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Fock representations fromU„1… holonomy algebras

Madhavan Varadarajan*
Raman Research Institute, Bangalore 560 080, India

~Received 29 November 1999; published 4 April 2000!

We examine the quantization ofU(1) holonomy algebras using the AbelianC* algebra based techniques
which form the mathematical underpinnings of current efforts to construct loop quantum gravity. In particular,
we clarify the role of ‘‘smeared loops’’ and of Poincare´ invariance in the construction of Fock representations
of these algebras. This enables us to critically reexamine early pioneering efforts to construct Fock space
representations of linearized gravity and free Maxwell theory from holonomy algebras through an application
of the ~then current! techniques of loop quantum gravity.

PACS number~s!: 04.60.Ds, 03.65.Fd
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I. INTRODUCTION

In the early 1990s@1–3# linearized gravity in terms of
connection variables and free Maxwell theory on flat spa
time were treated as useful toy models on which to test te
niques being developed for loop quantum gravity@4#. Sig-
nificant progress has been made in the field of loop quan
gravity since then@5#. Hence, it is useful to reexamine the
systems using current techniques to clarify certain quest
which arise in the context of those pioneering but necessa
nonrigorous efforts.

Two important~and related! questions are the following.
~I! How did similar techniques for the quantization

general relativity and for its linearization about flat spa
result in a non-Fock representation for the~kinematic sector!
of the former and a Fock representation for the latter?
particular, what is the role of Poincare´ invariance in obtain-
ing the Fock representation?~This last point was a puzzle t
the authors themselves@1#.!

~II ! What is the role of ‘‘smeared’’ loops in@1# in obtain-
ing a Fock representation?

In this work, we use the AbelianC* algebra techniques
@6,8#, which constitute the mathematically rigorous fram
work of the loop quantum gravity program today, to inves
gate~I! and~II ! above. It is also our aim to clarify the role o
the different mathematical structures in the quantization p
cedure which determines whether a Fock or non-Fock re
sentation results. Although we restrict attention toU(1)
theory on a flat spacetime, we believe that our results sho
be of some relevance to the case of linearized gravity.

This work is motivated by the following question in loo
quantum gravity: how do Fock space gravitons on flat spa
time arise from the non-Fock structure of the Hilbert spa
which serves as the kinematical arena for loop quan
gravity? Admittedly, the answer to this question must aw
the construction of the full physical state space~i.e., the ker-
nel of all the constraints! of quantum gravity. Nevertheless
this work may illuminate some facets of the issues involv

The starting point for our analysis is the Abelian Poiss
brackets algebra of U~1! holonomies around loops on a sp
tial slice. This algebra is completed to the AbelianC* alge-
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bra, H̄Ā of @6,8#. Hilbert space representations ofH̄Ā are
determined by continuous positive linear functions~PLF’s!

on H̄Ā. We review the construction ofH̄Ā and of the PLF
introduced in@6,8# ~which we shall call the Haar PLF! in
Sec. II. The resulting representation is a non-Fock repres
tation in which the electric flux is quantized@7#.

In Sec. III we construct an AbelianC* algebraH̄Ār ,
based on the Poisson bracket algebra of holonomies aro
the ‘‘Gaussian smeared ’’ loops of@1#.1 Next, we derive the
key result of this work, namely that there exists a naturalC*
algebraic isomorphism,I r :H̄Ā→H̄Ār with the property that
I r(HA)5HAr .

The standard flat spacetime Fock vacuum expecta
value restricts to a positive linear function onHAr . We are
unable to show the continuity or lack thereof, of this Fo
PLF on HAr . Nevertheless, since the Gel’fand-Naimar
Segal~GNS! construction needs only a * algebra~as opposed
to a C* algebra!, we can use the Fock PLF to construct
representation of the * algebraHAr . In Sec. IV we show
that this representation is indeed the standard Fock repre
tation even thoughHAr is a proper subalgebra of the sta
dard Weyl algebra forU(1) theory.

Using the map,I r , we can define a Haar PLF onH̄Ār .
We construct the resulting representation in Sec. V A.
nally, we useI r to define a Fock PLF onHA. The resulting
representation is, in a precise sense, an approximation to
standard Fock representation. We study it in Sec. V B.

Section VI is devoted to a discussion of our results in
context of the questions~I! and~II !. Some useful lemmas ar
proved in the Appendix.

In this work the spacetime of interest is flatR4 and we use
global Cartesian coordinates (t,xi), i 51,2,3. The spatial
slice of interest is the initialt50 slice and all calculations
are done in the spatial Cartesian coordinate chart (xi). We
use units in which both the velocity of light and Planck
constant\ are equal to 1. We freely raise and lower indic
with the flat spatial metric. The Poisson bracket between
U(1) connectionAa(xW ),a51,2,3 and its conjugate electri

1r is a small length which characterises the width of the Gauss
smearing function in@1#.
©2000 The American Physical Society01-1
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field Eb(yW ) is $Aa(xW ),Eb(yW )%5eda
bd(xW ,yW ) wheree is a con-

stant with units of electric charge.

II. REVIEW OF THE CONSTRUCTION
AND REPRESENTATION THEORY OF H̄Ā

We quickly review the relevant contents of@6,8#. We re-
fer the reader to@6,8#, especially Appendix A2 of@8# for
details.

The mathematical structures of interest are as follows
A is the space of smoothU(1) connections on the trivia

U(1) bundle onR3.2 We restrict attention to connection
Aa(x) whose Cartesian components are functions of a ra
decrease at infinity.

Lx0
is the space of unparametrized, oriented, piecew

analytic loops3 on R3 with base pointxW0. Composition of a
loop a with a loop b is denoted bya+b. Given a loopa
PLx0

, the holonomy of Aa(x) around a is Ha(A)

ªexp(iraAadxa).
ã is the holonomy equivalence class~hoop class! of a,

i.e., a,b define the same hoop ifHa(A)5Hb(A) for every
Aa(x)PA. HG is the group generated by all hoopsã, where
group multiplication is hoop composition, i.e.,ã+b̃ªa+b̃.
HA is the Abelian Poisson bracket algebra ofU(1) holono-
mies.

FLx0
is the free algebra generated by elements ofLx0

,

with product lawabªa+b. With this product, all elements
of FLx0

are expressible as complex linear combinations

elements ofLx0
.

K is a two-sided ideal ofFLx0
, such that

(
i 51

N

aia iPK if (
i 51

N

aiHa i
~A!50 for everyAa~x!PA,

~1!

whereai are complex numbers.
FLx0

is quotiented byK to give the algebraFLx0
/K. The

K equivalence class ofa is denoted by@a#. As abstract
algebras,HA andFLx0

/K are isomorphic.

S (
i 51

N

ai@a i # D *
ª(

i 51

N

ai* @a i
21# ~2!

defines a * relation onHA.

UU(
i 51

N

ai@a i #UUª sup
APA

U(
i 51

N

aiHa i
~A!U ~3!

2Thus a minor change of notation from A2 of@8# is that we denote
A0 of that reference byA.

3This is in contrast to theC1 loops of A2 of @8#.
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defines a norm onHA. H̄Ā is the AbelianC* algebra ob-
tained by defining * onHA and completing the resulting *
algebra with respect touu uu.

D is the spectrum ofH̄Ā. D is also denoted byA/Ḡ
where G denotes theU(1) gauge group and is a suitab
completion of the space of connections of modulo gau
A/G. From Gel’fand theory,D is the space of continuous
linear, multiplicative * homeomorphismsh, from H̄Ā to the
(C* algebra of! complex numbersC. From @8# the elements
of D are also in 1-1 correspondence with homeomorphis
from HG to U(1).

Given XPH̄Ā, h(X) is a complex function onD. D is
endowed with the weakest topology in whichh(X) for all
XPH̄Ā are continuous functions onD. In this topology,D
is a compact, Hausdorff space and the functionsh(@a#),a
PLx0

are dense in theC* algebraC(D), of continuous func-

tions onD. Further,C(D) is isomorphic toH̄Ā. Every con-
tinuous cyclic representation ofH̄Ā is in 1-1 correspondence
with a continuous positive linear functional~PLF! on H̄Ā.
Since H̄Ā>C(D), every continuous PLF so defined o
C(D) is in correspondence, by the Riesz lemma, with so
regular measuredm on D and Ĥa is represented onc
PL2(D,dm) as a unitary operator through (Ĥac)(h)
5h(@a#)c(h).

In particular, the continuous Haar PLF@8#

G~a!51 if ã5õ, 50 otherwise, ~4!

~whereo is the trivial loop!, corresponds to the Haar measu
on D.

D5A/Ḡ can also be constructed as the projective lim
space@9# of certain finite dimensional spaces. Each of the
spaces is isomorphic ton copies ofU(1) and is labeled byn
strongly independent hoops. Recall from@8# that ã i i
51 . . .n are strongly independent hoops ifa iPLx0

are

strongly independent loops;a i , i 51 . . .n are strongly in-
dependent loops if eacha i has at least one segment whic
intersectsa j Þ i at most at a finite number of points. The Ha
measure onD is the projective limit measure of the Haa
measures on each of the finite dimensional spaces.4 Then the
considerations of@10# show that the electric flux*SEadsa
through a surfaceS can be realized as an essentially se
adjoint operator on the dense domain of cylindric
functions5 as

4Note that the proof of continuity of the Haar PLF in@8# is in-
complete in that it applies only if the loopsa j of A.7 of @8# are
holonomically independent. Nevertheless, if as in this work,
restrict attention to piecewise analytic loops, continuity of the H
PLF can immediately be inferred from its definition through t
Haar measure.

5Cylindrical functions on D are of the form c$[a i ] %

ªc(h(@a1#) . . . h(@an#)), wherea i , i 51 . . .n, are a finite num-
ber of strongly indendent loops andc is a complex function on
U(1)n.
1-2
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E
S
Êadsac$[a i ] %

5e(
i

N~S,a i !h~@a i # !
]c$[a i ] %

]h~@a i # !
, ~5!

where N(S,a i) is the number of intersections betweena i
andS.

III. HĀr AND THE ISOMORPHISM I r

In Sec. III A we recall the definition of ‘‘smeared’’ loop
and their holonomies from@1# and construct the ‘‘smeared’
loop related structuresã r , Kr , HAr , H̄Ār , andD r . In Sec.
III B, using the Appendix, we show that an isomorphis
exists between the structuresã, K, HA, H̄Ā,D, and their
smeared versions.

A. The construction of H̄Ār

In the notation of@1#,

Ha~A!5expi E
R3

Xg
a~xW !Aa~xW !d3x, ~6!

Xg
a~xW !ª R

g
dsd3~gW ~s!,xW !ġa, ~7!

wheres is a parametrization of the loopg, sP@0,2p#. Xg
a(xW )

is called the form factor ofg. Its Fourier transform is

Xg
a~kW !ª

1

2p3/2ER3
d3xXg

a~xW !e2 ikW•xW

5
1

2p3/2 Rg
dsġa~s!e2 ikW•gW (s). ~8!

The Gaussian smeared form factor@1# is defined as

Xg(r )

a ~xW !ªE
R3

d3y fr~yW2xW !Xg
a~yW !5 R

g
ds fr~gW ~s!2xW !ġa~s!

~9!

where

f r~xW !5
1

2p3/2r 3
e2x2/2r 2

xªuxW u ~10!

approximates the Diracd function for smallr. The Fourier
transform of the smeared form factor is

Xg(r )

a ~kW !5e2k2r 2/2Xg
a~kW !, ~11!

and the smeared holonomy is defined as

Hg(r )
~A!5expi E

R3
Xg(r )

a ~xW !Aa~xW !d3x

5expi E
R3

Xg(r )

a ~2kW !Aa~kW !d3k, ~12!
10400
whereAa(kW ) is the Fourier transform ofAa(xW ).
We defineã r , Kr , HAr , H̄Ār ,D r as follows.ã r is the

r-hoop class ofa, i.e., a,b define the samer hoop if
Ha(r )

(A)5Hb(r )
(A) for everyAa(x)PA. HGr is the group

generated by allr hoopsã r where group multiplication is the
r-hoop composition, i.e.,

ã r+b̃ rª~a+b̃ !r . ~13!

Note that the above definition is consistent because, from
~12! and the definition ofr-hoop equivalence, it follows tha

Ha(r )
~A!Hb(r )

~A!5H (a•b)(r )
~A!. ~14!

Note that from Eq.~13!, it follows that the identity elemen

of HGr is õr and that (ã r)
215a21

r̃ .
HAr is the Abelian Poissons bracket algebra of ther ho-

lonomies,Ha(r )
(A), AaPA, aPLx0

.
Recall that with the product law defined in Sec. II, a

elements ofFLx0
are expressible as complex linear comb

nations of elements ofLx0
. We define the two-sided ideal o

KrPFLx0
, through

(
i 51

N

aia iPKr if (
i 51

N

aiHa i (r )
~A!50 for everyAa~x!PA,

~15!

whereai are complex numbers. TheKr equivalence class o
a is denoted by@a# r . It can be seen that, as abstract alg
bras,HAr andFLx0

/Kr are isomorphic.

It can be checked that the relation *r defined onHAr by

S (
i 51

N

ai@a i # r D * r

ª(
i 51

N

ai* @a i
21# r ~16!

is a * relation. Note that from Eq.~12!, the complex conju-
gate of Ha(r )

(A) is Ha21
(r )

(A) and hence the abstract *r

relation just encodes the operation of complex conjugat
on the algebraHAr .

Next we define the normuu uur as

UU(
i 51

N

ai@a i # rUU
r

ª sup
APA

U(
i 51

N

aiHa i (r )
~A!U. ~17!

It is easily verified thatuu uur is indeed a norm on the * alge
braHAr with * relation defined by Eq.~16!. Completion of
HAr with respect touu uur gives the AbelianC* algebra
H̄Ār .

Next, we characterize the spectrumD r of H̄Ār as the
space of all homomorphisms fromHGr to U(1).

Let hPD r . Thush is a linear, multiplicative, continuous
* homorphism fromH̄Ār to C:

⇒h~@a# r !h~@a21# r !5h~@o# r !, ~18!
1-3
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choosing a5o, ⇒h~@o# r !
25h~@o# r !⇒h~@o# r !51,

~19!

⇒h~@a21# r !5
1

h~@a# r !
5h* ~@a# r !. ~20!

Equation ~20! implies that uh(@a# r)u51 and this, coupled
with the fact thatHGr is commutative, shows that everyh
PD r defines a homomorphism fromHGr to U(1).

Conversely, leth be a homomorphism fromHGr to
U(1). Its action can be extended by linearity to elements
HAr so that h(( i 51

N ai@a i # r)ª( i 51
N aih(@a i # r).

6 It is also
easy to see thath(@a21# r)5h* (@a# r). These properties an
the fact thath is a homomorphism fromHGr to U(1),C,
imply that h is a linear, multiplicative, * homomorphism
from HAr to C.

Finally, we show thath extends to a continuous homo
morphism onH̄Ār . From @6# it follows that for a iPLx0

, i

51 . . .n, there exist strongly independentb j , j 51 . . .m
such that eacha i is the composition of some of the$b j%.
From this fact and Lemma 2 of the Appendix, it can
shown that, for a given( i 51

N ai@a i # rPHAr and anyd.0,
there existsAa

(ai ,d,r )PA such that

U(
i 51

N

ai$h~@a i # r !2Ha i (r )
~A(ai ,d,r )!%U,d. ~21!

From Eq.~21!, it is straightforward to show that

U(
i 51

N

aih~@a i # r !U< sup
APA

U(
i 51

N

aiHa i (r )
~A!U

5UU(
i 51

N

ai@a i # rUU
r

. ~22!

SinceHAr is dense inH̄Ār , Eq. ~22! implies thath can be
extended to a continuous~linear, multiplicative! homorphism
from H̄Ār to C.

Thus D r can be identified with the set of all homomo
phisms fromHGr to U(1).

B. The isomorphism I r

We show that~i! K5Kr : Let

(
i 51

N

aiHa i
~A!50 for everyAa~x!PA. ~23!

From Lemma 3 of the Appendix, givenAaPA, there exists
Aa(r )PA such that

6h can be defined on@a# r becauseKr equivalence subsume
r-hoop equivalence.
10400
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(
i 51

N

aiHa i (r )
~A!5(

i 51

N

aiHa i
~A(r )!. ~24!

Equations~23! and ~24! imply that K,Kr .
Let

(
i 51

N

aiHa i (r )
~A!50 for everyAa~x!PA. ~25!

⇒ Given Aa ,BaPA,

U(
i 51

N

aiHa i
~A!U5U(

i 51

N

aiHa i
~A!2(

i 51

N

aiHa i (r )
~B!U.

~26!

Choose,Ba5Aa
e where Aa

e is defined in Lemma 1 of the
Appendix.

Then u( i 51
N aiHa i

(A)u<( i 51
N uai ue for every e.0.

⇒( i 51
N aiHa i

(A)50 and hence,Kr,K. Thus K5Kr , @a#

5@a# r and ã5ã r .
~ii ! uu( i 51

N ai@a i #uu5uu( i 51
N ai@a i # r uur : Let

UU(
i 51

N

ai@a i # rUU
r

5cr .

Then cr>u( i 51
N aiHa i (r )

(A)u for every AaPA. Further, for

every t.0 there exists (t)AaPA such that cr

2u( i 51
N aiHa i (r )

( (t)A)u<t. Then, from Lemma 3 of the Ap-

pendix, there exists(t)Aa(r )PA such that

0<cr2(
i 51

N

aiHa i
~ (t)A(r )!<t, ~27!

⇒supAPAU(
i 51

N

aiHa i
~A!U>cr⇒UU(

i 51

N

ai@a i #UU
>uu(

i 51

N

ai@a i # r uur . ~28!

Let uu( i 51
N ai@a i #uu5c. Then for everyt.0 there exists

(t/2)AaPA such that

c2U(
i 51

N

aiHa i
~ (t/2)A!U< t

2
. ~29!

From Lemma 1, there exists(t/2)Aa
ePA such that

uHa i (r )
~ (t/2)Ae!2Ha i

~ (t/2)A!u<e,

⇒U(
i 51

N

ai@Ha i (r )
~ (t/2)Ae!2Ha i

~ (t/2)A!#U<(
i 51

N

uai ue.

~30!

Choose 0,e,t/2( i 51
N uai u. From Eqs.~29! and ~30! it fol-

lows that, for everyt.0,
1-4
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c2U(
i 51

N

aiHa i (r )
~ (t/2)Ae!U,t, ~31!

⇒c< sup
APA

U(
i 51

N

aiHa i (r )
~A!U

⇒UU(
i 51

N

ai@a i #UU<UU(
i 51

N

ai@a i # rUU
r

.

~32!

Thus, for any finiteN, uu( i 51
N ai@a i #uu5uu( i 51

N ai@a i # r uur .
From ~i! and ~ii ! it follows that the structuresKr , @a r #,

ã r , HGr , * r , HAr , H̄Ār ,D r are isomorphic toK, @a#, ã,
HG, *, HA, H̄Ā,D.

Thus aC* isomorphismI r :H̄Ā→H̄Ār exists such that

I rS (
i 51

N

ai@a i # D 5(
i 51

N

ai@a i # r . ~33!

I r defines a natural 1-1 map fromD to D r ~which we shall
also call I r). Given the * isomorphismhPD, from H̄Ā to
C, its image ishrPD r where

hrS (
i 51

N

ai@a i # r DªhS (
i 51

N

ai@a i # r D . ~34!

Note that if hr is defined by some smooth, nonflatAa
PA then it is not true that h is associated with~the gauge
equivalence class of! the same connection.

IV. FOCK REPRESENTATION FROM HĀr

The standard Fock space vacuum expectation value
stricted toHAr defines the Fock PLF onHAr as

GFS (
i 51

N

ai@a i # r Dª(
i 51

N

aiexp2S E d3k

k
uXa i (r )

a ~kW !u2D .

~35!

SinceHAr is a proper subalgebra of the standard W
algebra forU(1) theory, it is not clear that its quantizatio
~through the GNS construction based on the Fock PLF! re-
produces the full Fock space. We prove that the full Fo
space is indeed obtained.

Let the GNS Hilbert space~based onGF) beH. Let D be
the linear subspace ofH spanned by elements of the for
Ĥa(r )

V, aPLx0
whereV is the GNS vacuum. It can be see

that D is dense inH. D is naturally embedded in the Foc
space,F, through the mapU:D→F defined by

U~V!5u0& andUS (
i 51

N

aiĤa i (r )
V D

5(
i 51

N

aiexpi E
R3

Xa i (r )

a ~xW !Âa~xW !d3xu0&. ~36!
10400
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HereÂa is the standard Fock space operator valued distri
tion at t50

Âa~xW !5
1

2p3/2
E d3k

Ak
@eikW•xWâa~kW !1e2 ikW•xWâa

†~kW !#, ~37!

where

âa~kW !ka50, @ âa~kW !,âb
†~ lW !#5dabd~kW , lW !. ~38!

By construction,U is a unitary map and can be unique
extended toH so that it embedsH in F. We show that
Cauchy limits of states inU(D) span a dense set inF—this
suffices to show that the entire Fock space is indeed
tained, i.e., thatU(H)5F.

We define the ‘‘occupation number’’ states

uf,p&ªE d3k1 . . . d3kpfa1 . . . ap~kW1 . . . kW p!

3âa1

† ~kW1! . . . âap

† ~kW p!u0&. ~39!

fa1 . . . ap(kW1 . . . kW p) ~with p a positive integer! is such
that ~a! *d3ki ufa1 . . . ap(kW1 , . . . ,kW i , . . . ,kW p)u2,` and
fa1 . . . ap(kW1 . . . kW p) falls of faster than any inverse power o
ki as ki→`, kW j Þ i fixed, ~b! fa1 . . . ai . . . ap(kW1 , . . . ,kW i ,
. . . ,kW p)(ki)ai

50, i.e., it is transverse, and~c! it is symmet-

ric under interchange of (ai ,kW i) with (aj ,kW j ) for all i , j
51 . . .p. uf,p& for all p together withu0&, span a dense se
D0PF.

Given two vectorsxW ,vW , define the operator

ÔxW ,vWª
i

2p3/2
E d3k

A2k
eikW•xWe2k2r 2/2~vW 3kW !a@ âa~kW !1âa

†~2kW !#.

~40!

As argued in the Appendix, states of the formuc$xW i ,vW i %
&

ª) i 51
p Ô(xW i ,vW i )

u0&, p51,2 . . . together withu0& spanD0.

Our proof thatc$xW i ,vW i %
PU(H) is as follows.~i! Note that

c$xW i ,vW i %
PD0 ~ii ! Let g$m,xW ,nW % be a circular loop of radiusem

ª1/2m (m is a positive integer!, centered atxW and let its
plane have unit normalnW .7 The image ofĤg

(r )
$m,xW ,nW % on U(D)

is exp@i*X
g

(r)
$m,xW,nW%

a
(yW)Âa(yW)d3y#. Define

ÔxW ,nW ,mª

ei *X
g(r )

$m,xW ,nW %

a
(yW )Âa(yW )d3y21

ipem
2

. ~41!

7Although g$m,xW ,nW % is not in Lx0
, the loop formed by joining

g$m,xW ,nW % to the base pointx0 and retracing, is. We shall continue t

denote this loop, which represents the same hoop, byg$m,xW ,nW %.
1-5
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The formal limit of ÔxW ,nW ,m asm→` is ÔxW ,nW . We show be-
low thatÔxW ,nW ,muc&, uc&PD0,8 form a Cauchy sequence wit
limit ÔxW ,nW uc&. Then, choosinguc&5u0&, we see thatÔxW ,nW u0&
is in the completion ofU(D).

~iii ! From ~i! above,ÔxW ,nW u0&PD0. We can repeat the ar
gument in~ii ! above to conclude thatÔxW2 ,nW 2

ÔxW1 ,nW 1
u0& is ob-

tained as the Cauchy limit of the statesÔxW2 ,nW 2 ,mÔxW1 ,nW 1
u0&.

Iterating this argument we see thatuc$xW i ,nW i %
&, unW i u51 is in the

completion ofU(D). Finally, setvW iªv inW i , wherev i are real
numbers. Then it follows thatuc$xW i ,vW i %

&5() i 51
p v i)uc$xW i ,nW i %

&
and hence thatuc$xW i ,vW i %

&PU(H).

Thus, it remains to show@see ~ii ! above# that givenc

PD0 , ÔxW ,nW as defined in Eq.~40! and ÔxW ,nW ,m as defined in
Eq. ~41!,

lim
m→`

uuÔxW ,nW2ÔxW ,nW ,muc&uu50. ~42!

Proof: Let

D̂ªE X
g

(r )
$m,xW ,nW %

a
~yW !Âa~yW !d3y2pem

2 Ô(xW ,nW ) . ~43!

Thus

ÔxW ,nW ,m5
eipem

2 ÔxW ,nW 1 iD̂21

ipem
2

. ~44!

Since botheipem
2 ÔxW ,nW andeiD̂ are commuting elements of th

standard Weyl algebra,

ÔxW ,nW ,m5
eipem

2 ÔxW ,nWeiD̂21

ipem
2

~45!

⇒uuÔxW ,nW2ÔxW ,nW ,muc&uu

5UUeipem
2 ÔxW ,nW~eiD̂21!

ipem
2

uc&

1S eipem
2 ÔxW ,nW21

ipem
2

2ÔxW ,nW D uc&UU
<UUS eipem

2 ÔxW ,nW21

ipem
2

2ÔxW ,nW D uc&UU
1uu

eipem
2 ÔxW ,nW~eiD̂21!

ipem
2

uc&uu. ~46!

8Note that sinceÔxW ,nW ,m are bounded operators defined on the e

tire Fock space,ÔxW ,nW ,m are well defined onD0.
10400
From Lemma 2 of the Appendix,ÔxW ,nW is a densely defined
symmetric operator onD0 and admits self-adjoint exten
sions. Hence, from@11#, the first term in Eq.~46! vanishes in

the em→0 limit. Further, sinceeipem
2 ÔxW ,nW is a unitary opera-

tor, we have

UU eipem
2 ÔxW ,nW~eiD̂21!

ipem
2

uc&UU5UU ~eiD̂21!

ipem
2

uc&UU . ~47!

But

UU~eiD̂21!

ipem
2

uc&UU2

52S K cU ~eiD̂21!

p2em
4 UcL

1K cU ~e2 iD̂21!

p2em
4 UcL D . ~48!

From Lemma 3 and Eq.~48!, uu(eiD̂21)/ipem
2 uc&uu→0 as

em→0 and then Eq.~46! implies Eq.~42!.
Thus we have shown above that the GNS representa

of HAr on the GNS Hilbert spaceH, is unitarily equivalent
to the standard Fock representation onF5L2(S 8,dmG) @S 8
denotes the appropriate space of tempered distributions
mG is the standard Gaussian measure with covaria
1
2 (2¹2)21/2 @14## via the unitary mapU.

The action of the smeared electric-field operator,Ê( fW)
ª*d3x fa(xW )Êa(xW ), on cPC F,L2(S 8,dmG) is written in
the standard way@14# as

Ê~ fW !c5eE d3xS 2 i f a~xW !
d

dAa~xW !

1 i @~2¹2!1/2f a~xW !#Aa~xW ! Dc. ~49!

Here f a(xW ) is real, divergence free, smooth, and of rap
decrease, andC F,L2(S 8,dmG) is the standard dense do
main of cylindrical functions appropriate to Fock space. T
smeared electric-field operator onH is defined as the unitary
image ofÊ( fW) by U21, i.e., for cPU21(CF),H

Ê~ fW !c5U21eE d3xS 2 i f a~xW !
d

dAa~xW !

1 i @~2¹2!
1
2f a#~xW !Aa~xW ! DUc. ~50!

With this action,Ê( fW) is densely defined on the dense d
main U21(CF),H, and just like its unitary image onCF ,
admits a unique self-adjoint extension.

V. INDUCED REPRESENTATIONS THROUGH I r

It can be verified thatI r is a topological homorphism from
D to D r ~whereD andD r are equipped with their Gel’fand
topologies!. Hence, I r defines a measurable isomorphis

-

1-6
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I r :B→Br whereB andBr are the Borel sigma algebras a
sociated withD and D r , respectively. Any regular Bore
measurem on D induces a regular Borel measurem r on D r ,
with m rªmI r

21 . It follows that I r defines a unitary mapUr

from L2(D,dm) to L2(D r ,dm r).
Ur can be explicitly defined through its action on th

dense setCPL2(D,dm), of cylindrical functions~cylindrical
functions in the context ofH̄Ā have been defined in Sec. II!.
Denote the dense set of cylindrical functions inL2(D r ,dm r)
by Cr .9 Ur mapsC to Cr through

Ur~c$[a i ] %
!5c$[a i ] r %

. ~51!

It also follows that

UrĤaUr
215Ĥa(r )

. ~52!

Thus I r induces a representation ofH̄Ār from a representa
tion of H̄Ā. In Sec. V A, we induce a Haar-like represent
tion of H̄Ār from the Haar representation ofH̄Ā.

Since the image ofI r restricted toHA is HAr , I r ~or
I r

21) can also be used to induce representations ofHA from
those ofHAr and vice versa. In Sec. V B, we induce a Foc
like representation ofHA from the Fock representation o
HAr . The elements ofHAr define a dense subspace ofH
through the GNS construction and a mapUr is defined
through Eqs.~51! and ~52!. Ur

21 induces a Fock-like repre
sentation ofHA.

A. Haar representation of H̄Ār

We denote both the Haar measure onD as well as its
image onD r by dmH . The induced PLF~corresponding to
dmH) on H̄Ār is defined by

G~a!51 if ã r5õr50 otherwise. ~53!

From Eqs.~51! and~52! it follows that Ĥa(r )
are represented

by unitary operators oncPL2(D r ,dmH) by

~Ĥa(r )
c!~h!5h~@a# r !c~h!, hPD r . ~54!

We construct electric-field operators onL2(D r ,dmH) as
unitary images of appropriate electric-field operators
L2(D ,dmH) as follows. Define the classical Gaussi
smeared electric field as

Er
a~xW !ªE d3y fr~yW2xW !Ea~yW !, ~55!

where f r has been defined in Sec. III. Givenc$[a i ] %

PC,L2(D,dmH) it can be checked that

9Cylindrical functions are of the form c$[a i ] r %
(h):

5c„h(@a1# r) . . . h(@an# r)…, for a iPLx0
,i 51 . . .n, hPD r , and

they spanCr .
10400
-

-

n

@Êr
a~xW !c$[a i ] %

#~h!5e(
i 51

n

Xa i (r )

a ~xW !h~@a i # !
]c$[a i ] %

]h~@a i # !
.

~56!

The methods of@10# can be used to show thatÊr
a(xW ) is

essentially self-adjoint onC. Note that Eq.~56! implies that

@Êr
a~xW !,Ĥa#5eXa(r )

a ~xW !Ĥa . ~57!

The unitary image of Eq.~57! is

@UrÊr
a~xW !Ur

21 ,Ĥa(r )
#5eXa(r )

a ~xW !Ĥa(r )
. ~58!

Denote the classical counterpart ofUrÊr
a(xW )Ur

21 by Fa(EW ).
Then Eq.~58! provides a quantum representation of the cl
sical Poisson bracket,

$Fa~EW !,Ha(r )
~A!%52 ieXa(r )

a ~xW !Ha(r )
~A!. ~59!

Note that$Ea(xW ),Ha(r )
(A)%52 ieXa(r )

a (xW )Ha(r )
(A). Hence,

we can consistently identifyFa(EW ) with Ea(xW ). Thus,
UrÊr

a(xW )Ur
215Êa(xW ) and from Eq.~56!,

@Êa~xW !c$[a i ] r %
#~h!5e(

i 51

n

Xa i (r )

a ~xW !h~@a i # r !
]c$[a i ] r %

~h!

]h~@a i # r !
.

~60!

Since Ur is unitary, Êa(xW ) is essentially self-adjoint on
C r,L2(D r ,dmH).

To summarize: The induced Haar representation ofH̄Ār
provides a quantum representation of the classical Pois
bracket algebra of smeared holonomiesHa(r )

(A) and~diver-

gence free! electric fieldEa(xW ). Ĥar
are represented by uni

tary operators through Eq.~54! and theunsmearedelectric-
field operator,Êa(xW ), is represented through Eq.~60! as an
essentially self-adjoint operator on the dense domain of
lindrical functions,C r,L2(D r ,dmH). Note thatÊa(xW ) is a
genuine operator as opposed to an operator valued dist
tion.

B. Fock representation ofHA
We denote the Fock PLF onHAr as well as its image on

HA by GF . Note that the induced PLF onHA is defined by

GFS (
i 51

N

ai@a i # Dª(
i 51

N

aiexp2S E d3k

k
uXa i (r )

a ~kW !u2D .

~61!

SinceĤa(r )
are represented as unitary operators onH, it

follows that

ĤaªUr
21Ĥa(r )

Ur ~62!

are represented as unitary operators onUr
21(H).
1-7
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It remains to construct, following the strategy of Sec. V
electric-field operators onUr

21(H) as unitary images of the
appropriate electric-field operators onH. On U21(CF),H,

@Ê~ fW !,Ĥa(r )
#5eE d3x fa~xW !Xa(r )

a ~xW !Ĥa(r )
, ~63!

⇒@Ur
21Ê~ fW !Ur ,Ĥa#

5eE d3x fa~xW !Xa(r )

a ~xW !Ĥa .

~64!

We define the classical function

Er~ fW !ªE d3x fa~xW !Er
a~xW !, ~65!

whereEr
a(xW ) is defined by Eq.~55!. Since

$Er~ fW !,Ha~A!%52 ieE d3x fa~xW !Xa(r )

a ~xW !Ha~A!,

~66!

we identify

Êr
a~ fW !ªUr

21Ê~ fW !Ur . ~67!

To summarize: The induced Fock representation ofHA pro-
vides a quantum representation of the classical Pois
bracket algebra of holonomiesHa(A) and ‘‘Gaussian-
smeared, smeared’’ electric fieldsEr( fW). The ‘‘unsmeared’’
holonomy operatorsĤa are represented by unitary operato
through Eq.~62! and Êr( fW) is represented as a self-adjoi
operator through Eq.~67!. Note that the Gaussian-smear
object Êr(xW ) is represented as anoperator valued distribu-
tion ~as opposed to a genuine operator! on Ur

21(H).

VI. DISCUSSION

Preliminary remarks: In this paper, representations of th
Poisson algebra ofU(1) theory were constructed in tw
steps. First, Hilbert space representations of the Abel
Poisson algebra of configuration functions~i.e., functions of
Aa) were constructed by specifying a PLF. Second, r
functions of the conjugate electric field were represented
self-adjoint operators on this Hilbert space. The Haar rep
sentation ofH̄Ā and its image onH̄Ār support a represen
tation of the electric field wherein, formally,

Êa~xW !52 i
d

dAa~xW !
. ~68!

This action is not connected with Poincare´ invariance and it
is not surprising that the resulting representations of Sec
and V A, are non-Fock representations. On the Fock re
10400
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sentation ofHAr
10 and its image onHA, Eq. ~68! is incom-

patible with the requirement of self-adjointness of t
electric-field operators. Their action necessarily contain
term dependent on the Gaussian measure@see Eq.~50!# to
ensure self-adjointness. The choice of Gaussian measu
intimately associated with the properties of th
D’Alembertian,]2/]t22¹2, and hence with Poincare´ invari-
ance.

A rephrasing of the above remarks which brings the
closer to the strategy of@1,3# is as follows. Given a repre
sentation in which~smeared or unsmeared! holonomies are
represented by multiplication by unitary operators and
electric field acts, as in Eq.~68!, purely by functional differ-
entiation, the requirement of self-adjointness of the elect
field operator determines the Hilbert space measure to be
Haar measure. The self-adjointness of electric-field opera
results in the Gaussian measure only if their action ha
contribution dependent on the Gaussian measure. Thu
obtain the standard Fock representation or the induced on
Sec. V B, the Gaussian measure and hence, Poincare´ invari-
ance, plays an essential and explicit role.

Note that this work concerns the ‘‘connection’’ represe
tation of a theory of a real U~1! connection. In contrast@1#
constructs theloop representation of a description of linea
ized gravity based on aself-dualconnection.11 Despite these
differences, there is also a certain amount of shared m
ematical structure in our work and@1#. Therefore, the delin-
eation of the structures involved in the construction of U~1!
theory as spelled out in this paper, allows us to identify
role of the key structures in@1#.

Discussion of (I) and (II): We use the notation of@1# and
@3# when discussing those papers. We first discuss~I!. In @1#
the action of the linearized metric variable in the loop rep
sentation is deduced, ultimately, from its action of the fo
2 i (d/dAa

i ) in the connection representation. The loop re
resentation then becomes an electric-field-type representa
in which the magnetic field operator acts purely by fun
tional differentiation with respect to the loop form facto
Yet a Fock representation~of the positive and negative he
licity gravitons! results in apparent contradiction to ou
claims that such a representation cannot result without u
Poincare´ invariance explicitly.

The resolution of this apparent contradiction for the po
tive helicity graviton sector seems to lie, in what appears
first sight, to be a mere mathematical nicety. In@1# the
Gaussian measure contribution to theB̂1 operator is ab-
sorbed~and hidden! in the rescaling of the wave function
Such a rescaling is permissible for finite dimensional s
tems but results in a mathematically ill-defined measure

10We remind the reader that we displayed a fairly rigorous ar
ment that the entire Fock space is obtained in such a represent
through the constructions of Sec. IV and the Appendix. We reite
our belief that the formal Eq.~A21! can be rendered mathematical
well-defined in a more careful treatment.

11Note, however, that the descripton reduces to one in terms
triplet of Abelian connections.
1-8
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the field theory in question. In spite of the fact that for mo
applications this formal treatment suffices, it is crucial
realize, in the context of~I!, that it hides the role of Poincar´
invariance in constructing the Fock representation. To ob
a well-defined~Gaussian! measure, the wave functions@Eq.
~101! of @1## need to be rescaled and a Gaussian mea

term needs to be added to the action of theB̂1—this, of
course, feeds explicit Poincare´ invariance back into the con
struction.

Note that this argument does not apply to the nega
helicity sector. There, the choice of self-dual connection

sults in the negative helicity magnetic-field operator,B̂2 be-
ing the same as the negative helicity annihilation opera

B̂2 is naturally represented as a functional derivative@Eq.
~70! of @1## and, in this aspect, matches the standard F
representation of the annihilation operator as a pure fu
tional derivative term. The resulting representation is
Fock representation for negative helicity gravitons and
deed, for this sector, it seems that explicit Poincare inv
ance is not invoked.

Thus the Fock representation of linearized gravity see
to result partly due to explicit Poincare´ invariance~which is
suppressed in@1# by a mathematically ill-defined operation!
and partly due to the use of self-dual connections.

Considerations similar to those for the positive helic
gravitons also apply to the treatment of free Maxwell theo
in @3#. There, it is shown that the extended loop represe
tion coincides, formally, with the electric-field represen
tion. Again, an ill-defined measure is used and a pro
mathematical treatment restores the explicit role of Poinc´
invariance.

We turn now, to a discussion of~II !. In the loop represen
tation of @1# the two sets of important operators are the m
netic field,B̂6, and the linearized metric,ĥ6. They are rep-
resented by functional differentiation and multiplication,
the representation space of functionals of loop form facto
This representation space supports the holonomies as o
tors. Indeed, the action of theB̂6 operators is deduced from
the fact that the classical magnetic flux is the lowest n
trivial term in the expansion of the holonomy of a small lo
@Eq. ~57! of @1##. However, all these constructions are re
dered formal because of the distributional nature of the lo
form factor and the resulting divergence of the ground-s
functional. Therefore, a regularization procedure is adop
wherein the loop form factors are replaced by their Gauss
smeared,r versions@see Eq.~9!# andB̂6, ĥ6 are represented
as functional differentiation and multiplication operators
the space of functionals ofr-loop form factors. An important
question is: Are the holonomy operators or some regulari
version thereof, represented in this space?

One may choose to ignore this question and simply p
tulate the action ofB̂6, ĥ6 in terms ofr-loop form factors.
Then the primary configuration variables of the theory
B6 and the construction does not seem to have much to
with loops and holonomies. Since holonomies and loops
the primary objects in the loop approach to full-blown qua
tum gravity, an interpretation of the regularization which
10400
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lows for the representation of holonomy operators is of
terest. It seems to us that such an interpretation must re
the r-form factor representation as anapproximationto the
standard Fock representation, which becomes better ar
→0.

A precise formulation of such an interpretation in the co
text of U(1) theory is provided by the induced Fock repr
sentation of Sec. V B. There, the holonomy operators
represented on the Hilbert space and the magnetic-field
erators can be constructed by a ‘‘shrinking of loop’’ limit, a

the image ofU21ÔxW ,nWU via Ur
21 . That representation, al

thoughnot the standard Fock representation, is a good
proximation to it for smallr. The nature of the approxima
tion is as follows. For sufficiently smallr, the holonomies
Hg(A), the electric fieldEa(xW ), and their Gaussian-smeare
counterparts,Hg(r )

(A), Er
a(xW ) approximate each other wel

An approximate Fock representation can be constructe
which the operators corresponding toHg(A), Er

a(xW ) act in
the same way as the operators corresponding toHg(r )

(A),

Ea(xW ) in the standard Fock representation. This approxim
Fock representation is the induced Fock representation
Sec. V B.

To summarize: The standard Fock representation for U~1!
theory is obtained only when the algebra of smeared holo
mies is usedand explict Poincare´ invariance is invoked.
However, the role of Poincare´ invariance~or equivalently,
the choice of PLF! seems to be more important than that
smeared loops. If the requirement of smeared loops
dropped, it is still possible to construct an approximate Fo
representation; but dropping Poincare´ invariance results in
the non-Fock representations of Secs. II and V A.

Comments: ~i! The ‘‘area derivative’’ plays an importan
role in some approaches to loop quantum gravity@4,3#. Our
construction ofÔxW ,nW uc& ~or its image in the induced Foc
representation of Sec. V B! as a Cauchy limit is a rigorous
realization of the area derivative in the context of Fock-li
representations. Note that the required limits do not exis
the Haar representation and hence the area derivative is
defined there.

~ii ! As noted above, self-duality of the connection plays
key role in obtaining the~negative helicity! graviton Fock
representation without explicit recourse to Poincare´ invari-
ance~see@15# for a detailed examination of the relation b
tween self-duality and helicity!. However, recent efforts in
loop quantum gravity use real~as opposed to self-dual! con-
nections. It would be useful to reformulate linearized grav
in terms of real connections and construct its quantizatio

~iii ! Note that we have mainly been concerned with t
kinematics of U(1) theory. The Fock representation,
course, supports the Maxwell Hamiltonian as an opera
Note that the normal ordering prescription adopted in@1# is,
of course, connected with Poincare´ invariance. It is an open
question as to how to express~presumably an approximatio
of! the Hamiltonian as an operator in the Haar representat

~iv! We have not been able to show continuity of the Fo
PLF onHAr or lack thereof. If the Fock PLF is continuou
a ‘‘Fock’’ measuredmF can be constructed onD r andH can
1-9
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MADHAVAN VARADARAJAN PHYSICAL REVIEW D 61 104001
be identified withL2(D r ,dmF). The considerations of Sec
V B can then be extended to theC* algebrasH̄Ār andH̄Ā.

If, however, the Fock PLF onHAr turns outnot to be
continuous, then a corresponding Fock measure onD r does
not exist and it is incorrect to identifyD r with the ‘‘quantum
configuration space.’’ If this is indeed the case, then the e
phasis oncontinuouscyclic representations ofH̄Ā in loop
quantum gravity@6# would seem unduly restrictive.

~v! The representation of kinematic loop quantum grav
is the SU~2! counterpart of the Haar representation forU(1)
theory. An important question is how the Fock spac
graviton description of linearized gravity arises out of lo
quantum gravity. It is possible that some insight into th
issue may be obtained by considering the following~simpler!
question in the context ofU(1) theory. Is there any way in
which an approximate Fock structure can be obtained fr
the Haar representation ofU(1) theory? Since the PLF’s
play a key role in determining the type of representation, t
work suggests that to get an approximate Fock structur
may be a good strategy to try to approximate~in some, yet
unknown way! the Fock PLF by the Haar PLF.
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APPENDIX

1. Lemma 1: Given ~i! g iPLx0
, i 51 . . .n, n finite, ~ii !

Aa(xW )PA, and ~iii ! e.0, there exists a connectionAa
e(xW )

PA such that

uHg i (r )
~Ae!2Hg i

~A!u,e ~A1!

for i 51, . . . ,n.
Proof: For a single loopg, from Eq. ~8!

uXg
a~kW !u,Cg Cgª

3

~2p!3/2
Lg ~A2!

whereLg is the length of the loop as measured by the
metric. SinceAa(xW ) is Schwartz, we have, for arbitraril
largeN.0,

uAa~kW !u,
CN

kN for someCN.0. ~A3!

From Eqs.~A2! and ~A3!,

E
k.L

d3kuXg
a~2kW !Aa~kW !u,

CN,g

LN23
, CN,g5

4pCgCN

N21
.

~A4!

Thus, givend.0, there existsL(g,d) such that

E
k.L(g,d)

d3kuXg
a~2kW !Aa~kW !u,d. ~A5!
10400
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Let f (k).0 be a smooth function such that

f ~k!5ek2r 2/2 for k,L~g,d!

,ek2r 2/2 for L~g,d!,k,2L~g,d!

51 for k.2L~g,d!. ~A6!

DefineAa(r )
d (xW ) through its Fourier transform,

Aa(r )
d ~kW !ª f ~k!Aa~kW !. ~A7!

Note thatAa(r )
d (xW )PA.

From Eqs.~11!, ~A7!, and~A5! it follows that

U E
k.L(g,d)

d3kXg(r )

a ~2kW !Aa(r )
d ~kW !U,d. ~A8!

From Eqs.~11! and ~A7!

E
k,L(g,d)

d3kXg(r )

a ~2kW !Aa(r )
d ~kW !

5E
k,L(g,d)

d3kXg
a~2kW !Aa~kW !. ~A9!

Using Eq.~A9!

uHg i (r )
~A~r !

d !2Hg i
~A!u

5Uexpi S E
k.L(g,d)

d3kXg(r )

a ~2kW !Aa(r )
d ~kW !

2Xg
a~2kW !Aa~kW ! D 21U. ~A10!

From Eqs.~A5!, ~A8! and ~A10!, for small enoughd.0, it
can be seen that

uHg i (r )
~A~r !

d !2Hg i
~A!u,4d. ~A11!

For the loopsg i , i 51 . . .n,

L̄~d!ªmax
i

L~d,g i !,

Āa(r )
d ~kW !ª f̄ Aa~kW ! ~A12!

with f̄ (k).0 a smooth function such that

f̄ ~k!5ek2r 2/2, for k,L̄~d!

,ek2r 2/2 for L̄~d!,k,2L̄~d!

51 for k.2L̄~d!. ~A13!

Then, givene.0, choose somed<e/4 and set

Aa
e~kW !ªĀa(r )

4d ~kW !. ~A14!

Then Eq.~A1! holds.
1-10
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Lemma 2: Given ~i! strongly independent loopsg i , i
51 . . .n, n finite, ~ii ! giPU(1), i 51 . . .n, and ~iii ! e

.0, there exists a connectionAa
e(xW )PA such that

uHg i (r )
~Ae!2gi u,e ~A15!

for i 51 . . .n.
Proof: From @8#, AaPA exists such thatHg i

(A)5gi , i

51 . . .n. Therefore, it suffices to constructAa
e such that

uHg i (r )
(Ae)2Hg i

(A)u,e. But this is exactly the content o
Lemma 1.

Lemma 3: Given Aa(xW )PA, there existsAa(r )(xW )PA
such that

Hg(r )
~A!5Hg~A(r )! ~A16!

for everygPLx0
.

Proof: From Eqs.~11! and ~12! it immediately follows
that the requiredAa(r )(xW ) is determined by its Fourier trans
form via Aa(r )(kW )5e2k2r 2/2Aa(kW ).

2. Proposition: The statesuc$xW i ,vW i %
&ª) i 51

p ÔxW i ,vW i
u0&, (p

51,2 . . . ) together withu0&, spanD0.
Heuristic Proof: The argument below is a bit formal, bu

we expect that it can be converted to a rigorous proof.
Define

uc,p&ªE d3k1 . . . d3kpca1 . . . ap~kW1 . . . kW p!

3S )
i 51

p

âai
~kW i !1âai

† ~2kW i !D u0&, ~A17!

where ca1 . . . ap(kW1 . . . kW p) has the same properties~a!–~c!

~see Sec. IV! as fa1 . . . ap(kW1 . . . kW p). uc,p& along with u0&
spanD0 . uc,p& can be generated fromuc$xW i ,nW i %

& as follows.
Note that from Eq.~40!,

1

2p3/2
E d3xe2 ikW•xWÔxW ,nW5

i ~nW 3kW !a

A2k
e

2k2r 2

2 @ âa~kW !1âa
†~2kW !#.

~A18!

Define

ga1 . . . ap~kW1 . . . kW p!5S )
i 51

p

eki
2r 2A2ki Dca1 . . . ap~kW1 . . . kW p!.

~A19!

Given kW i i 51 . . .p, it is possible to construct a triplet o
vectorsuW ai

i (kW i) (ai51,2,3 for eachi ), such that12

12An explicit choice is as follows. Fix Cartesian coordinat

(x,y,z) and the corresponding unit vectors (x̂,ŷ,ẑ). Then for i

51 . . .p, uW 1
i 5kW i3 x̂/k, uW 2

i 5kW i3 ŷ/k, uW 3
i 5kW i3 ẑ/k.
10400
~uW bi

i 3kW i !
ai

k
5dbi

ai2
kaikbi

k2
. ~A20!

Then from Eqs.~A18!, ~A19!, and~A20!,

uc,p&5E S )
l 51

p

d3kl )
m51

p

d3xmD ga1 . . . ap~kW1 . . . kW p!

3S )
i 51

p
e2 ikW i•xW i

2p3/2 D uc$xW i ,uW
ai

i %&. ~A21!

It is in this formal sense that states of the typeuc$xW i ,vW i %
&

together withu0& spanD0.
Lemma 2: ÔxW ,nW is a densely defined, symmetric operat

on the dense domainD0, which admits self-adjoint exten
sions.

Proof: It is straightforward to check that

Ô(xW ,nW )uf,p&5E S )
i 51

p11

d3ki D f ap11~2kW p11!

3fa1 . . . ap~kW1 . . . kW p!S )
j 51

p11

âaj

† ~kW j !D u0&

1pE S )
i 51

p

d3ki D f a1
~kW1!fa1 . . . ap~kW1 . . . kW p!

3S )
j 52

p11

âaj

† ~kW j !D u0&, ~A22!

where

f a~kW !ª
i

2p3/2
eikW•xW

~nW 3kW !a

A2k
e2k2r 2/2. ~A23!

The ultraviolet behavior offa1 . . . ap(kW1 . . . kW p), f a(kW ) en-
sures thatuuÔ(xW ,nW )uf,p&uu is finite. ThusÔ(xW ,nW ) is densely de-
fined onD0. By inspectionÔ(xW ,nW ) is also symmetric onD0.

To show existence of its self-adjoint extensions, it is s
ficient to exhibit an antilinear operatorĈ on F with Ĉ251
which leavesD0 invariant and commutes withÔ(xW ,nW ) @12,13#.
As in @13#, takeĈ to be the complex conjugation operator~in
the standard Schro¨dinger representation! on F5L2(S 8,dm)
whereS 8 is the appropriate space of tempered distributio
anddm is the standard Gaussian measure, for free Maxw
theory. It can be seen thatĈaa(kW )5aa(2kW )Ĉ and Ĉaa

†(kW )

5aa
†(2kW )Ĉ, and henceÔ(xW ,nW )Ĉ5ĈÔ(xW ,nW ) .

Lemma 3:

UU ~eiD̂21!

ipem
2

uc&UU→0, ~A24!

asem→0.
Proof:
1-11
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iD̂ 5 i E d3kha~kW !@ âa~kW !1âa
†~2kW !# ~A25!

with

ha~kW !5
eikW•xWe2k2r 2/2

A2k2p3/2

3S R dseikW•(gW $m,xW ,nW %2xW )ġa$m,xW ,nW %2 ipem
2 ~nW 3kW !aD .

~A26!

A straightforward calculation, using@16#, shows that

ha~kW !5
ieikW•xWe2k2r 2/2

A2k2p3/2
~nW 3kW !apem

2 S 2J1~akem!

akem
21D

~A27!

with akªunW 3kW u.
Now, from Eqs.~A25! and ~38!,

eiD̂5e2*d3kuha(kW )ha(kW )uei *d3kha(kW )âa
†(kW )ei *d3kha(kW )âa(kW ),

~A28!

⇒^f,pueiD̂ uf,p&

5e2*d3kuha(kW )ha(kW )u E S )
i 51

p

d3ki)
j 51

p

d3l j D
3fa1 . . . ap~kW1 . . . kW p!f* b1 . . . bp~ lW1 . . . lWp!

3^0uS )
j 51

p

âbj
~ lW j !2 ihbj

* ~ lW j !D
3S )

i 51

p

âai

† ~kW i !1 ihai
~kW i !D u0&, ~A29!

⇒^f,pueiD̂21uf,p&

5n! ~e2*d3kuha(kW )ha(kW )u21!

3E )
i 51

p

d3ki ufa1 . . . ap~kW1 . . . kW p!u2

1n!ne2*d3kuha(kW )ha(kW )u
d
e,

10400
3E S )
i 52

p

d3ki D d3kd3lha1
~kW !h* b1~ lW !

3fa1a2 . . . ap~kW ,kW2 . . . ,kW p!

3f* b1a2 . . . ap
~ lW,kW2 . . . ,kW p!

1O~h4!. ~A30!

Since @2J1(akem)/akem21# is a bounded function, Eq
~A27! implies that theO(h4) terms do not contribute to Eq
~A24! in the em→0 limit.

From Lemma 4 below and Eq.~A27! the first term of Eq.
~A30! is of orderem

5.5 and the second is of orderem
5 . From

this it is clear thatuu(eiD̂21)/ipem
2 uc.uu→0 asem→0.

Lemma 4: Let n be a positive integer andg(kW ) be a
bounded function of rapid decrease~i.e., it falls to zero as
k→`, faster than any inverse power ofk!. Then, ase→0,

IªU E d3kg~kW !S 2J1~ake!

ake
21D nU,Cen21/2 ~A31!

for some positive constantC which depends onn andg.
Proof:

I<E
k<e21/2

d3kUg~kW !S 2J1~ake!

ake
21D nU

1E
k.e21/2

d3kUg~kW !S 2J1~ake!

ake
21D nU. ~A32!

In the first term the range of integration is such thatake
,e1/2. A straightforward calculation shows that the sm
argument expansion ofJ1(ake) coupled with the rapid fall
off property ofg(kW ) gives the bound

E
k<e2

1
2
d3kUg~kW !S 2J1~ake!

ake
21D nU<C1~g,n!en21/2

~A33!

whereC1(g,n) is a positive constant dependent on bothn
and the properties ofg.

The rapid decrease property ofg(kW ) ensures that, for
small enoughe, the second term of Eq.~A32! falls off much
faster than the first term. Hence,I ,Cen21/2 where we have
setCª2C1(g,n).
,
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