the entropy from the matter field as well a
somehow have to subtract them. The counting of matter
tropy has been computed by various authors using the br
wall model@26# and it is consistent with the area formula
most cases. Thus, subtracting the matter entropy fromSasymp
changes only the numerical coefficient. However, such
computation generally depends on the regularization sche

B. Lowest Virasoro eigenvalues

Strominger’s argument is impressive, but the derivat
actually has several assumptions@6#. One important point is
the lowest Virasoro eigenvalues; in order to use Cardy’s f
mula, the lowestL0 eigenvalues of the CFT should beD0

5D̄050.
If the CFT is unitary,D0

NS>0 so that there is no state wit
negative weights. For the BTZ black hole, the unitarity of t
boundary CFT could be guaranteed by the underlying str
theory with a Ramond-Ramond~RR! background.2 On the
other hand, the unitarity of our boundary CFT is not clea

This assumption is usually justified by regarding the BT
black hole as excitations from the reference spacetime@3#
@either the globally AdS3 or the zero-mass black hole~20!#;
because a reference geometry has zero mass and angula
mentum by definition, it hasD5D̄50. In this interpretation,
the reference geometry is a highest weight state of the C
We assume that such a reference geometry has the lo
eigenvalues.

However, it is a different issue whether the zero-ma
black hole~20! or the globally AdS3 is the highest weight
state which produces the MZ solution. In fact, it does n
seem so. One can easily obtain the general Virasoro de
mation using the asymptotic Killing vector~27! @15#. Be-
cause the Killing vector~27! and the geometry are the sam
as pure gravity, the most general deformation is the sam
well. This includes the BTZ solution, but does not inclu

2However, at present we do not know how to consistently qu
tize string theory on curved spacetime. See, e.g., Ref.@27#.
5-6
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the MZ solution since the scalarf transforms asdLief
5 (3)ha]af50. So, one can make only the BTZ black ho
in this way. Thus, one may again conclude that we can o
rederive the BTZ black hole entropy in this theory.

This is not a problem. Cardy’s formula sums over
states in the CFT, i.e., the members of all conformal famili
When there are many Verma modules, we do not knowa
priori which highest weight states we should choose. T
zero-mass black hole does not have to be the highest we
state we are looking for; the derivation only requires th
there is a highest weight state which produces the black
in question.

It is not clear whether there is a geometry which produ
the MZ black hole by the Virasoro deformation.3 It is not
clear either whether only one highest weight state produ
the black hole. However, we do not know such a map
tween the classical deformations and the CFT descrip
really makes sense. Anyway, the whole effect is an addi
constant in the mass. So, we simply assume that there
highest weight state which produces the MZ solution. If t
CFT is unitary, all states lie in highest weight represen
tions, so there should be such a state.

There is another problem. Equation~59! counts all states
in the CFT with the sameL0 eigenvalues. Thus, one migh
suspect that we are counting the BTZ black hole entropy
well since both black holes have the same set of charges
have no conclusive answer; we simply assume that th
black holes somehow belong to the different sectors.

C. Other approaches

In order to really understand the issue, it is desirable
have a microscopic description. Moreover, with such a
scription, one may be able to keep track of the conform
anomaly, i.e., the anomaly induced on the ‘‘effective strin
on a brane intersection, the anomaly transported to infi
via anomaly inflow mechanism, and the anomaly of t
boundary CFT. So, one can check whether the asymp
CFT is really reflected on the horizon. Thus, it would
interesting to embed some asymptotically AdS3 solutions in
string theory~whose near-horizon geometry is not AdS3).
The solutions should necessarily be supersymmetric in o
that the anomaly on the brane makes sense.

Even though we fail to reproduce the numerical coe
cient of the Bekenstein-Hawking entropy, it may be possi
to reproduce it using a different method. One possible
proach is the Chern-Simons formalism@28#; the analysis has
been claimed to be valid for a boundary located on any s
face of constantr, in particular for the horizon. However, i
is not clear how to choose the diffeomorphisms at the h
zon. ~Their diffeomorphisms reduce to Brown-Henneaux
asymptotic isometries at infinity.!

Another approach is Carlip’s method, which is inspir
by Strominger’s analysis@17,29#. He found a Virasoro alge

3One possible candidate is the zero-mass black hole metric~20!
with f5c/Ar , wherec is a constant. This is a solution of Eqs.~5!
and ~8!.
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bra with a central charge which corresponds to the algebr
surface deformation of ther -t plane that leaves the horizo
fixed. The central charge is given by

c5
3A

2pG
. ~60!

The method applies to any black hole in any dimensions
applies only to pure gravity. It is interesting to see wheth
Wald’s formula is reproduced when applied to gravity wi
various fields.
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APPENDIX A: THE CLASSICAL LIMIT AND EXPANSION
PARAMETERS

We consider a number of different expansions in this
per. In this section, we describe these expansions in de
For simplicity, we consider black holes withr 250.

For the BTZ and the MZ black hole, the various leng
scales are related to physical quantities as follows~we ne-
glect numerical coefficients!:

c;
l

G
, ~A1!

M;
1

G

r 1
2

l 2
, ~A2!

T;
r 1

l 2
, ~A3!

SBH;
r 1

G
. ~A4!

~1! Semiclassical limit of pure gravity. The semiclassic
limit requiresc@1 @3# and thus

l @G. ~A5!

~2! Cardy’s formula. Cardy’s formula is an asymptot
formula valid at high energy. Thus one expects the form
is valid when

L05 lM @c ~A6!

and this implies

r 1@ l . ~A7!
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The condition is also necessary if we regard the globa
AdS3 as the state with the lowest Virasoro eigenvalu
Then, the black hole mass is given byL0

NS5 lM 1c/24,
whereM is the mass measured from the RR ground state~the
zero-mass black hole!. Thus, Cardy’s formula S
54pAcL0

NS/6 is not the same asSBH due to the additive
constant. In order to neglect the constant, one again m
requirelM @c.

One can also rewrite the condition asT@1/l . This condi-
tion is actually too strong for D1/D5 system@30# since this
implies N@Q1Q5 (c56Q1Q5 and lM 5N). The effective
string description of D1/D5 is valid even whenN;Q1Q5;
this is the region where multiply wound strings dominate
entropy.

~3! Back reaction of the emitted radiation. The standa
treatment of black hole radiation neglects the back reac
of the radiation on the black hole. This is not possible if t
emission changes the Hawking temperature by an am
comparable to the temperature@31#. Thus, the heat capacit
C5u]E/]Tu has to satisfy

C@1. ~A8!

By the first law, this can be written asuT]S/]Tu@1; the
entropy of the hole within the given thermal energy interv
should be large. Thus,

r 1@G. ~A9!

Conversely, the thermodynamics will only break down wh
the temperature is so low thatC;1. This happens at a tem
peratureT;G/ l 2;1/(lc). In order for the black hole to be
able to radiate at such low temperature, the mass gap fo
theory should be of orderdM;G/ l 2 @32#. This is a very long
length scale; for D1/D5 system, this mass gap comes f
multiply wound strings.

~4! Fluctuation of the geometry. In order to neglect t
fluctuation of the black hole geometry,

r 1@r c , ~A10!

wherer c51/M is the Compton wavelength of the black hol
This implies

r 1
3 @Gl2. ~A11!

If we recover\, G has a dimension of (mass)21. So the
Planck mass should not be 1/G since this does not have a\.
It is impossible to form a mass scale fromG and\ alone, so
@\2/(Gl2)#1/3 should be the Planck mass. If eitherr 1@ l or
r 1@G, then this condition implies another.

In order for all expansions to be valid@3#,

r 1@ l @G. ~A12!

For the Schwarzschild black hole, the conditions~3! and~4!
both imply r 1@AG.

Since we have two basic length scalesl and G, one can
form a variety of length scales@33#. The length scales tha
appeared in the above discussion are related by
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@ l @~ l 2G!1/3@G. ~A13!

APPENDIX B: THE CENTRAL CHARGE FROM
BOUNDARY STRESS TENSOR

The central charge of AdS3 found in the Hamiltonian for-
malism @4# has been reproduced by various authors. S
Refs. @28# in the Chern-Simons formalism and Ref
@13,34,35# in the framework of AdS/CFT correspondenc
@8–10#. It would be interesting to obtain the central char
using the AdS/CFT correspondence. One possible appro
is a boundary stress tensor proposal by Balasubramanian
Kraus @34#.

Their starting point is the ‘‘quasilocal stress tensor’’ pr
posal by Brown and York@36#. In order to obtain a definition
of the mass, they proposed a tensor defined on the boun
of a given spacetime:

Tab5
2

A2g

dS

dgab
, ~B1!

wheregab is the boundary metric anda,b5t,w. The bound-
ary metric is defined by writing the metric in an ADM-lik
decomposition:

ds25N2dr21gabdxadxb. ~B2!

The resulting stress tensor typically diverges. In order to
tain a finite stress tensor, they propose a subtraction by
bedding a boundary with the same intrinsic geometrygab in
some reference spacetime.

In light of AdS/CFT correspondence, Balasubraman
and Kraus have interpreted Eq.~B1! as

^Tab&5
2

A2g

dSeff

dgab
, ~B3!

where^Tab& is the expectation value of the CFT stress te
sor. Then, the divergences which appear are simply the s
dard ultraviolet divergences of a quantum field theory a
may be removed by adding local counterterms to the ac
which depend only on the boundary CFT@9#. On the other
hand, the stress tensor of a two-dimensional CFT has a t
anomaly

T(CFT)52
c

12
(2)R, ~B4!

wherec is the central charge and(2)R is the two-dimensional
Ricci scalar. Thus, one can reproduce the central charge
ing this prescription.

However, in our case, we do not know the underlyi
boundary CFT so that it is not clear how to choose the co
terterm action. In particular, we do not know what the co
formal scalar corresponds to in CFT language.

One could go back to the original Brown-York prescri
tion and try to find a suitable reference action and a refere
spacetime. However, the prescription has drawbacks: it is
5-8
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always possible to find an embedding and even if it is, s
an embedding may not be unique. Moreover, it is not cl
how to choose the reference action for gravity with sca
fields. As far as we are aware, there are three different
scriptions for the reference action@37–41#.

~1! CCM-CI @39#: they have proposed the reference act
from the requirement that mass is conformally invaria
However, the mass does not converge for the MZ solutio
one chooses the zero-mass black hole as the reference s
time. ~We always choose the zero-mass black hole as
reference spacetime in this discussion.!

~2! CCM-HH @39#: this prescription is motivated by th
Hawking-Horowitz ~HH! proposal@42# to define mass. Fo
nd
-

J

. B

tu

h.

10400
h
r
r
e-

.
if
ace-
e

the MZ solution, the mass is finite and is the same as the
obtained in the Hamiltonian formalism. However, the ma
is not conformally invariant.

~3! Bose-Lohiya@41#: this prescription is also motivate
by the HH proposal, but mass is conformally invariant. F
the MZ solution, the mass is finite, but does not agree w
the Hamiltonian formalism.

In conclusion, none of the prescriptions seem to be w
defined and can be used for our purposes. However, it wo
be interesting to study along this line further; this would gi
us a well-defined prescription of mass for gravity with sca
fields.
Oz,

ek,
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