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Recent observations seem to suggest that our Universe is accelerating, implying that it is dominated by a
fluid whose equation of state is negative. Quintessence is a possible explanation. In particular, the concept of
tracking solutions permits us to address the fine-tuning and coincidence problems. We study this proposal in
the simplest case of an inverse power potential and investigate its robustness to corrections. We show that
quintessence is not affected by the one-loop quantum corrections. In the supersymmetric case where the
quintessential potential is motivated by nonperturbative effects in gauge theories, we consider the curvature
effects and the Kialer corrections. We find that the curvature effects are negligible while théeKeorrections
modify the early evolution of the quintessence field. Finally we study the supergravity corrections and show
that they must be taken into account @s=mp, at small redshifts. We discuss simple supergravity models
exhibiting the quintessential behavior. In particular, we propose a model where the scalar potential is given by
V(Q)=(A*2/Q%)e(*2° \We argue that the fine-tuning problem can be overcomesifl1. This model
leads towg~ —0.82 for(,~0.3 which is in good agreement with the presently available data.

PACS numbd(s): 95.35+d, 98.80.Cq

[. INTRODUCTION the ratio of the total energy density to the critical energy
density. In the simplest case the position is predicted to be
Several observations seem to suggest that our preseloppier=220A/ Q. In the case where a fluid with negative
Universe is dominated by a type of matter with a negativeequation of state is added the peak is shifted towards bigger
equation of statewo=pq/po<0. The first type of observa- values ofl. This seems to be the case for the experiments
tions leading to this conclusion is the recent measurements &ted above.

the relation luminous distance versus redshift using type Iarln osgcne]gﬂé/'e agr?é?aeé nl;?[CvOdQ szw dpg’p?;?r? Ilr;;\ ror:_i(r:;% re-
supernovad1l]. The interpretation of the data are usually 9 y A g'arg

. oo eculiar velocities daté6]. These data provide constraints
made under the assumption that the unknown fluid is €] p

Lo _ ainly on{}, and are almost independent@f, . Combined
true” cosmological constant\. Unfortunately, the results ith the measurement of the relation luminous distance ver-

are degenerate in th@,—, plane and it is difficult to g5 redshift, they select a region in the,—Q, plan which
draw a conclusion on the basis of these measurements only compatible with the results of Reff2]. It is remarkable
The situation changes drastically if one includes in the analythat, although of different nature, these experimental data
sis a second type of observations: the measurements of ti@®nverge towards the same conclusion.
cosmic microwave backgroun@MB) anisotropies. In this This raises the issue of the physical origin of this fluid
case the degeneracy can be remd@dnd one is led to the with negative equation of state. A useful indicator of the
conclusion that the matter with negative equation of statghysical nature of this fluid is the value ef, . Recent con-
would contribute by 70% to the total energy of the Universe straints[7] indicate that— 1< wg=—0.6 whereas in Refs.
the remaining 30% being essentially cold dark matter ensuit8,9] a value such that 1< wo=—0.8 is favored. The case
ing that the Universe is spatially flaf)o=1, in agreement ws=—1 corresponds to the existence of a “true” nonzero
with the standard inflationary scenario. This conclusion cartosmological constant. This cosmological constant has then
be traced back to the fact that many CMB experiments showo be explained by current particle physics scenarios. In par-
a high amplitude of the first Doppler peak located lat ticular one has to face the task of explaining an energy scale
~260. For example, this is the case for the experimentef ~5.7n2x 104" GeV?, i.e., a value far from the natural
Saskatoo3], PythonV[4], or TOCO97[5]. The addition of  scales of particle physics. Therefore, although perfectly com-
a fluid with a negative equation of state has for consequencgatible with the presently available data, this hypothesis runs
that the Integrated Sachs-Wolfe effect reinforces the scaléigto theoretical problems since it seems easier to explain a
|~200-300 and increases the peak to values compatiblganishing cosmological constaiity some yet unknown fun-
with the error bars of these experiments. Moreover, the podamental mechanism maybe coming from quantum gravity
sition of the peak informs on the value &, where{y is  or string theory, see Ref10]) than finding a reason for a
tiny (in comparison with the high energy physics scatEm-
tribution. In a certain sense the measurements described
*Email address: brax@spht.saclay.cea.fr above render the “quantum” cosmological constant problem
"Email address: martin@edelweiss.obspm.fr worse than before.
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Recently, another explanation, named quintessence, hase affected by the quantum corrections to the potential given
been put forward in Ref$11]. Quintessence is an alternative by Eq.(1) at the one loop level in the case where the under-
scenario with a homogeneous scalar fi@ldvhose equation lying model is not supersymmetric. We show that the quint-
of state is such that 1<wg=<0. In this scenario, the miss- essential scenario is robust against these corrections. In Sec.
ing energy density is due to this scalar field. Let us note thatV, we turn to the study of the supersymme{8USY) mod-
this explanation allows to come back to the situation whereels. We argue, as already noted in Ré#], that potentials
there is a vanishing cosmological constant. However thaiven by Eq.(1) naturally arise in the context of supersym-
quintessence scenario does not solve the “quantum” cosmanetric gauge theories where certain flat directions are lifted
logical constant problem. by nonperturbative effects. We study the phenomenology of

Quintessence has to address a certain number of quethese models for which the quantum corrections to the super-
tions. First of all one must make sure that the fine tuningpotential automatically cancel out. As quintessence requires
problem of the cosmological constant does not reappear in a value of the second derivative of the potential of the order
different guise. One must also solve the “coincidence prob-of the scalar curvature of the universe, we also study the
lem,” i.e., understand why the quintessential field begins tacorrections due to the fact that the fields live in a curved
dominate now. Another conundrum is to try to justify the spacetime. The curvature effects are evaluated at the one-
presence of such a field from the particle physics point ofoop level and shown to preserve the tracker field properties.
view. The answers to these questions strongly depend on thénally in the supersymmetric case one can take into account
form of the potentialM(Q). For example, if one chooses a the effect of the corrections to the kinetic terms of the quin-
potential of the formV(Q)=(1/2)m?Q? then one cannot tessence field. In particular in the low energy description of
avoid to fine tune the value of the mass to an extremely smathe supersymmetric gauge theory thehka potential re-
number[12]. The problem is then similar to the case of the ceives corrections suppressed by the gaugino condensation

cosmological constant. scale. We show that this leads to difficulties for the super-
However, the problems described previously can be adsymmetric models of the tracker potential. In Sec. V, we turn
dressed if one considers the following potenfiE3]: to the study of supergravitySUGRA) models of quintes-
sence. We emphasize that such models are the most physical
Aat4 ones since at the end of the evolution the field is on tracks
V(Q)=——, (1) which implies that its value today i©~mp,. We analyze
Q the SUGRA corrections to the inverse power law potential

where«=0 andA are free parameters. This potential pOS_and show that they lead to inconsistencies due to the possible
sesses remarkable properties. The equations of motion hapggative values of th_e potentla!. To remedy this situation we
propose a supergravity scenario where the potential is guar-

an attractor solution called in Rgfl3] the “tracking field.” d ) 7 v this f
The initial conditions can vary by 100 orders of magnitudeantee to remain positive. We apply this framework to the

leading to the attractor in all the cases. Since the prese se of the heterotic string where the role of the quintessence

value ofQ~mp, on the attractor, one has that leld is played by the string moduli. Indeed the moduli are
Pl ' famous for leading to runaway potentials as expected for

A=(Qgpmg) Y+ (2)  Quintessence. We find that the resulting potential is exponen-
tially decreasing, a case already studied in the literature
which is approximately equal to §0GeV for a=6 where ~ Which fails to give the appropriate energy density. We even-
pc=8.1nx 104" GeV* is the present value of the critical tually present a toy model where the inverse power law re-
energy density. This value is not in contradiction with usualSults from the SUGRA potential. We end with the conclu-
high energy scales. It is also noteworthy that the high energ§ions presented in Sec. VI where we emphasize the problem
scaleA is relatively insensitive to small variations 6f,. ~ ©Of supersymmetry breaking. Indeed a possible coupling be-

Indeed the small variationsQo and 5A are related as tween the quintessence field and the field whbsterm is
responsible for the SUSY breaking generates a large contri-

SA 1 6Qq bution to the cosmological constant and a power seri€3 in
A Tard 0. (3 whose effect is to destroy the quintessence beh&u@r We
Q also present some ideas towards a possible solution of this

implying that a variation of)q by one per cent results in a problem within the SUGRA approach.
variation of A by one per mil fora=6. The variation is even

smaller for largera’s. L IIl. TRACKING SOLUTIONS
One can hope to justify the form of the potential given in
Eq. (1) from high energy physickl4—17. Finally it should In this section we quickly review the main properties of

be noted that, in principle, it is possible to distinguish quin-the tracking solutions as explained in R€ft3].

tessence from a cosmological constant since one has in gen- The Universe is described by a spatially flat Friedmann-

eral wo# —1. Lemaitre-Robertson-WalkgFLRW) spacetime whose met-
The aim of this paper is to study the robustness of theic can be written assf= —dt?+ a?(t)dx?.

concept of tracker solutions. In Sec. Il we quickly review the We assume that the matter content of the Universe is

main properties of the tracking solutions. Then in Sec. lll,composed of five different fluids: baryons, cold dark matter,

we analyze whether the nice properties of the tracking fielgphotons, neutrinos and the quintessential f@ld’he energy
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density of baryons and cold dark matter evolves ggs 60

=pm(1+2)® wherezis the redshift. The equation of state — 40

is pn=0 which is equivalent tav,,=0. Observations indi- é;

cate thatQ),,= Qp+ Q4= 0.3. Photons and neutrinos have & 20

an energy density given by,=p.Q,(1+2)*. The equation 3 0

of state is given byw,=1/3. The contribution of radiation is fn

negligible today sinc€,=Q_+Q,~10"* Finally, the fifth 9 ~=0

component is the scalar fief@. Its equation of state is char- —40

acterized bywo=[3Q%—V(Q)1/[$Q%+V(Q)] where a dot : :
represents a derivative with respect to the cosmic tife. 6 5 10 15 20 25
priori, wq is not a constant and is such thatl<wg=<1. Log (z+1)

Since the Universe is supposed to be spatially flat, we always

:'Iav_eQm-i-Q,-_:l%Q: 1 WEIChdlea.ds tCQQ%O]' In t.he ;OI' function of the redshift starting from equipartition. Dotted line rep-
owing, We will denote the _omlnant C_omponent_ln the €N resents radiation, dashed line is matter, and the full line is quintes-
ergy density bypg so that during the radiation dominated era ggpce.

we havepg=p, and during the matter dominated ey

FIG. 1. Energy density of radiation, matter and quintessence in

=pm- A similar notation will be used fowg . _Sincepq, redshifts slower thapg, the scalar field contribu-
The evolution of the scale factor is governed by the Friedyion pecomes dominant at some stage of the evolution.
mann equation: As shown in Ref[13], this scenario possesses important
S\ 2 advantages. First, as already stated in the Introduction, one
H2=| 2| =2 (p+p.+ po), 4 can hope to avoid any flng—tunlng. In.deed if the_ sqalar f|t_alld is
(a 3(’)m Prtpo) @ on tracks today and begins to dominate and if, in addition,

y , _ we requireQo~0.7 thenA~4.8x10° GeV (for a=6), a
where k=8mG/c”=8m/mg, in the Planck system of units. yery reasonable scale from the high energy physics point of
The evolution of the scalar field is given by the Klein- view. Secondly, the solution will be on tracks today for a
Gordon equation: huge range of initial conditions. If one fixes the initial con-

. . ditions at the end of inflationz=10? the allowed initial

Q+3HQ+V'(Q)=0, (5 values for the energy density are such that ¥0GeV*

. o _ <po=10"* GeV* where 10% GeV* is approximatively
where a prime denotes the derivative with respedto the = background energy density at equality whereas

The inverse power law pqtential was fi_rst studi_ed in Ref. b1 gavt represents the background energy density at the
[18]. If one requires that, during the radiation dominated erajyjtia| redshift. If the scalar field starts at rest, this means that
the energy density of the scalar field be subdomirftmis is 10" Bmp=<Q,< 10 2mg, initially. Thirdly, the value ofw,, is
necessary for not being in conflict with the big bang nUCIeO'automaticaII)I/ such that-1< wo=<0 t,()day The prgcise

i < H —4dal(a+2) )
synthesis i.e., pg<pg, and redshift apga Jthen  ale ofwg depends on the functional form ¥(Q) and on
one is automatically led to the potential of Ed). This was the value of()
m-

the _ongmal motivation .Of. Re“[lfﬂ for cc_>n5|der|ng the po- In the following figures, we illustrate these properties for
tential (1). In that case, it is possible to find an exact solutlona:6 0.-03. and Q-(z=1028)f~v3>< 10~ 8mo,  which

to the Klein-Gordon equation for whic®o<a*(@*2). One Ltme ! Pl
can show that this solution is an attracf@8]. Then, if one
follows the behavior of the scalar field during the matter
dominated erdi.e., for pg= p,,) With the same potential, one

roughly corresponds to equipartion at that redshift, that is to
sayQQﬁlO*“. Equationg4) and(5) are integrated numeri-
cally. Figure 1 represents the evolution of the energy densi-
. ) .~ ties throughout the radiation and matter dominated epochs.
can show[18] thathcag)./(MZ) IS an exact 50'““92;,’}'35? IS The int?arpretation of these curves has already bee% given
still an at}ractor. For this SOI[.J“O”’ one hﬁé.oca ) in Ref. [13]. The case presented here corresponds to an
;I;f;eisp;ie\\//é?]uzyresults are equivalent to saying that the attrate, ershoot” according to the terminology of that reference.

First the scalar field rolls down the potential such that its

kinetic energy dominates ar@kca 3. Then, the field freezes
(1- wé)HZ, (6) to some value;. And finally, it joins the attractor.
dQ? 2 «a In Fig. 2, the evolution of the equation of state for the
] o ) same model is displayed. The value ®f, today for this
during both the radiation and matter dominated epddVe  model is found to bavo~—0.4. Therefore it is clear that
can rewrite the parameteng as wo=(awg—2)/(a+2).  this case cannot be considered as a realistic case but rather as
a toy model. In order to illustrate the insensitivity to the
initial conditions, Figs. 3 and 4 show the same case as pre-
IEstablishing this relation from Ref18] the factor 1/2 is no Viously but with an initial value of the scalar field given by
longer present because the definition of the potential in that papeRi~0.2X10 *mp. This case corresponds to an “under-
differs by this factor from the definition adopted in REf8] and in ~ shoot.” One can see that the field starts directly from its
the present article. frozen value. Finally, the evolution of the equation of state is

?V(Q) 9a+l
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FIG. 2. Equation of state in function of the redshift starting at FIG. 4. Equation of state for quintessence startindQat0.2
equipartition. X 1074,

displayed. It is apparent that it leads to the same cosmologthe renormalization conditions. It turns out that its precise
today with wg~—0.4. value is not important for our purpose since it only appears
In the next section we study the influence of the quantunin the logarithm. The effective “massin? is equal by defi-
corrections to the potenti@l) on the properties described in nition to
this section.
. dZV(Q) A4+a

m =a(a+1l)
I1l. QUANTUM CORRECTIONS TO NON-SUSY MODELS sz

At the classical level we have chosen a potential given bYrha second term in Eq7) does not depend on the fie@
Eqg. (1). However, it is a generic effect that this potential will This term will contribute as a cosmological constant. Of

be modified when quantum corrections are taken into aczq rse gl the other fields in the Universe also give contribu-
count. In this section, we only study.the one loop correctionsyjgns to the cosmological constant. It is hoped that, by some
These types of corrections automatically cancel out when thg . nown mechanism, the total contribution vanishes; see the
model is supersymmetric. Other corrections such as the Cofqqqyction. This assumption is in the spirit of the quintes-
rections due to curvature effects and to the kinetic terms wilkontial models in which there is no need of a cosmological
be studied in the next sections. constant in the Einstein equations. For all these reasons we
The modified potential read49-21] will not consider the second term in E¢) in what follows.
Introducing the expression giving? into the formula of

()

V(Q)= AtTe N Af n A_2+ m?A? N m* n m’ E) the corrected potential, one finds
Q¥ 3272 wu? 3272 27?2\ A? 2]
(7) AT a(at+ 1A 1
V(Q): a + 32 2 at+2
where A is an effective cutoff already defined apdis the Q g Q
natural energy scale of the theory. This expan_sion is obtain.ed a?(a+1)2A82¢ 1
by calculating the one loop Feynman diagrams. This 5 oa
amounts to evaluating the integrfdi*pin(p?+m?) properly 32m Q
regularized byA. This choice has been made because a(a+1AZH| 3
turns out to be the natural cutoff in the physical models n )__ _ (9)
considered in this papéfl4]. The energy scalg appears in Qet2 2
60F ' ' ' ' 3 We see that the functional form of the potential is no longer
the same.
N 40 We now need to estimate the orders of magnitude of the
% 20f AP corrections to see whether they can be important. As an ex-
2 ] T ] ample, let us consider the cagse=6 for which A~4.8
S 0 x 10° GeV. The first change is that, now, we must h&ye
@ —20F e =4x 10" ®mp, initially in order thatpo<pg atz=10% In-
- a0k / ] terestingly enough this constraint comes from the last term in
s ‘ . ‘ . Eq. (9) which is dominant at this redshift. This means that
0 5 10 15 20 25 there exists a region for which the quantum corrections are

more important than the unperturbed potential. As expected,

this happens in the early Universe, at high energy. A quick
FIG. 3. Energy density of radiation, matter and quintessence irestimate enables us to show that quantum corrections are

function of the redshift starting @,~0.2x 10" %. dominant if Q;=2x10 ¥mp, ie., for 16° GeV<pq

Log (z+1)
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<10°! GeV initially. Therefore, among the 95 orders of stant becomes strong at low energy. In this infrared regime it
magnitude in which the initial energy density of quintessences relevant to study the configurations of the scalar compo-
can vary, 35 of them are dominated by quantum correctiongents of the quarks and antiquarks which have zero energy.
including the most physical case of the equipartition forThe potentialVp=g?D?/2 vanishes when th®-terms D?

which we have Q;~6X 10*15m_p, corresponding t0Qq;  =zi* Tiﬁziﬁ_?'a-riﬁ?*ﬁ vanish leading to

~10"4. We conclude thata priori, quantum corrections

must be taken into account in any realistic model of quintes- z‘aziﬁ* _?;?'ﬁ:)\gaﬁ_ (10)
sence.

However, we find numerically that the final value @  The manifold of solutions of these equations is called the
and wq is the same with and without quantum correctionsmoduli space of the gauge theory. The moduli space is in one
even if we start from equipartition. As this conclusion is notto one correspondence with the gauge invariant polynomials
changed if one considers other values égrwe have dem- 12 via the equation
onstrated that quintessence possesses another remarkable
property: it is stable against quantum corrections. In fact the Jl
evolution of both the energy density and the equation of state E
with and without the quantum corrections is the same during “
all the cosmic evolution. This is due to the fact that at they, the caseN,<N, there is just one gauge invariaht

beginning of the evolution the field rolls down the potential Ml :Zia;Ja called the meson field. The low energy dynam-

very quickly and leaves the region where quantum correc: . . .
tions are important in a very short time. ics is expressed in terms of the meson field. As the gauge

In conclusion we have shown that non-SUSY models o9 °4P becomes strongly interacting at low eneigy A

guintessence are stable against one loop quantum correctio QteredA 'S; tk;ﬁ strong |nte;§ct|o? scalg, noTpe(;tE[eratwe ef-
to the effective potential. This property is generic and doe ects due 1o the condensation ot gauginos fead to a nonzero

not depend on the precise value @f superpotential for the meson field,

=7'* (12)

a

In the next section, we start examining SUSY models of AD/(NG—Np
quintessence. In that case the quantum corrections studied in We — (12)
this section automatically cancel out. (det M) Y(Ne=N)

This potential is deduced foN;=N.—1 by an instanton
calculation and for alN; using the decoupling technique. Let

As seen in the previous sections the quintessence fields now focus on the amplitude modié =Q?3' obtained
varies over a large range of values, as high as the Plandkom z'=Qz,,Z =Qz,. Note that the case of two field di-
scale. It is therefore compulsory to treat the quintessenceections has recently been investigated in RET)]. Starting
behavior within the framework of models encapsulating thefrom a flat Kzler potentialK =tr(zz' +zZz') the classical
expected behavior of high energy physics. We will use sukahler potential at low energy becomks=QQ* after nor-

persymmetric models. One of the advantages of these mOderﬁalizing tr(zz},+ zozl) = 1. This yields the low energy sca-
is their stability with respect to quantum corrections. In par-. potential for the amplitude mode

ticular it is known that the nonrenormalization theorem pre-

IV. SUSY MODELS

serves superpotentials, there is only a wave function renor- A 2b/(Nc—Np)
malization. . -
V(Q) Q2(NC+ Ng)/(Ne—Ng) * (13)
A. SUSY gauge theories From the previous equation, it is clear that the so far arbi-
The potential in 1) which leads to quintessence has atrary coefficienta is now given by
natural supersymmetric origin. This was first shown in Ref.
[14]. The aim of this section is to generalize the models a_ch+ Ny (14)

investigated in Ref[14]. This type of potential is generated N¢— Ny’
at low energyE<A in supersymmetric gauge theories dueto )
nonperturbative effects along flat directions of the scalar powhich is always greater than two. This result had already
tential. In this section we present the general features of siReen obtained in Ref14]. The analysis carried out in this

persymmetric gauge theories. More details can be found jRarticular model is in fact typical of most supersymmetric

[22,23. gauge theories. We now show how this approach can be
Before dealing with the general case let us recall the mosgeneralized. o

famous example constructed with the gauge grewfN,) Consider a gauge group and the matter fields' in the

and N; quarks and antiquarkszi( ;) i=1 N; and representatiofR; of the gauge group. Define the Dynkin in-

=1,... N, in the fundamental and antifundamental repre-dex'“i of a representatioR; to be

sentations of the gauge group. The dynamics of this model is _

governed by the renormalization evolution of the gauge cou- tr(T2Tb) = iz'éab, (15)

pling constant. Fob=3N.—N;>0 the gauge coupling con-
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where theT®'s are the Hermitian generators of the represen- We assume that the quintessence field belongs to a chiral
tation R; and ¢ is the long root of the Lie algebra @&. For  supermultiplet, i.e., a complex scalar field and a Weyl spinor.
instance forG=SU(N.), the previous results are retrieved We shall first examine the case of a free field showing that
using us=1 for the fundamental representation apgy  global supersymmetry is broken explicitly by curvature ef-
=2N, for the adjoint representation. The beta function de-fects in a FLRW spacetime. This is due to the fact that the
termining the evolution of the gauge coupling constant debosonic particles are created from the gravitational back-
pends on B=3u,q4— u whereu =X, u; is the sum of all the  ground whereas this is not the case for the fermions since
Dynkin indices of the matter fields. The gauge theory is asthey are conformally invariant. In the interacting case the
ymptotically free and strongly coupled in the infrared whenbreaking of supersymmetry by the curvature follows from a
b>0. At low energy along the flat directions determined bysupergravity argument. In that case we evaluate the effective
the vanishing of theD terms the dynamics of the gauge action at the one-loop level using the zeta function tech-
theory is encoded in the properties of the polynomial gaug&ique.

invariantsl®. When the Dynkin indices satisfy < uq the ]

ring of gauge invariants is free. In terms of these gauge in- 1. Complex scalar field

variants the strong nonperturbative dynamics of the gauge The action of the complex scalar fiele(x*) is given by
theory generates a superpotentfi(l) whose form is dic-  the following expression:

tated by symmetry arguments. This superpotential when ex-

ressed in terms of the original matter fieldseads
P g —J' d4X\/—gg“"o7ﬂ<p(9 L% (19
AP/ (ragi— 1)
WQ) - Apadi= 1) * 18 1t is convenient to separate the real and imaginary parts of
H (z)*# the field and to write
As for the SU(N,) case one is interested in the amplitude B 1 .
modeQ whose classical Kaer potential is flat. This leads to P E(‘Pﬁ i¢2), (20
the scalar potential
A2/ (g 1) Whe_regoi ,1=1,2, are now real scalar fielpls. Since the spatia!
V(Q)= , (17)  sections are flat, the fields can be Fourier decomposed. It is
Q?(adit 1)/ (kagi— 1) convenient to perform this decomposition according to
where the exponent is now given by the following expres- . .
H . i X
sion: eilnX) =20 7 2m )3,J dkui(7,k)e (21)
MadiT 1 . .
=2—— (18 where we have extracted a factoa(#) in the time depen-

Frad™ 1 dent amplitude of the Fourier component for future conve-

which is always greater than two. nience. The Fourier componenis;(n,k) are such that

Therefore, the inverse power potential is a generic predicsi(7,K)* = ui(7, —k) because the fieldg; are real. It can
tion of supersymmetric gauge theories. Nevertheless it is dd€ easily seen that;(»,k) obeys the equation of a paramet-
pendent on the hypothesis that théhika potential is flat. ric oscillator:
This is plausible wherQ= A but needs to be reconsidered
below this scale. This leads to the dangerouslacorrec-
tions which will be studied later. It has also been assumed
that spacetime was flat. Curvature corrections are studied in
the next section. This equation reduces to the equation of an ordinary har-

monic oscillator in a Minkowski or radiation dominated Uni-
B. Curvature corrections verse whera"=0.

When quantization is carried out the fielgs become

erators. In the canonical approach, the complex scalar field
T4n be expressed as

n

wmi(7,K)" + | k2= %)Mi(mk)=0- (22

In the previous section we have treated the globally suy
persymmetric case as if the spacetime was not curved. The
curvature effects are usually neglected as the typical $¢ale
is too small compared to the particle physics scétesall

3
that Hy~2.1hx 10 *? GeV). Concerning quintessence this o(m.x)= L dk
assumption has to be carefully checked as @gy.implies aly) (2m)¥) 2k
that the effective mass of the quintessence field is also of
orderH. This requires to study in a painstaking fashion the X [dy( 7)™ *+db (m)e ], (23

effects of curvature on global supersymmetry. A general ar-
gument is presented in an appendix while an explicit calcuwhere the operatord;, are related to the operators of cre-
lation is given here. ation and annihilatiorc;(#) and C|k(77) associated to the
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field operatorse; and satisfying the commutation relation t©© the expression of the covariant derivative. For a four-
[Cik(”)uCTkr(n)]:5ij5(k_k,) through the expressions dimensional Dirac spinof'p which can be written in the
! Weyl representation as
o
= | (28)

XLY

el tich 20
\/E . Vo=

The expression23) can be used in order to express the ) o
Hamiltonian operator for the complex scalar field in terms ofthe covariant derivative can be expressed through the two

dy=——7, de

creation and annihilation operators. The result reads expressions
1 ot = ! aby A
H=3 > J d*k| k(CikCiitcf i —x) Duta=0 yhat 5Wapn( ) g 29
i=1 ' '
—i—(ciCi —k—chel ) (25) D, ¢, =3 . 1 a)E. Y (30)
a ik¥i,—k ik“i,—k/ |- ,ulpa M¢a 2Wab;L(0- a¢ﬁ'

The first term of the Ham_iItoniqn represents the HamiltonianThe matricegyaP
of a collection of harmonic oscillators. The second term rep- _ b b ba -
resents the interaction between the classical background afgPressions, namelyr="=(1/4)(o%0"~0>07) and o
the quantum field. It is proportional to the first derivative of =(1/4)(c?c®—d°a?) [25]. In a FRLW universe, the com-
the scale factor and therefore vanishes in the Minkowskponents of the spin connection can be written as

case. This term is responsible for the creation(fdir of)

ando2® are defined according to the usual

particles. If we start from the vacuum sta@ (no particle, Woo0= Woio= Wjgo= Wijo=0, (31
then due to the presence of this interaction term, the state
will evolve in a vacuum squeezed staf]. a’

Woa =Wmni= 0, Wjoi =~ Woji =—Jj . (32

2. Weyl spinor field
The action of the Weyl spinor field is given by the fol- | et us now redefine the spingr, by .= x./a(7)*? Then

lowing expression: the LagrangianC given in Eq.(26) can be rewritten as
1 . .
- _ 4 A . aw | - — - .
5773 f XV 912Dy £= = 5 (X0 X0 (9 ,X) () X). (39
— (D, 0 (E#) ). (26)

This equation shows that the spinor field in FLRW spacetime
is conformally invarianf26]. Contrary to the case of a scalar
field, there is no interaction term between the background
geometry and the quantum field. As a consequence there is
no creation ofmasslessfermionic particles. Another way to

put it is to say that if we start from the vacuum state, the
t%stem will remain in this state for ever. At this level, we
could already conclude that SUSY is broken in a FLRW
spacetime. Indeed the previous phenomenon is equivalent to
say that the bosons possess a time dependent mass whereas
the fermions still have a constant mass. Therefore, the con-
dition mg=mg can no longer be satisfied and global SUSY
must be broken. The phenomenon of creation of particles in

In this expression>* are the Pauli matrices in a FLRW
universe and [) denotes the covariant derivative for a Weyl
spinor. In the following, we specify more the definitions used
here. The Dirac matrices in curved spacetihé, are de-
fined according to the equatigih'#,I""} = —2g*". As a con-
sequence, these matrices can be expressed in terms of
vierbeine?, defined bngEeaMeBnab, where 7, is the
Minkowski metric. This results in the equatidi*=e*,y?
where they? are the Dirac matrices in flat Minkowski space-
time. In the case of a FLRW universe, one hgg,
=a?(7n) 7,, Which means that the vierbein are given by
e, =a(r) 5%, ,e*;=[1/a(»)]5";. This implies that the ., eq spacetimes is responsible for the SUSY breaking.
FLRW Dirac matrices can be written d¥'=[1/a(»)]y*. In order to demonstrate explicitly how this property
Since in the Weyl representation the Dirac matrices are ansy s up, let us pursue the calculations in more details. Hav-

tidiagonal and can be expressed as ing seen that the fermiong, behaves like free fermions we
0 sk can canoni_cally quantize the fermioni(; field. To do so we
[h= ( = ) 27) need to define the zero modes of the Dirac operator acting on
Se 0’ Weyl fermions

whereX# are the Pauli matrices in a FLRW spacetime, one —i
reaches the conclusion that‘=[1/a(7)]o* wherec* are ul(k)=——
the Pauli matrices in Minkowski spacetime. Let us now turn Vko+ks

: (34)

kot ks
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i K- background metric of the curved spacetime possesses enough
u;, (k)= —( ) (35) Killing spinors, i.e., solutions of the spinorial equation
Vko—ks

where k* =k, +ik,. Then, the fermionic field operatoy,
can be canonically decomposed according to where D, is the covariant derivative anelis the supersym-
metry variation parameter. By considerifi®,,D,]e=0

Ko—Ks
D,e=0, (42)

R 1 Pk ' and the maximal symmetry of the FLRW metric one finds

Xo(7,X)= 3/2f ——e'* (b, u(k)e'ko” that supersymmetry is only preserved for flat FLRW space-
(2m) V2K times, i.e.,R=0. Since this is true even in the presence of
b s (Kye ko), (36) Lr;tsel:ﬁctmg chiral superfields, this generalizes the previous

where the creation and annihilation operators satisfy the an- dThe fact th‘?t SUtSYt';’ brol_<etn In at<_:u|rveotl srifa?etl_me le
ticommutation relation induce corrections to the quintessential potential since this

one is no longer protected. We now evaluate the order of
b, .ol Jd=8k—K), {b_..b" . t=5k—K). magnltude of these corrections. We have de_r|V(_ad in Appen—
by ok F=a ) Ab-k ik F=a )(37) dixes A and B the one-loop effective potential in the inter-

acting case in the presence of curvature effects. The one loop

We are now in position to study the explicit breaking of €ffective potential reads
supersymmetry due to the curvature of the FLRW spaces.

This is the aim of the next section. 1 , R 2l [|m[?*-R/6\ 3
OVer(Q,7)= Iml*==| | In|———] -
o . 3272 6 w? 2
3. SUSY breaking in curved spacetime
The free Lagrangian in the rescaled bosonic and fermionic , R 2 Im|2+R/12) 3
is a free supersymmetric Lagrangian apart explicit breaking = |Im[*+ 12 u? R

terms proportional ta’/a. The supersymmetric current is no
longer conserved leading to a time dependent supersymmet- (42
ric charge. A natural definition of the current is provided by

the following expression which involves only the rescaledwhere u is the renormalization scale. As for the quantum
fields: corrections, the dependenceQrappears through the relation

m=mg=m=d?V(Q)/dQ?. In addition there is now an ex-
Jo=Xa90(a@) —apdox, - (38  plicit time dependence due to the presence of the scalar of
curvature in Eq(42). The evolution starts during the radia-
Accordingly, the supersymmetric charge can be expressed &isn dominated epoch where global SUSY is preserved since
R=0. As a consequence, E@2) implies thaté V(Q, 7)
=0, i.e., no corrections are generated. Notice that in contrast
with the quantum corrections the curvature effects manifest
themselves at later times. In the matter dominated era, the
The supersymmetric charge can be expressed in terms of tkgfects of curvature no longer vanishes and the corrections
canonical creation and annihilation operators. Using Eqsmodify the power law potential. These corrections are the

Q.= f d3xJ,,. (39)

(23) and(36), this leads to the relation usual quantum corrections plus additional contributions pro-

y s portional toH?. It has been shown in the previous section

&_ a_f ﬂ (b wdh U (— Kb d..elkon that quantum corrections are important only deep in the ra-
dyp a 2ko(u"( R diation dominated era. Sindé? is a tiny number during the

_ t _ kg7 matter dominated era, we conclude that the curvature effects
U, (Kb dytu, (—K)b dxe ™). (400 for quintessence are therefore negligible.

Recalling that the scalar of curvature is given B
=6a"/a® we have obtained that supersymmetry is explicitly
broken by curvature effects. Notice that whBs0 super- In gauged supersymmetric models where flat directions
symmetry is preserved. This corresponds to eitheare lifted nonperturbatively below a scale where the dy-
Minkowski spacetime or the radiation dominated FLRW namics of the gauge group becomes strongly coupled, we
spacetime for which one hes( 7). This results is not have seen that the effective superpotential for the amplitude
particular to the noninteracting theory but can be generalizedhode Q has the required form to lead to an inverse power
by consideringN=1 supergravity in four dimensions. In the law quintessential scalar potential provided thénka poten-

low energy limit when nonrenormalizable gravitational inter-tial is flat. The nonrenormalization theorem guarantees that
actions are neglected, i.emp—, the supergravity La- the superpotential does not receive quantum corrections due
grangian reduces to the curved action that we have conside radiative corrections. This is not the case of thenl€éa
ered previously. Supersymmetry is preserved when theotential which is not protected, and therefore is modified at

C. Kahlerian corrections
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low energy. The low energy Kder potential becomes a This redefinition transforms the kinetic terms @finto ca-
complicated functiork(Q,Q*;A) which can be expanded nonically normalized ones fa@, namelyd“Qa,Q. On the

in Taylor series as other hand, the scalar potential becomes then
QmQ*n 1 A4+a
* . — * —
K(Q.Q*;A)=QQ* + m>02,n>0 mnAm+n—2+C'C' ' V(Q)=—=— pyr=ua (49
m+n>2 43 9[Q(Q)] Q“(Q)

This expansion is valid as long &<A which means that Where we have explicitly shown the dependenc®ain Q.

the Kéhler potential will be modified at the beginning of the The metricg depends on the new field and is expandable
evolution, deep in the radiation dominated era. As alreadyn a seriesg=1+3,-,d,(Q"/A"). As a consequence the
mentioned, whei®Q= A, the Kéler potential can be consid- scalar potential becomes now an infinite series the expres-
ered as flat. In this respect the situation is similar to whasion of which is given by

happens for the quantum corrections studied previously. In

the case of th&U(N,) gauge theory with\; flavor there is Adta on
a useful ansatz for the téer potential which illustrates the V(Q)=——| 1+ > en—1/, (50
Kahler correction. Indeed a Kder potential of the fornK Q =1 A

=(IN)tr((MMT+A% Y2 Jeads to an expansionK o _ _ _
~(QQN2/(2A%) — (QQN*/(8A%)+--- when Q<A and wh_ere the _coefﬂmenten are easily computed mdgctwely._
K~QQ" whenQ> A. This is typical of the situation we are This potent|al must pe seen as the eﬁgctlve pot.entlal of quin-
going to describe. tessence_ in the region whe€@<A. This p(_)tent|al_has the
Let recall the structure of the low energy Lagrangian inusual qumtessennallnverse power behavior but is corrected
the presence of a nonflat Keer potential. In a flat gravita- by positive powers 0Q. Whether the properties of the track-
tional background the Lagrangian reads ing solutions will be preserved crucially depends on the co-
Llawi2 efficientse,, .
Let us conclude this section by stressing that building a
‘C:f d“x(gaQ&Q*— a 9Q ) (44) realistic model of quintessence based on global SUSY ap-
pears to be a difficult task. Even if these models are free
where we have denoted bR the chiral superfield whose from quantum corrections to the potential and from curvature
scalar component iQ. The metric on the one-dimensional corrections, the tracking properties could be destroyed by the
complex curve defined bi is given by the following ex- Kahlerian corrections as shown by E§0). Nevertheless the
pression: main difficulty is that at the end of the evolutid@~mp,,
rendering the SUGRA corrections unavoidable. We cannot
9=49qd o«K. (45 neglect contributions in the scalar potential which are sup-
pressed by the Planck mass. Therefore, any realistic model of
uintessence must be based on SUGRA. The aim of the next
ection is to study such models.

Using the Taylor expansion of the Kir potential given by
Eq. (43) and the previous relation, one can easily deduce th
expression of the Kaer metric:

melQ*(nfl) V. SUPERGRAVITY MODELS

g=1+ >  mnam, (46)

m>0,n>0 AMtn-2
m+n>2

A. SUGRA corrections

In this section we consider the SUGRA version of the
Notice that the flat metric is modified by the quantum cor-model considered previously with a superpotential of the
rections in 1A. The scalar Lagrangian can be rearranged irform W« 1/Q“. At tree level the supergravity scalar potential
order to render the physical meaning of the nontriviahka  depends on the potenti@= xK + In(x*|W?) whereK is the
potential more transparent. Let us redefine the fields accordkahler potential andV the superpotential. The scalar poten-
ing to tial is given by

dd ©
E:@’ (47) Vz%(G'Gi—3)+VD, (51

where we are now specializing our results to the real Case ore the indices have been raised using the mei
Q=Q*. The square root ofj can be expanded in a series 9 e

R N an . . . .. =0;d,G and where the derivatives have been taken with re-
<\:/a§r1_ble+ci?ﬁélc)inggt /ir?daclt(ie\?edl;ngt;) after an inversion which spect to the scalar fields. The tekfg comes from the gauge

sector of the theory and is always positive. In the quintes-
~ i1 sence context there is only one field and thénléa potential
Q=0+ ch—. (48)  is chosen to be flaK=QQ". This leads to the following
n>1 A" scalar potential:
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ing deformations of the Kaer class of the Calabi-Yau mani-
—(a+1)kQ%*+ K2Q4). (52)  fold. We shall concentrate on one modiil,=Q on which
the modular groupSL(2,Z) acts asQ—(aQ—ib)/(icQ
+d) with ad—bc=1. Moreover, we suppose that the gauge
roup factorizes a& X U(1)x whereG contains the standard
odel gauge group antd(1)y is an anomalous Abelian

2A4+a (a_2)2
Q 4

There are a few remarks at hand about this potential. Th
first term corresponds to the global supersymmetry scal

potential while the other two terms are supergravity Correc'symmetry. The fields of the model split into three groups, the

tions in Q/mg,. There are two important effects of the SuU- a1 x has a charge 1 undéf(1)y and is neutral unde®,
pergravity corrections. The exponential term in the scalalihe fieldY is a matter field neutral unde® and of charge

potential introduces _positive powers Qf of arbitrary de- —2 underU(1)y while the matter field; are charged un-
grees. Fortunately this only becomes relevantQoof order derG and possess charggs# — 2 underU(1)y. Under the

of tTe Elanck m?SIS' i.e.,bfor the redsm&oaMore irr:]por- modular group the matter fields transform with a modular
tantly the potential can become negative due to the seco eight —1, i.e., Y,—(icQ+d)~1Y,, and similarly forY.

term. This implies that the model can become nonsensical &his is the modular weight of untwisted states for orbifold

the end of the evolution_wheanmF_,,._ln the casex=6, compactifications. We also assume that the fielths modu-
we have checked numerically that this is indeed the case. FoL, weight zero. The scalar potential comprises two terms:

higher values ofx this is still the case proving that globally 1o ysual scalar potential of supergravity and Eneerms of

sup_ersymmetric r_nodels with an in_verse power law superpog, gauge symmetry. AssociatedUd1)y is theD term
tential do not resist the supergravity corrections.

The appearance of dangerous negative contributions to

V=g

2 2
s . ; . Tr(X
the potential is not accidental, it stems from th& term in VD:% KyX— 2K Y+ >, Ky Y+ g—(z)mgl ,
the potential. A possible way out is to impose that the scalar 2 i ' 1927
potential exactly vanishes and that the scalar potential is en- (55)

tirely due to a nonflat Klaler potential. This is what we are

going to study in the next section. where gy is the U(1)x gauge coupling andj the unified

string coupling. Modular invariance is compatible with the
o Kahler potential
B. Moduli quintessence

Let us consider a supergravity model where there are two
types of fields, the quintessence fieQdl and matter fields
(X,Y"). We assume that the gauge group of the model is
broken along flat directions of th® terms such thaX  The D term potential vanishes altogether along a flat direc-
#0,Y'=0 whereVp=0. As explained in the previous sec- tion where the fieldX acquires a vacuum expectation value
tion we impose that the scalar potential is positive to preven{VEV) breaking the Abelian symmetiy (1)y at
any negative contribution to the energy density. This is

achieved by considering that —g? Tr(X)
Xy=\—==Ma, (57
(W)=0, (53 1927

when evaluated along the flat direction. Moreover, we aswhile the other fields vanish altogether. The value of the
sume that one of the gradients of the superpoteiiiaioes ~ VEV (X) is equal to a scalé which is fixed in the heterotic
not vanish. With these assumptions the scalar potential beétring. This is not the case any more in the context of type |

3
K=XX*——In
K

Q+Q'~kYP=xZ Y] (66

comes strings wheret is a moduli which is not fixed in perturbation
theory. Expanding the superpotential in terms of Yukawa
V:eKKKYY*|WY|2_ (54)  couplings, we obtain
— 2
As expected the scalar potential is positive and becomes a W=MQ)XTY+- -, (58)

function of the quintessence field only. The quintessence
property is achieved if this potential possesses the runawa
behavior of the quintessence field to infinity.

In the following we shall use string-inspired models with
an anomaloud) (1)x gauge symmetrj27,28. In the context
of the heterotic string theory it is natural to identify the quin- 42
tessence field with one of the moduli of the string compac- V(Q) (X)"\A(1) _ (59)
tification. Indeed the values of the moduli naturally goes to 12Q?
infinity. This is usually called the moduli problem which in
fact turn into a blessing in the context of quintessence. ConAs already mentioned for the Kéer corrections, the kinetic
sider the compactification of the weakly coupled heteroticterm in such models is not standard. In the present case, the
string on a Calabi-Yau manifold. The compactification de-kinetic term for the moduliQ is [3/(4xQ?)](9Q)?. There-
pends explicitly on the modulf,, a«=1,...,3,represent- fore, it is more convenient to redefine the fields such that the

here we have only taken into account the coupling such
at Wy=\(Q)(X)? along the flat direction. The function
N(Q) is a modular form of weight-2. The scalar potential
along the flat direction is
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|
[aN)
(=)

kinetic term becomes standard. This is achieved by means of 60
the following expression: @= /3/(y2xQ)dQ. The scalar — 10
potential then transforms into 2
% 20
NE(1) - 2 o
V(Q)o — 5~ (X)%e 2273, (60) =
12 a0

|
1SN
o

It has been shown in Ref$18,29 that this potential also
possesses remarkable tracking properties even if it has no
inverse power factor of the quintessence field. However it
suffers from phenomenological problems. First of all the
SIOW decrease of the potential and. the Iarge value of the VEV g 5, Energy density in the SUGRA model of quintessence for
(X) imply that the quintessence field will have to be much,— 11 The solid line is the energy density of quintessence whereas
larger than the Planck scale at the end of its evolution. Thigjashed-dotted and the dashed lines are the energy density of radia-
is a drawback as this would be in the string regime where th@on and matter, respectively. The dotted line is the energy density
supergravity approximation is not valid anymore. In addi-of quintessence for the potentd{Q) = A***Q~* for a=11. The

tion, one can show that the equation of state for this potentiahitial conditions are such that equipartition is realized just after
is suchwg=wg both in the radiation and matter dominated inflation.

epochg29]. The scalar field follows exactly the behavior of

0 5 10 15 20 25
log (1+2z)

the background. As a consequence, the valug ghas been 4+a )
shown[18,29 to be limited to the relatively low valu€lq V(Q)= —ae("’z)Q , (63)
~0.15. This is not enough to reproduce the data which seem Q

rather to indicate thafl~0.7. Nevertheless, the fact that where it is understood th& is now the canonically normal-

the moduli field possesses a tracking behavior is relevant aEed field. The constantA is given by A%'e

giS/OS]l(ir:ngﬁi?/eerrlggne of the components of the energy den- 2VPN\Z(X)*mZ where a=2n/p. This potential has been
' studied in details in Refl5]. There, it has been shown that,
despite the appearance of positive powers of the field, the

C. An inverse power law SUGRA model tracking properties are completely preserved. Using the con-

We now present a toy supergravity model with an inversestraint (X)=10* GeV as the Abelian symmetry has to be
power law potential. To our opinion, this model is the mostbroken above the weak scale we find that the fine tuning
interesting one although we only present it as an existencgroblem can be overcome provided that11, see Ref.
proof of the quintessence property in supergravity. [15]. This means that in order to obtafhy~0.7 today, one

Let us use the same framework as in the previous sectioghould fix A to a value which is not far from the natural
We assume that the/(1)yx Abelian symmetry is broken by scales of high energy physics. Fer=11, actually we have

the Fayet-lliopoulo term. The superpotential is expanded A~10"" GeV. The evolution of the energy density of the
as quintessence field is given in Fig. 5.

The evolution of the equation of staig, for this model is
W=AX2Y+ -, (61)  displayed in Fig. 6. The evolution of the equation of state is
almost unchanged during all the cosmic evolution. This is
where \ is taken to be constant. This superpotential pre-due to the fact that during this epo@impg, is very small. As
serves the gauge symmetry of the model. As claimed earliem consequence the exponential factor in the SUGRA poten-
we do find that W)= 0 along the D-term flat directions. The

main difference between the present model and the case of 1.5¢
the moduli field of the heterotic string is the different form of 1.0F g
the Kahler potential. We choose the geometry of the moduli 0.5 : 5
space to be singular at the origin, namely = " ! E
30’ 0.0 :_ v’,//-"\-l :I : é-
* *\N Er” . | i
)P ) E 1 i i
K=X><*+(QZQ, MVECLRE (62) —0-5¢ o 5
p-2 n F [ i !
me me —1.0F U S, i i]
—-1.5¢t

wherem,~10'"° GeV is the cutoff of the theory. It is reason-
able to choose it of the order of the unification scale. Higher
order terms in|Y|? can also be included. This is the only
relevant terms in the Kaer potential if one assumes the  FIG. 6. The dotted line represents the evolutionegf for the
existence of a modular symmetry. This modular symmetry ispotential V(Q) = A***Q~* with a=11 whereas the dashed line
also important to prevent any Kker correction. The scalar represents the evolution of the equation of state for the same value
potential of this supergravity model is given by of @ and for the SUGRA model presented in this article.

0 5 10 15 20 25
log (1+2)
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0.0 " ' ' likely candidate to describe the physics beyond the weak
_ozk ] scale, we generalize the usual inverse power law potential of
' the SU(N,) super-QCD case to more general supersymmet-
—0.4F 3 ric gauge theories with Dynkin indiceg= u,qj. In super-
5 symmetric models the quantum corrections to the superpo-
-0.6 7 tential vanish. However, there are two types of potentially
dangerous corrections. First the smallness of the effective
—08f mass of the quintessence field implies that one must consider
-1.0 . . . the small SUSY breaking induced by curvature effects. We
5 10 15 20 show that these effects are not a threat to the quintessence
a scenario. Second, we investigate the corrections to the

Kahler potential and show that they play only a role at the
beginning of the evolution, decoupling at a scale of the order
of the gaugino condensation scale, and are strong enough to
jeopardize the quintessence property. Far more relevant is
) e he necessary inclusion of dangerous supergravity correc-
usual potential. The situation changes at the end of the eVgjong que to the presence of Planck mass suppressed interac-
lution. Since the field is on tracks one M@s=mp,. Thistime  5ns which induce negative contributions to the potential at
the exponential factor in the potential plays a vital role andgyaii redshitt. They destroy the quintessence property if the

FIG. 7. Equation of stateg in function of « for the SUGRA
model of quintessence proposed in this article.

tial plays no role and the SUGRA potential reduces to th

modifies the value obq today. _ quintessence models are not treated within the realm of
We see that the value of the equation of state today, fog GRA.
a=11, is given by{15] This is what we do in the final section considering models
where the expectation value of the superpotential vanishes
wg~—0.82. (64)  altogether. This prevents the appearance of the negative con-

tributions to the energy density. We give two explicit models
This is a remarkable property since in the context of usuaWhere this scenario is at work. One is based on the heterotic
tracking solutions it is not possible to obtain a number lesstring at weak coupling, the role of the quintessence field
than~ — 0.7 [11] whereas the observations seem to indicatdoeing played by a moduli. The runaway behavior of the
that the value of the equation of state today is rather sucmoduli is of the exponential type limiting the possible con-
that — 1< wo=<—0.8. We would like to note that this nice tribution to the energy density t62o=0.15. Finally, we
property is almost independent af. This is illustrated in  present an existence proof of an inverse power law potential
Fig. 7 where the relatiowq— «a is displayed. in SUGRA by constructing a model based on a particular
The equation of state is almost independenidfecause ~ Kahler potential. This model is particularly promising as it
its value today is roughly speaking determined by the expoprovides a scenario for which the value @f, is —0.82 for
nential term in the potential which i& independent. As a {,=0.3. This is within one sigma of the recent experimen-

consequence, no fine tuning afis required in order to ob- tal analyseg9].
tain a reasonable value foyg . Let us emphasize that the models of quintessence within

The implications for structure formations of this model the framework of SUSY or SUGRA suffer from a problem
seem to be also very interesting and are currently under in@ised in[12] concerning the necessary breaking of super-

vestigation[30]. More details on this model can be found in symmetry. Indeed there are two aspects to this problem, both
Ref.[15]. linked to the types of corrections considered here. Let us first

deal with the SUSY case. As advocated 112] the presence

of a nonzerd-= M% term of the order 18 GeV leads to an

intolerably large value of the cosmological constant. This
We have studied the quintessence scenario recently pr&ecessitates to invoke the prejudice already used in our paper

posed in Ref[13]. We have concentrated on models with anthat one does not know the mechanism which would force

inverse power law potential and the diverse corrections inthe cosmological constant to vanish. Quintessence scenarios

duced by its embedding into high energy physics modelsdo not aim at solving the quantum cosmological constant

More particularly we have focused on the quantum correcProblem, see the conclusion of Ré18]. Another difficulty

tions in the nonsupersymmetric setting, the curvature angprings from the possible nonflatness of thehkea potential

Kahler corrections in the supersymmetric case, and the effe@nd a coupling between the quintessence figlhd the field

of the nonrenormalizable interaction suppressed by th&esponsible for the supersymmetry breaking leading to a

Planck mass in the supergravity context. We have verifiederm given by

that quintessence is stable to the one-loop quantum correc-

tions, preserving the existence of tracking solutions at small SV(Q)=k(Q)M¢, (65)

redshift. We nevertheless argue that the solution to the fine-

tuning problem requires to consider the quintessence modeishere the series expansionlofs a power series suppressed

within the framework of particle physics beyond the standardy the Planck scale. It gives a large contribution to the mass

model. Emphasizing the supersymmetric scenario, the mosif Q and the cosmological constant.

VI. CONCLUSIONS
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Of course one should repeat the arguments within the It is technically necessary to perform a Wick rotation to
SUGRA context. At tree level one can always fine-tune theobtain a Euclidean field theory on a curved Riemannian
minimum of the potential to be zero. The power law expan-manifold. This is globally feasible if one chooses the curved
sion of the potential might just give a correction to the quin-spacetime manifold to be a globally hyperbolic manifold
tessence behavior which would only modify the end of thewith a Lorentzian signature. This implies that the time coor-
evolution of Q while preserving quintessence. In the explicit dinate is globally defined allowing us to perform the appro-
model of Sec. V C, the SUSY breaking is induced by Ehe priate rotationt—it. In order to have a good control on the
terms of the dilaton and the moduli. The dilaton does not~eynman path integral it is convenient to expand the bosonic
couple directly to the quintessence field Q in thenka po-  field ¢ around the classical solutiap, of the Klein-Gordon
tential because of the anomalou¢l)y symmetry. This im-  equation—A ¢+ (9 V/3d ¢%) =0 whereA is the curved La-
plies that our model is not affected by a dilatonic SUSY placian on the Riemannian manifold. Let us dengte ¢,
breaking. Assuming the existence of a modular symmetry.. 7 \yheres is a full-fledged quantum field. The effective
we find that the effect of the SUSY breaking by the moduli ISpotential does not involve derivatives of., we will only
to induce terms .“kerlQZp in the scalar potential. More ratain nonderivative terms in the expansion of the effective
studies are required to evaluate the effect of this term, intion
particular its order of magnitude. However, the fact that this
term is proportional to the inverse of the quintessence field o
suggests that it will cause no problems. This question will be e Seif(¢d = f DeDyDype” S, (A3)
addressed elsewhef@l].

In conclusion we would like to emphasize the explicit hereS... is defined by th i
construction of particle physics models leading to the quin—W EreSe 1S defined by the equation
tessence property is still to be further developed. It seems to
us clear that the indications given in this paper show that the Seﬂzf d*X\g Ve @0). (A4)
building of SUGRA models should turn out to be very fruit-

ful.
The effective potential is the sum of the classical part cor-

rected by a quantum contribution
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APPENDIX A: THE EFFECTIVE ACTION IN CURVED 1
SPACE Sei( @) =tr In(A+[m|?) —7 rin(Ap), (A6)

In the following we shall consider the case of curved
spacetimefR# 0. Let us consider the following Lagrangian: whereA¢ is the operaton = DEDF and

iD m

S=— J d*x\—g

@I Q* +iYSHD i D

(A7)

m D,
m(e) m(e)— _

t Sty V(e) |, (A1) where D and Dare the Dirac operators acting on Weyl fer-
mions of both chiralities. The previous expression can be

where, for convenience, we have not written the spinoria€omputed using thg function regularization where the de-

indices. The mass and the potential are related to the supdrminant of an operator is det\2=exf —{,(0)] and the{
potential W as function is (s)=X,1/\} as a function of the eigenvalues

Nn. The Z, function is related to the heat kernel solution of

&2 2

mie)=—>, V(e)=
Jde

dW,

Jde

(A2)

AG(X,X",0)=— ;—O_G(X,X',O'), (A8)

This is the usual globally supersymmetric Lagrangian . . ;o N
coupled to gravity. As supersymmetry is not preserved byw(tal?lir:htera?](s)]yor:‘(rjnary conditior&(x,x’,0)= 8(x—x’) via the

the background curved space the Lagrangian receives quan-
tum corrections. The effective potential is renormalized due

2 o0
to the background geometry. Let us calculate this potential at In(S)= o f da_o_sflf d*xJgG(x,x,0).  (A9)
the one loop level. A I'(s)Jo B
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The scaleu is a renormalization scale. The determinant of APPENDIX B: SUPERGRAVITY VACUA
the operatoiA is essentially given by the asymptotic expan-
sion of the heat kernel In this appendix we shall be interested in finding whether

a given FLRW spacetime preserves supersymmetry. The
FLRW background does not break supersymmetry in an ex-
plicit manner when the gravitings, =0 is invariant under
supersymmetry transformations. We have assumed that the
leading to quintessence fiel@ is only coupled to other field via the
gravitational interactions. In a hidden sector the supergravity

2

T 3 . . . .
detA=ex;{f d4x\/§3212< In 7_12_ _) ) (A11) can be broken with a nonvanishing mang, leading to the

0 ©

G(X,X,0)~ (1-7m,0+0(c?)), (A10)

(47o)?

2 condition

The asymptotic expansion of the heat kernel of the operator
—A+|m|?2 givest,= — R/6+|m|? and for the Dirac operator i

it yields 77 = |m|2+ R/12 whereR is the scalar curvature. The Duet3 M0, €=0, (B1)
one loop effective potential is then
1 R1?| [|m|>~R/6\ 3 . : .
OVer(Q, 1) = Im|2— =| [In| ——— |- = where € is a Weyl spinor representing the supersymmetry
327 6 w? 2 variation. Computing the commutat¢D,, ,D,] and using
R12 m2+RA2| 3 pro:(R/_Z)(ﬂWﬂ_w— NupMus), We find that the super-
—{|m|2+ i _° symmetry is generically broken apart from two cases. If the
12 w? 2 gravitino mass vanishes, the supersymmetry is fully pre-
(A12) served by FLRW spaces with vanishing curvature. When the

gravitino mass is not zero the supersymmetry is not broken if
Notice that the one loop correction vanishes if the curvaturéhe FLRW space is the anti-de Sitter manifold with curva-
is zero. ture R=—m3,.
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