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Certain inflation models undergo pre-heating, in which inflaton oscillations can drive parametric resonance
instabilities. We discuss several phenomena stemming from such instabilities, especially in weak-scale models;
generically, these involve energizing a resonant system so that it can evade tunneling by crossing barriers
classically. One possibility is a spontaneous change of phase from a lower-energy vacuum state to one of
higher energy, as exemplified by an asymmetric double-well potential with different masses in each well. If the
lower well is in resonance with oscillations of the potential, a system can be driven resonantly to the upper well
and stay therdexcept for tunnelingif the upper well is not resonant. Another example occurs in hybrid
inflation models where the Higgs field is resonant; the Higgs oscillations can be transferred to electroweak
(EW) gauge potentials, leading to rapid transitions over sphaleron barriers and consBguentiolation.

Given an appropriaté€C P-violating seed, we find that preheating can drive a time-varying condensate of
Chern-Simons number over large spatial scales; this condensate evolves by oscillation as well as decay into
modes with shorter spatial gradients, eventually ending up as a condensate of sphalerons. We study these
examples numerically and to some extent analytically. The emphasis in the present paper is on the generic
mechanisms, and not on specific preheating models; these will be discussed in a later paper.

PACS numbgs): 98.80.Cq, 05.70.Fh, 11.15q

I. INTRODUCTION that took place in a hot primordial plasma. Theories of par-

There are well-known reasons to believe that inflationticle interactions beyond the standard model allow for differ-
took place and was followed by reheating to some temperaent types of physical vacua. For example, an(3Wrand
ture T . Before a thermal equilibrium was reached, the co-unified theory (GUT) allows three possibilities for the
herent oscillations of the inflaton could create an environground state, in which the gauge group that remain unbroken
ment in which a resonant non-thermal production of particless, respectively, S(5), SU(4)xU(1), or SU(3XSU(2)
could rapidly transfer energy from the inflaton to the otherxu(1). If low-energy supersymmetry is assuniéz assure
fields. This stage, known as preheat{dg, has been a sub- gauge coupling unification and to stabilize the hierarchy of
ject of intense studies. In particular, it was argued that botlycaleg, these three ground states are degenerate in energy up
non-thermal phase transitior{2] and the generation of to small supersymmetry breaking terms TeV. Therefore,
baryon asymmetry3-5] could occur during preheating. any of these potential minima could equally well be the

We will describe two new field-theoretical phenomenayesent physical vacuum. The evolution of the universe
that can be caused by coherent oscillations of the mflatorghomy after the big bang must have chosen

One is a new e>_<amp|e of a phase tran_sition d_ri_ven by th%U(3)>< SU(2)XU(1) vacuum over the others. The phe-
coherent oscillations of the inflaton. This transition has a omenon we will discuss can provide a new solution to the

unusual feature that it can start in a lower-energy groun .
state and end in a higher-energy metastable vacuum. Id puzzle related to breaking of a SUSY GUT gauge group.

discuss this in Sec. Il e same process can have important consequences in other
o . . models with several competingnetastable vacua, for ex-

In Sec. Ill we describe resonant generation of a fermion . - . :

. . . ample, in the minimal supersymmetric extention of the stan-

density through anomalous gauge interactions that can be th

; . . . ard model(MSSM).

basis for baryogenesis. In contrast with earlier work, where . . . . . o

Let us consider an inflato® interacting with a “Higgs

the analyses were based on analogies with thermal sphaIF- N . 2t ¥
X - Tield” y through a coupling of the form® <y 'y or u®x'x,
rons[5,6] or topological defectf4], we construct an explicit o both. Let us assume that the effective poteriy, @)

solution that can be though of as a condensate of sphalerorl1 N d © mini ; | haH
We show that the evolution of this solution can lead to a gs _WO nor&-tﬁggtg[?]erae mm]lr:la, ort§>|<amp qﬁﬁh__v’
resonant growth of Chern-Simons number density. (®)=v,, and that the mass of the particle is not the same

in both minima, that iV (v,v )/dx*# 3>V (—v,v )/ dx*.
Il PHASE TRANSITIONS AT PREHEATING At the end of inflation, the system can occupy th'e lowest-
energy state wit xy)=—uv. During preheating, the inflaton
The properties of the physical vacuum and the particleoscillates around its vacuum expectation val(MEV),
content of the universe are determined by physical process&(t)zvlJrCDOCOSwt. In general, this induces a time-
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FIG. 1. The time-dependent potentiaV/(y,®(t))=(x’ FIG. 2. Another time-dependent potential. The heights of the

—v2)71+0.4c0s5.6t]+0.1v x(3v2— x?) that has two non- WO vacua oscilate.
degenerate minima and a time-dependent barrier height. The masses
of the x particles are also time-dependent and are different in thdially. This kind of solution of Eq.(1), with H=0 and the
two minima. potential of Fig. 1, is shown in Fig. 3. At some point it
crosses the barrier and begins oscillations around a different
dependent mass for the Higgs figldthrough the couplings potential minimumyx)= +v. However, the mass of the
w andX\. In general, bothb, andw are time-dependent due particle near )= +uv is m(*), different fromm(~). There-
to the expansion of the universe and because the potential fere, the system may go out of resonance after crossing the
not necessarily harmonic. However, in many cases one caparrier. There are no growing solutions in the vicinity of the
treat®, andw as nearly constant or slowly changing quan-second minimum, and the oscillations die out wif)
tities. Let us neglect the back-reaction effects. The equatios +y.
of motion for the homogenou&ero-momentummode of If the tunneling rate betweefy)=+v and{x)=—v is
the field y is negligible, the classical evolution shown in Fig. 3 describes a
phase transition into a metastable false vacuum.
. .0 This example shows that the ground state at the end of
x+3Hy+ aV(x,vleCI)oCOSwt):ov (1) inflation does not necesarily correspond to the global mini-
mum of the potential. Instead, during preheating, a false
whereH is the Hubble constartin Fig. 1 and Fig. 2 we
show two examples of time-dependent effective potentials. solution
The potential V(x,®(t))=(x*—v?)?1+0.4c0s5.61] '
+0.1v x(3v2— x?) depicted in Fig. 1 has two classical solu-
tions, y=—v and y=v. Naively one could expect that the
lowest-energy solutiory=—uv corresponds to the preferred
vacuum state. This is not necessarily the case, however.
Since the mass of thg field is time-dependent, the solution X fv
x(t)=—v may be unstable with respect to small perturba-
tions. At the same time, the other solutiof(t) = +v may
be stable. If this is the case, the classical system is attracted
to the trajectoryy(t)=+v.
In the vicinity of the global minimum, fof(x+uv)/v|
<1, the equation of motiorgl) for small oscillations is a
Mathieu equation that has rapidly growing solutions for
some values ofv, ®o, and m()=3*V(-v,v )/dx* The
inflaton frequency changes with time and can enter in reso- t
nance, at which point|§(t)| —v) begins to grow exponen-

FIG. 3. Classical solution of the equation of motion in the po-
tential of Fig. 1. The evolution begins near the unstable classical
trajectory x(t)=—v and is driven towards a stable classical solu-

YIn weak-scale preheating the Hubble constant is negligibllytion x(t)=-+v. In quantum theory, if the tunneling rate between the
small. For GUT-scale preheating it is not, and it could play antwo vacua is small, a phase transition to a metastable vacuum takes
important role in helping to scan resonant bands. place.
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vacuum can be populated if the true vacuum entered in resdions. The seeds for these spatial modes might emerge from
nace while the false vacuum did not. spinodal decomposition during inflati¢h0,11]. As expected
Both grand unified theories and supersymmetric extenen general grounds from earlier preheating studies, the
tions of the standard model predict the existence of locafastest-growing modes are those with large spatial scales.
minima in the effective potential. The tunneling rate betweenThe third stage involves the generation of sphalerons, with
these minima can be extremely low and their lifetimes canspatial scales at the standafdboson mas#/y, .
easily exceed the present age of the universe. For example, | || stages, we will ignore various back-reaction effects;
the effective pOtentia| of the MSSM can have a broken C0|OI5[he expansion of the univerﬁm] any case, neg“ble for weak-
SU) in its global minimum, while the standard, color and g¢cgle inflation;, and damping produced by perturbative de-
charge conserving vacuum is metastable. For natural and €¥ays(one order ofay, higher than terms we kegp
perimentally allowed values of the MSSM parameters, the \ye discuss the first stage, which has important non-linear
lifetime of this false vacuum can be much greater thatf 10 effects stemming from gauge-potential self-couplings, both
years[7]. If the reheat temperature after inflation was notanalytically and numerically. A particuldnsatzis used for
much higher than the electroweak scale, this metastablghe gauge potential, having only a time dependeri€his
minimum could be populated in the way we have describedansatzhas been used some time 4d@] in a rather different
Breaking a SUSY GUT gauge group and choosing bescenarig. The analysis is in the same spirit as the conven-
tween the nearly degenerate minima is problematic in nontonal approach to low-order resonances in the Mathieu
inflationary cosmology8]. Let us consider a SUSY 38  equation(see, e.g., Ref13]). But the lowest-order resonant-
GUT for example. The minima with unbroken 8,  mode equations, two first-order differential equations, have a
SU(4)xU(1), and SU(3X SU(2)xU(1) groups are nearly cubic non-linearity. Surprisingly, these coupled non-linear
degenerate, split only by supersymmetry breaking terms ogquations can be solved exactly in terms of elliptic functions.
the order of a TeV. Why did the universe end up in theThe non-linear terms not only provide a quartic potential
vacuum with the lowest symmetry? opposing the growth of CS number but, as the CS number
Finite temperature correctiortd relevant, which may not  grows, the non-linear term also grows and drives the system
be the case for preheatinmake the S(b) minimum lowest  off resonance. In effect, the cubic non-linearity causes the
in energy because it has a higher number of degrees of fregy-hoson mass to increase. Interestingly, this increase can be
dom. The subsequent thermal evolution of the potentiabffset by a secular increase of the frequency of Higgs oscil-
makes tunneling into a standard model vacuum impossiblgytions, allowing resonance to be maintained for long periods
[8] even if it becomes the global minimum at temperaturesf time with consequent large growth of CS number.
below 1 TeV. Supergravity splits the three minima by a neg- |n the second stage we include linear perturbations to the
ligible amount and in such a way that cosmological constangpatially-homogeneous equations of the first stage; these per-
can be fine-tuned to zero only in the minimum with the tyrpations are considered to lowest order in spatial gradients,
higher energy while the other two minima have negativeas characterized by a spatial momentinit is not possible
energy density9]. Some of the proposed solutiof| rely  to do a conventional dispersion-relation analysis of these
on assumptions about a strong gauge dynamics that seegguations, which have time-dependent coefficients as deter-
somewhat implausible. mined by the temporal growth of the first-stage gauge poten-
If, however, inflation took place, the SUSY GUT vacuum tja|s. We perform a numerical analysis of the three coupled
could be chosen in a phase transition of the kind we defnear differential equations which result.
scribed. This appears to resolve a long-standing problem The third stage, in which gradients evolve to spatial scales
concerning the breaking of the SUSY GUT gauge group. . 1 appropriate for sphalerons, is the hardest to analyze,

since an adequate treatment involves the solution of coupled
. B+L VIOLATION partial differential equations with time-dependent coeffi-
cients. So we restrict ourselves to a crude, simple first step,
As discussed in the Introduction, preheating oscillationgeducing these partial differential equations to a non-linear
of the Higgs VEV can lead to two effects of interest 8r ordinary differential equation for an approximate sphaleron-
+L violation. The firs{ 6] is that the sphaleron barrier itself like mode. The relevant gauge-potentfhsatz first intro-
oscillates, leading in principle to exponentially-sensitive os-duced by Bitar and Chanld.4], was later usel15] to ana-
cillations of the sphaleron rate. The second, which we takéyze sphalerons above the EW phase transition, and was
up here, is that Higgs oscillations can resonantly drive classhown to have an effective barrier potential for the sphaleron
sical transitions over the barrier. which was numerically very close to that of a simple pendu-
Given an appropriat€ P-violating seed, there are three lum. We introduce an oscillating Higgs field, which causes
stages to this classical resonant driving. In the first stage, thehis pendulum to be parametrically-driven. TARsatzs too
seed(which can be a source term or initial conditions on thesimple to be used for anything more than estimating the rate
EW gauge potentialgirives large-scale generation of Chern- of change of topological charge as the pendulum goes over
Simons(CS) number(topological chargeover spatial scales its barrier once; we do this numerically. In principle, more
so large that spatial variation can be ignored and only temeomplicated forms, representing multiple sphalerons, could
poral variation saved in the classical equations of motion. Irbe used, such as the ADHM construction or those of 't Hooft
the second stage, gradients on shorter scales emerge, asraof Jackiw, Nohl, and RebHil6] multi-instanton form,
result of unstable growth of spatially dependent perturbasuitably modified for Minkowski-space dynamics, but these
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have not yielded any insights for us. Because the equations are unstable, there is little practical

At all stages, the energy density associated with generadifference, and we choose to drop tbeterms in the equa-
tion of CS number is of order#m*/g?, as would be appro- tions of motion, and then providing a seed through initial
priate for a gas of sphalerons with densitym®. values. Then there is a single equation §ar

A. First stage: homogeneous CS parametric resonance +2¢3+ (1+ecosrt) p=0. (8

In what follows we always consider the Higgs field to
have a given VEV, as determined by preheating effects. In
troduce the conventional anti-Hermitian gauge potential
with couplingg included, by

We have non-dimensionalized the equations of motion by
measuringe in units of m and timet in units of m™*. The
parameter has the values/m.
Without the cubic non-linearity, this would be a standard
T Mathieu equation. In the Appendix we analyze the coupled
gAM=(E A% (2)  non-linear mode equations which arise for the lowest reso-
nance (=2), and find that they can be solved exactly in
terms of elliptic integralgthe key equation is essentially a
Lameequation [17]. The qualitative features of this analysis
T are easy to anticipate: Equati@®) describes the motion of a
E) $(t) () particle in a quartic potential. The oscillating term drives the
particle up the wall, but eventually the particle gets out of

in which the group index is tied to the spatial index. By thefésonance and falls back. This process can repeat quasi-
conventional rules of charge conjugation and parity for the®eriodically. . _
gauge potentialg is C even,P odd, CP odd. We now turn to numerical analysis. Only a couple of

It is important to note that thidnsatzdoes not correspond €xamples will be reported, without attempting to choose pa-
to a non-vanishing VEV for an EW field. Gauge invariance@meters to correspond to realistic preheating scenarios. Pa-
alone is enough to ensure that there can be no expectatiégmeters are chosen to illustrate specific effects; other param-
value coupling the space-time indices to group indices. ~ ©ter sets may show no interesting behavior at all. The runs

One readily calculates the EW electric and magnetid®Ported here have initial values
fields:

Our spatially homogeneolwmnsatzis

gA,=0; gA =

$(0)=0.001; ¢(0)=0, 9)
gE=Ggi=

Ti\ - 1 Ti

E) (1) 9Bi=3 €ij G = (Z> ¢%. (49 and large values of, in the range 0.5-0.9. Because the equa-
tions are both non-linear and unstable, the final results are

Then one calculates the densityof Chern-Simons number largely independent of the initial conditions as long as they

as are non-zero. As the initial values are reduced, the time of
onset of instability is sometimes lengthened. Generally, there

1 are two regimegfor constant frequencw): The resonant

:<ﬁ> ¢°. &) regime, in which¢ grows to 1), and the non-resonant

regime whereg stays small. We will only show the near-
resonant cases in the figures. There is another regime in

Itis straightforward to check thal is the topological charge which o grows secularly with time, and which leads to larger

densny Q, related toB+L violation through the anomaly values of¢.
equation.

. . . . . Figure 4 is a typical example of the behavior wheror r
W'th the assumption of a given Higgs VEV, the equatlonsis constant and fairly near resonan@e this caser=2.3).
of motion for the gauge potential are

One sees that the envelop |af| grows to order unity, but
[D~,G,,]+ M2 (A, +(a,U)U"1)=0 6) periodically passes through zero and repeats. This is because
e W n ' € is near unity, and so system frequencies vary quite a bit,
Here the unitary matrixJ represents the Goldstoriphase from 1+eto 1—e.

part of the Higgs field. The mass term will be assumed to Figure 5 shows the behavior when the frequency grows
have the form secularly. The onset of rapid growth is delayed because the

system is originally fairly far from resonance, but then the
M\ZN(t): m?(1+ ecoq wt)) (7) envelop of| ¢| grows essentially linearly, coupled to the fre-

quency change. The system is able to stay in resonange as
wherem is the value ofM,, with no oscillations. Later we grows linearly, because the effective maéf the ¢ field
will have occasion to consider a time-dependent frequencysee the Appendixis M?=m?+3(¢?), and the effective
w, but for now think of it as a constant. ratior = w/M stays roughly constant M grows at the same

There must be some sort 6fP-violating seed to produce rate asw.

non-zero solutions of the equations of motion; these might Figure 6 shows the CS density*/87? corresponding to
stem from (long-scal¢ spatial gradients in the matrid,  the parameters of Fig. 5. The CS density grows roughly as
which acts as a source in E@), or from initial values of¢.  with ¢ growing linearly in time as does.
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FIG. 4. Time dependence af for initial values as in Eq(9) FIG. 6. The Chern-Simons densiigee Eq.(5)] for the param-

plusr=2.3, e=0.9. eters of Fig. 5.

With dimensionalized 3va|ues dfp|=m, the CS number  han those forp (as is reasonable following inflatiprthese
density is of order 0.0dn", corresponding to a largB+L  seeds will be driven by the time variation ¢fas well as of
density. Whgther any of this CS density survives preheatm%e Higgs VEV. We will be concerned here only with the
to the reheating phase depends on whether there is a “gracgnearized equations for the spatially-varying modes, which
ful exit” to preheating generation of CS number, and this\ye characterize in momentum space. As is often the case, the
depends on factors not considered in this paper, such as bagkyges with the longest spatial scalemallestk) grow fast-
reaction, growth of finite-momentum modes, and lineargg;
damping by decay of th&/-boson condensate. Ad({i&ionally, The total vector potential is written @, +a,,, with A,,
there may be many domains large comparedmo” but — taken from Eq.(3). The most general vector potentigh,,

small compared to the Hubble size in which the valueg of . . -~ .
are uncorrelated. This will reduce the effective global Csdependlng on asingle vectarhas time component

density by a factor oN'? whereN is the number of such ik
domains. The ultimate fate of the processes considered here gao:<-) ag, (10)
will be taken up in a future work, in which specific weak- 2i

scale preheating scenarios will be taken up.
and space components

B. Second stage: evolution of spatially varying modes

1 Ao - Ao
a==[(ri—kimk)B1tie kpBo+ki7-kB3].
Ultimately, there will be someC P-violating seeds with 93 =57 L(1 =7 K B1F T €aTako Bt Ky 7- KB
finite spatial gradients. Assuming that these seeds are smaller (12)

In Egs.(10),(11) the hat indicates a unit vector, ang, 3;
are real functions ofk? and t. As before, we non-
dimensionalize by dividing these functions by replacingt
by mt, andk by k/m. Presumably the Fourier transforms in
Egs.(10),(11) vanish at an appropriate rate las-0 so as to
changek into K, although this will not matter in what fol-
lows.

It is straightforward if lengthy to write out the linearized
version of Eq.(6) (without theU terms:

1 . : .
ao=6[2(¢ﬂz*/52¢) —kpBsl, (12)
0 200 400 600 800 1000 Q=K2+ 247+ 1+ ecosrt:
¢ it QB 2K B+ 2Byt B 67=0; (13
FIG. 5. Behavior ofp with the initial conditions of Eq(9), with . ) )
b=0.52, and a secularly growing frequencft) =1.7+0.001. Bot+QPBs—2kdB1+ p(ag—KkB3) +2dag=0; (14
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Bs+QBs+k(ag—kB3—24B2) +4p1¢7=0.  (15) 0 72
Even though these are linear equations for the modes 0.5
ag,B; they are impossible to solve analytically, becagsis 0.5
not an analytically-known function. We have solved them ’ N
numerically, with various interesting results. Perhaps the 0‘0 0 Y
most interesting is that these mode functions remain small 20.25
and well-behaved for a long time, and then whgs large o5
enough(of order unity they show violently unstable behav- ‘
ior. This is especially so for the case when the frequency 0.75
growing with time, as for Fig. 5. This is illustrated in Fig. 7,
showing the evolution with time of the linear modes for the 0 50 100 150 200 230
parameters of Fig. 5. The mode functions were begun with 1
initial values which are 0.1 times those ¢f[see Eq(9)]. Of 0.75
course, any other initial values can be gotten by scaling,
since the equations are linear. The point is that when, for a 0.5
given set of initial values of, 3 , these functions rise to be 0.25 ﬂ
of O(1), the whole problem becomes non-linear and presum- B 0 ,VAA
ably enters something like the third stage discussed below. 1 “u
Note in Fig. 7 that the threshhold for non-linearity, with the -0.25
given initial conditions, occurs at @imensionlesstime of 0.5
200, which gives¢ enough time to get big enough to be 0.75
interesting(see Fig. 5. lil
0 50 100 150 200 250
C. Third stage: sphalerons
Eventually, momentum modes witk=1 will become '
prominent, and the condensate of CS number becomes a con- 0.75
densate of sphalerons. It is much more difficult to describe 0.5
this stage, and we will only take a simple first step. This step 0.25
consists of a drastic simplification of the kinematics of a
sphaleron coupled to a time-dependent Higgs field, reducing Bz 0
the dynamics to a single function(t) as in Refs[14,15. -0.25
Write the most general spherically-symmetric gauge poten- 0.5
tial and Higgs phase matrid in the form 0 75
iy. - 1. .
U=exp{2r-r , ngzzr-q-Hz; (16) 0 50 100 150
1
1 - “~n aa o 0.75
9A =5 L€iakTal k(1= D) = (7= rir- 7)ot rir- 7Hy |. os
17 0.25 ﬂ
The functionsH;,¢; depend only orr,t. The asymptotic B3 0 “"Avnu
values of the angley are zero ar=0 and# atr=o. We 0.25
parametrize these functions as 0.5
0.75
_ 2\ ; L
N2+r2+2a2 0 50 100 150 200 250
_ FIG. 7. The evolution of the linear modes for the parameters of
2r\ Fig. 5. Note the truncation on the vertical axis;tat 200 all the
Ho=— mi amplitudes are larger than one in magnitude.
(18) 2r\
o2 ¢z A24+r24a2
$1=1- ——5——; . L
N+re+a For details on the parametrization of see[15]. For the
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present purpose one can just thinkyoés always equal tar. makes the topological charge an angular variable. Numerical
In this parametrization the constamis a size parametdélike =~ work shows that the potential energy is very nearly that of a
that of an instantonand\, the sole dynamic degree of free- pendulum, and thdt= ¢M¢/m? for some numerical constant
dom, depends on. Generally,\ is an odd function oft, &. The resulting approximate Hamiltonian has the form
vanishing along with its first derivative &&0.

The electric and magnetic fields are & .,
H=Mg >Q"—cosQ (29
- 2My,

Tj 4a°\ ]
98=1 21 2 s 2 i i 2=0, Q=

I/\°+r°+a which has, as it must, the valld; whenQ=0, Q= .

(19) Next one replaceMy by its time-dependent value, as in
Eqg. (7). We have numerically investigated such driven pen-

7] 432 dulum equations. They lead to multiple transitions over the

gBF(E m- barrier, but we will not display such solutions here. One

reason is that thAnsatzwe use here is strictly tied to a unit

Note that these have the same space and internal s mmechange of topological charge, so that all that counts is the
) P y Qte of making a single transition over the barrier. Just as for
index dependence as does thhe Ansatzof Eq. (3). It is

therefore natural to suppose that tidields will transform all the classical barrier-hopping solutions presented fok/the

X . Ansatz the rate iSO(w), very much different from the tun-
(through the growth of spatial modemto a condensate of : . :
SR neling rate(The tunneling rate is also changed as the sphale-
sphalerons. Of course, in this condensate each sphaleron wij

. o . . Ton mass oscillates; s¢6].)
be a tran_slat_e in space and in time of t_he sph_a!eron exhibited” To go further than this for a condensate of real sphalerons
here, which is centered at the space-time origin.

With boundary conditions is extraordinarily complicated; each sphaleron, like the in-
y stanton to which it corresponds, has numerous degrees of
(20) freedom. Even if we restrict this to one degree of freedom
(corresponding ta) for each sphaleron, it is not clear how
one readily verifies that, no matter what the dynamics ag (0 Proceed. Nor is it clear how to modify known multi-

long as it is single-valued, théVinkowskian topological ~ instanton Ansdze such as Atiyah-Drinfield-Hitchin-Manin
(ADHM) or that of 't Hooft or Jackiw, Nohl, and Rebpl6]

A(t=—o0)=—00; N(t=+®)=+o

charge ! alit
to express the real-time sphaleron dynamics in the presence
g2 . of an oscillating Higgs field.
Q=-— —ZJ d*xTrE-B (21
4m IV. CONCLUSIONS
has the value 1. Indeed, if we replacedy t we get exactly In this work we have investigated two new mechanisms

the usual Euclidean one-instanton expression, which howdriven by preheating oscillations of, e.g., the Higgs field in
ever is now being interpreted as a Minkowskian construct. hybrid inflation. The first mechanism, resonant barrier-
The size coordinata is not arbitrary, as it is for instan- crossing from a lower minimum to a higher minimymhere
tons in gauge theories with no Higgs field. As showflf], there is no longer resonancenay explain some puzzles as-
if one goes tat=0 and sets\,\ =0 there, the resultingn-  sociated with the symmetry-breaking patterns of GUTs. This
satzin Egs.(16),(17) is an excellent trial wave function for Kind of transition could also populate a metastable
the sphaleron. Minimizing the Hamiltoniarifor time- ~ SU(3)XSU(2)xU(1) vacuum in a supersymmetric exten-
independent Higgs VEWyields a=y3/2M,, and a sphale- sion of the standard model even if the global minimum of the

ron massM only a fraction of a percent higher than the true Potential breaks charge and coldn the case of the MSSM,
value, determined numerically, of this posibility has direct inplications for collider experiments

[7].) The second mechanism, resonant barrier-crossing asso-
ciated with B+L violation, may lead to a condensate of
47TMW
M¢=5.4 > |-
9

(22 sphalerons on time scales short compared to tunneling rates.
Both effects require resonance with preheating oscillations to

. . ) be effective. We have not tried to construct “realistic” ap-

When the mas#/, depends on time, as in EGZ), we will  pjications of these mechanisms to specific preheating sce-

continue to use the aboye vglue fort then ha_ppens thatthe 5ri0s. We note, however, that in many cosmological mod-

parameters of the Hamiltonian depend on titeee[15] for g5 even if the initial conditions are far from resonance, the

the Hamiltonian as a function @f,\,\). system evolves and reaches the resonance eventually, thanks

As is further shown irf15], one can trade the function  to a change in the relevant parameters Such evolution is
for a topological charg€(t) defined by demanding that the facilitated by either non-quadratic inflaton potential that
kinetic energy term in the Hamiltonian is of the form causes a variation in the inflaton frquency, of by expansion

(1/2)1Q2 with | independent of). The normalization of the universe and the associated Hubble dampiog
GUT, not weak-scale preheatingr some other effects that
A=—0: Q=0; \=+w: Q=27 (23 can slowly drive a system into a resonance band. We leave
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the building of realistic cosmological models for future dence ofa,b is O(e€), so that we can ignore second deriva-
work. tives of these quantities. However, we will save the cubic
Aside from such applications, there is still a good deal ofnon-linearities.
work to be done to clarify these mechanisms. In the case of Using Eq.(Al) in the equation of motioii8), saving only
B+ L violation, one can raise the following issues: terms varying as cod(2) and sin(t/2), and dropping second
(1) How do the three staggspatially-homogeneous po- derivatives yields
tential, linear momentum-mode perturbations, sphaleron con-
densatgof Sec. Il evolve from the first to the last? This can
only be answered by numerical work more extensive than we
have yet done.
(2) The large-scale EW CS density we propose will have .
a projection onto Maxwell magnetic fields carrying helicity —rb+a
(another term for Chern-Simons numpeiThe spatially-

homogeneous nature of these fields makes them quite diffetro make contact with the linear Mathieu equation, let us

therein involving generation of Maxwell fields in a thermal 5,4 define an effectivénon-dimensional, that is, scaled by
environment, with unacceptably small scale lengths to correpy massm by

spond to the scale lengths of present-day galactic magnetic
fields. Given sufficient inverse cascading of the nearly- 3
homogeneous Maxwell fields following from our preheating M?=1+ E(aZJF b?). (A4)
mechanismat EW time these fields must be limited in ex-
tent by the Hubble size[19] shows that EW-time Maxwell  Assuming exponential growth, with,b~ exp(ut), gives
fields could indeed be the seeds for presently observed ga-
lactic fields. We intend to investigate this fur.t.her. 1, p 212
(3) Can one make use of multi-instantansaze such as mu=>-[e"=(r*=4M?)7] (A5)
those of ADHM, 't Hooft, or Jackiw, Nohl, and Rebki6] to
extend the Bitar-Chanpl4] construction we have exploited \yhich gives growth only whem=2M+0(¢). For small
in Sec. IIC in order to understand quasi-analytically thejnitia| values of¢ this means =2, but as¢ grows because
formation of a sphaleron condensate? _ of the initial parametric resonance, the system goes out of
(4) Are there(necessarily spin-dependgmuasi-resonant resonance.
phenomena for the production @-bosons by an oscillating We show that Eqs(A2),(A3) can be solved exactly in

Higgs field which are in any sense analogous to the VelYerms of elliptic integrals. Multiply Eq(A2) by a and Eq.
sharp resonant phenomena found by Cornwall and Tiktopoya3) py —b and add to get

los [20] for spin-1/2 charged particles in specific time-
dependent electric fields? d

To clarify this last point, Refl.20] found that it is possible ﬁ(a2+ b%)=—
to have highly resonarg™ e~ pair production in a classical
time-varying electric field of the proper time dependenceThis equation is independent of the non-linear terms in Egs.
The sharply resonant nature of the process can only happga2),(A3); it would hold even if these terms were dropped.
for fermions, but in any case spin effects, which might benote that exponential growth requirasb to be of opposite
available with gauge bosons, are important in overcoming;jgn. The constraints expressed by E&46) allow the elimi-

the typical expt-1/a) rate of pair production in classical nation of one degree of freedom:
fields.

'br21132b2—0- A2
rathbl o+ e —E(a+ )|=0; (A2)

2

r 1 3
———-e—1- E(a2+ b?)

75 =0.  (A3)

€
ab. (AB)

a=AcosV¥, b=-AsinV, (A7)
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(A8)
APPENDIX: ANALYSIS OF MODE EQUATIONS FOR ¢ with Ay as an initial value. In the linedMathieu case co¥

is the constanir2— 4|/, which yields the linear growth rate
in Eq. (A5). But Egs.(A2),(A3) yield two equations for the
Yime evolution of A,W. The sum of these equations is a
trivial identity, while the differenc¢using Eqs(A7),(A8)] is

Here we give the analysis of the Mathieu-like but non-
linear modal equations of Sec. Ill. Just as for the Mathie
equation, we write the non-dimensionalizédn the form

p=a(t)cogrt/2)+b(t)sin(rt/2), (A1) 2 . .
cos 2¥ —2r¥ = — —2—3A%ex fdt’(—)sinZ\P t' )
(where, as in the main text=w/m), leaving out all terms ¢ 2 0 F{ 0 2r )
with higher frequencies. One verifies that the time depen- (A9)
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Now differentiate Eq(A9) and use Eq(A9) in the result to  Sincer?—4 is O(e), so isk. The best case for growth is
arrive at

2 T

. € €
20— —(r?—4)sin2¥ + —sin 4V. (A10) W(t)= ( 4) cos\t (A13)
2r? 2r?

This is readily checked to be an elliptic equation. We will o .
not bother to study it here. All the physics is contained in the(so that—a andb are equal initially. Evidently, from Eq.

linearization of Eq(A10), which gives (A8) growth stops when¥ =0, or whent=/2\. This
means, as discussed in the main text, that growth cannot be
W(t)=Wocog (A(t—tg)] (A11l)  unlimited.(However, when the frequenaygrows secularly,
. growth can continue unimpeded wie?,b2~r, which main-
with frequency tains the resonant growth conditiprGenerally, no matter
2 e(ri—4) 112 how small the initial values of the potentidl, eventually¢

(A12)  becomes of order unity. The smaller the initial value, the
longer this process takes.

A=

r2 2r?
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