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Baryon number nonconservation and phase transitions at preheating
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Certain inflation models undergo pre-heating, in which inflaton oscillations can drive parametric resonance
instabilities. We discuss several phenomena stemming from such instabilities, especially in weak-scale models;
generically, these involve energizing a resonant system so that it can evade tunneling by crossing barriers
classically. One possibility is a spontaneous change of phase from a lower-energy vacuum state to one of
higher energy, as exemplified by an asymmetric double-well potential with different masses in each well. If the
lower well is in resonance with oscillations of the potential, a system can be driven resonantly to the upper well
and stay there~except for tunneling! if the upper well is not resonant. Another example occurs in hybrid
inflation models where the Higgs field is resonant; the Higgs oscillations can be transferred to electroweak
~EW! gauge potentials, leading to rapid transitions over sphaleron barriers and consequentB1L violation.
Given an appropriateCP-violating seed, we find that preheating can drive a time-varying condensate of
Chern-Simons number over large spatial scales; this condensate evolves by oscillation as well as decay into
modes with shorter spatial gradients, eventually ending up as a condensate of sphalerons. We study these
examples numerically and to some extent analytically. The emphasis in the present paper is on the generic
mechanisms, and not on specific preheating models; these will be discussed in a later paper.

PACS number~s!: 98.80.Cq, 05.70.Fh, 11.15.2q
ion
er
o

on
le
e
-
ot
f

na
to
th
a
n
W

io
t

er
a

ro
a

icl
ss

ar-
er-

ken

of
y up

he
rse
en
e-
the
up.
other

an-

st-

-

I. INTRODUCTION
There are well-known reasons to believe that inflat

took place and was followed by reheating to some temp
ture T

R
. Before a thermal equilibrium was reached, the c

herent oscillations of the inflaton could create an envir
ment in which a resonant non-thermal production of partic
could rapidly transfer energy from the inflaton to the oth
fields. This stage, known as preheating@1#, has been a sub
ject of intense studies. In particular, it was argued that b
non-thermal phase transitions@2# and the generation o
baryon asymmetry@3–5# could occur during preheating.

We will describe two new field-theoretical phenome
that can be caused by coherent oscillations of the infla
One is a new example of a phase transition driven by
coherent oscillations of the inflaton. This transition has
unusual feature that it can start in a lower-energy grou
state and end in a higher-energy metastable vacuum.
discuss this in Sec. II.

In Sec. III we describe resonant generation of a ferm
density through anomalous gauge interactions that can be
basis for baryogenesis. In contrast with earlier work, wh
the analyses were based on analogies with thermal sph
rons@5,6# or topological defects@4#, we construct an explicit
solution that can be though of as a condensate of sphale
We show that the evolution of this solution can lead to
resonant growth of Chern-Simons number density.

II. PHASE TRANSITIONS AT PREHEATING

The properties of the physical vacuum and the part
content of the universe are determined by physical proce
0556-2821/2000/61~10!/103510~9!/$15.00 61 1035
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that took place in a hot primordial plasma. Theories of p
ticle interactions beyond the standard model allow for diff
ent types of physical vacua. For example, an SU~5! grand
unified theory ~GUT! allows three possibilities for the
ground state, in which the gauge group that remain unbro
is, respectively, SU~5!, SU(4)3U(1), or SU(3)3SU(2)
3U(1). If low-energy supersymmetry is assumed~to assure
gauge coupling unification and to stabilize the hierarchy
scales!, these three ground states are degenerate in energ
to small supersymmetry breaking terms; TeV. Therefore,
any of these potential minima could equally well be t
present physical vacuum. The evolution of the unive
shortly after the big bang must have chos
SU(3)3SU(2)3U(1) vacuum over the others. The ph
nomenon we will discuss can provide a new solution to
old puzzle related to breaking of a SUSY GUT gauge gro
The same process can have important consequences in
models with several competing~metastable! vacua, for ex-
ample, in the minimal supersymmetric extention of the st
dard model~MSSM!.

Let us consider an inflatonF interacting with a ‘‘Higgs
field’’ x through a coupling of the formlF2x†x or mFx†x,
or both. Let us assume that the effective potentialV(x,F)
has two non-degenerate minima, for example at^x&56v,
^F&5v

I
, and that the mass of thex particle is not the same

in both minima, that is]2V(v,v
I
)/]x2Þ]2V(2v,v

I
)/]x2.

At the end of inflation, the system can occupy the lowe
energy state witĥx&52v. During preheating, the inflaton
oscillates around its vacuum expectation value~VEV!,
F(t)5v

I
1F0cosvt. In general, this induces a time
©2000 The American Physical Society10-1
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JOHN M. CORNWALL AND ALEXANDER KUSENKO PHYSICAL REVIEW D61 103510
dependent mass for the Higgs fieldx through the couplings
m andl. In general, bothF0 andv are time-dependent du
to the expansion of the universe and because the potent
not necessarily harmonic. However, in many cases one
treatF0 andv as nearly constant or slowly changing qua
tities. Let us neglect the back-reaction effects. The equa
of motion for the homogenous~zero-momentum! mode of
the fieldx is

ẍ13Hẋ1
]

]x
V~x,v

I
1F0cosvt !50, ~1!

where H is the Hubble constant.1 In Fig. 1 and Fig. 2 we
show two examples of time-dependent effective potentia

The potential V„x,F(t)…5(x22v2)2@110.4cos5.6vt#
10.1vx(3v22x2) depicted in Fig. 1 has two classical sol
tions, x52v and x5v. Naively one could expect that th
lowest-energy solutionx52v corresponds to the preferre
vacuum state. This is not necessarily the case, howe
Since the mass of thex field is time-dependent, the solutio
x(t)52v may be unstable with respect to small perturb
tions. At the same time, the other solution,x(t)51v may
be stable. If this is the case, the classical system is attra
to the trajectoryx(t)51v.

In the vicinity of the global minimum, foru(x1v)/vu
!1, the equation of motion~1! for small oscillations is a
Mathieu equation that has rapidly growing solutions
some values ofv, F0, and m(2)[]2V(2v,v

I
)/]x2. The

inflaton frequency changes with time and can enter in re
nance, at which point (ux(t)u2v) begins to grow exponen

1In weak-scale preheating the Hubble constant is negligib
small. For GUT-scale preheating it is not, and it could play
important role in helping to scan resonant bands.

FIG. 1. The time-dependent potentialV„x,F(t)…5(x2

2v2)2@110.4cos 5.6vt#10.1vx(3v22x2) that has two non-
degenerate minima and a time-dependent barrier height. The m
of the x particles are also time-dependent and are different in
two minima.
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tially. This kind of solution of Eq.~1!, with H50 and the
potential of Fig. 1, is shown in Fig. 3. At some point
crosses the barrier and begins oscillations around a diffe
potential minimum,̂ x&51v. However, the mass of thex
particle near̂ x&51v is m(1), different fromm(2). There-
fore, the system may go out of resonance after crossing
barrier. There are no growing solutions in the vicinity of th
second minimum, and the oscillations die out with^x&
51v.

If the tunneling rate between̂x&51v and ^x&52v is
negligible, the classical evolution shown in Fig. 3 describe
phase transition into a metastable false vacuum.

This example shows that the ground state at the end
inflation does not necesarily correspond to the global m
mum of the potential. Instead, during preheating, a fa

y

FIG. 2. Another time-dependent potential. The heights of
two vacua oscillate.

FIG. 3. Classical solution of the equation of motion in the p
tential of Fig. 1. The evolution begins near the unstable class
trajectoryx(t)52v and is driven towards a stable classical so
tion x(t)51v. In quantum theory, if the tunneling rate between t
two vacua is small, a phase transition to a metastable vacuum t
place.
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BARYON NUMBER NONCONSERVATION AND PHASE . . . PHYSICAL REVIEW D 61 103510
vacuum can be populated if the true vacuum entered in r
nace while the false vacuum did not.

Both grand unified theories and supersymmetric ext
tions of the standard model predict the existence of lo
minima in the effective potential. The tunneling rate betwe
these minima can be extremely low and their lifetimes c
easily exceed the present age of the universe. For exam
the effective potential of the MSSM can have a broken co
SU~3! in its global minimum, while the standard, color an
charge conserving vacuum is metastable. For natural and
perimentally allowed values of the MSSM parameters,
lifetime of this false vacuum can be much greater than 110

years @7#. If the reheat temperature after inflation was n
much higher than the electroweak scale, this metast
minimum could be populated in the way we have describ

Breaking a SUSY GUT gauge group and choosing
tween the nearly degenerate minima is problematic in n
inflationary cosmology@8#. Let us consider a SUSY SU~5!
GUT for example. The minima with unbroken SU~5!,
SU(4)3U(1), and SU(3)3SU(2)3U(1) groups are nearly
degenerate, split only by supersymmetry breaking terms
the order of a TeV. Why did the universe end up in t
vacuum with the lowest symmetry?

Finite temperature corrections~if relevant, which may not
be the case for preheating! make the SU~5! minimum lowest
in energy because it has a higher number of degrees of
dom. The subsequent thermal evolution of the poten
makes tunneling into a standard model vacuum imposs
@8# even if it becomes the global minimum at temperatu
below 1 TeV. Supergravity splits the three minima by a ne
ligible amount and in such a way that cosmological const
can be fine-tuned to zero only in the minimum with t
higher energy while the other two minima have negat
energy density@9#. Some of the proposed solutions@8# rely
on assumptions about a strong gauge dynamics that s
somewhat implausible.

If, however, inflation took place, the SUSY GUT vacuu
could be chosen in a phase transition of the kind we
scribed. This appears to resolve a long-standing prob
concerning the breaking of the SUSY GUT gauge group

III. B¿L VIOLATION

As discussed in the Introduction, preheating oscillatio
of the Higgs VEV can lead to two effects of interest forB
1L violation. The first@6# is that the sphaleron barrier itse
oscillates, leading in principle to exponentially-sensitive o
cillations of the sphaleron rate. The second, which we t
up here, is that Higgs oscillations can resonantly drive c
sical transitions over the barrier.

Given an appropriateCP-violating seed, there are thre
stages to this classical resonant driving. In the first stage
seed~which can be a source term or initial conditions on t
EW gauge potentials! drives large-scale generation of Cher
Simons~CS! number~topological charge! over spatial scales
so large that spatial variation can be ignored and only te
poral variation saved in the classical equations of motion
the second stage, gradients on shorter scales emerge,
result of unstable growth of spatially dependent pertur
10351
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tions. The seeds for these spatial modes might emerge f
spinodal decomposition during inflation@10,11#. As expected
on general grounds from earlier preheating studies,
fastest-growing modes are those with large spatial sca
The third stage involves the generation of sphalerons, w
spatial scales at the standardW-boson massMW .

In all stages, we will ignore various back-reaction effec
the expansion of the universe~in any case, neglible for weak
scale inflation!; and damping produced by perturbative d
cays~one order ofaW higher than terms we keep!.

We discuss the first stage, which has important non-lin
effects stemming from gauge-potential self-couplings, b
analytically and numerically. A particularAnsatzis used for
the gauge potential, having only a time dependence.~This
Ansatzhas been used some time ago@12# in a rather different
scenario.! The analysis is in the same spirit as the conve
tional approach to low-order resonances in the Math
equation~see, e.g., Ref.@13#!. But the lowest-order resonan
mode equations, two first-order differential equations, hav
cubic non-linearity. Surprisingly, these coupled non-line
equations can be solved exactly in terms of elliptic functio
The non-linear terms not only provide a quartic potent
opposing the growth of CS number but, as the CS num
grows, the non-linear term also grows and drives the sys
off resonance. In effect, the cubic non-linearity causes
W-boson mass to increase. Interestingly, this increase ca
offset by a secular increase of the frequency of Higgs os
lations, allowing resonance to be maintained for long perio
of time with consequent large growth of CS number.

In the second stage we include linear perturbations to
spatially-homogeneous equations of the first stage; these
turbations are considered to lowest order in spatial gradie
as characterized by a spatial momentumk. It is not possible
to do a conventional dispersion-relation analysis of th
equations, which have time-dependent coefficients as de
mined by the temporal growth of the first-stage gauge pot
tials. We perform a numerical analysis of the three coup
linear differential equations which result.

The third stage, in which gradients evolve to spatial sca
;MW

21 appropriate for sphalerons, is the hardest to analy
since an adequate treatment involves the solution of cou
partial differential equations with time-dependent coe
cients. So we restrict ourselves to a crude, simple first s
reducing these partial differential equations to a non-lin
ordinary differential equation for an approximate sphalero
like mode. The relevant gauge-potentialAnsatz, first intro-
duced by Bitar and Chang@14#, was later used@15# to ana-
lyze sphalerons above the EW phase transition, and
shown to have an effective barrier potential for the sphale
which was numerically very close to that of a simple pend
lum. We introduce an oscillating Higgs field, which caus
this pendulum to be parametrically-driven. TheAnsatzis too
simple to be used for anything more than estimating the
of change of topological charge as the pendulum goes o
its barrier once; we do this numerically. In principle, mo
complicated forms, representing multiple sphalerons, co
be used, such as the ADHM construction or those of ’t Ho
or of Jackiw, Nohl, and Rebbi@16# multi-instanton form,
suitably modified for Minkowski-space dynamics, but the
0-3
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JOHN M. CORNWALL AND ALEXANDER KUSENKO PHYSICAL REVIEW D61 103510
have not yielded any insights for us.
At all stages, the energy density associated with gen

tion of CS number is of order 4pm4/g2, as would be appro-
priate for a gas of sphalerons with density;m3.

A. First stage: homogeneous CS parametric resonance

In what follows we always consider the Higgs field
have a given VEV, as determined by preheating effects.
troduce the conventional anti-Hermitian gauge potent
with couplingg included, by

gAm5S ta

2i DAm
a . ~2!

Our spatially homogeneousansatzis

gA050; gAi5S t i

2i Df~ t ! ~3!

in which the group index is tied to the spatial index. By t
conventional rules of charge conjugation and parity for
gauge potential,f is C even,P odd,CP odd.

It is important to note that thisAnsatzdoes not correspond
to a non-vanishing VEV for an EW field. Gauge invarian
alone is enough to ensure that there can be no expect
value coupling the space-time indices to group indices.

One readily calculates the EW electric and magne
fields:

gEi[G0i5S t i

2i D ḟ~ t !; gBi[
1

2
e i jkGjk5S t i

2i Df2. ~4!

Then one calculates the densityW of Chern-Simons numbe
as

W5S 1

8p2D f3. ~5!

It is straightforward to check thatẆ is the topological charge
density Q, related toB1L violation through the anomaly
equation.

With the assumption of a given Higgs VEV, the equatio
of motion for the gauge potential are

@Dm,Gmn#1MW
2 ~ t !„An1~]nU !U21

…50. ~6!

Here the unitary matrixU represents the Goldstone~phase!
part of the Higgs field. The mass term will be assumed
have the form

MW
2 ~ t !5m2

„11ecos~vt !… ~7!

wherem is the value ofMW with no oscillations. Later we
will have occasion to consider a time-dependent freque
v, but for now think of it as a constant.

There must be some sort ofCP-violating seed to produce
non-zero solutions of the equations of motion; these mi
stem from ~long-scale! spatial gradients in the matrixU,
which acts as a source in Eq.~6!, or from initial values off.
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Because the equations are unstable, there is little prac
difference, and we choose to drop theU terms in the equa-
tions of motion, and then providing a seed through init
values. Then there is a single equation forf:

f̈12f31~11ecosrt !f50. ~8!

We have non-dimensionalized the equations of motion
measuringf in units of m and timet in units of m21. The
parameterr has the valuev/m.

Without the cubic non-linearity, this would be a standa
Mathieu equation. In the Appendix we analyze the coup
non-linear mode equations which arise for the lowest re
nance (r 52), and find that they can be solved exactly
terms of elliptic integrals~the key equation is essentially
Laméequation! @17#. The qualitative features of this analys
are easy to anticipate: Equation~8! describes the motion of a
particle in a quartic potential. The oscillating term drives t
particle up the wall, but eventually the particle gets out
resonance and falls back. This process can repeat qu
periodically.

We now turn to numerical analysis. Only a couple
examples will be reported, without attempting to choose
rameters to correspond to realistic preheating scenarios.
rameters are chosen to illustrate specific effects; other par
eter sets may show no interesting behavior at all. The r
reported here have initial values

f~0!50.001; ḟ~0!50, ~9!

and large values ofe, in the range 0.5-0.9. Because the equ
tions are both non-linear and unstable, the final results
largely independent of the initial conditions as long as th
are non-zero. As the initial values are reduced, the time
onset of instability is sometimes lengthened. Generally, th
are two regimes~for constant frequencyv): The resonant
regime, in whichf grows to O~1!, and the non-resonan
regime wheref stays small. We will only show the near
resonant cases in the figures. There is another regim
whichv grows secularly with time, and which leads to larg
values off.

Figure 4 is a typical example of the behavior whenv or r
is constant and fairly near resonance~in this case,r 52.3).
One sees that the envelop ofufu grows to order unity, but
periodically passes through zero and repeats. This is bec
e is near unity, and so system frequencies vary quite a
from 11e to 12e.

Figure 5 shows the behavior when the frequency gro
secularly. The onset of rapid growth is delayed because
system is originally fairly far from resonance, but then t
envelop ofufu grows essentially linearly, coupled to the fre
quency change. The system is able to stay in resonancef
grows linearly, because the effective massM of the f field
~see the Appendix! is M2.m213^f2&, and the effective
ratio r 5v/M stays roughly constant ifM grows at the same
rate asv.

Figure 6 shows the CS densityf3/8p2 corresponding to
the parameters of Fig. 5. The CS density grows roughly ast3,
with f growing linearly in time as doesv.
0-4
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BARYON NUMBER NONCONSERVATION AND PHASE . . . PHYSICAL REVIEW D 61 103510
With dimensionalized values ofufu.m, the CS number
density is of order 0.01m3, corresponding to a largeB1L
density. Whether any of this CS density survives prehea
to the reheating phase depends on whether there is a ‘‘gr
ful exit’’ to preheating generation of CS number, and th
depends on factors not considered in this paper, such as
reaction, growth of finite-momentum modes, and line
damping by decay of theW-boson condensate. Additionally
there may be many domains large compared tom21 but
small compared to the Hubble size in which the values of
are uncorrelated. This will reduce the effective global C
density by a factor ofN1/2, whereN is the number of such
domains. The ultimate fate of the processes considered
will be taken up in a future work, in which specific wea
scale preheating scenarios will be taken up.

B. Second stage: evolution of spatially varying modes

Ultimately, there will be someCP-violating seeds with
finite spatial gradients. Assuming that these seeds are sm

FIG. 4. Time dependence off for initial values as in Eq.~9!
plus r 52.3, e50.9.

FIG. 5. Behavior off with the initial conditions of Eq.~9!, with
b50.52, and a secularly growing frequencyr (t)51.710.001t.
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than those forf ~as is reasonable following inflation!, these
seeds will be driven by the time variation off as well as of
the Higgs VEV. We will be concerned here only with th
linearized equations for the spatially-varying modes, wh
we characterize in momentum space. As is often the case
modes with the longest spatial scales~smallestk) grow fast-
est.

The total vector potential is written asAm1am , with Am
taken from Eq.~3!. The most general vector potentialgam

depending on a single vectorkW has time component

ga05S i tW• k̂

2i
Da0 , ~10!

and space components

gaj5
1

2i
@~t j2 k̂ jtW• k̂!b11 i e jabtak̂bb21 k̂ jtW• k̂b3#.

~11!

In Eqs. ~10!,~11! the hat indicates a unit vector, anda0 ,b i
are real functions ofk2 and t. As before, we non-
dimensionalize by dividing these functions bym, replacingt
by mt, andk by k/m. Presumably the Fourier transforms
Eqs.~10!,~11! vanish at an appropriate rate ask→0 so as to
changek̂ into kW , although this will not matter in what fol-
lows.

It is straightforward if lengthy to write out the linearize
version of Eq.~6! ~without theU terms!:

a05
1

Q
@2~ḟb22ḃ2f!2kḃ3#, ~12!

Q5k212f2111ecosrt ;

b̈11Qb122kfb212~b11b3!f250; ~13!

b̈21Qb222kfb11f~ȧ02kb3!12ḟa050; ~14!

FIG. 6. The Chern-Simons density@see Eq.~5!# for the param-
eters of Fig. 5.
0-5
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JOHN M. CORNWALL AND ALEXANDER KUSENKO PHYSICAL REVIEW D61 103510
b̈31Qb31k~ ȧ02kb322fb2!14b1f250. ~15!

Even though these are linear equations for the mo
a0 ,b j they are impossible to solve analytically, becausef is
not an analytically-known function. We have solved the
numerically, with various interesting results. Perhaps
most interesting is that these mode functions remain sm
and well-behaved for a long time, and then whenf is large
enough~of order unity! they show violently unstable behav
ior. This is especially so for the case when the frequencyv is
growing with time, as for Fig. 5. This is illustrated in Fig. 7
showing the evolution with time of the linear modes for t
parameters of Fig. 5. The mode functions were begun w
initial values which are 0.1 times those off @see Eq.~9!#. Of
course, any other initial values can be gotten by scal
since the equations are linear. The point is that when, fo
given set of initial values ofa0 ,b j , these functions rise to b
of O~1!, the whole problem becomes non-linear and presu
ably enters something like the third stage discussed be
Note in Fig. 7 that the threshhold for non-linearity, with th
given initial conditions, occurs at a~dimensionless! time of
200, which givesf enough time to get big enough to b
interesting~see Fig. 5!.

C. Third stage: sphalerons

Eventually, momentum modes withk.1 will become
prominent, and the condensate of CS number becomes a
densate of sphalerons. It is much more difficult to descr
this stage, and we will only take a simple first step. This s
consists of a drastic simplification of the kinematics of
sphaleron coupled to a time-dependent Higgs field, reduc
the dynamics to a single functionl(t) as in Refs.@14,15#.
Write the most general spherically-symmetric gauge pot
tial and Higgs phase matrixU in the form

U5expF ig

2
r̂ •tW G , gA05

1

2i
r̂ •tWH2 ; ~16!

gAi5
1

2ir
@e iaktar̂ k~f121!2~t i2 r̂ i r̂ •tW !f21rW i r̂ •tWH1#.

~17!

The functionsHi ,f j depend only onr ,t. The asymptotic
values of the angleg are zero atr 50 andp at r 5`. We
parametrize these functions as

H15
2l

l21r 21a2
;

H252
2r l̇

l21r 21a2
;

~18!

f1512
2r 2

l21r 21a2
;
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l21r 21a2
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For details on the parametrization ofg see @15#. For the

FIG. 7. The evolution of the linear modes for the parameters
Fig. 5. Note the truncation on the vertical axis; att. 200 all the
amplitudes are larger than one in magnitude.
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BARYON NUMBER NONCONSERVATION AND PHASE . . . PHYSICAL REVIEW D 61 103510
present purpose one can just think ofg as always equal top.
In this parametrization the constanta is a size parameter~like
that of an instanton! andl, the sole dynamic degree of free
dom, depends ont. Generally,l is an odd function oft,
vanishing along with its first derivative att50.

The electric and magnetic fields are

gEj5S t j

2i D 4a2l̇

l21r 21a2
;

~19!

gBj5S t j

2i D 4a2

l21r 21a2
.

Note that these have the same space and internal symm
index dependence as does thef Ansatzof Eq. ~3!. It is
therefore natural to suppose that thef fields will transform
~through the growth of spatial modes! into a condensate o
sphalerons. Of course, in this condensate each sphaleron
be a translate in space and in time of the sphaleron exhib
here, which is centered at the space-time origin.

With boundary conditions

l~ t52`!52`; l~ t51`!51` ~20!

one readily verifies that, no matter what the dynamics ofl as
long as it is single-valued, the~Minkowskian! topological
charge

Q52
g2

4p2E d4xTrEW •BW ~21!

has the value 1. Indeed, if we replacel by t we get exactly
the usual Euclidean one-instanton expression, which h
ever is now being interpreted as a Minkowskian construc

The size coordinatea is not arbitrary, as it is for instan
tons in gauge theories with no Higgs field. As shown in@15#,
if one goes tot50 and setsl,l̇50 there, the resultingAn-
satz in Eqs.~16!,~17! is an excellent trial wave function fo
the sphaleron. Minimizing the Hamiltonian~for time-
independent Higgs VEV! yields a5A3/2MW and a sphale-
ron massMs only a fraction of a percent higher than the tr
value, determined numerically, of

Ms55.41S 4pMW

g2 D . ~22!

When the massMW depends on time, as in Eq.~7!, we will
continue to use the above value fora. It then happens that th
parameters of the Hamiltonian depend on time~see@15# for
the Hamiltonian as a function ofa,l,l̇).

As is further shown in@15#, one can trade the functionl
for a topological chargeQ(t) defined by demanding that th
kinetic energy term in the Hamiltonian is of the for
(1/2)IQ̇2 with I independent ofQ. The normalization

l52`: Q50; l51`: Q52p ~23!
10351
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makes the topological charge an angular variable. Numer
work shows that the potential energy is very nearly that o
pendulum, and thatI 5jMs /m2 for some numerical constan
j. The resulting approximate Hamiltonian has the form

H5MsF j

2MW
2

Q̇22cosQG ~24!

which has, as it must, the valueMs whenQ̇50, Q5p.
Next one replacesMW by its time-dependent value, as i

Eq. ~7!. We have numerically investigated such driven pe
dulum equations. They lead to multiple transitions over
barrier, but we will not display such solutions here. O
reason is that theAnsatzwe use here is strictly tied to a un
change of topological charge, so that all that counts is
rate of making a single transition over the barrier. Just as
all the classical barrier-hopping solutions presented for thf
Ansatz, the rate isO(v), very much different from the tun-
neling rate.~The tunneling rate is also changed as the sph
ron mass oscillates; see@6#.!

To go further than this for a condensate of real sphaler
is extraordinarily complicated; each sphaleron, like the
stanton to which it corresponds, has numerous degree
freedom. Even if we restrict this to one degree of freed
~corresponding tol) for each sphaleron, it is not clear ho
to proceed. Nor is it clear how to modify known mult
instanton Ansätze such as Atiyah-Drinfield-Hitchin-Manin
~ADHM ! or that of ’t Hooft or Jackiw, Nohl, and Rebbi@16#
to express the real-time sphaleron dynamics in the prese
of an oscillating Higgs field.

IV. CONCLUSIONS

In this work we have investigated two new mechanis
driven by preheating oscillations of, e.g., the Higgs field
hybrid inflation. The first mechanism, resonant barri
crossing from a lower minimum to a higher minimum~where
there is no longer resonance!, may explain some puzzles as
sociated with the symmetry-breaking patterns of GUTs. T
kind of transition could also populate a metastab
SU(3)3SU(2)3U(1) vacuum in a supersymmetric exte
sion of the standard model even if the global minimum of t
potential breaks charge and color.~In the case of the MSSM
this posibility has direct inplications for collider experimen
@7#.! The second mechanism, resonant barrier-crossing a
ciated with B1L violation, may lead to a condensate
sphalerons on time scales short compared to tunneling ra
Both effects require resonance with preheating oscillation
be effective. We have not tried to construct ‘‘realistic’’ ap
plications of these mechanisms to specific preheating
narios. We note, however, that in many cosmological m
els, even if the initial conditions are far from resonance,
system evolves and reaches the resonance eventually, th
to a change in the relevant parameters@1#. Such evolution is
facilitated by either non-quadratic inflaton potential th
causes a variation in the inflaton frquency, of by expans
of the universe and the associated Hubble damping~for
GUT, not weak-scale preheating!, or some other effects tha
can slowly drive a system into a resonance band. We le
0-7
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the building of realistic cosmological models for futu
work.

Aside from such applications, there is still a good deal
work to be done to clarify these mechanisms. In the cas
B1L violation, one can raise the following issues:

~1! How do the three stages~spatially-homogeneous po
tential, linear momentum-mode perturbations, sphaleron c
densate! of Sec. III evolve from the first to the last? This ca
only be answered by numerical work more extensive than
have yet done.

~2! The large-scale EW CS density we propose will ha
a projection onto Maxwell magnetic fields carrying helici
~another term for Chern-Simons number!. The spatially-
homogeneous nature of these fields makes them quite di
ent from earlier proposals~see @18,19# and references
therein! involving generation of Maxwell fields in a therma
environment, with unacceptably small scale lengths to co
spond to the scale lengths of present-day galactic magn
fields. Given sufficient inverse cascading of the near
homogeneous Maxwell fields following from our preheati
mechanism~at EW time these fields must be limited in e
tent by the Hubble size!, @19# shows that EW-time Maxwel
fields could indeed be the seeds for presently observed
lactic fields. We intend to investigate this further.

~3! Can one make use of multi-instantonansätzesuch as
those of ADHM, ’t Hooft, or Jackiw, Nohl, and Rebbi@16# to
extend the Bitar-Chang@14# construction we have exploite
in Sec. III C in order to understand quasi-analytically t
formation of a sphaleron condensate?

~4! Are there~necessarily spin-dependent! quasi-resonan
phenomena for the production ofW-bosons by an oscillating
Higgs field which are in any sense analogous to the v
sharp resonant phenomena found by Cornwall and Tiktop
los @20# for spin-1/2 charged particles in specific tim
dependent electric fields?

To clarify this last point, Ref.@20# found that it is possible
to have highly resonante1e2 pair production in a classica
time-varying electric field of the proper time dependen
The sharply resonant nature of the process can only hap
for fermions, but in any case spin effects, which might
available with gauge bosons, are important in overcom
the typical exp(21/a) rate of pair production in classica
fields.
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APPENDIX: ANALYSIS OF MODE EQUATIONS FOR f

Here we give the analysis of the Mathieu-like but no
linear modal equations of Sec. III. Just as for the Math
equation, we write the non-dimensionalizedf in the form

f5a~ t !cos~rt /2!1b~ t !sin~rt /2!, ~A1!

~where, as in the main text,r 5v/m), leaving out all terms
with higher frequencies. One verifies that the time dep
10351
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dence ofa,b is O(e), so that we can ignore second deriv
tives of these quantities. However, we will save the cu
non-linearities.

Using Eq.~A1! in the equation of motion~8!, saving only
terms varying as cos(rt/2) and sin(rt/2), and dropping second
derivatives yields

rȧ1bF r 2

4
1

1

2
e212

3

2
~a21b2!G50; ~A2!

2rḃ1aF r 2

4
2

1

2
e212

3

2
~a21b2!G50. ~A3!

To make contact with the linear Mathieu equation, let
temporarily replace the terms (3/2)(a21b2) by constants,
and define an effective~non-dimensional, that is, scaled b
m) massM by

M2[11
3

2
~a21b2!. ~A4!

Assuming exponential growth, witha,b;exp(mt), gives

mu5
1

2r
@e22~r 224M2!2#1/2 ~A5!

which gives growth only whenr 52M1O(e). For small
initial values off this meansr .2, but asf grows because
of the initial parametric resonance, the system goes ou
resonance.

We show that Eqs.~A2!,~A3! can be solved exactly in
terms of elliptic integrals. Multiply Eq.~A2! by a and Eq.
~A3! by 2b and add to get

d

dt
~a21b2!52S 2e

r Dab. ~A6!

This equation is independent of the non-linear terms in E
~A2!,~A3!; it would hold even if these terms were droppe
Note that exponential growth requiresa,b to be of opposite
sign. The constraints expressed by Eq.~A6! allow the elimi-
nation of one degree of freedom:

a5A cosC, b52A sinC, ~A7!

with a relation betweenA andC:

A5A0expXE
0

t

dt8S e

2r D sin 2C~ t8!C ~A8!

with A0 as an initial value. In the linear~Mathieu! case cosC
is the constantur 224u/e, which yields the linear growth rate
in Eq. ~A5!. But Eqs.~A2!,~A3! yield two equations for the
time evolution of A,C. The sum of these equations is
trivial identity, while the difference@using Eqs.~A7!,~A8!# is

e cos 2C22r Ċ5
r 2

2
2223A0

2expXE
0

t

dt8S e

2r D sin 2C~ t8!C.
~A9!
0-8
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Now differentiate Eq.~A9! and use Eq.~A9! in the result to
arrive at

2C̈2
e

2r 2
~r 224!sin 2C1

e2

2r 2
sin 4C. ~A10!

This is readily checked to be an elliptic equation. We w
not bother to study it here. All the physics is contained in
linearization of Eq.~A10!, which gives

C~ t !5C0cos@~l~ t2t0!# ~A11!

with frequency

l5F e2

r 2
2

e~r 224!

2r 2 G 1/2

. ~A12!
tt.

tt.

v.

.

h

.
.

10351
l
e

Sincer 224 is O(e), so isl. The best case for growth is

C~ t !5S p

4 D coslt ~A13!

~so that2a and b are equal initially!. Evidently, from Eq.
~A8! growth stops whenC50, or when t5p/2l. This
means, as discussed in the main text, that growth canno
unlimited. ~However, when the frequencyr grows secularly,
growth can continue unimpeded witha2,b2;r , which main-
tains the resonant growth condition.! Generally, no matter
how small the initial values of the potentialf, eventuallyf
becomes of order unity. The smaller the initial value, t
longer this process takes.
,
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