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Gravitational waves from quasispherical black holes
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A quasispherical approximation scheme, intended to apply to coalescing black holes, allows the waveforms
of gravitational radiation to be computed by integrating ordinary differential equations.

PACS numbd(s): 04.30—w, 04.20.Ha, 04.25:g, 04.70.Bw

The coalescence of binary black holes is expected to be efl=—g7Yn",n"). 2
one of the main astrophysical sources for upcoming
gravitational-wave detectors. The initial phase of inspiral andrhen the induced metric on the transverse surfaces, the spa-
the final phase of ringdown are understood in terms of posttial surfaces of intersection, is found to be
Newtonian and close-limit approximations respectively, but
the coalescence is only qualitatively understood and gener-
ally thought to be tractable only by numerical methods
[1-4]. Considerable proplems haye _been encountered ar]vés is described by Lie transport along two commuting evo-
currently there are no reliable predictions of waveforms. Iuti )

. . T ution vectorsu- :

This article presents an approximation scheme to compute
the gravitational waveforms for space-times close to spheri- [u,,u_]=0. (4)
cal symmetry. This is intended to apply to binary black holes
once they have coalesced, i.e., when a marginal surface eBpecifically, the evolution derivatives, to be discretized in a
closes both sources. The quasispherical approximation withumerical code, are
be best when the angular momentum is small, but note that
even the maximally rotating Kerr black hole is 70% spheri- Ar=1Ly, )
cally symmetric according to the ratio of the areal and equa-
torial radii of the horizon. Thus rough estimates may still bewhere L indicates projection byr and L denotes the Lie
possible even for appreciable angular momentum. derivative. There are two shift vectors

The basic idea of a quasispherical approximation is to
make a 2-2 decomposition of the space-time and linearize
only hose pars of e eXc crvalre Wh VAN M coondinate bassu u_e) such thatu, ~aloc”

. ) SO . e . where e;=d/dx' is a basis for the transverse surfaces, the
earized fields vanish, spherical symmetry is recovered in full___".

. . ) A : metric takes the form
This can be a highly dynamical situation; there will be no

h=g+2e "n*en- 3)

here® denotes the symmetric tensor product. The dynam-

S.=lu.. (6)

assumption of quasistationarity. Likewise, there will be no g:h_.(dxi_'_si dxt +¢ dx)
assumption of an exactly spherical background. Unlike pre- . _ _+ -
vious work on null-temporal formulatiorjg—7], a dual-null ®(dx +s), dx* +s dx7)—2e fdx"@dx". (7)

formulation is adopted here, i.e., a decomposition of the

space-time by two intersecting foliations of null hypersur-Then (,f,s.) are configuration fields and the independent
faces. This is adapted to the radiation problem in that thenomentum fields are found to be linear combinations of
imposition of no ingoing radiation and the extraction of the

outgoing radiation are immediate. It also allows a remarkable g.=*L."1 8
simplification from partial to ordinary differential equations.

A general Hamiltonian theory of dual-null dynamif3] o.=LL:h=6.h 9)
has been applied to Einstein gravi§] and is summarized as
follows. Denoting the space-time metric lgyand labeling ve=L.f (10

the null hypersurfaces b=, the normal 1-formsn~

=—dx* therefore satisfy w=ze'h([l_,1,]) (11

where **” is the Hodge operator oh andL .. is shorthand

“1nEt At —
g (n=,n")=0. @ for the Lie derivative along the null normal vectors

The relative normalization of the null normals may be en- l.=u,—s.=e fg~in™). (12)
coded in a functiorf defined by
Then the function®).. are the expansions, the traceless bi-
linear formso .. are the shears, the 1-form is the twist,
*Email address: hayward@gravity.phys.psu.edu measuring the lack of integrability of the normal space, and
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the functionsv.. are the inaffinities, measuring the failure of
the null normals to be affine. The field9{(,0.,v. ,0)
encode the extrinsic curvature of the dual-null foliation.
These extrinsic fields are unique up to duality—~> and
diffeomorphisms which relabel the null hypersurfaces, i.e., A +
dx*—er=dx™ for functions . (x).

It is also useful to decompogeinto a conformal factor
and a conformal metrik by

b o
h=r2%k (13
z
such that
FIG. 1. The dual-null integration scheme. Initial data is pre-
A scribed on a spatial surface and the null hypersurfaces, and
A.*1=0 14 5 generated from it.

where “+" is the Hodge operator ok, satisfyingx1=r.  This follows immediately from the full equatior®], the
Denoting the covariant derivative bfby D, the Ricci scalar  above expression fdR, and the fact that
of h is found to be
Ac=1L. (29
R=2r"?(1-D?3nr) (15)

in this truncation. One may take quasispherical coordinates
by using the coordinate freedom on a given surface tkfix x'=(9,¢) on the transverse surfaces such that
as the metric of a unit sphere. =sinddd¥/\dg, the standard area form of a unit sphere. Then

The dual-null Hamilton equations and integrability condi- r is the quasispherical radius.
tions for vacuum Einstein gravity have been given previ- The shear equations, composed into a second-order equa-
ously [9] in a slightly different notation, so it will not be tion for k, become
repeated here. They are linear combinations of the vacuum
Einstein equation and a first integral of the contracted Bian- Ok=0 (26)
chi identity. This is the vacuum Einstein system in first-order
dual-null form. The vacuum case suffices for the applicationwhered is the quasispherical wave operator:
outside the black holes. . .

In spherical symmetry, s, ,o.,w,D) vanish, while O¢=-2e(AApt2r "AnTA ). (27)
(h,f,0.,v.,A.) are generally nonzero, e.g10,11. The . - . .
quasispherical approximation will therefore consist of linear-' US the conformal metrik satisfies the quasispherical wave
izing in (s. ,0. ,,D). In practice, one truncates the equa- quatlon. T.he.rk may be.mterpre.t(.ad as encoding the gravi-
tions by setting to zero any second-order terms intational radiation. In particular, fixing ., to be the outgoing

: TP ; direction, the Bondi news at future null infinify* is essen-
(s+,0+,w,D). This greatly simplifies the equations, leav- ! 5’

ing the momentum definitions as tially r*_ o [12], as _describe_d_ explit_:itly Pelow. Likewise,
the no-ingoing-radiation condition is just “o. =0 at past
A.r=1ro. (16)  nullinfinity 3. Thatk generally encodes the free gravita-
- - tional data was suggested by d’Inverno and Stafh@&l and
Af=p. 17) has been rediscovered by various authors, EZ¢9).

The dual-null initial-data formulation is based on a spatial
surfacel, and the null hypersurfaces.. locally generated

——
Azk=r" o, (18 from X in theu.. directions. The structure of the field equa-
e tions shows that one may specifyh,f,0.,0) on
_ f 1
Ars_—As,=2e'h H(w) (19) 3, (., vy)onX,, (s_,o_,v_)onX_,ands,; inU, a

region to the future of .. . In particular, the initial data is
freely specifiable. There are no constraints as in thel 3
formulation; these have been converted into evolution equa-

and the remaining equations as

Avbr==v.0.-36% (20 tions alongX . , which even in the generghonquasispheri-
cal) case can be solved in closed foft#].
Ab.=—0,60_—er? (21) A numerical integration scheme runs as follows, as de-
picted in Fig. 1. First integrate th&, equations fron®, to
Avve=—30,0_—e 12 (220 obtain the full data ox , . Then integrate thd _ equations
one step along each ingoing null hypersurface, generating a
Aro-=3(0.0-—6-0) (23)  new null hypersurfac&.’, . Then repeat: integrate the,
equations along . to obtain the full data o', , and so on.
Arow=—60.0*3(Dv.—D6.—6.Df). (249 In practice, some interpolation between the two integrations
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is useful. There are many ways to perform the integrations in
a different order, allowing flexibility which can be used, for
instance, to avoid singularities. Any such scheme gives two
estimates of I(,k,f, 6. ,w) at each point, since some of the
equations play the role of integrability conditions. Thus one
could ignore such equations to obtain a free rather than con-
strained integration scheme. This allows numerous internal
checks on the accuracy of the numerical code, analogous to
those of 3+1 integration schemes, e.g., Chopt{i5].

The equations forA . (r,f,0.,v.), the quasispherical 3
equations, decouple from the remaining equations. Thus
there is a quasispherical background which may be found by
integrating the quasispherical initial data. Since this back- o ) o
ground is independent of the linearized part, one may econo- FIG. 2. Application to coalescing black holes. Shading indicates

mize when computing different evolutions on the same back €gions containing trapped surfaces, with the outermost trapped re-

ground. It should be stressed that the quasisphericaﬂion being that of the coalesced black hole and the inner trapped

backaround is neither fixed in advan nor n riIregion that of one of the original black holes. Initial data on the
ac g ou s nhe .e € advance nor necessa Yngoing null hypersurfacg _ may be extracted from a conventional
spherical, e.g.Pr#0 in general.

4 o 3+1 code based on an initial spatial hypersurface and outer
To compute the outgoing radiation, one now needs only t%oundaryB.

integrate the equations forA(.k,A. o), i.e., the quasi-

spherical wave equation fér It is remarkable that this entire one may take , to be either part ofi ~, as depicted in Fig.
integration scheme involves only ordinary differential equa-  or at sufficiently large distance for numerical purposes.
tions. The equations fod .« are partial differential equa- Here, large distance means sm@ll For the quasispherical
tions, containing transvers® derivatives, but the other apnproximation to be valid at large distance, one may fix
equations decouple from the equations fer. (w), which (f,9. k)=(0,%2,€) on3, wheree=d9®d 9+ sirtdde
therefore need not be solved for the radiation problem. | d(p_iS the standard metric of a unit sphere, and=0 on
short, most of the complexity of the system has been isolate .. The remaining coordinate data is given by on the

and sidestepped. _ ingoing null hypersurfac& _ , which is left free so that one
Moreover, one may use a conformal transformation t9y,y a4apt the foliation Gf _ to the surfaces which are most

I+

obtain a scheme which is more accurate at large diStance§phericaI.
Using the conformal factor The no-ingoing-radiation condition is, =0 atJ~, leav-
Q=r-1 28) ing the gravitational initial data as- on > _ . The outgoing

radiation is found by computing_ at 3%, which is essen-
tially the Bondi news. More precisely, the Bondi energy flux

the rescaled expansions and shears y
at 3" would be[12]

Vi=ro. (29
ol
s.=r"to. (30 - 64

(38

are finite and generally nonzeroat for an asymptotically ~Where ||o]|?=k**klo5co4 and such second-order terms
flat space-time. Rewriting the relevant equations yields thére no longer being ignored. That is, the energy supply

quasispherical equations would be
—_10n2 ~
AQ=-30%0. (31 Athé*Irl[i (39)
Af=v. (32

where E is the Bondi energy. In summary, the outgoing
- waveforms and their energy may be computed by integrating
A+’8+ Vit (33) . . . . . . .
nine first-order ordinary differential equations and their du-
als, or a subset in the case of free evolution. For numerical

ALde=-Q(G9, 9 +e ) (34 purposes, this is a dramatic simplification. Numerical imple-
mentation of this scheme is in progrd4$].
Asve=—0%}9,9_+e (35 Before concluding, it should be noted that the domain of
validity of the quasispherical approximation is not known in
and the linearized equations a precise sense. The guarantee is simply that spherically
symmetric Einstein gravity is recovered in full when the lin-
Ak=0Qs. (36) earized fields vanish. For the usual perturbative approxima-
tions, one may check successive orders of approximation to
Ais:=—3030:s.. (370 compare accuracy, but for the quasispherical approximation,
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the corresponding second-order approximation would be fulthe coalesced black hole, for instance increasing its area,
Einstein gravity. If one wishes to know whether a giventhereby rendering subsequent evolution unreliable. However,
space-time is sufficiently spherical, the rough answer is thaas depicted in Fig. 2, the outer bounddycannot causally
there should be a-22 decomposition such that the fields to influenceX _ if it intersectsX, inside B. Thus the scheme

be linearized are small compared to the remaining part. Thigequires only clean data from thet3 computation, uncon-
depends on the choice of transverse surfaces, so that thei@minated by outer-boundary problems. A code implement-
will be some art to choosing the+2 foliation for optimal N the scheme may be regarded as a black box which, taking
accuracy. For the Kerr black hole, the quasispherical nul|7Put from any other code from which the required data on
coordinates of Pretorius and Isr4@F] may be useful. Fora - Can be extracted, computes approximate waveforms for

coalesced black hole, one might base the foliation on théhe gravitational radiation. For this to work in practice, the

marginal surfaces which locally define it, i.e., use the coorouter boundary must be at sufficiently large distance Yhat

dinate freedom iy on'S,_ so that the foliation contains a 4°€S indeed intersect the coalesced black hole. This would
) be fine for the type of simulations mentioned above, where
marginal surface. There are some general laws of black-ho

N ) : e black holes are close to coalescence, but currently im-
dynamics in terms of marginal surfaces and the trapping ho-

. ; . . ractical for a code which follows several orbital rotations
rizons they generatgl8,19, including that outer trapping Eefore coalescence

hgrizons are achronal and thereforg cannot causally influence This suggests a quite general proposal to compute outgo-
J*. Thus_ need_not extend 'ns'de the trapped ieglon Ning gravitational radiation from a-81 computation by a con-
order for the domanU_ of integration to reaCh all a7™. . formal dual-null code which extracts data on an ingoing null
o concl_ude, the 'nt?ndEd scenario IS an asympto.t'cal|¥1ypersurface intersecting the initial spatial hypersurface in-
flat _space-tlme containing coalescing b_Iack holes, with a%ide its outer boundary. One might expect this to be simpler
ingoing null hypersurface _ chosen to intersect the coa- than the usual matching on a temporal hypersurface7]
lesced black hole, i.e., the region of future trapped surface§ce the outer boundary is avoided and the problem is
enclosing the original black holes. The initial data Bn  erely of extraction rather than dynamic matching. At
may be determined by extracting the relevant data from @ esent, there seems to be neither a general conformal dual-
conventional 3-1 numerical computation from an initial ;i code nor work on data extraction on a null hypersurface,
spatial hypersurfac®o, smoothed off to the past af,. The though the null-temporal formulation can presumably be

smoothing may be expected not to affect the result§ Signifizgapted 7]. These are tractable projects which would allow
cantly if%_NZ, is sufficiently outside the black holes; there 5.c\rate computation of gravitational waveforms from coa-
will be some spurious radiation &t at early times, but not lescing black holes.

at the relevant late times, as this would involve backscatter
of backscatter.

An advantage of this procedure is that it can avoid the The author thanks Pablo Laguna, Luis Lehner, Keith Loc-
outer-boundary problems which affect the conventionakitch, Hisa-aki Shinkai, and Jeff Winicour for discussions,
codes. Because the physically appropriate boundary condand Abhay Ashtekar and the Center for Gravitational Physics
tions are not known, there is always some spurious graviteand Geometry for hospitality. This research was supported
tional radiation from the outer boundary which propagatedy the National Science Foundation under grant PHY-
inwards. In numerical simulations this can be seen to affec8800973.
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