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Two-dimensional lattice Gross-Neveu model with domain-wall fermions
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We investigate the two-dimensional lattice Gross-Neveu model in the large flavor number limit using the
domain-wall fermion formulation as a toy model of lattice QCD. We study the nonperturbative behavior of the
restoration of the chiral symmetry of the domain-wall fermions as the extent of the extra dimension (Ns) is
increased to infinity. We find the parity broken phase~Aoki phase! for finite Ns , and study the phase diagram,
which is related to the mechanism of chiral restoration in theNs→` limit. The continuum limit is taken and
the O(a) scaling violation of observables vanishes in theNs→` limit. We also examine the systematic
dependencies of observables to the parameters.

PACS number~s!: 11.15.Ha, 11.10.Kk, 11.15.Pg, 11.30.Rd
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I. INTRODUCTION

Chiral symmetry is one of the important properties to u
derstand hadron physics and the phase transition in the
modynamics of field theories. Pions are regarded as pse
Nambu-Goldstone bosons associated with the spontan
breakdown of chiral symmetry. The physics of the pha
transition between the confining phase~hadron phase! and
the deconfining phase~quark-gluon plasma phase! in QCD is
interesting from the theoretical and experimental points
view. Lattice field theory is one of the most powerful too
for such important physics beyond perturbations.

Defining chiral symmetry on the lattice, however, h
been one of the long-standing problems in lattice fi
theory. This problem is known as the ‘‘no-go theorem
@1,2#: unwanted species of fermions appear in chiral symm
ric theory on the lattice. To avoid this, chiral symmetry h
to be broken by adding the Wilson term to the Lagrang
@3,4#. This formulation is known as the Wilson fermio
~WF!. In order to obtain the chiral symmetric theory in th
continuum limit, one has to fine-tune the quark mass par
eter to cancel the additive quantum correction, which i
nontrivial task in numerical simulations. Besides this fin
tuning difficulty, the physical prediction from the WF ha
O(a) scaling violation due to the absence of chiral symm
try, wherea is the lattice spacing. One must calculate on
fine lattice to get precise predictions in the WF.

Several years ago, the domain-wall fermion~DWF! was
proposed@5,6# as a new formulation of the lattice fermion
The DWF is formulated as a (D11)-dimensional Wilson
fermion with the free boundary condition in the extra dime
sion @6#. In this model each of two chiral modes is expect
to localize at each boundary of extra dimension separat
and if the localization is exponential, chiral symmetry~mass-
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less fermion! on the lattice is realized in theNs→` limit.
This expectation is easily checked in the free fermion ca
The stability of the chiral symmetry under perturbati
gauge fluctuations is checked manifestly in the DWF case@7#
and in the overlap formula@8–11#. This radiative stability is
a result of an internal supersymmetry@12# in the infinite
extra direction when the DWF is just an overlap fermio
Because of these properties, the current quark mass ter
the DWF receives multiplicative renormalization in contra
with the WF, and this fermion formulation does not need
fine-tuning in order to restore chiral symmetry on the latt
@7,13#. The O(a) scaling violation is expected to vanish i
the largeNs limit, which means smaller scaling violation
than in the WF. Thus the DWF has the desirable property
defining the lattice fermion especially for chiral symmetr
or near massless cases.

Numerical simulations of the domain-wall QCD
~DWQCD! have been already carried out@14,15#. As a trade-
off of the above ideal properties, one needs a large amoun
CPU time for computer simulations of DWQCD. Furthe
more, the new model has a larger number of parameters
that of the WF, and the results of simulations have com
cated dependences on parameters.

To clarify the nonperturbative properties of DWQCD, w
examine the formalism for the solvable theory, Gross-Nev
~GN! model in two dimensions, which shares a common
ture with QCD. Our main purpose in this paper is to und
stand the restoration of chiral symmetry. For finiteNs , for
which the lattice simulations are performed, we will see th
chiral symmetry is broken, and the model can be seen a
‘‘improved Wilson fermion.’’ ~The finite Ns effects in the
truncated overlap formalism are mentioned in Ref.@11#.!
DWF for finite Ns has a parity broken phase similar to th
WF @16–18#. We also study the continuum limit of the DW
model. We will see theO(a) scaling violation becomes
small asNs is increased and vanishes in the limitNs→`.

This paper is organized as follows: In Sec. II, after a br
review of the GN model in the continuum, the lattice G
©2000 The American Physical Society01-1
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model with the DWF is formulated and the effective pote
tials in the large flavor~N! limit are calculated when the
extent of extra dimensions (Ns) is both infinite and finite. In
Sec. III we calculate the continuum limit in the infinite an
finite Ns cases and discuss the restoration of chiral sym
try. We will see that the model has chiral symmetry on t
lattice for infiniteNs , while the symmetry is restored only i
the continuum limit with fine-tuning for finiteNs . In Sec. IV
we analyze the structure of the chiral phase boundary
tween the parity symmetric and the parity broken ph
~Aoki phase! for finite lattice spacing by solving the ga
equation and discuss the necessity of fine-tuning to res
the chiral symmetry. In Sec. V we study the parameter
pendences of the lattice observables and in Sec. VI we
cuss the way of taking the continuum limit. We will see th
the correct continuum limit is taken from the lattice mod
and theO(a) scaling violation vanishes for theNs→` limit.
We conclude with a summary in Sec. VII.

II. ACTION AND THE EFFECTIVE POTENTIAL

A. Continuum Gross-Neveu model

Investigation of the GN model is a good test@16,19–22#
for the nonperturbative behavior of QCD since the two th
ries share common properties: the feature of asymptotic f
dom, chiral symmetry, and its spontaneous breakdown.

The two-dimensional continuum Gross-Neveu model
Euclidean space is defined by the action

S5E dx2H c̄~gm]m1m!c2
g2

2N
@~ c̄c!21~ c̄ ig5c!2#J ,

~1!

wherec is anN-component fermion field. The effective po
tential in the largeN limit in the continuum theory is given
as

Ve f f52ms1
1

4p
~s21P2!ln

s21P2

eL2
, ~2!

wherem is the renormalized mass andL is the scale param
eter. If the momentum integration is regularized by a cut
M, the renormalization for bare massm0 and the bare cou
pling constantg2 are

m5
m0

g2 , ~3!

1

g25
1

2p
ln

M2

L2 , ~4!

where the latter is asymptotically free.~We set the renormal
ized coupling constant to unity.!

The auxiliary fieldss and P relate to the fermion con
densations by the equation of motion

s5m02
g2

N
c̄c, P52

g2

N
c̄ ig5c. ~5!
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Whenm0 vanishes the model shows chiral symmetry, whi
is expressed by theO(2) rotational invariance of the effec
tive action ~2! in (s,P) space. The stationary point of th
effective action~2! satisfiess21P25L2, which manifests
the spontaneous breakdown of chiral symmetry.

B. Lattice model with the DWF

The DWF is formulated as a Wilson fermion inD11
dimensions or, equivalently,Ns flavor WF with a flavor mix-
ing, which has a negative Wilson term obeying the fr
boundary condition on the edges in the extra dimension@6#.

The action of the DWF is given as follows:

Sfree5a2(
s,t

(
m,n

c̄~m,s!D f ree~m,s;n,t !c~n,t !, ~6!

where

D f ree~m,s;n,t !5 (
m51

2

smCm~m,n!ds,t2W~m,n!ds,t

1PRds11,tdm,n1PLds,t11dm,n , ~7!

Cm~m,n!5
as

2a
@dm1m̂,n2dm2m̂,n#, ~8!

W~m,n!5~12M !dm,n1
ras

2a
@2dm,n2dm1m̂,n

2dm,n1m̂#. ~9!

PR/L5(16g5)/2 are the projection operators into th
right- and the left-handed modes, anda andas are the lattice
spacing in two and three dimensions, respectively.sm’s are
defined ass15 i ands251 in two dimensions;s and t are
the indicies of extra dimension with 1<s,t<Ns . Here,
r (.0) is Wilson coupling constant andM is the domain-
wall mass height~DW mass!. The boundary condition in the
third direction takes the free boundary condition. In the f
lowing, we takea5as and r 51 for simplicity.

If one sets 0,M,2, there issinglelight Dirac fermion in
the spectrum of this free action whose right-~left-! handed
component stays nears51(Ns),

q~n!5PRc~n,s51!1PLc~n,s5Ns!. ~10!

The mass of this light quark,q(n), is exponentially sup-
pressed for largeNs ,

mqa;~12M !Ns. ~11!

The Wilson term in the action avoids the species doubl
problem. The doublers and otherNs21 bulk fermions ac-
quire the cutoff order mass and decouple from low ene
physics.

As a toy model of the lattice DWQCD, we define th
two-dimensional lattice GN model withN flavors:
1-2



he

or

-

ns

o-

of
ion
ion

ch-

trix

l of

rst

n

TWO-DIMENSIONAL LATTICE GROSS-NEVEU MODEL . . . PHYSICAL REVIEW D 61 094501
S5Sf ree1a2(
n

mfq̄~n!q~n!2a2(
n

F gs
2

2N
$q̄~n!q~n!%2

1
gp

2

2N
$q̄~n!ig5q~n!%2G , ~12!

where we abbreviatec̄(n,s)c(n,t)5( i 51
N c̄ i(n,s)c i(n,t).

mf is the ‘‘current quark mass’’ in order to give mass to t
fermion.1 In the perturbation of DWQCD,mf receives the
multiplicative renormalization in theNs→` case@7,13#. The
DW massM, on the other hand, receives the additive ren
malization @7,13#, becauseM corresponds to the Wilson
mass term. We will see that two different couplingsgs

2 and
gp

2 are needed for chiral symmetry in general.
The action~12! can be rewritten in the following equiva

lent action using the auxiliary fieldss(n) andP(n):

S5Sfree1a2(
n

q̄~n!$as~n!1 ig5aP~n!%q~n!

1a2(
n

F N

2gs
2 $s~n!2mf%

21
N

2gp
2

P~n!2G . ~13!

The auxiliary fields are related to condensation of fermio

s~n!5mf2
gs

2

N
q̄~n!q~n!, P~n!52

gp
2

N
q̄~n!ig5q~n!,

~14!

from the equations of motion.

C. Effective potential

We calculate the effective potential of the tw
dimensional lattice GN model in the largeN limit. In the
largeN limit, in which the quantum fluctuation ofs(n) and
P(n) is suppressed and the mean field approximations(n)
→s andP(n)→P becomes exact, the effective potential
the GN model is obtained by exponentiating the ferm
determinant which is calculated by integration of the ferm
fields c:

Z5E @dc#@dc̄#expS 2a2( c̄Dc D
3expS 2a2( F N

2gs
2 ~s2mf !

21
N

2gp
2

P2G D
5detD~s,P!

3expS 2a2( F N

2gs
2 ~s2mf !

21
N

2gp
2

P2G D
5e2a2Ve f f. ~15!

1The parametersM, r, andmf in this paper are opposite in sig
from those of Ref.@23#.
09450
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This determinant can be calculated by employing the te
nique of the propagator matrix@11,24#. The action intro-
duced in the previous subsection is rewritten by the ma
representation, in the momentum space. From Eq.~13!,

S5c̄D~s,P!c

5a2(
s,t

(
p

„cL
†~2p,s!,cR

†~2p,s!…F S C† 2W

2W 2C D ds,t

1S 0 0

1 0D ds11,t1S 0 1

0 0D ds21,t1S 0 0

av 0D ds,Nd t,1

1S 0 av†

0 0 D ds,1d t,NsG S cR~p,t !

cL~p,t ! D , ~16!

where C†5 sin(p1a)1i sin(p2a), v5s1 iP, and W5(1
2M )1(m51

2 @12 cos(pma)#. Similarly to Refs.@11,24#, we
can calculate the effective action of this model. The kerne
the actionD can be written in the following matrix form:

s1D5S C† 2W 0 ••• ••• 0 av†

2W 2C 1 0 ••• 0 0

0 1 C† 2W 0 ••• 0

••• 0 2W 2C 1 ••• 0

••• ••• ••• � � ••• •••

0 ••• ••• 0 1 C† 2W

av 0 ••• ••• 0 2W 2C

D .

~17!

The fermionic determinant is obtained by moving the fi
column in matrix~17! to the last,

det~s1D !5~21!q(Ns21)

3detS a 0 ••• ••• 0 b8

b a 0 ••• ••• 0

0 b a 0 ••• 0

••• � � � ••• •••

••• ••• 0 b a 0

0 ••• ••• 0 b a8

D ,

~18!

whereq5NcL
D (Nc51,D52) and

a5S 2W 0

2C 1D , a85S 2W 0

2C av
D , ~19!

b5S 1 C†

0 2WD , b85S av† C†

0 2WD . ~20!

If we decompose the matrix~18! into two matrices,
1-3
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S a 0 ••• ••• 0 b8

b a 0 ••• ••• 0

0 b a 0 ••• 0

••• � � � ••• •••

••• ••• 0 b a 0

0 ••• ••• 0 b a8

D
5S a 0 ••• ••• 0 0

b a 0 ••• ••• 0

0 b a 0 ••• 0

••• � � � ••• •••

••• ••• 0 b a 0

0 ••• ••• 0 b a8

D
3S 1 0 ••• ••• 0 2v1

0 1 0 ••• 0 2v2

••• 0 1 0 ••• 2v3

••• � � � ••• •••

••• ••• ••• 0 1 2vNs21

0 ••• ••• ••• 0 12vNs

D ,

~21!
where

v152a21b8, ~22!

v i
21bv i 21 ~2< i<Ns21!, ~23!

vNs
52a821bvNs21

5~2a821b!~2a21b!Ns22~2a21b8!, ~24!

we obtain the determinant as follows:

det~s1D !5~21!q(Ns21)~deta!Ns21 deta8 det~12vNs
!.

~25!

The final expression of the fermionic determinant is

detD~s,P!5detF S av 0

0 1D 2T2NsS 1 0

0 av†D G , ~26!

where T is the transfer matrix along the extra dimensi
defined by

T5easHs5S 1

W
, 2

1

W
C

2C†
1

W
, W1C†

1

W
C
D ,

T215S C†
1

W
C1W, C

1

W

1

W
C†,

1

W

D . ~27!
09450
We omit overall factors independent of the fieldss andP in
Eq. ~26!. Hs is the Hamiltonian which generates the trans
along the extra dimension. DiagonalizingT21, whose eigen-
values arel and 1/l, we obtain an explicit formula for the
determinant,

detD~s,P!5)
pm

@F~M ,Ns ,pm!a2~s21P2!

1G~M ,Ns ,pm!as1H~M ,Ns ,pm!#,

~28!

where

H~M ,Ns ,pm!5
21

2 f
@2~lNs2l2Ns!~22h!

1~lNs1l2Ns! f #, ~29!

F~M ,Ns ,pm!5
21

2 f
@~lNs2l2Ns!~22h!1~lNs1l2Ns! f #,

~30!

G~M ,Ns ,pm!5
21

2 f
@24 f #52, ~31!

h511W21 p̄2, f 5A24W21h2, ~32!

l5
1

2W
@h1 f # ~ ulu.1!,

1

l
5

1

2W
@h2 f #, ~33!

W5~12M !1 (
m51

2

@12 cos~pma!#,

p̄25 sin2~p1a!1 sin2~p2a!. ~34!

Substituting Eq.~28! into Eq. ~15!, we obtain the effective
potential of the two-dimensional lattice GN model in th
largeN limit:

Ve f f5
1

2gs
2 ~s2mf !

21
1

2gp
2
P22I ~s,P,M ,Ns!,

~35!

~s,P,M ,Ns!5E
2p/a

p/a d2p

~2p!2

3 ln@Fa2~s21P2!1Gas1H#. ~36!

This effective potential is symmetric underM→62M .
Here we comment about the absence of the bosonic fi

~Pauli-Villars fields! in our model which is employed in
~full ! QCD @13–15#. Since the gauge field in QCD equall
interacts with not only the light quark fieldq(n), but also
heavy ~bulk! fermions c(n,s), one should introduce the
Pauli-Villars boson to subtract this heavy fermion effect.
1-4
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TWO-DIMENSIONAL LATTICE GROSS-NEVEU MODEL . . . PHYSICAL REVIEW D 61 094501
the GN models andP play an analogous role to the gaug
field in full QCD except that they couple withq(n) only.
Thus it is not necessary to introduce subtraction in
model. On the other hand, one could think about a new f
Fermi interaction model, in which wholec(n,s), s
51, . . . ,Ns , equally couple to auxiliary fieldss and P.
However, these fields are constituted of both light and he
fermions and do not show the chiral property in such a n
model.

III. CHIRAL SYMMETRY RESTORATION

First we show how chiral symmetry is restored in th
model in the case ofboth Ns5` andNs,` by examining
the effective potential given in the previous section.

We will see that for the infiniteNs case chiral symmetry
is exact even for finite lattice spacing,a.0, without fine-
tuning for bare mass parameters. The situation for the fi
Ns case, on the other hand, is much like that of the Wils
fermion action. The continuum limit has to be taken, and
the same time, the bare mass parameter must be tuned fi
for the chiral symmetric effective potential forNs,`.

A. Effective potential in the ‘‘ NsÄ` ’’ case

In this subsection we calculate the expression of the
fective potential for theNs5` case.

For largeNs , one easily sees that the dominant contrib
tions for the functionI (s,P) in the effective potential~36!
are the functions ‘‘F ’’ and ‘‘ H,’’ which behave aslNs in the
Ns→` limit, from Eqs. ~29! and ~30!. The chiral breaking
term ‘‘Gas ’’ in Eq. ~36! can be ignored in the limitNs
→` and Eq.~36! could be written as

I ~s,P!5E
2p/a

p/a d2p

~2p!2
ln@H1Fa2~s21P2!#. ~37!

So the effective potential~35! is a function of s21P2,
which is invariant under theO(2) rotation if gs

25gp
2 . We

emphasize that this is chiral symmetry even before taking
continuum limit,a→0.

The continuum limit of the effective potential can b
evaluated by separating divergent parts and finite parts f
Eq. ~37!. Rewriting Eq.~37! in an integration form

I ~s,P!5E
0

s21P2

dr K~r!, K~r!

5E
2p/a

p/a d2p

~2p!2

1

H

Fa2
1r

, ~38!

one can pick up the the divergent part in thea→0, near zero
fermion momentum,pma5(0,0), for ra2;0. Since the di-
vergent part ofK(r) behaves as

H

Fa2
→ 1

M2~22M !2 (
m51

2

pm
2 , ~39!
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in the a→0 limit, the functionK(r) becomes

K~r!5E
2p/a

p/a d2p

~2p!2

1

f M
22 (

m51

2

pm
2 1r

1C0~M ,Ns!, ~40!

where f M5M (22M ) and

C0~M ,Ns!5E
2p

p d2j

~2p!2

f M
22(

m
jm

2 2
H

F

H

F
f M

22(
m

jm
2

, ~41!

with jm5pma. The factor f M appears as the normalizatio
factor of the propagator:̂qq̄&; f M( ipmgm)21. The wave
function of the massless eigenmode has finite width in ths
direction, andf M is the ratio ofq(n) to the zero mode.

In the Ns5` case, when 0,M,2, only the momentum
aroundpma5(0,0) dominates in eq.~37! and the contribu-
tions of doublers,pma5(p,0), (0,p), and (p,p), are re-
moved completely. This means that the doublers decou
from the physical spectrum. For 2,M,4 the momenta
pma5(p,0) and (0,p) become physical poles in the mome
tum integral, while the remaining mode atpma5(p,p) is
dominant for 4,M,6. In these two regions ofM, the nor-
malization factor f M becomes (M22)(42M ) and
(M24)(62M ), respectively. ForM,0 and M.6, no
physical pole emerges.

By evaluation of the first term on the right hand sid
~RHS! in Eq. ~40!, we find

K~r!5
f M

2

4p
ln

1

a2f M
2 r

1 Ĉ0~M ,Ns!, ~42!

where the new constantĈ0 is defined byĈ05C01C08 with

E
2p/a

p/a d2p

~2p!2

1

f M
22 (

m51

2

pm
2 1r

[
f M

2

4p
ln

1

a2f M
2 r

1C08~M ,Ns!.

~43!

By substituting this expression into Eq.~38!, we obtain

I 52
f M

2

4p
~s21P2!ln

a2f M
2 ~s21P2!

e
1Ĉ0~s21P2!.

~44!

Therefore the continuum limit of the effective potenti
for the Ns5` case is

Ve f f52
mf

g2
s1S 1

2g2
2Ĉ01

f M
2

4p
ln a2D ~s21P2!

1
f M

2

4p
~s21P2!ln

f M
2 ~s21P2!

e
. ~45!
1-5
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We find that the two coupling constants can be the sam
each other,g25gs

25gp
2 , from the above result, which is in

contrast to the GN model with the WF. As mentioned abo
since the effective potential has chiral symmetry for fin
lattice spacing, fine-tuning is unnecessary for the chiral sy
metric continuum limit.

After redefining fors and P such assR5 f Ms and PR
5 f MP, we renormalize the coupling constantg and mf as
follows:

1

2g2
5Ĉ01

f M
2

4p
ln

1

a2L2
, ~46!

m5
mf

f Mg2
5mfS 2

f M
Ĉ01

f M

2p
ln

1

a2L2D , ~47!

whereL is the scale parameter andm is the renormalized
mass parameter. One realizes that the current quark m
termmf receives a multiplicative renormalization~47!, simi-
lar to perturbation theory in infinitely largeNs . With this
choice of scaling relations the continuum limit of the effe
tive potential forNs5` is finally given as

Ve f f52msR1
1

4p
~sR

21PR
2 !ln

sR
21PR

2

eL2
, ~48!

which is identical to the continuum theory~2!.

B. Chiral restoration in the continuum limit „Ns finite case…

As we have seen in the previous subsection, the limitNs
→` guarantees chiral symmetry on a lattice. Neverthele
to understand the behavior of finiteNs theory is important
for lattice QCD simulations using DWF.

Let us start the finiteNs analysis with the effective poten
tial ~35!. The chiral breaking termGas in Eq. ~36! has an
important role for finiteNs and the GN model does not hav
chiral symmetry anymore. Chiral symmetry can be resto
in the continuum limit with fine-tuning. In this sense, th
finite Ns model is similar to the WF. In order to restore chir
symmetry without fine-tuning, one should take the limitNs
→` beforetaking the continuum limit to obtain chiral sym
metry on the lattice.

The continuum limit for finiteNs can be taken following
the same procedures in the previous subsection. The di
ence from the calculation inNs→` is a necessity to shift the
auxiliary field:

s85s2
~12M !Ns

a
. ~49!

The effective potential becomes as follows:

Ve f f5
1

2gs
2 H s82S mf2

~12M !Ns

a D J 2

1
1

2gp
2

P22I ~s,P!,

~50!
09450
as

,

-

ss

s,

d

r-

I ~s,P!5E
2p/a

p/a d2p

~2p!2
ln@H81Fa2~s821P2!1G8as8#,

~51!

where

H85H1F~12M !2Ns1G~12M !Ns,

G85G12F~12M !Ns. ~52!

ExpandingI (s,P) into a power series of lattice spacing,

I 5I 01I 11I 21•••, ~53!

I 05E
2p/a

p/a d2p

~2p!2
ln@H81Fa2~s821P2!#, ~54!

I n52
~21!n

n E
2p/a

p/a d2p

~2p!2 F G8as8

H81Fa2~s821P2!
G n

~n>1!. ~55!

One can see thatI 0 preserve theO(2) rotation in the (s8,P)
plane, whileI n (n>1) break it.

I 0 is calculated in the same way as in theNs5` case:

I 05E
0

s821P2

dr K~r!, K~r!5E
2p/a

p/a d2p

~2p!2

1

H8

Fa2
1r

.

~56!

Here we take the divergent part ina→0. The shifted func-
tion H8 has a similar behavior to the limitNs→`:

H8

Fa2
→ f M

22(
m

pm
2 , ~57!

with

f M5
M ~22M !

12~12M !2Ns
. ~58!

Therefore the logarithmic divergent term has a similar fo
as continuum theory:

I 052
f M

2

4p
~s821P2!ln

a2f M
2 ~s821P2!

e
1Ĉ0~s821P2!,

~59!

where the new constantĈ0 is defined byĈ05C01C08 with

C0~M ,Ns!5E
2p

p d2j

~2p!2

f M
22(

m
jm

2 2
H8

F

H8

F
f M

22(
m

jm
2

~60!

and
1-6
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E
2p/a

p/a d2p

~2p!2

1

f M
22 (

m51

2

pm
2 1r

[
f M

2

4p
ln

1

a2f M
2 r

1C08~M ,Ns!.

~61!

The coefficientĈ0 as a function ofM for variousNs is plot-
ted in Fig. 1.

I n remaining in the continuum limit is easily calculate
I 1 (I 2) is a linear divergent~constant! term in thea→0 limit,
while I n (n>3) vanishes:

I 15
s8

a
C15

s8

a E
2p

p d2j

~2p!2

G8

H8
, ~62!

I 252s82C252s82
1

2E2p

p d2j

~2p!2 FG8

H8
G 2

.

~63!

Figure 2 shows these coefficients as a function ofNs for
variousM.

From the above calculations, the effective potential in
finite Ns case in the continuum limit is obtained as follow

Ve f f52S mf8

gs
2

1
C1

a D 1

f M
sR1S 1

2gs
2

2Ĉ01C2D 1

f M
2

sR
2

1S 1

2gp
2

2Ĉ0D 1

f M
2

PR
21

1

4p
~sR

21PR
2 !

3 ln
a2~sR

21PR
2 !

e
, ~64!

where

mf85mf2
~12M !Ns

a
, sR5 f Ms8, PR5 f MP.

~65!

FIG. 1. The coefficient,Ĉ0, as a function ofM for various
Ns .
09450
e

If the coupling constants and the mass parameter are re
malized as

1

2gs
2

2Ĉ01C25
f M

2

4p
ln

1

a2L2
, ~66!

1

2gp
2

2Ĉ05
f M

2

4p
ln

1

a2L2
, ~67!

1

f M
S mf8

gs
2

1
C1

a D 5m, ~68!

we obtain the correct effective potential of the continuu
theory ~2!.

We emphasize that the current quark mass termmf re-
ceives O(1/a) additive renormalization for theNs5finite
case. As we described previously, fine-tuning for the b
mass parameter in Eq.~68! is needed for finiteNs , and chiral
symmetry is restored in the continuum limit.

FIG. 2. The coefficients,C1 and C2, as a function ofNs for
fixed values ofM. The data forC1 are plotted as absolute value
and solid symbols denoteC1,0.
1-7
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The restoration of chiral symmetry inNs→` could also
be seen in the scaling relations~66!–~68!. The coefficients
C1 andC2 represent the magnitudes of the explicit break
of chiral symmetry.C1 is the additive mass counterterm
while C2 is the mismatch between the quadratic terms
scalar and pseudoscalar particles by a quantum correctio
we restrict the DW mass to 0,M,2, as shown in Fig. 2, the
coefficientsC1 andC2 decrease rapidly asNs becomes large
The effects of shifting of the fields and the additive ren
malization of the mass parameter in Eqs.~65! and ~68! rap-
idly vanish with increasingNs ; thus the necessity of fine
tuning becomes absent in theNs→` limit.

On the other hand, even whenM is set out of the region
(0,2), the scaling relations~66!–~68! lead the chiral symmet
ric continuum limit. In this caseC1 andC2 do not vanish in
the largeNs limit and fine-tuning is necessary, similar to th
WF.

IV. PARITY BROKEN PHASE
AND THE RESTORATION OF CHIRAL SYMMETRY

For lattice QCD with the WF, the existence of a massl
pion for finite lattice spacing is explained by the parity br
ken phase picture proposed by Aoki@16#. Although chiral
symmetry is explicitly broken in the WF, one can tune t
mass parameter to obtain an exactmasslesspion in the spec-
trum even for finite lattice spacing. This cannot be und
stood by the ordinary picture of Nambu-Goldstone boson
continuum theory, in which chiral symmetry is the exa
symmetry of the action and is broken spontaneously.

Aoki examined the GN model and lattice QCD with th
WF for a finite lattice spacing, and found that the par
symmetric phase and parity~flavor! spontaneously broken
phase coexist in the parameter space of the model. The p
broken phase is characterized by the nonzero condensati
the pseudoscalar density,^P&5^c ig5c&Þ0. Provided a
second-order phase transition separating the two phases
each other, the pion becomes massless at the phase tran
point, which is regarded as a massless particle accompan
the continuous phase transition.

Before starting an analysis of the phase diagram of
DWF model for generalNs , we note the equivalence be
tween theNs51 DWF model and the Wilson fermion for
malism. The effective potential of the WF,

VW5
1

2gs
2 ~s2mf !

21
1

2gp
2

P2

2E
2p/a

p/a d2k

~2p!2
lnF(

m

sin2 kma

a2

1S sc1
r

a (
m

~12 coskma! D 2

1Pc
2G , ~69!

can be seen easily by substitutingNs51,sc5s2(12M ) in
Eq. ~35!. The phase boundary of Aoki phase forms thr
cusps which reach the weak-coupling limitg250 at M
51,3,5 in the WF@16–18# andNs51 DWF models. Three
09450
f
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s

-
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e

e

cusps arise from the fact that the doublers at the conventi
continuum limit, (g2,M )5(0,1), become physical massle
modes atM53,5.

On the other hand, in theNs5` limit, the parity broken
phase does not exist because of the restoration of chiral s
metry, whose explicit breaking causes the parity brok
phase.

For 1,Ns,`, it is expected that the parity broken pha
exists and the chiral phase boundary forms the cusps as
mised from the Wilson-like behavior in the previous sectio
The region of the broken phase is distorted and shrinks
idly as Ns is increased, and vanishes inNs→` limit.

The parity symmetry is spontaneously broken at the
rameter point (mf ,g2,M ,Ns), where the gap equations hav
a stable solutionPÞ0. Setting the parameters of this mod
(mf ,gs

2 ,gp
2 ,M ,Ns), observables are calculated by solvin

the gap equations

]Ve f f

]s
5

1

gs
2 ~s2mf !2sF~s,P!2

1

a
G~s,P!50, ~70!

]Ve f f

]P
5PF 1

gp
2

2F~s,P!G50, ~71!

where

F~s,P!5E
2p

p d2j

~2p!2

2F

H1Gas1Fa2~s21P2!
, ~72!

G~s,P!5E
2p

p d2j

~2p!2

G

H1Gas1Fa2~s21P2!
,

~73!

with jm5pma. In the case ofgp
2 5gs

25g2, the position of the
phase boundary in parameter space could be obtained
solving these gap equations forP5e. Taking the e→0
limit, Eqs. ~70!,~71! define g2 and mf as functions ofs
which is nothing but the parametric representation of
phase boundary if the phase transition is continuous.

Let us note that the DWGN model withg25gs
25gp

2 has
only a second-order phase transition between the parity s
metric and the broken phases. Forgs

2Þgp
2 , see Ref.@22# in

the WF case, in which a first-order phase transition is fou
By differentiating Eq.~71! with respect toP, one can

easily check that the pion mass squared

Mp
2 }M̃p

2 [
1

f M
2

]2Ve f f~s,P50!

]P2
5

1

f M
2 F 1

g2 2F~s,P50!G
~74!

exactly vanishes at the phase boundary. The factor, 1/f M
2 , in

front of the RHS corrects the normalization of the auxilia
field P in the same sense as explained in the previous
tion. ~See below Eq.~41!.!

Before drawing whole phase diagrams in the parame
space (mf ,g2), let us first examine the positions of the thre
1-8
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‘‘tips of cusps,’’ which are the intersection points betwe
g250 plane and the critical line. These tips correspond
the continuum limitsg2→0 similar to the WF. The positions
can be obtained by the asymptotic form of the integrals
Eqs.~70! and ~71!. The divergent behaviors of the integra
aroundpma5(pm,pn), with m,n50 or 1, are

F~s,P50!→ (
m,n50,1,l 5m1n

E
2p

p d2j

~2p!2

3
2

$s2~12M12l !Ns%21(
m

Amjm
2

, ~75!

G~s,P50!→ (
m,n50,1,l 5m1n

E
2p

p d2j

~2p!2

3
22~12M12l !Ns

$s2~12M12l !Ns%21(
m

Bmjm
2

, ~76!

whereAm andBm are functions ofl , s, M , andNs . From
these expressions it is easy to see that the RHS of the
equations~70!,~71! have a logarithmic divergence ats5(1
2M12l )Ns with l 50,1,2. This fact leads to, for eachl, the
phase boundary intercepting withg250 at a point mf
5(12M12l )Ns. Each of three critical points corresponds
the massless particle pole of momentum

pm~ l 50!5~0,0!, pm~ l 51!5~p/a,0!,~0,p/a!,

pm~ l 52!5~p/a,p/a!. ~77!

The positions of three points move as a function ofM, which
is shown in Fig. 3. ForM in the region of„2l ,2(l 11)…, the

FIG. 3. The chiral symmetric continuum limit in the (M ,amf)
plane forNs5even. The critical lines approachesmf50 with in-
creasingNs in each of three regions, 2l ,M,2(l 11), l 50,1,2.
09450
o
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ap

chiral point for the momentum modepm( l ) in Eq. ~77! con-
verges tomf50 asNs increases. Thus a massless pion c
be automatically obtained atmf50 in the limit of g250 by
increasingNs . Other two critical points move rapidly to
umf u→` in Ns→` limit.

The actual calculation for the chiral phase boundary
done by solving the gap equations numerically, and res
are shown in Figs. 4, 5, 6, and 7. The former two figures
for Ns5even cases and the latter two showNs5odd cases.

The schematic diagram of the phase boundary betw
the parity symmetric and broken phase in (mf ,g2) plane for
fixed (M ,Ns) is drawn in Fig. 8 for theNs5even case and in
Fig. 9 forNs5odd. The phase boundaries in both cases sh
queer shapes which have three intercept points,mf5(1
2M12l )Ns with l 50,1,2, on theg250 line.

We find that the phase diagram forNs5even is different
from that for Ns5odd. In theNs5even case, one can ana

FIG. 4. The phase diagram atNs52. The horizontal axis repre
sentsamf while the vertical axis isg2. Each of four graphs is
plotted for fixed value ofM. The inside region of the critical line is
the parity broken phase.

FIG. 5. The phase diagrams atNs54.
1-9
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lytically verify from the sign definiteness of integrands of t
gap equations that the phase boundary exists only for
mf.0 region.~For the notation in Ref.@23# and numerical
simulations, the broken phase always appears in themf,0
region.! On the other hand, the phase boundary interse
with the mf50 line in theNs5odd case. Ifg2 is decreased
from a finite value to zero, the phase boundary moves fr
the positive mf region to mf5(12M12l )Ns at g250,
which becomes negative in some region ofM for Ns5odd.
The chiral phase boundaries forNs5odd are shown in Figs
6 and 7. The parity broken phase lies across themf50 plane
in the Ns5odd case. Similarly forNs5even, this boundary
for oddNs also converges to themf50 plane for largerNs .

Another interesting observation from the phase diagram
the finite g2 effect for the pion mass. The effective qua
mass from the free propagator analysis~mean field analysis!
is

mqa;~Mc2M !Ns, ~78!

FIG. 7. The phase diagrams atNs53.

FIG. 6. The phase diagrams atNs51.
09450
e

ts

m

is

from which one may think that there exists optim
M (5Mc), where the quark~and pion! becomes massles
even for finiteNs . In the current model, for finiteNs the
parity broken phase boundary stays apart from themf50
planefor all M if g2.0. This fact indicates that there is n
massless pion atmf50 for finite Ns and finiteg2. We plot
the value ofmf whereMp

2 50 as a function ofM in Fig. 10.
~This is the distance of the phase boundary point from
mf50 line. This quantity corresponds to the critical value
the inverse hopping parameter, 1/kc , in the WF.! We find
that for fixed finiteNs and finiteg2, the pion does not be
come massless atmf50. We realize that this discrepanc
from the mean field picture in Eq.~78! is due to the part of
the additive mass term which is proportional toC1 in Eq.
~68!. For strong coupling, for example,g255.0, mf(Mp

50) is almost flat at aroundM;2.0. This indicates a diffi-
culty of detecting the ‘‘allowed region’’ ofM by observing
the pion mass for the strong coupling region. Forg250 the
theory turns out to be a free theory, andM51 gives Mp

50 at mf50. If Ns is increased,mf(Mp50) becomes an
exponentially small convergence to zero no matter whet
g2 is finite or 0.~See Fig. 11.!

The dependence of the phase diagram onNs can be seen
in Fig. 12. In the figure forM50.9, the cusp of smallermf
corresponds to the chiral continuum limit of the convention
momentum modepm5(0,0) and other cusps show that of th
doubler modes. The first cusp converges to themf50 line
while the other cusps diverge tomf→` in the largeNs limit.
Below a critical coupling,gc

2 , in Figs. 8 and 9, a pair of
critical lines forms either of three continuum limits~three
cusps! similar to the WF, which can be understood as t
signal for the recovery of chiral symmetry. Forg2.gc

2 the

FIG. 8. The schematic phase diagram in the (mf ,g2) plane for
Ns5even. The parity broken phase exists in themf.0 region.

FIG. 9. Same as Fig. 8 forNs5odd. The parity broken phas
lies across themf50 line.
1-10
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parity broken phases are merged to a uniform structure.
find thatgc

2 increases exponentially withNs :

gc
2;ecNs ~c.0!. ~79!

At the same time, the phase boundary exponentially
proaches themf50 plane with increasingNs . For anyg2,
the phase boundaries converge at themf50 plane, which
can be easily seen from Eqs.~70! and~71!. The width of the
parity broken phase scales proportional toa3 @25#, and
shrinks exponentially forNs→`. These facts are compatibl
with the exact chiral symmetry for finite lattice spacing
the Ns→` limit, as discussed in the previous section.

On the other hand, atM520.1 the chiral continuum limit
and the phase boundary go away from themf50 line with

FIG. 10. The distance from themf50 line to the phase bound
ary, mf(Mp50), which corresponds to the critical value of th
current quark mass, as a function ofM for fixed Ns ,g2.
09450
e

p-

FIG. 12. Ns dependence of the phase boundary forM5
20.1,0.9. The horizontal axis representsmf while the vertical axis
is g2.
FIG. 11. mf(Mp50) as a function ofNs for
fixed M ,g2.
1-11
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TAKU IZUBUCHI AND KEI-ICHI NAGAI PHYSICAL REVIEW D 61 094501
increasingNs . This behavior shows the violation of chira
symmetry atmf50 even in theNs→` limit for M,0.

V. „M ,Ns… DEPENDENCES OF LATTICE OBSERVABLES

Let us turn to discuss the physical observables in
model. We chooses, ^q̄q&, andM̃p as the physical observ
ables.

In Fig. 13 we plotM̃p
2 and^q̄q&[mf2s as a function of

mf for several values ofM with g251,Ns54. We find that
there exists a finitemf region in whichMp is zero.2 This
region is nothing but the parity broken phase. Themf depen-
dence of thê q̄q& shows a discontinuous leap in between t
parity broken phase.

The systematic dependences of observables on the pa
eterM are shown in Figs. 14 and 15. In Fig. 14 we plot^q̄q&
as a function ofM for severalmf with g251 andNs520.

^q̄q& continuously gains in magnitude with increasingM

aroundM;1. ^q̄q& for mf50 turns out to have a minimum
magnitude aroundM;2.

M̃p
2 also has a systematic dependence onM. Because the

ratio M̃p
2 /Mp

2 is a smooth function ofM andNs , M̃p
2 shows

essential characteristics of the pion mass. In Fig. 15,M̃p
2 f M

2

5d2Ve f f /dP2 is plotted againstM. Comparing the results o
strong coupling (g255.0) with that of weak coupling (g2

51.0) in this figure, we find that the depression ofM̃p
2 f M

2

nearM;1 for weak coupling is not very manifest for stron
coupling especially in the smallNs limit. In fact the mini-

2We setP50 throughout our calculation, and the value of phy
cal observables in the parity broken phase is not exact. For
ample,Mp

2 should not be zero in the parity broken phase. Note t
all figures after this section except Fig. 13 are obtained in pa
symmetric parameter region, in which our results are precise.

FIG. 13. M̃p
2 and ^q̄q&5mf2s as a function ofmf . Ns54,

g251.0.
09450
is

m-

mum of M̃p
2 f M

2 places atM.2 for Ns54. This implies that
in order to find the allowed region ofM for the chiral con-
tinuum limit by observing the depression of the pion ma
one needs largerNs for strong coupling than that needed fo
weak coupling in DWQCD simulations. Note that such
allowed region ofM is unknowna priori in QCD by the
additive quantum corrections.

x-
t
y

FIG. 14. ^q̄q&5mf2s as a function ofM. Ns520, g251.0.

FIG. 15. M̃p
2 f M

2 as a function ofM. g251.0 andg255.0 for
Ns52,4,6,8,12.
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TWO-DIMENSIONAL LATTICE GROSS-NEVEU MODEL . . . PHYSICAL REVIEW D 61 094501
As we pointed out in the previous section, the pion m
does not vanish for allM at mf50 for finite Ns if g2.0. For
Ns54, M̃p

2 at mf50 has its minimum at aroundM51.4.

For largerNs , M̃p
2 (mf50) in the region 0,M,2 tends to

be flat with smaller pion mass. From this figure we conclu
that chiral symmetry is restored for largeNs if M is set in the
region 0,M,2. There is another region 2,M,4, where
the pion would be a massless particle in theNs→` limit.
This region corresponds to the region of massless ‘‘pio
which is made of the chiral modes atpma5(p,0),(0,p).

VI. CONTINUUM LIMIT AND DISAPPEARANCE
OF O„a…SCALING VIOLATIONS

Toward the continuum limita→0, the lattice bare param
eters are tuned according to the scaling relation~66!–~68! for
finite Ns . We plot s and Mp

2 as a function of the lattice
spacingaL in Fig. 16 for severalNs with fixed DW mass
M;1.

The lattice bare observables systematically depend oM

FIG. 16. s/L and M̃p
2 as a function ofaL for fixed M. The

continuum limit is taken using the~Wilson like! scaling relations in
Eqs.~66!–~68!.
09450
s

e

’’

as shown in the previous section. From Eq.~67! the lattice
spacing~or the scale parameter of the theory! is also a func-
tion of M,

La~M ,Ns!5expF2
2p

f M
2 S 1

2gp
2 2Ĉ0~M ,Ns! D G . ~80!

See Fig. 1 for the (M ,Ns) dependence ofĈ0. TheM depen-
dences of observables cancel with that of the lattice spac
and the correct continuum values are reproduced at tha
→0 limit. ~See Fig. 16.!

An interesting observation is the disappearance of
O(a) scaling violation for the largeNs limit. From the the-
oretical point of view, exact chiral symmetry inNs→` limit
is expected to prohibit the dimension (D11) operators in
the quantum correction, which cause anO(a) scaling viola-
tion. The slope at theaL50 curve in Fig. 16 is finite at
Ns52 while the curve atNs520 is flat nearaL50. This
shows that theO(a) scaling violation vanishes in the larg
Ns limit and a scaling violation proportional toa2 exists.

Figure 17 shows that the remainingO(a2) error is small

FIG. 17. s/L andM̃p
2 as a function ofaL at Ns520 .
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TAKU IZUBUCHI AND KEI-ICHI NAGAI PHYSICAL REVIEW D 61 094501
for M;1 in the largeNs limit, which is less than a few
percentage foraL,0.5 in this model. The reason why th
O(a2) scaling violation is small nearM51 could be under-
stood by expanding the inverse integrand of the funct
‘‘ I 0(s,P)’’ for small a:

H8

Fa2
5p2/ f M

2 1cp4/ f M
4 a21c8p6/ f M

6 a41•••. ~81!

Since 1/f M is minimum atM51, theO(a2) deviation from
the continuum formula is also minimum forM51. This fea-
ture might be similar for QCD simulations, exceptM re-
ceives additive renormalization from the quantum fluctuat
of the gauge field.

The renormalization formula employed above for fin
Ns is similar to that of the WF. The bare mass needs to

FIG. 18. s/L andM̃p
2 as a function ofaL at M50.9. The DWF

scaling relations in Eqs.~82!–~84! are employed.
09450
n
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e

fine-tuned toward a certain critical value. On the other ha
we consider applying the scaling relation forNs→` ~with-
out fine-tuning!,

1

2gs
2

2Ĉ01C25
f M

2

4p
ln

1

a2L2
, ~82!

gp
2 5gs

2 , ~83!

1

f M

mf

gs
2

5m, ~84!

to finite Ns lattice observables. This is similar to what is do
in the DWQCD simulation in a sense. The result of th
calculation for finiteNs is shown in Fig. 18. For eachNs ,
M̃p

2 is apt to go to the correct continuum value for largeaL
but tends to diverge for smaller lattice spacing. Such div
gent behavior is never seen in current DWQCD simulatio
@14,15# sinceaLQCD is larger than 0.1.

From Eq. ~68! the renormalized mass is expressed a
function of the bare quark massmf :

FIG. 19. Ns dependence ofM̃p
2 as a function ofmf .
1-14
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ma5
1

f Mg2 @mfa2~12M !Ns1g2C1~M ,Ns!#. ~85!

For eachg2 ~andaL), if Ns fulfills a condition

Ns.Ns
c s.t. uamf u@u2~12M !Ns

c
1g2C1~M ,Ns

c!u,
~86!

the renormalized mass approximately becomes that in
Ns→` case. SuchNs

c can exist for finitemf if 0 ,M,2
because both (12M )Ns andC1(M ,Ns) go to zero for large
Ns . Thus, if Ns is larger thanNs

c , physical predictions from
DWF are saturated as a function ofNs and could be regarde
as the value ofNs→`. Ns

c is a function ofg2, M , andmf ,
and tends to be larger for smallermf . TheNs dependence o
M̃p

2 could be seen in Fig. 19. For a large magnitude ofmf the

Ns dependence is saturated up toNs;12, whileM̃p
2 varies as

a function ofNs nearmf50. From this figure for (g2,M )
5(1,0.4), we can estimate thatNs

c is near 10 forumf u;0.1
andNs

c;20 for umf u;0.02. In this modelNs
c goes to a small

value forM;1. For M50.9 the value ofM̃p
2 for Ns512 is

nearly identical to that ofNs520 for almost all the region o
mf in Fig. 19.

VII. CONCLUSIONS AND DISCUSSIONS

We have investigated the two-dimensional lattice G
model with the DWF in the large flavor~N! limit, as the toy
model of lattice QCD with the DWF. By calculating th
effective potential we study the nonperturbative prospect
this model, which are expected to be qualitatively similar
DWQCD.

In the infinite Ns case, the effective potential has exa
chiral symmetry even for finite lattice spacing. The chi
phase boundary is placed exactly on themf50 line, which
shows that the fine-tuning of the mass parametermf becomes
needless. The parity broken phase does not exist for all c
pling constants. Thus the model forNs5` has similar prop-
erties as the continuum theory especially for chiral symm
try, by which the massless pion could be understood as a
boson accompanying the spontaneous breakdown of
symmetry.

The finite Ns case, for which numerical simulations a
carried out, is practically important. Chiral symmetry is e
plicitly broken by the finiteNs effect, which causes a parit
broken phase with (D11) cusps nearg250 similar to the
Aoki phase of the WF. The restoration of chiral symme
only occurs in the continuum limit with fine-tuning ofmf to
its critical point, which is on the phase boundary of the par
broken phase. By increasingNs for fixed a, the phase bound
ary exponentially approaches themf50 plane in paramete
space and the parity broken phase vanishes inNs→`. If one
takes the limitNs→` prior to thea→0 limit, chiral sym-
metry is restored.

Another interesting observation is theNs dependence o
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the critical couplinggc
2 . Forg2,gc

2 , the parity broken phase
splits into (D11) regions, each of which corresponds to
chiral symmetric continuum limit. The restoration of the ch
ral symmetry is also characterized by the fact thatgc

2 expo-
nentially goes to a large value with increasingNs .

We also show (M ,Ns) dependences of lattice bare o
servables, which could be some hints for DWQCD simu
tions. WhenNs is finite andg2.0, the pion mass atmf50
never goes to zero for allM. If M is set into the range (0,2)
the pion mass atmf50 is exponentially suppressed wit
increasingNs . From the results ofmf at Mp50 ~Fig. 10!
andMp at mf50 ~Fig. 15!, we discussed that one needs
take largerNs for strong coupling than that needed for we
coupling in DWQCD simulations, in order to search the
lowed region ofM for the chiral continuum limit by observ
ing the depression of the pion mass. By observing theNs
dependences of the observables we discuss the criterioNs

.Ns
c , for which the physical observables can be conside

as approximate values forNs→`. Ns
c is a function of

g2, M , andmf .
The observables depend on the value ofM even forNs

→`. This dependence is canceled by the renormaliza
and the correct continuum theory is obtained. The disapp
ance of theO(a) scaling violation for largeNs in the con-
tinuum limit suggests the probability of obtaining reliab
physical predictions for smaller lattice spacing than that
the WF.

Since the GN model in the largeN limit neglects quantum
fluctuations and omits gauge fields, we cannot insist that
behavior of lattice QCD with the DWF be exactly the sam
as the results in this paper. For example, the DW massM is
the shifted intoM̃5M1const due to the back reaction of th
gauge fields. Another important difference between the
model and DWQCD is the possibility of a zero mode alo
extra dimension. If the fluctuation of gauge fields
DWQCD makes part of the eigenvalues of the transfer m
trix along the extra direction close to unity with a finite pat
integral measure, the chiral symmetry of this model may
violated. To nail down such a disaster, eigenvalue proble
for DWQCD are worth exploring. Work in this direction is i
progress. Besides these different aspects, there are m
similarities between the GN model and QCD, at least for
Wilson action@16–18#; we expect that the results shown
this paper will provide instructive and systematic inform
tion about thenonperturbativeeffects of lattice QCD with
the DWF.
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