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Fock representations fromU (1) holonomy algebras
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We examine the quantization &f(1) holonomy algebras using the Abeli@t algebra based techniques
which form the mathematical underpinnings of current efforts to construct loop quantum gravity. In particular,
we clarify the role of “smeared loops” and of Poincarwariance in the construction of Fock representations
of these algebras. This enables us to critically reexamine early pioneering efforts to construct Fock space
representations of linearized gravity and free Maxwell theory from holonomy algebras through an application
of the (then currenttechniques of loop quantum gravity.

PACS numbeps): 04.60.Ds, 03.65.Fd

I INTRODUCTION bra, H.A of [6,8]. Hilbert space representations BfA are

determined by continuous positive linear functigiF’s)

In the early 199041-3] linearized gravity in terms of — . s
connection variables and free Maxwell theory on flat space.9n HA. We. review thg construction Gi.A and of the PLF
time were treated as useful toy models on which to test techtrOOIuced |n[6,8]_(wh|ch we Sh?” C?” the Haar PDRn
niques being developed for loop quantum graviy. Sig- Se_c. II_. The_ resulting rep_resentf'itlon is a non-Fock represen-
nificant progress has been made in the field of loop quanturftion in which the electric flux is quantiz¢d].
gravity since theri5]. Hence, it is useful to reexamine these In Sec. Ill we construct an Abelia@* algebraA, ,
systems using current techniques to clarify certain questiongased on the Poisson bracket algebra of holonomies around
which arise in the context of those pioneering but necessariljhe “Gaussian smeared ” loops f].! Next, we derive the
nonrigorous efforts. key result of this work, namely that there exists a nat@ral

Two important(and relategl questions are the following. algebraic isomorphism, : H.A— H.A, with the property that

(1) How did similar techniques for the quantization of | (HA)=HA, .
general relativity and for its linearization about flat space The standard flat spacetime Fock vacuum expectation
result in a non-Fock representation for {k&ematic sectdr  value restricts to a positive linear function a4, . We are
of the former and a Fock representation for the latter? Inunable to show the continuity or lack thereof, of this Fock
particular, what is the role of Poincaievariance in obtain-  pLF on H.4,. Nevertheless, since the Gel'fand-Naimark-

ing the Fock representatiorfPhis last point was a puzzle to  Segal(GNS) construction needs onh * algebra(as opposed

the authors themselvés].) o . to aC* algebra, we can use the Fock PLF to construct a
~ (II) What is the role of “smeared” loops ifiL] in obtain-  representation of the * algebfd.4, . In Sec. IV we show
ing a Fock representation? that this representation is indeed the standard Fock represen-

In this work, we use the Abelia@* algebra techniques tation even thoughH.4, is a proper subalgebra of the stan-
[6.,8], which constitute the mathematically rigorous frame-gard Weyl algebra fot) (1) theory.
work of the loop quantum gravity program today, to investi- Using the map),, we can define a Haar PLF dﬁl—Ar

gate(l) and(ll) above. Itis also our aim to clarify the role of We construct the resulting representation in Sec. VA. Fi-

the different mathematical structures in the quantization prohally we usél, to define a Fock PLF of{.A. The resulting
i i - - ! B r . . . : . .

cedurg which determines whether a F.OCk ornon Fock relorerepresentauon is, In a precise sense, an approximation to the

sentation results. Although we restrict attention Wg1)

th flat i beli that its sh Iatandard Fock representation. We study it in Sec. VB.
eory on a flat spacetime, we believe that our results Should gq .o v is devoted to a discussion of our results in the
be of some relevance to the case of linearized gravity.

This work is motivated by the following question in loop context of the questiond) and(Il). Some useful lemmas are

o . E‘proved in the Appendix.
gquantum gravity: how do Fock space gravitons on flat space- In this work the spacetime of interest is fRt and we use
;{/Ivr;}]iecha”sseervfgzmatsh?hgoE;rfgr%gt?égjlcgjr:aengf ft(:'relggbertu?;?lfe lobal Cartesian coordinatei,;(‘), i=1,2,3. The spatial
. . . _1oop g .Slice of interest is the initiat=0 slice and all calculations
gravity? Admittedly, the answer to this question must awautare done in the spatial Cartesian coordinate chet (We
the construction of the full physical state spdke., the ker- P

: . use units in which both the velocity of light and Planck’s

nel of all the constrainjsof quantum gravity. Nevertheless, X -
. . . : . constanth are equal to 1. We freely raise and lower indices
this work may illuminate some facets of the issues InVOIVed'\Nith the flat spatial metric. The Poisson bracket between the
The starting point for our analysis is the Abelian Poisson P ’

brackets algebra of (1) holonomies around loops on a spa-
tial slice. This algebra is completed to the Abeli@h alge-

u(l) connectionAa(i),a=1,2,3 and its conjugate electric

I is a small length which characterises the width of the Gaussian
*Email address: madhavan@rri.ernet.in smearing function if1].
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field EP(y) is {Ax(X),EP(y)}=e828(x,y) whereeis a con-
stant with units of electric charge.

II. REVIEW OF THE CONSTRUCTION
AND REPRESENTATION THEORY OF H.A

We quickly review the relevant contents [&,8]. We re-
fer the reader td6,8], especially Appendix A2 of8] for
details.

The mathematical structures of interest are as follows.

A is the space of smootli(1) connections on the trivial

U(1) bundle onR®2 We restrict attention to connections

PHYSICAL REVIEW D 61104001

defines a norm o{ A. H.A is the AbelianC* algebra ob-
tained by defining * ori{.A and completing the resulting *
algebra with respect ti|].

A is the spectrum ofH.A. A is also denoted byd/G
where G denotes thaJ(1) gauge group and is a suitable
completion of the space of connections of modulo gauge
AlG. From Gel'fand theoryA is the space of continuous,
linear, multiplicative * homeomorphisnsg from H.A to the
(C* algebra of complex number€. From[8] the elements
of A are also in 1-1 correspondence with homeomorphisms
from HG to U(1).

Given Xe HA, h(X) is a complex function oA. A is

A,(x) whose Cartesian components are functions of a rapiéndowed with the weakest topology in whitiiX) for all

decrease at infinity.

X e HA are continuous functions of. In this topology,A

Ly, is the space of unparametrized, oriented, piecewisg; 5 compact, Hausdorff space and the functib(se]), @

analytic loops on R® with base poinbzo. Composition of a
loop a with a loop B is denoted byaeB. Given a loopa
€Ly, the holonomy of Ay(x) around « is H,(A)
i=exXp($,AadX).

« is the holonomy equivalence cladsoop class of a,
i.e., a,8 define the same hoop H ,(A) =Hz(A) for every
A4(x) e A. HG is the group generated by all hoopswhere
group multiplication is hoop composition, i.exe B:=a°g.
‘HA is the Abelian Poisson bracket algebralifl) holono-
mies.

}‘Exo is the free algebra generated by elementsc%f,

with product lawa B:=ac 8. With this product, all elements

€Ly are dense in th€* algebraC(A), of continuous func-

tions onA. Further,C(A) is isomorphic toH.A. Every con-
tinuous cyclic representation @A is in 1-1 correspondence
with a continuous positive linear functionéPLF) on HA.

Since MEC(A), every continuous PLF so defined on
C(A) is in correspondence, by the Riesz lemma, with some

regular measuredy on A and H, is represented ony

eL?(A,du) as a unitary operator throughH()(h)
=h([a])y(h).

In particular, the continuous Haar PI.B]

I'(a)=1if a=0, =0 otherwise,

4

of }‘L‘XO are expressible as complex linear combinations of

elements of[:xo.
K is a two-sided ideal 017-"/:)(0, such that

N N
> aje;eK if X, aH, (A)=0 for everyA,(x) € A,
=1 =1 '

()

wherea; are complex numbers.
]—"LXO is quotiented by to give the algebrd-‘ﬁxol K. The

K equivalence class of is denoted by «]. As abstract
algebrasH.A and 7L, /K are isomorphic.

N

N *
(Zlai[ai]) =21 a[e '] 2
defines a * relation or.A.
N N
‘ 2 afa] ‘: sup| 2, aiHai<A>‘ (3)
i=1 AcAli=1

2Thus a minor change of notation from A2[&] is that we denote
Ay of that reference byA.
3This is in contrast to th€* loops of A2 of[8].

(whereo is the trivial loop, corresponds to the Haar measure
onA.

A= A/G can also be constructed as the projective limit
spacd 9] of certain finite dimensional spaces. Each of these
spaces is isomorphic tocopies ofU(1) and is labeled by

strongly independent hoops. Recall frof8] that «; i
=1...n are strongly independent hoops df e £, are

strongly independent loopsy;, i=1...n are strongly in-
dependent loops if each; has at least one segment which
intersectsy;.; at most at a finite number of points. The Haar
measure o\ is the projective limit measure of the Haar
measures on each of the finite dimensional spAdén the
considerations 0f10] show that the electric fluysE?ds,
through a surfaces can be realized as an essentially self-
adjoint operator on the dense domain of cylindrical
functions as

“Note that the proof of continuity of the Haar PLF [i]] is in-
complete in that it applies only if the loops; of A.7 of [8] are
holonomically independent. Nevertheless, if as in this work, we
restrict attention to piecewise analytic loops, continuity of the Haar
PLF can immediately be inferred from its definition through the
Haar measure.

SCylindrical functions on A are of the form Py
=y(h([aq]) ... h([an])), wherea;, i=1...n, are a finite num-
ber of strongly indendent loops and is a complex function on
u()"

104001-2
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Iy
h([ai])’

where N(S, «;) is the number of intersections between
andS

fSEadsa¢{[ai]}=e§i: N(S, a)h([a])

. H.A, AND THE ISOMORPHISM 1,

In Sec. Il A we recall the definition of “smeared” loops
and their holonomies froril] and construct the “smeared”

loop related structures, , K, , HA, H_A, andA, . In Sec.
[l B, using the Appendix, we show that an isomorphism

exists between the structures K, HA, H—A,A, and their
smeared versions.

A. The construction of H.A,
In the notation of 1],

H (A) = expi f XE00A00d%, (6)
R

X3(X) = 35 dss3(y(s),X) 2, (7)
Y

wheresis a parametrization of the loop se[0,27]. X;‘(i)
is called the form factor ofy. Its Fourier transform is

2) 3 2y ik-X
X3k = | aPoce

27_[_3/2

1 ‘a —ik-y(s)
Zm dS’y (s)e LA (8)
Y

The Gaussian smeared form fackat is defined as

7(r)(X) —f d3yf,(y— X)Xa( y) = ffdsf(v(S) X) ¥3(s)
9
where

1

271_3/2[-3

—x2/2r2 X::l)'(’|

r(X)= (10)

approximates the Diraé function for smallr. The Fourier
transform of the smeared form factor is

X3, (K)=e"Kr2x3 (), (11
and the smeared holonomy is defined as
; a (g 3
y( )(A) expi JRSXy(r)(x)Aa(x)d X
— ; a 2\ A3
_exp|f 3xy( )( )Aa(k)d K, (12
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whereA, (k) is the Fourier transform of,(X).
We definea, , K,, HA,, HA, A, as follows.a, is the
rhoop class ofa, i.e., a,B define the same hoop if
a( )(A) HB( )(A) for every A, (x) e A. ‘HG, is the group
generated by all hoopsa, where group multiplication is the
r-hoop composition, i.e.,

(asB), . (13

Note that the above definition is consistent because, from Eq.
(12) and the definition of-hoop equivalence, it follows that

apo By =

a( )(A)HB( )(A) H(a ﬁ)( )(A) (14)
Note that from Eq(13), it follows that the identity element
of HG, is 0, and that &,) *=a 1.

HA, is the Abelian Poissons bracket algebra of theo-
Ionomies,Ha(r)(A), Aae A, aeLly .

Recall that with the product law defined in Sec. I, all
elements of.7-"11XO are expressible as complex linear combi-
nations of elements o@xo. We define the two-sided ideal of

Kre FLy,, through

P4

N
aiaieK, if E aiHa_
=1 i

2

(A)=0 for everyA,(X) € A,
(15

wherea; are complex numbers. TH€, equivalence class of
a is denoted by «], . It can be seen that, as abstract alge-
bras,H.A; and FLy /K, are isomorphic.

It can be checked that the relation defined onH.A, by

N

2

N

[]) =3 a9

is a * relation. Note that from Eq12), the complex conju-
gate ofHa(r)(A) is Hafl(r)(A) and hence the abstract *
relation just encodes the operation of complex conjugation
on the algebr&A, .

Next we define the norrf} ||, as

It is easily verified that| ||, is indeed a norm on the * alge-
bra H.A, with * relation defined by Eq(16). Completion of
HA, with respect tol|| ||, gives the AbelianC* algebra
HA, . L

Next, we characterize the spectrufp of H.A, as the
space of all homomorphisms frofG, to U(1).

LetheA,. Thush s a linear, multiplicative, continuous
* homorphism fromH.A, to C:

N

2 alai];
1

N

> a

i=1

(A)]. 7

= sup

¢ Aed i

=h([a]l)h([a"*])=h([0],), (18
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choosing =0, =h([0],)>=h([o],)=h([0],)=1, N
(19) 2, aiH (=2 aH, (Aq). (24)
1 . .
—h(a1],)= h([a]r):h*([a]r)' (20) eqzilons(23) and (24) imply thatK CK, .
N
Equation (20) implies that|h([«],)|=1 and this, coupled Z Hai(r)(A):O for everyA,(x) e A. (25)

with the fact thatHG, is commutative, shows that evehy

e A, defines a homomorphism froMG, to U(1).
Conversely, leth be a homomorphism fronHG, to = GivenA,,B e A,

U(1). Itsaction can be extended by linearity to elements of

N N N
HA, so thath(EN ,a[a;],):==N ,ah([e;],).% It is also . _ .
easy to see thdt([« 1],)=h*([«],). These properties and 21 aiH.(A) ;1 8iH Z n(r)
the fact thath is a homomorphism fronHG, to U(1)CC, (26)
imply that h is a linear, multiplicative, * homomorphism
from HA, to C. Choose,B,=A; where A; is defined in Lemma 1 of the

Finally, we show thah extends to a continuous homo- Appendix.
morphism onH.4, . From[6] it follows that for a; €Ly, Then [2L;a;H (A)|<E i|aile for every e>0.
=1...n, there exist strongly independef, j=1...m =3 aH, (A)=0 and henceK,CK. ThusK=K;, [«]
such that eacly; is the composition of some of thigs;}. =[a], anda—ar.
From this fact and Lemma 2 of the Appendix, it can be (i) [|=N a;[o;]||=]|=N @i es]il|, : Let
shown that, for a glverE 18l @], e HA, and anyd>0,

N
there eX|stsA;a' 21 ¢ A such that ‘

2 ai[ai]r =Cr.
=1 ;

N

21 ai{h([a])—H

(A@2N)Y <5, (21)  Thenc,=|=N,aH, (A for every A,e A. Further, for

every >0 there  exists (MA,e A such that c,
—|=N.aH, ((T)A)|<7- Then, from Lemma 3 of the Ap-

pendix, there existé” )A4(ry € A such that

@i(r)

From Eq.(21), it is straightforward to show that

N N

N
; aih([a;];) <§g§ IZ ai H“(r)(A) 2 (T)A(r))<T @7
N N N
I‘ 24 [ ai]; r (22 — UL ;1 aiH, (A)|= ;1 ail ai]

SinceH.A, is dense ifH.A, , Eq.(22) implies thath can be

extended to a continuodnear, multiplicative homorphism = |§1 ail el - (28)
from HA, to C.
Thus A, can be identified with the set of all homomor- et ||=N ,a[«;]||=c. Then for everyr>0 there exists
phisms fromHG, to U(1). (72)A, e A such that
N
B. The isomorphism|, c— 2 aH ((T/z)A) Z (29)
We show that(i) K=K, : Let = I 2
N From Lemma 1, there exist§’?)ASe A such that
aiH,. (A)=0 for everyA,(x) e A. 23
2, i (A) YAa(X) € (23 [Ha (PR —H, (F28) =,
From Lemma 3 of the Appendix, givel, e A, there exists N I " N
Aqqry € A such that = 241 ailH (TR —H, (72A)] ﬁgl |ajle.
(30)

%h can be defined ofia], becauseK, equivalence subsumes Choose 8<e<7/23L,|a;|. From Egs.(29) and(30) it fol-
r-hoop equivalence. lows that, for everyr>0,
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N
—| 2 aiHg,, (7PA9)| <, (3D
=1 Hr
N
=c=sup > aiHy (A)
AcAll= 0
N N
:>’ ;1 ajl ] 2 ajl ],
r
(32
Thus, for any finiteN, ||=N [« ]||=]1=N &l ai ], -

From (i) and (ii) it follows that the structure&,, [«;,],
a,, HG,, *,, HA,, HA, A, are isomorphic t&, [a], «,
HG, *, HA, HAA.

Thus aC* isomorphisml,

:m—ﬂ-l—/lr exists such that

N N
Ir(iEl ai[ai])ZiEl ail il (33
; defines a natural 1-1 map froth to A, (which we shall

also calll,). Given the * isomorphisnihe A, from HA to
C, its image ish, e A, where

(34

hr(iENl ai[ai]r> ::h<i%1 ai[ai],).

Note that if h, is defined by some smooth, nonflat,
e A thenit is not truethat h is associated witlithe gauge
equivalence class pthe same connection.

IV. FOCK REPRESENTATION FROM HA,

The standard Fock space vacuum expectation value rex | d3k

stricted toHA, defines the Fock PLF okA, as

N N d3k
FF(iEl ai[ai]r) =2 aiexrr( f 1Xe (K >|2).

(35

Since’HA, is a proper subalgebra of the standard Weyl
algebra forU(1) theory, it is not clear that its quantization

(through the GNS construction based on the Fock)PieF

PHYSICAL REVIEW D 61 104001

HereAa is the standard Fock space operator valued distribu-
tion att=0

Aa(X) - dgk[ kxg (k) +e ' ral(k)], (37)
A(X)= i x e ! ~xaa )
2732 \/E
where

a,(k)k?=0, [a,(k),al(1)]=60(k,1).  (39)

By constructionU is a unitary map and can be uniquely
extended toH so that it embeds+ in . We show that
Cauchy limits of states iU (D) span a dense set ifi—this
suffices to show that the entire Fock space is indeed ob-
tained, i.e., that)(H)=F.

We define the “occupation number” states

|¢,p>:=f d%, ... Ay (K, . . . Ky)

xal (Ky) ...a} (ky)|0). (39

(K, ...kp) (with p a positive integer is such

d3k|¢"’11 Ky, ... K, ... Kp)[2<e and
p) falls of faster than any inverse power of

(b) @21 Ap(ky, ... K

it is transverse, ar(d) it is symmet-

¢a1...
that (a)
B2 2Ky . .
ki as kj—x, k];&I fixed,

, p)(k)ai 0, ie.,
ric under interchange ofa( k) with (a;,k;) for all i,j

..p. |¢,p) for all p together with 0), span a dense set,
Doej:.

Given two vectors,v, define the operator

ek Xe =P 12(5 5 K)A[ B,(K) +al(— K.

x0T

\/—k

2773/2

(40)

As argued in the Appendix, states of the fodm{;i v‘;i}>
:=11P_ . together with|0) spanD,.

Our proof thatw{X U}e U(H) is as follows.(i) Note that

s oy€ Do (i) Let yimxn} pe a circular loop of radius,,

produces the full Fock space. We prove that the full Fock=1/2" (m is a positive mtege)r centered aK and let its

space is indeed obtained.
Let the GNS Hilbert spacéhased ol'r) beH. LetD be

the linear subspace ¢t spanned by elements of the form
I:Ia(r)Q, ae LXO where() is the GNS vacuum. It can be seen
that D is dense inH. D is naturally embedded in the Fock

space,F, through the mapJ):D— F defined by

u(Q)=|0) andu(z iy )

pzd

-3 aewi [ X (0AMIN0). (39

plane have unit normai.’” The image ofH {mxn} onU(D)
is exif Xy{m,x,n}(y)Aa(y)dsy]- Define
o

a - A -
einy{m,;,a}(y)Aa<y>d3y_ 1
(r)

(42)

O
X
Sy
3

Il

L2
ITen

"Although yimxn} s not in L, the loop formed by joining
A %} 10 the base poink, and retracing, is. We shall continue to

denote this loop, which represents the same hoopy{Eiy‘ o,

104001-5
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The formal limit of Oy ; ,, asm—c is O3 ;. We show be-
low thatO; ;; ml#), | ) € Dy,® form a Cauchy sequence with
limit Oy 7| ). Then, choosingy)=|0), we see thaO;; ;
is in the completion ofJ (D).

(iii) From (i) above,O5 ;|0) e Dy. We can repeat the ar-
gument in(ii) above to conclude th&d;, ; O; 7|0) is ob-
tained as the Cauchy limit of the stat€g s mOx, 7.10).
lterating this argument we see thaltx. 1), Ini|=1 is in the

completion ofU(D). Finally, setv;:=v;n;, wherev, are real
numbers. Then it follows thalyx. ;1) = (T~ 0)| ¥, 7))
and hence thdtw{;i o € U(H).

Thus, it remains to showWsee (ii) abovg that given

€Dy, Ox . as defined in Eq(40) and OX nm as defined in
Eq. (41),

lim [|05,5— O ml ¥)]|=0. (42)

m—oe

Proof. Let
= | X i (DAY~ 7eiOs . (43

Thus

. ei W€2m6;’6+i|5 -1

Oxnm=——"—>% - (44)
e,

Since bothe' ™m%xn ande'® are commuting elements of the

standard Weyl algebra,

. ei'”'frzné;,ﬁeib— 1
Ospm=—F—— (45)

L2
imer,

=(|0zi—Oxnml ¥l

24, A
e”TEmOX,n(elD _ 1)
= — )
lmen,
elﬂ'e Oxn—l .
+| ————-6:: 1w
lmen,
eI7T€ Oxn—l .
<||| ——5——0x:]l%
e,
eifn’fﬁ]();’ﬁ(eiﬁ _ 1)
+|| > [l (46)

TER
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From Lemma 2 of the Appendno is a densely defined
symmetric operator oD, and admlts self-adjoint exten-
sions. Hence, frorfil1], the first term in Eq(46) vanishes in

. 2. -
the e,,—0 limit. Further, sincee' *n®xn is a unitary opera-
tor, we have

ei Wffnéi,ﬁ(eiﬁ _ 1)

][],

iTer,
2 5
(eP-1)
(M e “’>

LD ) 8
Y o vl

From Lemma 3 and Eq49), ||(€®—1)/ime?|4)||—0 as
em— 0 and then Eq(46) implies Eq.(42).

Thus we have shown above that the GNS representation
of HA, on the GNS Hilbert spac#, is unitarily equivalent
to the standard Fock representation®s L2(S’,dug) [S’
denotes the appropriate space of tempered distributions and
ue is the standard Gaussian measure with covariance
1(—V?) Y2 [14]] via the unitary magpJ.

The action of the smeared electric-field operat(f)
= [d3xf4(X)E3(X), on yeCrCL3(S',dug) is written in
the standard waj14] as

But

(eP-1

ime

)|¢>

. - )
E(f)y eJ’ d x( if2(x) 5Aa()_())
+i[(—v2>1’2fa<i>]Aa<i>>¢. (49)

Here fa(i) is real, divergence free, smooth, and of rapid
decrease, and-CL%(S’,dug) is the standard dense do-
main of cylindrical functions appropriate to Fock space. The
smeared electric-field operator @tis defined as the unitary

image ofE(f) by UL, i.e., forre U~ Y(Cr)CH

E(F)wzu*lef d3x(—ifa(>'<’) G

+i[<—v2)%fa]<i>Aa<i>)uw. (50

With this action,é(f) is densely defined on the dense do-
main U~ (Cg) CH, and just like its unitary image o6,
admits a unique self-adjoint extension.

V. INDUCED REPRESENTATIONS THROUGH 1,

It can be verified thal, is a topological homorphism from

®Note that sinced; ;. ,, are bounded operators defined on the en-A to A, (whereA and A, are equipped with their Gel'fand

tire Fock spaceOX ».m are well defined orD;,.

topologies. Hence, |, defines a measurable isomorphism

104001-6
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I, :B— B, whereB and B3, are the Borel sigma algebras as- (o]}
sociated withA and A,, respectively. Any regular Borel [E? (X)df{ )= eE Xa()(X)h([a.])&h([ E
measureu on A induces a regular Borel measyig on A, , @i
with ==l . It follows thatl, defines a unitary map,
from L2(A,dw) to L2(A, ,du,).

U, can be explicitly defined through its action on the
dense sefe L?(A,du), of cylindrical functions(cylindrical
functions in the context of{.A have been defined in Sec).ll [E3(x),A,]=eX
Denote the dense set of cylindrical functiondif(A, ,du,)
by C,.° U, mapsC to C, through

Ur (41101 = ¥(ay,} - (51

(56)

The methods of10] can be used to show thﬁ?()?) is
essentially self-adjoint od. Note that Eq(56) implies that

ey (OFa (57)
The unitary image of Eq57) is

[UEEx)U A, 1=eX (xH (58)

“(r) )’

a(r)

It also follows that R -
Denote the classical counterpartldef‘(x)Ur_l by F3(E).

UrHaUr’l= H, . (52  Then Eq.(58) provides a quantum representation of the clas-
) sical Poisson bracket,

Thusl, induces a representation H_Ar from a representa-
tion of HA. In Sec. VA, we induce a Haar-like representa-
tion of H.A, from the Haar representation #f.A. ars a

Since the image of, restricted toH.A is HA,, |, (or Note that{& ()_()’H“(r)('f“)} _ |eXa( )(X)_H“(r)(AZ' Hence,
171 can also be used to induce representationiaffrom ~ We can consistently identifyF3(E) with E3(x). Thus,

those ofHA, and vice versa. In Sec. V B, we induce a Fock- UrIAE?(i)Ur’l: IAE""(;) and from Eq.(56),
like representation of{.A from the Fock representation of

{F3(E)Hy (A} =—ieXs (H

2 OHa (A (59

an

HA, . The elements oH.A, define a dense subspace 7df Py, (h)
through the GNS construction and a map is defined [E2(X) 0,11 (h) = eE Xa()(x)h([ai]r)m-
through Eqgs(51) and (52). U[l induces a Fock-like repre- = (60)
sentation ofH.A.
o Since U, is unitary, E(x) is essentially self-adjoint on
A. Haar representation of H.A, C,CL2(A, ,duy).
We denote both the Haar measure snas well as its To summarize: The induced Haar representatioft{of;

image onA, by du,,. The induced PLRcorresponding to Provides a quantum representation of the classical Poisson
dey) ON H_A, is defined by bracket algebra of smeare(i hoAlonorrite§(r)(A) and (diver-
o gence fregelectric fieldE3(x). H,, are represented by uni-
I'(@)=1if a,=0,=0 otherwise. (53)  tary operators through E@54) and theunsmearectlectric-

field operator,l%a(i), is represented through E(G0) as an

From Eqs.(51) and(52) it follows thatH,, o, A€ Tepresented  gqsentially self-adjoint operator on the dense domain of cy-

by unitary operators ogre L*(A; ,duy) by lindrical functions,C,CL%(A,,duy). Note thatE3(x) is a
genuine operator as opposed to an operator valued distribu-
(Ao, (M =h(lal)p(h), hed,. (B8  gon

We construct electric-field operators &f(A, ,duy) as
unitary images of appropriate electric-field operators on o
L%(A duy) as follows. Define the classical Gaussian We denote the Fock PLF dH.A; as well as its image on

B. Fock representation of H.A

smeared electric field as HA by I'r . Note that the induced PLF ci.A is defined by
N N d3k
E?(X)==f dyfr(y—=x)EX(y), (55 FF(; ai[ai]) =2 aiexrb(fTIXZi(r)(k)lz)-
, . . (61

where f, has been defined in Sec. Il GIVGW{[ai]}

e CCL?(A,duy) it can be checked that Sinceﬂam are represented as unitary operatorsHnit

follows that

“Cylindrical  functions are of the form i, ,(h): Ha::U;lHa(r)Ur (62)
=y(h([ai]) - . .h([ayl), for aje Ly i=1...n, heA,, and
they sparc; . are represented as unitary operatorip’rf(H).
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It remains to construct, following the strategy of Sec. V A, sentation ofH.4,'° and its image orH.A, Eq.(68) is incom-
electric-field operators obl *(H) as unitary images of the patible with the requirement of self-adjointness of the
appropriate electric-field operators 8 OnU~*(Cr)CH,  electric-field operators. Their action necessarily contains a
term dependent on the Gaussian meagsee Eq.(50)] to
ensure self-adjointness. The choice of Gaussian measure is
intimately associated with the properties of the
D’Alembertian,d?/9t?— V2, and hence with Poincaiavari-

=[U; *E(HU, ,A,] ance.
A rephrasing of the above remarks which brings them
. . closer to the strategy dfL,3] is as follows. Given a repre-
=ef d3xfa(x)xi(r)(x)Ha. sentation in which(smeared or unsmeanetolonomies are
(64) represented by multiplication by unitary operators and the
electric field acts, as in E¢68), purely by functional differ-
We define the classical function entiation, the requirement of self-adjointness of the electric-
field operator determines the Hilbert space measure to be the

ey (63

[E(F).H,,I=e f dxfa(x)X5, (OH

- 3 > g Haar measure. The self-adjointness of electric-field operators

Er(f)’ZJ d*xfa(X)Ef(%), (65 results in the Gaussian measure only if their action has a

contribution dependent on the Gaussian measure. Thus, to

whereE?(i) is defined by Eq(55). Since obtain the standard Fock representation or the induced one of

Sec. VB, the Gaussian measure and hence, Poimnoeae-
ance, plays an essential and explicit role.
{Er(F)aHa(A)}: — ief d3xfa(§)x§ (i)Ha(A), Note that this work concerns the “connection” represen-
® tation of a theory of a real (1) connection. In contragtl]

(66) constructs thdéoop representation of a description of linear-
ized gravity based on self-dualconnectiont! Despite these
differences, there is also a certain amount of shared math-
fo 2 PP ematical structure in our work anld]. Therefore, the delin-

Ef(f)=U "E(f)U,. (67)  eation of the structures involved in the construction 61U
theory as spelled out in this paper, allows us to identify the
To summarize: The induced Fock representatiofigf pro-  rgle of the key structures ift].
vides a quantum representation of the classical Poisson piscussion of (I) and (It)We use the notation dfl] and
bracket algebra of holonomiesi,(A) and “Gaussian- [3] when discussing those papers. We first disctisdn [1]
smeared, smeared” electric fiel@s(f). The “unsmeared the action of the linearized metric variable in the loop repre-

holonomy Operatorg{a are represented by unitary Operatorssentation is deduced, Ultimately, from its action of the form

through Eq.(62) and E,(f) is represented as a self-adjoint _i(5/5'°_‘la) in the connection repre.ser.]tation. The loop rep-
operator through Eq(67). Note that the Gaussian-smeared resentation then becomes an electric-field-type representation

o a e L in which the magnetic field operator acts purely by func-
quect E(x) is represented_as aperator v_allued distribu- tional differentiation with respect to the loop form factor.
tion (as opposed to a genuine operaton U~ ().

Yet a Fock representatioff the positive and negative he-
licity gravitons results in apparent contradiction to our
VI. DISCUSSION claims that such a representation cannot result without using
Poincareinvariance explicitly.

The resolution of this apparent contradiction for the posi-
tive helicity graviton sector seems to lie, in what appears at

we identify

Preliminary remarksin this paper, representations of the
Poisson algebra otJ(1) theory were constructed in two
steps. First, Hilbert space re_presentqti(_)ns of th_e Abeliang, sight, to be a mere mathematical nicety. [l the
Poisson algebra of configuration functiofi®., functions of . _ A .

A,) were constructed by specifying a PLF. Second, reapaussnan me_asure_contnbuﬂon_to tB operator is a_b-
functions of the conjugate electric field were represented b orbed(and h"?'de”.‘ in the _res_callng Of 'ghe wave f_unctlon.
self-adjoint operators on this Hilbert space. The Haar repre= uch a rescaling is permissible for finite dimensional sys-

. — L tems but results in a mathematically ill-defined measure for
sentation ofH.A and its image or{.A, support a represen-
tation of the electric field wherein, formally,

. S Owe remind the reader that we displayed a fairly rigorous argu-
E3(x)=—i . (68  ment that the entire Fock space is obtained in such a representation
0Aa(X) through the constructions of Sec. IV and the Appendix. We reiterate

. our belief that the formal EQA21) can be rendered mathematically
This action is not connected with Poincamnwariance and it  well-defined in a more careful treatment.
is not surprising that the resulting representations of Secs. 11*!Note, however, that the descripton reduces to one in terms of a
and VA, are non-Fock representations. On the Fock repreriplet of Abelian connections.
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the field theory in question. In spite of the fact that for mostlows for the representation of holonomy operators is of in-
applications this formal treatment suffices, it is crucial toterest. It seems to us that such an interpretation must regard
realize, in the context afl), that it hides the role of Poincare the r-form factor representation as approximationto the
invariance in constructing the Fock representation. To obtaistandard Fock representation, which becomes better as
a well-defined(Gaussianp measure, the wave functiofgq.  —0.
(101 of [1]] need to be rescaled and a Gaussian measure A precise formulation of such an interpretation in the con-
term needs to be added to the action of Bie—this, of  text of U(1) theory is provided by the induced Fock repre-
course, feeds explicit Poincairvariance back into the con- sentation of Sec. VB. There, the holonomy operators are
struction. represented on the Hilbert space and the magnetic-field op-
Note that this argument does not apply to the negativérators can be constructed by a “shrinking of loop™ limit, as
helicity sector. There, the choice of self-dual connection rethe image ofU*1©;,5U via U, !, That representation, al-

sults in the negative helicity magnetic-field operafr, be-  thoughnot the standard Fock representation, is a good ap-
ing the same as the negative helicity annihilation operatorproximation to it for smallr. The nature of the approxima-

B is naturally represented as a functional derivafige. tion is as follows. For suﬁlciently smalf, the holonomies
(70) of [1]] and, in this aspect, matches the standard Fockl,(A), the electric fieldE*(x), and their Gaussian-smeared
representation of the annihilation operator as a pure funceounterpartsH 7(r)(A)' E2(x) approximate each other well.
tional derivative term. The resulting representation is theAn approximate Fock representation can be constructed in

Fock representation for negative helicity gravitons and in\yhich the operators corresponding 0,(A), E3(X) act in

deed, for this sector, it seems that explicit Poincare invarithe same way as the operators corresponding ;9 (A),
ance is not invoked. N

Thus the Fock representation of linearized gravity seem
to result partly due to explicit Poincarevariance(which is
suppressed ifl] by a mathematically ill-defined operatipn
and partly due to the use of self-dual connections.

a()Z) in the standard Fock representation. This approximate
ock representation is the induced Fock representation of
Sec. VB.
To summarize: The standard Fock representation fa) U

Considerations similar to those for the positive helicityth_eory_ is obtained only when_ thelal_gebr_a of S”_‘ea_“ed holono-
mies is usedand explict Poincareinvariance is invoked.

gravitons also apply to the treatment of free Maxwell theoryH i le of Poincar . valent
in [3]. There, it is shown that the extended loop representa-howiver’ ?PrE €o omc?)rmvarlan_ce(or equnr/]a enhy, f
tion coincides, formally, with the electric-field representa—t € choice o Fseems to be more important than that o

tion. Again, an ill-defined measure is used and a prope?me"’“e(;j .t|9°p?.'" If thebl retquwemtent tOf smeare.d I?o'p:s Iks

mathematical treatment restores the explicit role of Poincardropped, | IS S_' possible 1o constiuct an approximalte =oc

invariance. representation; but dropp_lng Poincadreariance results in
We turn now, to a discussion él). In the loop represen- the non-Fock representations of Secs. Il and V A.

tation of[1] the two sets of important operators are the mag-rolg?nm;g);nfg) Trggc‘r‘laer:?odl(ca)rcl)vamlj:r,]tzlr%ysrZ[r:mg]]ng?m
netic field,B*, and the linearized metrié,". They are rep- PP Pa g '

resented by functional differentiation and multiplication, on construction ofO;3¢) (or its image in the induced Fock

the representation space of functionals of loop form factorsr€Presentation of Sec. V)as a Cauchy limit is a rigorous

This representation space supports the holonomies as operrg-a"z":ltlon (.)f the area derivative in .the context of FOCkTI'k?
. AL . representations. Note that the required limits do not exist in
tors. Indeed, the action of tH&~ operators is deduced from

. - . the Haar representation and hence the area derivative is ill-
the fact that the classical magnetic flux is the lowest non

L i ; defined there.
trivial term in the expansion of the holonomy of a small loop (i) As noted above, self-duality of the connection plays a
[Eqg. (57) of [1]]. However, all these constructions are ren-yo ;

S role in obtaining th&negative helicity graviton Fock
dered formal because of the distributional nature of the IOOQegresentation withc?ut gpli%it recourse yt'og Poircameari-

form factor and the resulting divergence of the ground-stat nce(see[15] for a detailed examination of the relation be-
functional. Therefore, a regularization procedure is adOpte%veen self-duality and helicily However, recent efforts in
wherein the loop form factors are rAepIaAced by their Gaussia[bop quantum gravity use reéds opposeél to self-dyaton-
smearedr versiongsee Eq(9)] andB~, h* are represented nections. It would be useful to reformulate linearized gravity
as functional differentiation and multiplication operators onin terms of real connections and construct its quantization.
the space of functionals ofloop form factors. An important (iii ) Note that we have mainly been concerned with the
question is: Are the holonomy operators or some regularizeginematics of U(1) theory. The Fock representation, of
version thereof, represented in this space? course, supports the Maxwell Hamiltonian as an operator.
One may choose to ignore this question and simply posnote that the normal ordering prescription adopte@lihis,

+

tulate the action oB™, h™ in terms ofr-loop form factors.  of course, connected with Poincadrvariance. It is an open
Then the primary configuration variables of the theory arequestion as to how to expre§xesumably an approximation
B~ and the construction does not seem to have much to dof) the Hamiltonian as an operator in the Haar representation.
with loops and holonomies. Since holonomies and loops are (iv) We have not been able to show continuity of the Fock
the primary objects in the loop approach to full-blown quan-PLF onH.A, or lack thereof. If the Fock PLF is continuous,
tum gravity, an interpretation of the regularization which al-a “Fock” measuredur can be constructed o, and can

104001-9



MADHAVAN VARADARAJAN PHYSICAL REVIEW D 61104001

be identified withL?(A, ,dug). The considerations of Sec. Let f(k)>0 be a smooth function such that
V B can then be extended to ti&* algebrasH.4, andH.A. W22/
If, however, the Fock PLF ort{.A, turns outnot to be f(k)=e for k<A(y,9)
continuous, then a corresponding Fock measuré pdoes 2122
not exist and it is incorrect to identif, with the “quantum <€ for A(y,8)<k<2A(7.9)

configuration space.” If this is indeed the case, then the em- =1 for k>2A(y,9). (AB)
phasis oncontinuouscyclic representations df(.A in loop R
quantum gravityf 6] would seem unduly restrictive. DefineAg(r)(x) through its Fourier transform,
(v) The representation of kinematic loop quantum gravity . .
is the SU2) counterpart of the Haar representation 1) A;s(r)(k) =f(k)AL(K). (A7)

theory. An important question is how the Fock space-

graviton description of linearized gravity arises out of loop Note thatAa(, (x) e A.

guantum gravity. It is possible that some insight into this From Eqgs.(11), (A7), and(A5) it follows that
issue may be obtained by considering the follow(signplen

question in the context dfl(1) theory. Is there any way in 3p, ya

which an approximate Fock structure can be obtained from Uk>A( 5)d kXV( >( KA (r)(k) =0 (A8)
the Haar representation &f(1) theory? Since the PLF's

play a key role in determining the type of representation, thig=rom Eqgs.(11) and (A7)

work suggests that to get an approximate Fock structure, it

may be a good strategy to try to approximéite some, yet f d3kx@ (- k)Aa(r)(k)
unknown way the Fock PLF by the Haar PLF. k<A(7,5) Y

ACKNOWLEDGMENTS :f dskxi(—IZ)Aa(IZ). (A9)
k<A(y,6)
| am very grateful to Jose Zapata for useful discussions
and encouragement. Using Eq.(A9)
6
APPENDIX [Hyy (Am) —Hy (A

1. Lemma 1Given (i) v, eﬁxo, i=1...n, nfinite, (ii)

Aa(i) e A, and (iii) e>0, there exists a connectiohg(i)
e A such that

_ ; 3, ya \ A S "
= expl( fk>A(y 5)d kXy( )( K)AZ(H(K)

—X3(—K)A¥( E)) - 1‘ . (A10)
|Hyi(r)(Ae)_H'yi(A)|<e (A1) 7
fori=1,...n. From Egs.(A5), (A8) and (A10), for small enoughs>0, it
Proof For a single loopy, from Eq.(8) can be seen that
o Hy ) (AG) —Hy, (A)] <45, (A11)
X3(k)|<C, C,= (A2)
“(2m)32 7 For the loopsy;, i=1...n,
wherel , is the Itingth of the loop as measured by the flat A(8):==maxA(8,y;),
metric. SinceA,(x) is Schwartz, we have, for arbitrarily i
largeN>0, .
c Al (K)i=TAy(K) (A12)
> N
[Aa(K)[ <1 for someCy>0. (A3 with f(k)>0 a smooth function such that
From Eqgs.(A2) and (A3), T(k)=ekr*2, for k<A(5)
2.2 - -
) 47wC.C <2 for A(8)<k<2A(9)
f a3 X3(— K)AL(K)| < h’f’g, CN,yzH _
k>A =1 for k>2A(6). (A13)
(A4)
Then, gi >0, ch é<e/4 and set
Thus, givens>0, there exists\ (v, ) such that en. givene CNO0Se some= €/ and se
. . A ( ) a(r)(k) (A14)
d3k|X3(—k)AL(K)|< 6. A5
Jk>A(y,zS) X RALK] (A5) Then Eq.(A1) holds.
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Lemma 2 Given (i) strongly independent loopy;, i
=1...n, n finite, (i) gjeU(1), i=1...n, and (iii) €
>0, there exists a connectidkfi(i) e A such that

[Hy (A —gil <e (A15)

fori=1...n.
Proof: From [8], A,e A exists such thaH,, (A)=g;, i

=1...n. Therefore, it suffices to constru@tf such that
IH Yi(n)
Lemma 1.

Lemma 3 Given Ay(x) € A, there existsAy)(x) e A

such that

H, (A)=H

- (A16)

AAr)

for every ye Ly,
Proof. From Egs.(11) and (12) it immediately follows

that the reqwred\a(r)(x) is determined by its Fourier trans-

form via Ay (K) = e Kriza_(Kk).
2. Proposition The stated ¥ix, ,,;i}>==Hip:1(A);i ,;i|0), (p
=1,2...)together with|0), spanD,.

Heuristic Proof The argument below is a bit formal, but

we expect that it can be converted to a rigorous proof.
Define

|¢,p>=:f a3y . .. A3yt (K, . . Kp)

p
H )+al (—k)) |0, (A17)

where g1 ---3(K, . . .k;,) has the same propertigg)—(c)

(see Sec. Y as ¢ -3(k; .. .Kp). |#,p) along with|0)

spanD,. |#,p) can be generated froi[rd/{;i Y,;i}> as follows.
Note that from Eq(40),

1 o i(nxk)d ka2
- f dixe K RO 1= — e 5 [a,(K)+ak(—K)].
21 \/Ek

(A18)

Define

a-ap(f, Lk

p
p):(Hl ekizrz\/iki) ¢a1---ap(|21 .. |Zp)

i (A19)

Givenk; i=1
vectorsu, (ki) (a;=1,2,3 for eachi), such tha’

2An explicit choice is as follows. Fix Cartesian coordinates

(x.y,2) and the corresponding unit vectorg,y,z). Then fori
=1...p, Uj=k;xx/k, Uh=k;Xy/k, us=kK x2/k.

(AE) H (A)|<e But this is exactly the content of

..p, it is possible to construct a triplet of

PHYSICAL REVIEW D 61 104001

(U, X ki)
k

Kk,
k2

=85~ (A20)

Then from Eqs(A18), (A19), and(A20),

p p
|4.p) = f (.Hl o’k [ dsxm)gal

"ap(lzl . lzp)

(A21)

It is in this formal sense that states of the tylp,dqx v}>
together with|0) spanD.

Lemma 2 (A));,,; is a densely defined, symmetric operator
on the dense domai®,, which admits self-adjoint exten-
sions.

Proof. It is straightforward to check that

p+1

xn)|¢ p)= f(H dsk)fap“( kp+1)

p+1

ot T 84060 o

+p

p
I d3ki) Fay(Ky) g2 2(Ky . .. Kp)

p+1
X j]l é;j(Ej))|o>, (A22)
where
L0 (nxk)?
fa(k):z elk-x e—k2r2/2_ (A23)
2773/2 \/Ek

The ultraviolet behavior ofp®t - -a(k; .. .Kp), f3(k) en-
sures thaf|O ;. m| #.p)|| is finite. ThusO ;) is densely de-

fined onD,. By inspectionO(X n Is also symmetric orDy.
To show existence of its self-adjoint extensions, it is suf-

ficient to exhibit an antilinear operat@ on F with C?=1
which leavesD, invariant and commutes Wilﬁ(;’ﬁ) [12,13.

As in[13], takeC to be the complex conjugation operator

the standard Schdinger representatioron F=L2(S’,du)
whereS' is the appropriate space of tempered distributions
anddyu is the standard Gaussian measure, for free Maxwell
theory. It can be seen thélaa(IZ)=aa(—IZ)C and Ca;(IZ)
=al(—k)C, and henced;;C=COs -

Lemma 3

(e
(A24)

=W

ime2

asen—0.
Proof:
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iI5=iJ d*kh?(k)[aa(k) +ai(—k)]  (A25)
with
eilZ.ie—erz/z
(k)= —=——
(k) \/§k2773/2

x| § ase G D i e i)
(A26)

A straightforward calculation, usind.6], shows that

2]
W(nXk)aﬂéﬁl(M—l)
T

ieilZ-ie— K2r2/2
h3(k)=

A€M

(A27)

with a,:=|nxK]|.
Now, from Egs.(A25) and(38),
iD_ e—fd3k|ha(E)ha(R)|eifd3kha(|2).§;(|2)eifd3kha(|2).§a(|2),
(A28)

e

=(,p|e®|$,p)

P P
:e—fd3k|ha<k)ha(k>|f (H & 1 d3|j)

i=1 i=1
Ap(ky ...

X ¢ Kp) p*Pre-Oo(Ty .. T))

p
11 éb,(r,-)—ih;.(l}))
i=1 )

x(0|

(A29)

p
_1;[ O +ih (k))|0>

b—1|¢,p)

=1 (e~ /aIn*na( _ 1)

=(¢.ple

p
i1;[1 d3k;| g2 2e(ky . . . Kp)[?
+ Nt ne a3 h )]

PHYSICAL REVIEW D 61104001

p
IT o3

d*kd®lh, (K)h*Ps(D)

X 2132 B(K Ky . .. Kp)
X ¢ b0, (l Kz .. Kp)
+0(h?% (A30)

Since [2J,(ayem)/ aren—1] is a bounded function, Eq.
(A27) implies that theO(h*) terms do not contribute to Eq.
(A24) in the €,,—0 limit.

From Lemma 4 below and E@gA27) the first term of Eq.
(A30) is of ordere>° and the second is of ordef,. From

this it is clear thaf|(e® —1)/ime2|y>||—0 asen—0.

Lemma 4 Let n be a positive integer ang(IZ) be a
bounded function of rapid decreagee., it falls to zero as
k— oo, faster than any inverse power kf. Then, ass—0,

I_Ud3k(k)( 1(") —1

for some positive constari@ which depends om andg.
Proof:

n

<Ce" 12 (A31)

1(aye) .
|<L{md3k (k)(—e 1)
1(age) )n
3 _
+fk>{ d kg(k)( e 1 (A32)

In the first term the range of integration is such tlagt
< €Y. A straightforward calculation shows that the small
argument expansion af;(«aye) coupled with the rapid fall

off property ofg(k) gives the bound

2J,(aye n
f 1d3k M_l)
kse 2

ay €
whereC4(g,n) is a positive constant dependent on bath
and the properties df.

The rapid decrease property g‘(IZ) ensures that, for
small enougkhe, the second term of EGA32) falls off much
faster than the first term. Hendes Ce"~ Y2 where we have
setC:=2C4(g,n).

<Cy(g,n)e" 12
(A33)

g(IZ)(
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