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Strominger has derived the Bekenstein-Hawking entropy of the BTZ black hole using asymptotic Virasoro
algebra. We apply Strominger's method to a black hole solution found by méarand Zanelli. This is a
solution of three-dimensional gravity with a conformal scalar field. The solution is not anti—de Sittef)(AdS
but it is asymptotically Ad§ therefore, it has the asymptotic Virasoro algebra. We compute the central charge
for the theory and compare Cardy’s formula with the Bekenstein-Hawking entropy. It turns out that the
functional form does agree, but the overall numerical coefficient does not. This is because this approach gives
the “maximum possible entropy” for the numerical coefficient.

PACS numbgs): 04.70.Dy, 04.60.Kz, 11.25.Hf

[. INTRODUCTION form a representation of this algebra. The asymptotic density
of states of a conformal field theoryCFT) is given by
Using D-brane technologhl], one now believes that the Cardy’'s formula
Bekenstein-Hawking entropy of a black hole is a true statis-
tical entropy. There remain many issues, however. cA CA
For example, the D-brane approach depends on the details Sasymg= 27T\ 5 T27\ 5 2
of D-brane dynamics and is complicated. However, black

hole thermodynamics is a universal feature of metric theories

: ; , hereA andA are the eigenvalues af, andL,. Applying
of gravity [2]. Moreover, the Bekenstein-Hawking entropy wr ~ . 0 0
was originally derived using quantum field theory on curvedthis formula to the Baados-Teitelboim-ZaneliBTZ) black

spacetime. Therefore, any microscopic theory should reprohoIe 5], Strominger has Obt?'”ed the _Bekenste|_n-Hawk|n_g
duce the Bekenstein-Hawking entropy if its low-energy ac-entropy for the black hole with a precise numerical coeffi-
tion is written in terms of the metric. A derivation of the cient. For the BTZ black hole) and A are given by the
black hole entropy is just a consistency check of a micro/nass and angular momentum as follows:
scopic theory.
Thus, the details of a microscopic theory should not be A= E(IM +J) &)
relevant in order to understand the entropy. One would like 2 '
to know the necessary and sufficient ingredients to under-
stand the entropy. Strominger’s work is an important step in _
this respecf3]. A=
Three-dimensional anti—de Sitter space (Ad&as the
asymptotic symmetry group which is generated by two cop-  The derivation is very powerful and does not depend on
ies of Virasoro algebrpd]. The central charge of the algebra the details of the microscopic theory. However, there are

(IM—=J). (4)

N| =

is given by many problems as weJB]. One of the most important prob-
lems is the relevance of the asymptotic geometry and where
3] the degrees of freedom actually live.
c= G (2) Strominger’'s argument depends on the asymptotic sym-

metries at spatial infinity. On the contrary, the Bekenstein-
Hawking entropy depends only on the area of a black hole
whereG is the three-dimensional Newton’s constant and horizon. One usually regards this as an indication that the
= —1/1% is the cosmological constant. Then, if one considersiegrees of freedom relevant for the entropy live on the hori-
quantum gravity on Ad§ the physical states at infinity must zon. If so, what is really important is the near-horizon geom-
etry and not the asymptotic geometry. In fact, Strominger’s
argument has been applied to various higher-dimensional

*Email address: makoto.natsuume@kek.jp black holes whose near-horizon geometries are the BTZ
"Email address: okamura@skyrose.phys.ocha.ac.jp black hole and has reproduced the correct ent{@pyThere
*Email address: sato@th.phys.titech.ac.jp are several possibilities why it works.
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(1) In light of AAS/CFT corresponden¢8-—10], there are  obtain the central charge. This is the first attempt to study
two possibilities. Strominger's method applied to asymptotically Ad8lack

(a) The branes are indeed located there. This could b&oles other than the BTZ black hole.
possible since asymptotic infinity is not really infinity; one )
only looks at the near-horizon geometry. Il. THE MARTI NEZ-ZANELLI BLACK HOLE

(b) Martinec points out another possibilifiL1]; the en-
tropy comes from brane dynamics at the horizon, but thei_|
conformal anomaly of the branes is transported at spatia[j2
infinity by an “anomaly inflow mechanism.”

(2) From the viewpoint of pure gravity, this may be be-
cause of the trivial nature of three-dimensional gravity which
has no bulk degrees of freedom. For instance, three- 1 1
dimensional gravity can be written as a boundary Liouville R, — ngR_ _2gMV:87TGT,uV’ (5)
theory[12]. |

Of course, the Liouville theory has too few degrees of o o .
freedom to account for the entropy: its effective centralthe RICCI scalar is in fact constant if the matter stress tensor
charge ic.= 1. But we regard this as an indication that the 1 IS traceless:

Liouville theory is just the master field, not the microscopic
description[6,11,13. R= 6 . 6)

Even though three-dimensional pure gravity has no bulk 12
degrees of freedom, the entropy could be nonzero. One
should distinguish the low-energy degrees of freedom disThis is a reason why we consider the conformal scalar; the
cussed here and the microscopic degrees of freedom whig®nformal scalar has a traceless stress tensor.
constitute the Bekenstein-Hawking entropy. The Bekenstein- We consider the action given by
Hawking entropy predicts that any sensible quantum gravity Ri21-2 1
must have the degrees of freedom which are necessary to g— d3x\/—_[ —I(V)2— 5

g (Vo)
account for the entropy. How such degrees of freedom are M 16mG 2 2
actually realized may differ for each quantum theory. For (7)
example, it may come from the massive stringy degrees of N ,
freedom[14]. Or it may come from the twisted sectors in Where&é=d—2/4(d—1)=3. The surface termB’ should be

If Ricci scalar is constant, a metric satisfies Brown-
enneaux’s boundary conditiofg]. Solving the constant
icci scalar for a three-dimensional static metric, one can
easily see that the metric satisfies the boundary conditions.
Now, since the field equation can be written as

R¢*( +B’,

pure gravity[15]. It would be interesting to find how such included so as to eliminate the second derivatives of the met-

degrees of freedom actually explain the central chagge - The field equations are given by E@) and the matter
but as far as Strominger’s approach concemns, it is not reallf/€!d equation:
necessary. 2, _
In this paper, we consider three-dimensional gravity with Vi¢—ER$=0. ®
a conformal scalar field. We apply Strominger’s argument torpe matter stress tensdr,, is given by
a black hole solution of the theory, the Matz and Zanelli
(MZ) solution[16]. The solution is not Adghbut it is asymp- 1 )
totically AdS; (see Sec. Il A for the definition of “asymp- Tuw=VuéV, - ng(Vqﬁ)
totically AdS;”); therefore, it has the asymptotic Virasoro
algebra. If Strominger’'s method works due to the triviality of
three-dimensional gravity, it will not work for such a theory. +e
Thus, our approach is somewhat different from Strominger’s
one. One can easily check that the matter stress te(®as trace-
In Sec. Il, we review the MZ solution and discuss theless.
properties of the solution. In Sec. lll, we discuss the Hamil- The MZ solution is
tonian formalism and calculate the central charge in the man-
ner of Brown-Henneaux. In Sec. 1V, using these results, we 1
compare Cardy’s formula with the Bekenstein-Hawking en- ds’=— I_2

1
g#VVZ_VMVV‘F R,U.V_Eg,LLVR] ¢2- (9)

Iy
r+—

i 1 r+)d2
5 —dt

r

+rlde?, (10
LT
™7

tropy. We found that the functional form agrees with the
boundary CFT prediction. The overall numerical coefficient 1242

does not agree however; this is because this approach gives + 2

the “maximum possible entropy” for the numerical coeffi- (1_ r_+)

cient [17]. In this sense, the discrepancy in the numerical r

coefficient may indicate that this method does not work per-

fectly when there are bulk low-energy degrees of freedom ] ry

and may support possibilit§2). In Appendix A, we summa- ¢= 7G(2r+r.) (12)
rize a number of different expansions considered in this pa-

per. In Appendix B, we discuss AdS/CFT correspondence tavherer =r, is the horizon which is related to the mass by
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M=% (12 law Sg=A/(4G). This is because the actig) is not in the

3 (r+)2 in terms of the mass. The entropy does not satisfy the area
Einstein-Hilbert action form. Rather, the actiof is written

as
We make a couple of comments on the solution. First, the

metric (10) approaches AdSasymptotically. However, the 1

solution is not Ad$ in general. To see this, note that AdS S= RJMdgx\/—g(l— 7G¢*)R+---.  (16)
conformally flat. The standard Weyl tensor vanishes identi-

cally in three dimensions, so it is not suitable for our pur-Qone can understand that the discrepancy arises because New-
pose. But there is a conformally invariant tensor which playson's constant at the horizon is scaled by the factor (1

a role analogous to that of the Weyl ten$8] —7G¢?). By a conformal transformation to the Einstein

metric,

1
C)\/LV:VVR)\M_VMR)\V_Z(g)\,u&v_g)\v&ﬂ)R' (13) gEV:(l_WG¢2)2guV! (17)

one can check the area law is satisfied in the Einstein metric.
A three-geometry is conformally flat if and only €,,, The mass and the Hawking temperature of a black hole
=0. For the metriq10), the tensorC, ,, vanishes only as- are physical quantities. These quantities do not change under
ymptotically. a conformal transformatiof22]; the conformal transforma-

Second, since we have a constant Ricci scalar, the confotion is just a change of variables. So, the black hole entropy
mal scalar¢ hasm?=—3/41? from Eq. (8); the scalar is a is a physical quantity as well by the first law of black hole
tachyon. This is not a problem. The stability on Adshly  thermodynamics. However, the horizon area does change un-
requires tham?= — (d— 1)%/41%2 [19]. Conformal scalars in der the transformation. Therefore, the area law is not satis-
any dimensions satisfy the bound simoé= —d(d—2)/42. fied in all frames; it is satisfied only in the Einstein metric.
However, the MZ black hole is not stable under linear per-The area law in a general frame is given by Wald’s formula
turbations of the metri¢20]. This could cause a problem if (2]
one wants to discuss its thermodynamics. This is not really
our purpose however; for our purpose, it is sufficient if the San= _Zﬂj
entropy makes sense. o

Third, the solution has a non-trivial scalar field; moreover,
the scalar field is regular everywhere. On the other hand, thehereL is a Lagrangian,,, is the binormal to the horizon

oL 18
n Vn g
OR s HV°

no-hair theorems require that scalar fields which are regula# With the normalizatiom®= —2, and the functional deriva-

be vanished21]. This is partly due to the fact that the space-tive is taken by formally regarding the Riemann tensor as a

time in question is not asymptotically flat. field which is independent of the metficApplying the for-
Bekenstein’s proof is for four-dimensional spacetimemula to the actior(7), we get

without a cosmological constant. However, the setup, itself, 2

can be used for any dimensions and for the cases with a S :(1_7TG¢+)A (19

cosmological constant. His proof uses the fact that the vol- H 4G '

ume integral of a positive definite function which is made

from scalar fields is equal to surface integrals at the horizovhereg .. is the value of the conformal scalar at the horizon.
and at asymptotic infinity. The surface integral at infinity This expression agrees with E@.4).

vanishes for asymptotically flat solutions. The surface inte-

gral at the horizon vanishes for the scalar fields bounded on 1. HAMILTONIAN FORMULATION

the horizon. Therefore, the volume integral has to vanish and In thi . e th ot N
the only way is for the scalar fields to vanish identically. n this section, we summarize the asymptotic symmetry

Thus, any nontrivial scalar field has to diverge at the horizonar.]d th.e Ham_llton!an formulatiof23] of three-d|men5|onal
However, the surface integral at asymptotic infinity does no!EInStem gravity with a conformal scalar field. We then com-
vanish for the MZ solution; therefore, the scalar fields do nofUte the central charge of the theory.

vanish in general.

Now, the entropy of the black hole is given by A. Asymptotically anti—de Sitter space
We are interested in any black hole solutions which are
ey AdS; asymptotically, so we first define ‘“asymptotically
SBH=¥ (14 AdS;": (i) They should contain the MZ black hole solution;

(i) they should be invariant under the Ad§oupO(2,2) at

spatial infinity; (iii) they should make the surface integrals
or

Senm A [ (15) Istrictly speaking Sgy defined by Wald’s formula has not been
BH proven to satisfy the second law of black hole thermodynan®ts
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associated with the generators®(2,2) finite. These are the 5 - |2 ) b
same conditions as imposed by Henneaux and Teitelboim for & 7'=1| TT(x ")+ T~ (x7)+ 52((7+T+ +92T7)
asymptotically AdS [24].

We henceforth use the zero-mass black hole as the refer- +0(r %,
ence spacetime. Although the reference spacetime is the
source of a number of issuésee Sec. IV B we adopt it for Clyf=—r(a, T +0_T)+0O(r 1), (27
the time being. In order to explicitly represent the asymptoti- )
cally AdS; conditions, consider the coordinate system in VIV — I S _a
which the zero-mass black hole reads =T =T —55(5 T 2T )+00r™),
° v re 2 12 2, .24 2 where
ds’=g,,,dx*dx ———dt 2dr +r2de?. (20
Lt
. XT=-*o. (28
Then, the components of the AglKilling vector » behave |
as . : .
One can indeed check that the above diffeomorphisms obey
@ t=0(1), C@y=0(r), @y*=0(1), the Virasoro algebra. Denoting the diffeomorphisms with
21) T, (i=1,2,3) asy;, one finds
5, @yt=0(r%), 4, @y=0(1), a4 Op*=0("3), T3=2(T{0.T; —T;0.T), (29

where ®) 5 (a=t,r,¢) are the components of the vectpr ~ Where n3=[7,,7,]. Therefore,L, and L, (—=<n<e)
in the spacetime coordinate=()7* g,. We will also use which generate the diffeomorphisms wilh" =e'"™* /2 and

n* (u=L1,r,¢) for the components of the same vectpr T~ =¢" /2, respectively, obey the algebra
Which is decomposed intg=7'n+ 7'9; (i=r,¢) wheren

is a unit normal vector to the time slice. The componets i[LnLn]=(=m)Lyim, (30
and »' describe the normal and tangential components of a o .
hypersurface deformation. Using the lapée and the shifts i[Ly,Lp]=(n—m)Lpsm, (3D
N', they are related to the spacetime components by o
[Ln,Lm]=0. (32
7 =N @, (22
Since by definition
Ni
i—(3) _ 1.
7 77 + 77 (23 Lo+L
N (?t: 0 I 01 (33)
From the conditionsi) and(ii), we are led to the bound- _
ary conditions for the metric perturbatiay),,=g,,,— E;W , dp=Lo~ Lo, (34)

the mass and angular momentum of a black hole are related

= = -3 = —4 —
Gap=0(1), Au=0(r"%, dr=0(r"5, (24 to the charges associated with andL, as

wherea,b=t,¢ and

Lo+Lo
M=——-y, (35
$=0(r"19, (25) !
The asymptotic behavior ap is motivated by the MZ solu- J=Lo—Lo. (36)
tion and is kept by the coordinate transformation of the AdS
group. B. Canonical realization of asymptotic symmetry

By using Eq.(24), the asymptotic behavior of the AgS

Killing vector (21) is rewritten in terms ofy* by Our task now is to calculate the central charge in the

canonical realization of the algebra. Using the standard
Arnowitt-Deser-Misner (ADM) decomposition, we obtain

_ r_— =
7-=0(r), 7'=0(r), 7*=0(1), the bulk Hamiltonian

(26)
dm-=0(1), 7' =0(1), 9 n*=0(r"3). .
r 7 (1) r7 (1) r 7 ( ) H[N]ZJdZX[NL'HL-FNIHi], 37)
As Brown and Henneaux showed for pure gray#y, the
asymptotic symmetry which preserves the asymptotic condiwhere N* and N' are the lapse and the shift functions, re-
tions (24) and (25) is actually extended into the pseudo- spectively. The Hamiltonian and momentum constraints are
conformal group in two dimensions: given by
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+vh v,

(39

1 Jy
Ho=——(a" Ml<
L 2\/H(7T p) p

+pD; ¢, (39

2\/_D(

Jh

wherer'! andp are the canonical conjugate momentehgf
and ¢, respectively, and

327G 4u'? )
M-1e 5 Siw T g i —2U"hy;

—2U"hy U
(40)

¢
Gijii = hihy;—hijh, U=1- 5(167TG)¢2, (41)

Y=— T6m (U(2>R+2| 2)+ (Dq&) — (NP2, (42

Here, U’
scalar.

=gUld¢ and PR is the two-dimensional Ricci

PHYSICAL REVIEW D 61 104005

oB(t,¢)=0, (46)
1
gz=rA(t,go)+B(t,go)+O(r‘1). (47)
We must check whether the “no-scalar hair” condition is

preserved under the action of the conformal gré2ip. Sup-
posesB=0 in some coordinate system satisfying E@@%)
and(25). Using the transformatiof27), we obtain

SLie(¢ 2)=—L 9%,

I .TH+o T

=2| T 0, 4T 0.~ ———5——|At,¢)

+2(T 9. +T 9_)B(t,e)+O(r ). (48

Thus the transformed also satisfies the “no-scalar hair”

condition. Therefore, the Hamiltoniahl with the well-
defined functional derivative is

H[ 7]=H[ 7]+ I 7]

under the asymptotically AdSonditions and the “no-scalar

(49

Since we consider spacetimes with open spacelike sulkair’ condition. Note that we need only the leading order
faces, we must pay attention to boundary terms. The bounderms of 5 in 1/r to evaluate the chargeq »].
ary terms are necessary in order to make the functional de- The mass and angular momentum of a black hole are

rivative of the Hamiltonian well-defined. From Ed&4) and

given by

(25), we can read off the boundary conditions for the canoni-

cal variables as

=0(r ), q,=0(r3, q,,=0(1),
'=0(r"Y), #°=0(r"?), =**=0(r"%), (43
$=0(r"%3), p=0(r—3?.

JLol+ Lol

M= \7[0”t] = | (50)

I=Td,1= T Lol— T Lol.

Because we use the zero-mass black hole as the reference
geometry,M = —1/8G for the globally AdS.

(51)

Under the asymptotic behavior of the canonical variables We obtain the same surface term as the one for pure grav-

(43) and the surface deformation vectpr(26), the boundary
terms become

2
6 n]= 6T n]— §fﬁd3(7] ¢2)2D[ (Z: )] (44)

(7]j77ij) 1

+ éijkl
Vh

167G
X{7 D0~ au(Dj7")}|,

= $ d§|2

(49)

ity; thus the central charge coincides with the pure gravity
one by applying the same argument as Brown and Henneaux.
We present their argument for completeness. Using the Dirac
bracket{ , }pg for the constraints{,~0, the algebra of the
asymptotic symmetry becomes

LA 111 A n21}os= T 171, 7211+ K[ 171, 721,

whereK|[ 54, 7,] is the central charge. The left-hand side is
just the change in the chargg 7] under the surface defor-
mation generated byl 7,], that is,

{A ) I 121t os= L, Aml=—

(52

SLie(y,) L Ml (53)

whered is any variation in the configuration space of asymp-The central charge may be obtained from Esf), which is
totically AdS;. Note J[ »*] is the surface term which arises most easily evaluated on thie=0 surface of the reference

for pure gravity.

In general, we may not be able to write the second term o
Eq. (44) in terms of a total derivative. However, the MZ
which means that the second

solution has “no scalar hair,”

pacetimaaw. Because the charge has been chosen so that
t vanishes for the reference spacetime, th@m 7,,7,]]
=0 and the chargg[ 7], before the surface is deformed, is

term in Eq.(44) vanishes. Thus, we impose the “no-scalar &S0 zero. Thus, substituting,,= 5L|e(1,2)gw into Eq. (45),

hair” condition:

we get
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K[ 71, 72]=— 5Lie(772)~7[771] this theory, the BTZ black hole, which saturates the bound
Sasymp=Sgr - Since Strominger’s argument is insensitive to
the details of the interior structure, the Virasoro algebra pre-
+ Giikl dicts the same answer for the BTZ black hole and for the MZ
\/ﬁ 167G black hole. So, the CFT answer cannot be true for both so-
lutions. The CFT prediction gives the numerical value of the
larger entropy solution for a given mass.
e o o o | Then, one may be tempted to think that all we have done
X{71Dj(£,911) = (£,96) (D7)} is just to rederive the BTZ black hole entropy in this theory,
not the MZ black hole. However, if the CFT prediction sim-
— (g1 7). (54) ply gives the maximum possible entropy, the entropy of the
MZ black hole does not have to have the same functional
Using Eq(27)' we obtain the central charge for the Virasoro form as Cardy’s formula. We believe that the fact that the
generators functional form of the MZ black hole entropy agrees with the
CFT prediction indicates that the CFT prediction gives the
correct functional form even if a black hole entropy does not
saturate the boun8,smz= Sg -
There still remains the question why the approach gives
3l the maximum possible entropy. One possible answer is that
=55 (56)  we are counting the entropy from the matter field as well and
somehow have to subtract them. The counting of matter en-
that is, tropy has been computed by various authors using the brick-
wall model[26] and it is consistent with the area formula in
. c most cases. Thus, subtracting the matter entropy
HIALnl L mlioe=(N=mM) T Lnm]+ 1_2n35n+mv0' changes only the numerical coefficient. Howeveﬁ:%&%h a
(57) computation generally depends on the regularization scheme.

d§| 2

% ° 7]1](‘67]277”) 1

_ - —
|K[Ln1Lm]:|K[LnvLm]:1_2n35n+m,Ov (59

The same holds fot.,,. Thus we have the same central B. Lowest Virasoro eigenvalues
chargec=31/2G as pure gravity.

Note that the Virasoro algebréb7) has a nonstandard
form [25]. This is because the zero-mass black hole is use
as the reference spacetime. If we take the globally AdS
the reference spacetime, thed™NJLy]=JLo]+c/24,
where 7NS is the new charge using the globally Ag8s the =4,=0.

Strominger’s argument is impressive, but the derivation
ctually has several assumptiditd. One important point is
e lowest Virasoro eigenvalues; in order to use Cardy’s for-
mula, the lowest , eigenvalues of the CFT should g,

reference. The new charge§ L ]=JLm]+ 8, oc/24 If the CFT is unitary A)®>0 so that there is no state with
have the usual form of the Virasoro a|gebra ’ negative Welghts For the BTZ black hole, the Unitarity of the
boundary CFT could be guaranteed by the underlying string
L L TN Lilbos= (n—m) TN Lyt m] theory with a Ramond-Ramon@R) background. On the
other hand, the unitarity of our boundary CFT is not clear.
+ in(nz—l)a . (58 This assumption is usually justified by regarding the BTZ
12 n+mo black hole as excitations from the reference spacefigie

[either the globally AdS or the zero-mass black hol{20)];
IV. DISCUSSION because a reference geometry has zero mass and angular mo-
mentum by definition, it had =A=0. In this interpretation,
the reference geometry is a highest weight state of the CFT.
We assume that such a reference geometry has the lowest

We found that the central charge and thgeigenvalues
of the black hole are unchanged from pure gravity results
Thus, if one simply applies Strominger's derivation, the ;

. . ; “eigenvalues.
asymptotic density of states estimated by the asym.ptotlc However, it is a different issue whether the zero-mass
symmetry group is the same as the pure gravity result: . poje(20) or the globally AdS is the highest weight
cA M state which produces the MZ solution. In fact, it does not
Sasymp= 47\ /?=27-,| \ /%_ (59) seem so. One can easily obtain the general Virasoro defor-
mation using the asymptotic Killing vectd27) [15]. Be-
cause the Killing vecto(27) and the geometry are the same

as pure gravity, the most general deformation is the same as
well. This includes the BTZ solution, but does not include

Thus, the functional form agrees with E45), but the over-
all numerical coefficient does not.

A. Maximum possible entropy

Note S;symp> Sgh; this is becaus&,qympgives the “maxi- 2However, at present we do not know how to consistently quan-
mum possible entropy’[17]. There is another solution in tize string theory on curved spacetime. See, e.g., R&l.
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the MZ solution since the scalap transforms asé.¢ bra with a central charge which corresponds to the algebra of
=599 $=0. So, one can make only the BTZ black hole gurface deformation of thie-t plane that leaves the horizon

in this way. Thus, one may again conclude that we can onlyixed- The central charge is given by
rederive the BTZ black hole entropy in this theory. 3A

This is not a problem. Cardy’s formula sums over all C:ﬁ' (60)
states in the CFT, i.e., the members of all conformal families. .

When th(_are are many \_/erma modules, we do not kreow The method applies to any black hole in any dimensions but
priori which highest weight states we should choose. The,,yjies only to pure gravity. It is interesting to see whether
zero-mass black hole does not have to be the highest weighia|q's formula is reproduced when applied to gravity with
state we are looking for; the derivation only requires that,4rious fields.

there is a highest weight state which produces the black hole

in question.
It is not clear whether there is a geometry which produces ACKNOWLEDGMENTS
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constant in the mass. So, we simply assume that there is @ulture, Japan. The work of M.S. was supported in part by
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CFT is unitary, all states lie in highest weight representa-
tions, so there should be such a state.

There is another problem. Equati@®) counts all states
in the CFT with the samé eigenvalues. Thus, one might
suspect that we are counting the BTZ black hole entropy as We consider a number of different expansions in this pa-
well since both black holes have the same set of charges. Weer. In this section, we describe these expansions in detail.
have no conclusive answer; we simply assume that theseor simplicity, we consider black holes with. =0.

APPENDIX A: THE CLASSICAL LIMIT AND EXPANSION
PARAMETERS

black holes somehow belong to the different sectors. For the BTZ and the MZ black hole, the various length
scales are related to physical quantities as folldwe ne-
C. Other approaches glect numerical coefficients

In order to really understand the issue, it is desirable to
have a microscopic description. Moreover, with such a de- c~
scription, one may be able to keep track of the conformal
anomaly, i.e., the anomaly induced on the “effective string” 5
on a brane intersection, the anomaly transported to infinity 1ry
via anomaly inflow mechanism, and the anomaly of the 12 (A2)
boundary CFT. So, one can check whether the asymptotic
CFT is really reflected on the horizon. Thus, it would be
interesting to embed some asymptotically Ad®lutions in T~ M+ (A3)
string theory(whose near-horizon geometry is not AJS 12’
The solutions should necessarily be supersymmetric in order
that the anomaly on the brane makes sense.

Even though we fail to reproduce the numerical coeffi- SeH~ G- (A4)
cient of the Bekenstein-Hawking entropy, it may be possible
to reproduce it using a different method. One possible ap- (1) semiclassical limit of pure gravity. The semiclassical
proach is the Chern-Simons formali§@8]; the analysis has limit requiresc>1 [3] and thus
been claimed to be valid for a boundary located on any sur-
face of constant, in particular for the horizon. However, it I>G. (A5)
is not clear how to choose the diffeomorphisms at the hori-
zon. (Their diffeomorphisms reduce to Brown-Henneaux's  (2) cardy’s formula. Cardy’s formula is an asymptotic

asymptotic isometries at infinity. ~_ formula valid at high energy. Thus one expects the formula
Another approach is Carlip’s method, which is inspiredis yalid when

by Strominger’s analysigl7,29. He found a Virasoro alge-

(A1)

®0One possible candidate is the zero-mass black hole m@dic  and this implies
with ¢=c/ \Jr, wherec is a constant. This is a solution of EdS)
and(8). ro>1. (A7)
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The condition is also necessary if we regard the globally |2
AdS; as the state with the lowest Virasoro eigenvalues. a>|>(|2G)1’3>G. (A13)
Then, the black hole mass is given hy\°=IM +c/24,
whereM is the mass measured from the RR ground state
zero-mass black hole Thus, Cardy’'s formula S
=47-r\/cLO“S/6 is not the same aSgy due to the additive
constant. In order to neglect the constant, one again must The central charge of AdSound in the Hamiltonian for-
requirelM >c. malism [4] has been reproduced by various authors. See
One can also rewrite the condition & 1/1. This condi- Refs. [28] in the Chern-Simons formalism and Refs.
tion is actually too strong for D1/D5 systef80] since this [13,34,33 in the framework of AdS/CFT correspondence
implies N>Q;Qs (c=6Q,Qs andIM =N). The effective [8-10]. It would be interesting to obtain the central charge
string description of D1/D5 is valid even wheé~QQs; using the AdS/CFT correspondence. One possible approach
this is the region where multiply wound strings dominate theis a boundary stress tensor proposal by Balasubramanian and
entropy. Kraus[34].
(3) Back reaction of the emitted radiation. The standard Their starting point is the “quasilocal stress tensor” pro-
treatment of black hole radiation neglects the back reactioposal by Brown and York36]. In order to obtain a definition
of the radiation on the black hole. This is not possible if theof the mass, they proposed a tensor defined on the boundary
emission changes the Hawking temperature by an amoumif a given spacetime:
comparable to the temperatyr&l]. Thus, the heat capacity

C=|9E/JT| has to satisfy Tab_ 2 S (B1)
==
Cc>1. (A8) V=Y O%ab

APPENDIX B: THE CENTRAL CHARGE FROM
BOUNDARY STRESS TENSOR

wherey,,, is the boundary metric ana,b=t, ¢. The bound-
ary metric is defined by writing the metric in an ADM-like
decomposition:

By the first law, this can be written d3dS/dT|>1; the
entropy of the hole within the given thermal energy interval
should be large. Thus,

— N2 2 aqob
(.>G. (A9) ds?=N2dr?+ y,,dx2dx°. (B2)
. . The resulting stress tensor typically diverges. In order to ob-
Conversely, the thermodynamics will only break down Wherltain a finite stress tensor, they propose a subtraction by em-

the temperature is so low th&t~1. This happens at a tem- |, yin - o ,
g a boundary with the same intrinsic geomeftyy in
peratureT~G/I?~1/(Ic). In order for the black hole to be ¢ o reference spacetime.

able to radiate at such low temperature, the mass gap for the |, iqht of AdS/CFT correspondence. Balasubramanian
theory should be of ordeiM ~G/I? [32]. Thisis avery long 4.4 Krgus have interpreted E(dgl) as
length scale; for D1/D5 system, this mass gap comes from

multiply wound strings. 2 5S
(4) Fluctuation of the geometry. In order to neglect the (Tahy = — eﬁ, (B3)
fluctuation of the black hole geometry, V=7 9%ab
re>re, (A10) where(T2) is the expectation value of the CFT stress ten-

sor. Then, the divergences which appear are simply the stan-
wherer .= 1/M is the Compton wavelength of the black hole. dard ultraviolet divergences of a quantum field theory and
This implies may be removed by adding local counterterms to the action
which depend only on the boundary CF9]. On the other
r3>GI2 (A11)  hand, the stress tensor of a two-dimensional CFT has a trace
anomaly
If we recover#, G has a dimension of (mass). So the
Planck mass should not beG.Aince this does not havefa T(CFN_ _ E(Z)R

It is impossible to form a mass scale franand# alone, so (B4)
[%2/(G1%)]Y® should be the Planck mass. If either>1 or
r,>G, then this condition implies another. wherec is the central charge arfd'R is the two-dimensional
In order for all expansions to be val[@], Ricci scalar. Thus, one can reproduce the central charge us-
ing this prescription.
r.>1>G. (A12) However, in our case, we do not know the underlying

boundary CFT so that it is not clear how to choose the coun-
For the Schwarzschild black hole, the conditigBsand(4)  terterm action. In particular, we do not know what the con-

both implyr, > \/G. formal scalar corresponds to in CFT language.

Since we have two basic length scalesnd G, one can One could go back to the original Brown-York prescrip-
form a variety of length scald83]. The length scales that tion and try to find a suitable reference action and a reference
appeared in the above discussion are related by spacetime. However, the prescription has drawbacks: it is not
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always possible to find an embedding and even if it is, suclthe MZ solution, the mass is finite and is the same as the one
an embedding may not be unique. Moreover, it is not cleabbtained in the Hamiltonian formalism. However, the mass
how to choose the reference action for gravity with scalais not conformally invariant.

fields. As far as we are aware, there are three different pre- (3) Bose-Lohiya[41]: this prescription is also motivated

scriptions for the reference acti¢87-41.

by the HH proposal, but mass is conformally invariant. For

(1) CCM-CI[39]: they have proposed the reference actionthe Mz solution, the mass is finite, but does not agree with
from the requirement that mass is conformally invariant.the Hamiltonian formalism.

However, the mass does not converge for the MZ solution if

In conclusion, none of the prescriptions seem to be well-

one chooses the zero-mass black hole as the reference spaggfined and can be used for our purposes. However, it would

time. (We always choose the zero-mass black hole as th

reference spacetime in this discussjon.
(2) CCM-HH [39]: this prescription is motivated by the
Hawking-Horowitz (HH) proposal[42] to define mass. For

Be interesting to study along this line further; this would give
us a well-defined prescription of mass for gravity with scalar
fields.
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