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Gravitational waves from quasispherical black holes
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A quasispherical approximation scheme, intended to apply to coalescing black holes, allows the waveforms
of gravitational radiation to be computed by integrating ordinary differential equations.

PACS number~s!: 04.30.2w, 04.20.Ha, 04.25.2g, 04.70.Bw
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The coalescence of binary black holes is expected to
one of the main astrophysical sources for upcom
gravitational-wave detectors. The initial phase of inspiral a
the final phase of ringdown are understood in terms of p
Newtonian and close-limit approximations respectively, b
the coalescence is only qualitatively understood and ge
ally thought to be tractable only by numerical metho
@1–4#. Considerable problems have been encountered
currently there are no reliable predictions of waveforms.

This article presents an approximation scheme to comp
the gravitational waveforms for space-times close to sph
cal symmetry. This is intended to apply to binary black ho
once they have coalesced, i.e., when a marginal surface
closes both sources. The quasispherical approximation
be best when the angular momentum is small, but note
even the maximally rotating Kerr black hole is 70% sphe
cally symmetric according to the ratio of the areal and eq
torial radii of the horizon. Thus rough estimates may still
possible even for appreciable angular momentum.

The basic idea of a quasispherical approximation is
make a 212 decomposition of the space-time and linear
only those parts of the extrinsic curvature which vanish
spherical symmetry, cf. Bishopet al. @5#. Thus when the lin-
earized fields vanish, spherical symmetry is recovered in
This can be a highly dynamical situation; there will be
assumption of quasistationarity. Likewise, there will be
assumption of an exactly spherical background. Unlike p
vious work on null-temporal formulations@4–7#, a dual-null
formulation is adopted here, i.e., a decomposition of
space-time by two intersecting foliations of null hypersu
faces. This is adapted to the radiation problem in that
imposition of no ingoing radiation and the extraction of t
outgoing radiation are immediate. It also allows a remarka
simplification from partial to ordinary differential equation

A general Hamiltonian theory of dual-null dynamics@8#
has been applied to Einstein gravity@9# and is summarized a
follows. Denoting the space-time metric byg and labeling
the null hypersurfaces byx6, the normal 1-formsn6

52dx6 therefore satisfy

g21~n6,n6!50. ~1!

The relative normalization of the null normals may be e
coded in a functionf defined by
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ef52g21~n1,n2!. ~2!

Then the induced metric on the transverse surfaces, the
tial surfaces of intersection, is found to be

h5g12e2 fn1
^ n2 ~3!

where^ denotes the symmetric tensor product. The dyna
ics is described by Lie transport along two commuting ev
lution vectorsu6 :

@u1 ,u2#50. ~4!

Specifically, the evolution derivatives, to be discretized in
numerical code, are

D65'Lu6
~5!

where' indicates projection byh and L denotes the Lie
derivative. There are two shift vectors

s65'u6 . ~6!

In a coordinate basis (u1 ,u2 ;ei) such thatu65]/]x6,
where ei5]/]xi is a basis for the transverse surfaces,
metric takes the form

g5hi j ~dxi1s1
i dx11s2

i dx2!

^ ~dxj1s1
j dx11s2

j dx2!22e2 fdx1
^ dx2. ~7!

Then (h, f ,s6) are configuration fields and the independe
momentum fields are found to be linear combinations of

u65* L6* 1 ~8!

s65'L6h2u6h ~9!

n65L6 f ~10!

v5 1
2 efh~@ l 2 ,l 1# ! ~11!

where ‘‘* ’’ is the Hodge operator ofh andL6 is shorthand
for the Lie derivative along the null normal vectors

l 65u62s65e2 fg21~n7!. ~12!

Then the functionsu6 are the expansions, the traceless
linear formss6 are the shears, the 1-formv is the twist,
measuring the lack of integrability of the normal space, a
©2000 The American Physical Society03-1
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the functionsn6 are the inaffinities, measuring the failure
the null normals to be affine. The fields (u6 ,s6 ,n6 ,v)
encode the extrinsic curvature of the dual-null foliatio
These extrinsic fields are unique up to duality6°7 and
diffeomorphisms which relabel the null hypersurfaces, i
dx6°el6dx6 for functionsl6(x6).

It is also useful to decomposeh into a conformal factorr
and a conformal metrick by

h5r 2k ~13!

such that

D6*̂ 150 ~14!

where ‘‘*̂ ’’ is the Hodge operator ofk, satisfying* 15 *̂ r 2.
Denoting the covariant derivative ofh by D, the Ricci scalar
of h is found to be

R52r 22~12D2ln r ! ~15!

by using the coordinate freedom on a given surface to fik
as the metric of a unit sphere.

The dual-null Hamilton equations and integrability cond
tions for vacuum Einstein gravity have been given pre
ously @9# in a slightly different notation, so it will not be
repeated here. They are linear combinations of the vacu
Einstein equation and a first integral of the contracted Bi
chi identity. This is the vacuum Einstein system in first-ord
dual-null form. The vacuum case suffices for the applicati
outside the black holes.

In spherical symmetry, (s6 ,s6 ,v,D) vanish, while
(h, f ,u6 ,n6 ,D6) are generally nonzero, e.g.,@10,11#. The
quasispherical approximation will therefore consist of line
izing in (s6 ,s6 ,v,D). In practice, one truncates the equ
tions by setting to zero any second-order terms
(s6 ,s6 ,v,D). This greatly simplifies the equations, lea
ing the momentum definitions as

D6r 5 1
2 ru6 ~16!

D6 f 5n6 ~17!

D6k5r 22s6 ~18!

D1s22D2s152e2 fh21~v! ~19!

and the remaining equations as

D6u652n6u62 1
2 u6

2 ~20!

D6u752u1u22e2 f r 22 ~21!

D6n752 1
2 u1u22e2 f r 22 ~22!

D6s75 1
2 ~u6s72u7s6! ~23!

D6v52u6v6 1
2 ~Dn62Du62u6D f !. ~24!
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This follows immediately from the full equations@9#, the
above expression forR, and the fact that

D65'L6 ~25!

in this truncation. One may take quasispherical coordina
xi5(q,w) on the transverse surfaces such that*̂ 1
5sinqdq`dw, the standard area form of a unit sphere. Th
r is the quasispherical radius.

The shear equations, composed into a second-order e
tion for k, become

hk50 ~26!

whereh is the quasispherical wave operator:

hf522ef~D (1D2)f12r 21D (1rD2)f!. ~27!

Thus the conformal metrick satisfies the quasispherical wav
equation. Thenk may be interpreted as encoding the gra
tational radiation. In particular, fixingu1 to be the outgoing
direction, the Bondi news at future null infinityI1 is essen-
tially r 21s2 @12#, as described explicitly below. Likewise
the no-ingoing-radiation condition is justr 21s150 at past
null infinity I2. That k generally encodes the free gravit
tional data was suggested by d’Inverno and Stachel@13# and
has been rediscovered by various authors, e.g.,@7,9#.

The dual-null initial-data formulation is based on a spat
surfaceS and the null hypersurfacesS6 locally generated
from S in the u6 directions. The structure of the field equ
tions shows that one may specify (h, f ,u6 ,v) on
S, (s1 ,n1) on S1 , (s2 ,s2 ,n2) on S2, ands1 in U, a
region to the future ofS6 . In particular, the initial data is
freely specifiable. There are no constraints as in the 311
formulation; these have been converted into evolution eq
tions alongS6 , which even in the general~nonquasispheri-
cal! case can be solved in closed form@14#.

A numerical integration scheme runs as follows, as
picted in Fig. 1. First integrate theD1 equations fromS to
obtain the full data onS1 . Then integrate theD2 equations
one step along each ingoing null hypersurface, generatin
new null hypersurfaceS18 . Then repeat: integrate theD1

equations alongS18 to obtain the full data onS18 , and so on.
In practice, some interpolation between the two integratio

FIG. 1. The dual-null integration scheme. Initial data is pr
scribed on a spatial surfaceS and the null hypersurfacesS1 and
S2 generated from it.
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is useful. There are many ways to perform the integration
a different order, allowing flexibility which can be used, f
instance, to avoid singularities. Any such scheme gives
estimates of (r ,k, f ,u6 ,v) at each point, since some of th
equations play the role of integrability conditions. Thus o
could ignore such equations to obtain a free rather than c
strained integration scheme. This allows numerous inte
checks on the accuracy of the numerical code, analogou
those of 311 integration schemes, e.g., Choptuik@15#.

The equations forD6(r , f ,u6 ,n6), the quasispherica
equations, decouple from the remaining equations. T
there is a quasispherical background which may be found
integrating the quasispherical initial data. Since this ba
ground is independent of the linearized part, one may eco
mize when computing different evolutions on the same ba
ground. It should be stressed that the quasispher
background is neither fixed in advance nor necessa
spherical, e.g.,DrÞ0 in general.

To compute the outgoing radiation, one now needs onl
integrate the equations for (D6k,D6s7), i.e., the quasi-
spherical wave equation fork. It is remarkable that this entire
integration scheme involves only ordinary differential equ
tions. The equations forD6v are partial differential equa
tions, containing transverseD derivatives, but the othe
equations decouple from the equations for (s6 ,v), which
therefore need not be solved for the radiation problem
short, most of the complexity of the system has been isola
and sidestepped.

Moreover, one may use a conformal transformation
obtain a scheme which is more accurate at large distan
Using the conformal factor

V5r 21 ~28!

the rescaled expansions and shears

q65ru6 ~29!

§65r 21s6 ~30!

are finite and generally nonzero atI7 for an asymptotically
flat space-time. Rewriting the relevant equations yields
quasispherical equations

D6V52 1
2 V2q6 ~31!

D6 f 5n6 ~32!

D6q652n6q6 ~33!

D6q752V~ 1
2 q1q21e2 f ! ~34!

D6n752V2~ 1
2 q1q21e2 f ! ~35!

and the linearized equations

D6k5V§6 ~36!

D6§752 1
2 Vq7§6 . ~37!
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One may takeS1 to be either part ofI2, as depicted in Fig.
2, or at sufficiently large distance for numerical purpos
Here, large distance means smallV. For the quasispherica
approximation to be valid at large distance, one may
( f ,q6 ,k)5(0,6A2,e) on S, wheree5dq ^ dq1sin2qdw
^dw is the standard metric of a unit sphere, andn150 on
S1 . The remaining coordinate data is given byn2 on the
ingoing null hypersurfaceS2 , which is left free so that one
may adapt the foliation ofS2 to the surfaces which are mos
spherical.

The no-ingoing-radiation condition is§150 atI2, leav-
ing the gravitational initial data as§2 on S2 . The outgoing
radiation is found by computing§2 at I1, which is essen-
tially the Bondi news. More precisely, the Bondi energy fl
at I7 would be@12#

c652
efq7uu§6uu2

64p
~38!

where uusuu25kabkcdsacsbd and such second-order term
are no longer being ignored. That is, the energy sup
would be

D6E5R *̂ c6 ~39!

where E is the Bondi energy. In summary, the outgoin
waveforms and their energy may be computed by integra
nine first-order ordinary differential equations and their d
als, or a subset in the case of free evolution. For numer
purposes, this is a dramatic simplification. Numerical imp
mentation of this scheme is in progress@16#.

Before concluding, it should be noted that the domain
validity of the quasispherical approximation is not known
a precise sense. The guarantee is simply that spheric
symmetric Einstein gravity is recovered in full when the li
earized fields vanish. For the usual perturbative approxim
tions, one may check successive orders of approximatio
compare accuracy, but for the quasispherical approximat

FIG. 2. Application to coalescing black holes. Shading indica
regions containing trapped surfaces, with the outermost trappe
gion being that of the coalesced black hole and the inner trap
region that of one of the original black holes. Initial data on t
ingoing null hypersurfaceS2 may be extracted from a convention
311 code based on an initial spatial hypersurfaceS0 and outer
boundaryB.
3-3
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the corresponding second-order approximation would be
Einstein gravity. If one wishes to know whether a giv
space-time is sufficiently spherical, the rough answer is
there should be a 212 decomposition such that the fields
be linearized are small compared to the remaining part. T
depends on the choice of transverse surfaces, so that
will be some art to choosing the 212 foliation for optimal
accuracy. For the Kerr black hole, the quasispherical n
coordinates of Pretorius and Israel@17# may be useful. For a
coalesced black hole, one might base the foliation on
marginal surfaces which locally define it, i.e., use the co
dinate freedom inn2 on S2 so that the foliation contains
marginal surface. There are some general laws of black-
dynamics in terms of marginal surfaces and the trapping
rizons they generate@18,19#, including that outer trapping
horizons are achronal and therefore cannot causally influe
I1. Thus S2 need not extend inside the trapped region
order for the domainU of integration to reach all ofI1.

To conclude, the intended scenario is an asymptotic
flat space-time containing coalescing black holes, with
ingoing null hypersurfaceS2 chosen to intersect the coa
lesced black hole, i.e., the region of future trapped surfa
enclosing the original black holes. The initial data onS2

may be determined by extracting the relevant data from
conventional 311 numerical computation from an initia
spatial hypersurfaceS0, smoothed off to the past ofS0. The
smoothing may be expected not to affect the results sig
cantly if S2ùS0 is sufficiently outside the black holes; the
will be some spurious radiation atI1 at early times, but not
at the relevant late times, as this would involve backsca
of backscatter.

An advantage of this procedure is that it can avoid
outer-boundary problems which affect the conventio
codes. Because the physically appropriate boundary co
tions are not known, there is always some spurious grav
tional radiation from the outer boundary which propaga
inwards. In numerical simulations this can be seen to af
k
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the coalesced black hole, for instance increasing its a
thereby rendering subsequent evolution unreliable. Howe
as depicted in Fig. 2, the outer boundaryB cannot causally
influenceS2 if it intersectsS0 inside B. Thus the scheme
requires only clean data from the 311 computation, uncon-
taminated by outer-boundary problems. A code impleme
ing the scheme may be regarded as a black box which, ta
input from any other code from which the required data
S2 can be extracted, computes approximate waveforms
the gravitational radiation. For this to work in practice, t
outer boundary must be at sufficiently large distance thatS2

does indeed intersect the coalesced black hole. This wo
be fine for the type of simulations mentioned above, wh
the black holes are close to coalescence, but currently
practical for a code which follows several orbital rotatio
before coalescence.

This suggests a quite general proposal to compute ou
ing gravitational radiation from a 311 computation by a con-
formal dual-null code which extracts data on an ingoing n
hypersurface intersecting the initial spatial hypersurface
side its outer boundary. One might expect this to be simp
than the usual matching on a temporal hypersurface@4–7#
since the outer boundary is avoided and the problem
merely of extraction rather than dynamic matching.
present, there seems to be neither a general conformal d
null code nor work on data extraction on a null hypersurfa
though the null-temporal formulation can presumably
adapted@7#. These are tractable projects which would allo
accurate computation of gravitational waveforms from co
lescing black holes.
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