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We investigate the two-dimensional lattice Gross-Neveu model in the large flavor number limit using the
domain-wall fermion formulation as a toy model of lattice QCD. We study the nonperturbative behavior of the
restoration of the chiral symmetry of the domain-wall fermions as the extent of the extra dimeNg)ois (
increased to infinity. We find the parity broken ph&deki phase for finite Ng, and study the phase diagram,
which is related to the mechanism of chiral restoration inNge-c limit. The continuum limit is taken and
the O(a) scaling violation of observables vanishes in tg—« limit. We also examine the systematic
dependencies of observables to the parameters.

PACS numbgs): 11.15.Ha, 11.10.Kk, 11.15.Pg, 11.30.Rd

[. INTRODUCTION less fermion on the lattice is realized in thBlg—oo limit.
This expectation is easily checked in the free fermion case.
Chiral symmetry is one of the important properties to un-The stability of the chiral symmetry under perturbative
derstand hadron physics and the phase transition in the thegauge fluctuations is checked manifestly in the DWF ¢@$e
modynamics of field theories. Pions are regarded as pseudmd in the overlap formulf8—11]. This radiative stability is
Nambu-Goldstone bosons associated with the spontaneoasresult of an internal supersymmet42] in the infinite
breakdown of chiral symmetry. The physics of the phaseextra direction when the DWF is just an overlap fermion.
transition between the confining phadedron phaseand Because of these properties, the current quark mass term in
the deconfining phasguark-gluon plasma phasim QCD is  the DWF receives multiplicative renormalization in contrast
interesting from the theoretical and experimental points ofwith the WF, and this fermion formulation does not need a
view. Lattice field theory is one of the most powerful tools fine-tuning in order to restore chiral symmetry on the lattice
for such important physics beyond perturbations. [7,13. The O(a) scaling violation is expected to vanish in
Defining chiral symmetry on the lattice, however, hasthe largeNg limit, which means smaller scaling violations
been one of the long-standing problems in lattice fieldthan in the WF. Thus the DWF has the desirable property for
theory. This problem is known as the “no-go theorem” defining the lattice fermion especially for chiral symmetric
[1,2]: unwanted species of fermions appear in chiral symmeter near massless cases.
ric theory on the lattice. To avoid this, chiral symmetry has Numerical simulations of the domain-wall QCD
to be broken by adding the Wilson term to the LagrangianDWQCD) have been already carried qa#,15. As a trade-
[3,4]. This formulation is known as the Wilson fermion off of the above ideal properties, one needs a large amount of
(WF). In order to obtain the chiral symmetric theory in the CPU time for computer simulations of DWQCD. Further-
continuum limit, one has to fine-tune the quark mass parammore, the new model has a larger number of parameters than
eter to cancel the additive quantum correction, which is ahat of the WF, and the results of simulations have compli-
nontrivial task in numerical simulations. Besides this fine-cated dependences on parameters.
tuning difficulty, the physical prediction from the WF has  To clarify the nonperturbative properties of DWQCD, we
O(a) scaling violation due to the absence of chiral symme-examine the formalism for the solvable theory, Gross-Neveu
try, wherea is the lattice spacing. One must calculate on a(GN) model in two dimensions, which shares a common na-
fine lattice to get precise predictions in the WF. ture with QCD. Our main purpose in this paper is to under-
Several years ago, the domain-wall fermi@WF) was  stand the restoration of chiral symmetry. For finMg, for
proposed5,6] as a new formulation of the lattice fermion. which the lattice simulations are performed, we will see that
The DWEF is formulated as aD(+1)-dimensional Wilson chiral symmetry is broken, and the model can be seen as an
fermion with the free boundary condition in the extra dimen-“improved Wilson fermion.” (The finite Ng effects in the
sion[6]. In this model each of two chiral modes is expectedtruncated overlap formalism are mentioned in Rgfl].)
to localize at each boundary of extra dimension separatelyDWF for finite Ng has a parity broken phase similar to the
and if the localization is exponential, chiral symmefmyass- WF[16-18. We also study the continuum limit of the DWF
model. We will see theO(a) scaling violation becomes
small asNg is increased and vanishes in the limif— oo.
*Email address: izubuchi@het.ph.tsukuba.ac.jp This paper is organized as follows: In Sec. Il, after a brief
TEmail address: nagai@rccp.tsukuba.ac.jp review of the GN model in the continuum, the lattice GN
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model with the DWF is formulated and the effective poten-Whenm, vanishes the model shows chiral symmetry, which
tials in the large flavor(N) limit are calculated when the is expressed by th®(2) rotational invariance of the effec-
extent of extra dimensiond\g) is both infinite and finite. In  tive action(2) in (o,I1) space. The stationary point of the
Sec. Il we calculate the continuum limit in the infinite and effective action(2) satisfieso®+ I1?= A2, which manifests
finite Ng cases and discuss the restoration of chiral symmethe spontaneous breakdown of chiral symmetry.

try. We will see that the model has chiral symmetry on the

lattice fo_r infinitt.ale, vyhilg the symmetry i; restored only in B. Lattice model with the DWE

the continuum limit with fine-tuning for finité&ls. In Sec. IV ] . )

we analyze the structure of the chiral phase boundary be- The DWF is formulated as a Wilson fermion D+ 1
tween the parity symmetric and the parity broken phasélimensions or, equivalentiyys flavor WF with a flavor mix-
(Aoki phase for finite lattice spacing by solving the gap iNd. Which has a negative Wilson term obeying the free
equation and discuss the necessity of fine-tuning to restof@oundary condition on the edges in the extra dimenfgn
the chiral symmetry. In Sec. V we study the parameter de- The action of the DWF is given as follows:

pendences of the lattice observables and in Sec. VI we dis-

cuss the way of taking the continuum limit. We will see that Stee= aZE E Z(m,S)D”ee(m,s;n,t)zp(n,t), (6)

the correct continuum limit is taken from the lattice model st mn

and theO(a) scaling violation vanishes for tHé;— oo limit.

We conclude with a summary in Sec. VII. where

2

D"*¢(m,s;n,t)= > 0,C,(m,n)8s,—W(m,n)d,
A. Continuum Gross-Neveu model wu=1

Investigation of the GN model is a good t¢46,19-22 +PRrOs+1t0mnt PLOst+10mn, (1)
for the nonperturbative behavior of QCD since the two theo-
ries share common properties: the feature of asymptotic free- ag
dom, chiral symmetry, and its spontaneous breakdown. Cu(mn) =5 [0m+in~ Om-runl: 8
The two-dimensional continuum Gross-Neveu model in
Euclidean space is defined by the action

II. ACTION AND THE EFFECTIVE POTENTIAL

S

_ g o W) = (1= M) Sy 5 (2610 O
s- | de{ Tt )= S L0+ Gy
(1) - 5m,n+ﬁ]- (9)

wherey is anN-component fermion field. The effective po- ~ Pri.=(1%* 75)/2 are the projection operators into the
tential in the largeN limit in the continuum theory is given right- and the left-handed modes, aadnda; are the lattice

as spacing in two and three dimensions, respectivelys are
defined aso=i ando,=1 in two dimensionss andt are

1 24 112 the indicies of extra dimension with <Is,t<Ng. Here,

Vett=—Mmo+ E(UZJFHZ)'” oAz (20 r(>0) is Wilson coupling constant andll is the domain-

wall mass heightDW mass. The boundary condition in the
third direction takes the free boundary condition. In the fol-
lowing, we takea=ag andr=1 for simplicity.

If one sets <M <2, there issinglelight Dirac fermion in
the spectrum of this free action whose riglieft-) handed
component stays near=1(Nyg),

wherem s the renormalized mass ardis the scale param-
eter. If the momentum integration is regularized by a cutoff
M, the renormalization for bare masg, and the bare cou-
pling constanig? are

m
m= 5;; 3) a(n)=Pry(n,s=1)+P(n,s=Ny). (10)
) The mass of this light quarkg(n), is exponentially sup-
iz iInM— 4) pressed for largé\s,
g°> 2w A%’
mga~(1—M)Ns, (12)
where the latter is asymptotically fre@Ve set the renormal-
ized coupling constant to unity. . The Wilson term in the action avoids the species doubling
The aUXIIIary fieldso and Il relate to the fermion con- prob|em_ The doublers and OthBl'S_l bulk fermions ac-
densations by the equation of motion quire the cutoff order mass and decouple from low energy
5 ) physics.
9= _ 9= As a toy model of the lattice DWQCD, we define the
o=Mo (g M= giiysy. ®  {wo-dimensional lattice GN model with flavors:
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_ gi _ This determinant can be calculated by employing the tech-
S=S;eet a2, mig(n)q(n)—a2x, m{q(n)q(n)}2 nique of the propagator matrikl1,24. The action intro-
n n duced in the previous subsection is rewritten by the matrix

2 representation, in the momentum space. From(E8),

+ g—ﬂ{q(n)i ysa(m)}?|, (12 _
S=y¢D(o, 1)y
where we abbreviates(n,s)y(n,t)==N,4'(n,s) ' (n,t). ct —w
my is the “current quark mass” in order to give mass tothe  =a2>, > (4/(—p,s),¥(—p.s)) ( )5st
fermion! In the perturbation of DWQCDI; receives the st p -W -C/ "
multiplicative renormalization in thBlg— cas€/7,13]. The 0 0 1 0 0
DW massM, on the other hand, receives the additive renor- + )5s+1t+ ) Se_ 11+ )55 NGt
malization [7,13], becauseM corresponds to the Wilson 1 0 S \0 0 " lam O T
mass term. We will see that two different couplingfs and 1
2 . . 0 aw ) ( wR(p!t)
g;, are needed for chiral symmetry in general. + 816t N , (16)
The action(12) can be rewritten in the following equiva- 0 0/ ™ " lelpt)

lent action using the auxiliary fields(n) andII(n):

where C'= sin(p,a)+isin(,a), w=c+ill, and W=(1
—M)+3%_[1- cosp,a)]. Similarly to Refs.[11,24, we
can calculate the effective action of this model. The kernel of
the actionD can be written in the following matrix form:

S=Sqect az; q(n){aa(n)+iysall(n)}q(n)

+a?, l{(r(n)—m P2+ lH(n)2 . (13 T t

™ | 22 g2 ct -w o - - 0 ao

-Ww -C 1 o --- 0 0

The auxiliary fields are related to condensation of fermions, 0 1 ¢t —w 0

2 2
9 9 _ oD=| ==+ 0 -W -C 1 0
o(m=m— ra(nan), TI(n)=-Tra(niysa(n), ' ,
from the equations of motion. aw O 0 -W -C
17

C. Effective potential
The fermionic determinant is obtained by moving the first

We calculate the effective potential of the two- . .
b column in matrix(17) to the last,

dimensional lattice GN model in the larde¢ limit. In the
largeN limit, in which the quantum fluctuation af(n) and (Ne—1)
T1(n) is suppressed and the mean field approximati¢n) ~ deloiD)=(—1)%"s

— o andII(n)—1II becomes exact, the effective potential of

o ... .- 0 '
the GN model is obtained by exponentiating the fermion “ P
determinant which is calculated by integration of the fermion B a 0 - - 0
fields ¢: 0 B e o --- 0
Xde .o t. t. t. DY ’
_ . B 2 . . . . ot
Z—f[dw][dw]exp( a’> wow) e v 0 B a 0
y _22 'l - 2+1H2' O “e . “e O B o
exp —a 292(0 my) 202 (18
=deD(o,1I) whereq=N.L®? (N,=1,D=2) and
N \ .
xexp —a? —(o—mp)?+ — 112 (W 0 , (W 0
p( N _29,2,( Co2gr | ““l-c 1) “Tl-c aw/ (19
2
=@~ aVerr, (15)
1 Cf . [aw" CT X
— B=lg _wl" =l o _wl @
The parameter#, r, andmy in this paper are opposite in sign
from those of Ref[23]. If we decompose the matrid.8) into two matrices,
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a 0o B We omit overall factors independent of the fieldsandIl in
0 0 Eq. (26). Hy is the Hamiltonian which generates the transfer
B a along the extra dimension. Diagonalizifig !, whose eigen-
0 B a 0 0 values arex and 1A, we obtain an explicit formula for the
. - determinant,
0 B a 0
detD(o,I1)=]] [F(M,Ng,p,)a%(c?+11°
0 oo i 0 B o <0)g[( s:p,)a (o +11%)
« 0 -+ .. 0 O +G(M,Ng,p,)ac+H(M,Ng,p,)],
B a 0 -+ - 0 (28)
. o 8B a O - 0 where
) . . X N
0 B a 0 H(MNs,p,) = 5[~ (AMs=1 M) (2-h)
0 0 a’
A + (ANs+ X "Ns)f7, (29
1 0 0 —Uq
-1
o 1 0 - 0 —uv F(M.Ns,p,)= 5 [(ANs=A ") (2=h) + (\s+ A7) f],
0 1 0 R —U3 (30)
X . . . ,
-1
0 1 ~Un-2 G(M.Ns,p,) = 5[~ 4f]=2, (31)
0 . e e 0 1_UNS —
(21) h=1+W?+p?, f=\—4W?+h?, (32)
where
1
vl=—a_1 " (22 )\=m[h+f] (|)\|>1),
vi 'Buio1  (2si=Ng-1), (23 1 1 thet] 33
. No2wh
un=—a' "'Bun 1
1 1 Ng—2 1 2
=(—a' " 1B)(—a 1B)Ns2(—a 1), 24 —(1— _
(—a'" " B)(—a "B (—a "B (24) W=(1 |\/|)+M2:1 [1— cogp,a)],
we obtain the determinant as follows: B
p?= sir?(p,a)+ sirt(p,a). (34)

deto;D)=(—1)%Ns"D(deta)"s" ' deta’ de(1-vy).
(25) Substituting Eq.(28) into Eq. (15), we obtain the effective
potential of the two-dimensional lattice GN model in the

The final expression of the fermionic determinant is large N limit:
aw O N 1 0 1 ) 1 )
detD(o-,H):de 0 1 —T Ns 0 awT , (26) Veff: 2—2(a—mf) +EH —|(O',H,M,NS),
. . . : (35
where T is the transfer matrix along the extra dimension
defined by mla  d?p
I(a,H,M,NS)zf
1 1 ~mla(27)?
—, — _C
T st W W X In[Fa?(a?+11%)+Gac+H]. (36)
_C’ri, W+ CTiC This effective potential is symmetric undet—6—M.
w w Here we comment about the absence of the bosonic fields
1 1 (Pauli-Villars fields in our model which is employed in
CWwetW. Cw (full) QCD [13-15. Since the gauge field in QCD equally
T 1= . (27) interacts with not only the light quark field(n), but also
ic‘r i heavy (bulk) fermions ¢(n,s), one should introduce the
W wW Pauli-Villars boson to subtract this heavy fermion effect. In
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the GN modelos andII play an analogous role to the gauge in thea—0 limit, the functionK(p) becomes
field in full QCD except that they couple witg(n) only.

Thus it is not necessary to introduce subtraction in our mla  d?p 1
model. On the other hand, one could think about a new four K(P):J 5

Fermi interaction model, in which whole/(n,s), s ~mla(2m)
=1,... Ng, equally couple to auxiliary fielder and II.
However, these fields are constituted of both light and heavy
fermions and do not show the chiral property in such a newvherefy=M(2—M) and
model.

2 +Co(M,Ny), (40)
fu’> Pa+p
u=1

Ill. CHIRAL SYMMETRY RESTORATION

H
-2 2 1
e T AR
Co(M Ny = f L@

First we show how chiral symmetry is restored in this -n(2m)? Ef*ZE &
model in the case dfoth N;=co and Ny < by examining FoM o
the effective potential given in the previous section.

We will see that for the infinitdNs case chiral symmetry With §,=p, a. The factorfy appears as the normalization
is exact even for finite lattice spacing>0, without fine-  factor of the propagator(qq>~fM(ipMyM)*l. The wave
tuning for bare mass parameters. The situation for the finitéunction of the massless eigenmode has finite width insthe
Ng case, on the other hand, is much like that of the Wilsondirection, andf, is the ratio ofg(n) to the zero mode.
fermion action. The continuum limit has to be taken, and at In the Ng=« case, when &M <2, only the momentum

the same time, the bare mass parameter must be tuned finelyoundp,a=(0,0) dominates in e(37) and the contribu-

for the chiral symmetric effective potential fdf <<oo. tions of doublersp,a=(w,0), (0), and (r,m), are re-
moved completely. This means that the doublers decouple
A. Effective potential in the “N =" case from the physical spectrum. For<2M <4 the momenta

p,a=(,0) and (O7r) become physical poles in the momen-
tum integral, while the remaining mode pfa=(m,m) is
dominant for 4&<M <6. In these two regions d#l, the nor-
malization factor f,, becomes M —-2)(4—M) and
(M—4)(6—M), respectively. ForM<0 and M>6, no
physical pole emerges.

By evaluation of the first term on the right hand side
(RHS) in Eq. (40), we find

In this subsection we calculate the expression of the ef
fective potential for theNg=x case.

For largeNg, one easily sees that the dominant contribu-
tions for the function (o,II) in the effective potentia(36)
are the functions F” and “ H,” which behave as\"s in the
Ng—co limit, from Egs. (29) and (30). The chiral breaking
term “Gao” in Eq. (36) can be ignored in the limilNg
—oo and Eq.(36) could be written as

|(0’,H):Jﬂ-/a

—mla(2r

2
2

d“p

)2

In[H+Fa2(02+H2)]. (37) K(p)z ﬁln %4— éO(M,NS), (42)

So the effective potentia(35) is a function of o?+11?,  where the new constafl, is defined byCo=C,+ Cj with

which is invariant under th€@(2) rotation if g2=g%. We

emphasize that this is chiral symmetry even before taking the (=a d?p 1 ff,l 1 ,

continuum limit,a—0. jw/a(ZW)z =,-In azTJrco(M'Ns)'
The continuum limit of the effective potential can be mP

evaluated by separating divergent parts and finite parts from

2
fu’> Pa+p
u=1

Eq. (37). Rewriting Eq.(37) in an integration form (43

24112 By substituting this expression into E(8), we obtain

|(<T,H)=f0 dp K(p), K(p) , P
i a‘fy(o+119)
—_ M2a2 2. 172

J’”’a dp 1 - I 477(0 +119)In o +Cy(a°+117).
= ' 38 44
~wla(2m)? H . (44

Ea2 P Therefore the continuum limit of the effective potential

for the Ng=o0 case is

one can pick up the the divergent part in the:0, near zero ,

fermion momentump ,a=(0,0), for pa®~0. Since the di- my 1 . v o )
vergent part oK (p) behaves as Vett=— ?UﬂL —292 ~Cot 7 Ina”|(o"+11%)
2
H . 3 fo(o?+112)
AN SN S 39 M2y M)
— MZ(Z—M)zuzl P2 (39) + g (o2 T2 . (45)
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We find that the two coupling constants can be the same as a2
each otherg?=g2=g?, from the above result, which is in I(a,H)zf SIN[H' +Fa’(¢'?+11%)+G'ac’],
contrast to the GN model with the WF. As mentioned above, ~mla(27)

since the effective potential has chiral symmetry for finite (51
lattice spacing, fine-tuning is unnecessary for the chiral sym,

. . - where
metric continuum limit.

After redefining foro andIl such asog=fyo andIlg H' =H+F(1—M)2Ns+G(1—M)Ns,
=fulIl, we renormalize the coupling constaptand m; as
follows: G'=G+2F(1—-M)Ns, (52)
1 . ff,. 1 Expandingl (o,IT) into a power series of lattice spacing,
—=Cp+ —In——, 46
292 0 47T a2A2 ( ) |:|O+Il+|2+’ (53)
mla de
my 2. fw 1 | =f IN[H' +Fa?(¢’'2+112)] (54)
T MRt e ) @D ) wia(2m)?
_ - 2 ’ ’ n
where A is the scale parameter amd is the renormalized | _ 1)nJ fa d%p G'ao
mass parameter. One realizes that the current quark mass N J-ma(2m)?|H +Fa?(a'2+11?%)
termm; receives a multiplicative renormalizati¢a?7), simi-
lar to perturbation theory in infinitely larghlg. With this (n=1). (55)
choice of scaling relations the continuum limit of the effec- o )
tive potential forNg= is finally given as One can see thag preserve th®©(2) rotation in the ¢',IT)
plane, whilel, (n=1) break it.
1 o2+ 112 I is calculated in the same way as in tNg= case:
—— + — (24112 R "R
Vett= —Mog 471_(0'R ITR)In N (48) 2,2 a2 d2p 1
lo= dp K(p), K(p)= 5
. i . 0 —mla(2m)° H’
which is identical to the continuum theo(g). —tp
Fa

B. Chiral restoration in the continuum limit (N finite case (56)

As we have seen in the previous subsection, the Ingit Here we take the divergent part @-0. The shifted func-
— o guarantees chiral symmetry on a lattice. Neverthelesdion H' has a similar behavior to the lims— o
to understand the behavior of finités theory is important
for lattice QCD simulations using DWF.

Let us start the finit&g analysis with the effective poten-
tial (35). The chiral breaking ternGac in Eq. (36) has an
important role for finiteN, and the GN model does not have with
chiral symmetry anymore. Chiral symmetry can be restored
in the continuum limit with fine-tuning. In this sense, the M(2—M)
finite Ng model is similar to the WF. In order to restore chiral M :m' (58)
symmetry without fine-tuning, one should take the linit

— o beforetaking the continuum limit to obtain chiral sym- Therefore the logarithmic divergent term has a similar form

H' B
@Hfng P, (57)

metry on the lattice. as continuum theory:
The continuum limit for finiteNg can be taken following
the same procedures in the previous subsection. The differ- fﬁ,l asz,,(a’2+ 2
. . . . . | = 12 H2 | C 12 HZ
ence from the calculation iNg— = is a necessity to shiftthe o=~ 7z _(o"“+1I%In +Co(0'“+1I7),
auxiliary field: (59)
— M)Ns . i R .
P — w (49)  Where the new constail, is defined byCo=Co+ C{ with
a
. . f—ZE §2_H_
The effective potential becomes as follows: » d2¢ M < SuF
CoMNg = [T 5 (60
1 (1-M)M\]2 1 r2m” ey g
veffz—z[a'—(mf—— + — 112~ 1(c,I1), FoU e
295 a 295

(50 and
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Coefficient (C, hat) vs M

FIG. 1. The coeﬁicient,@o, as a function ofM for various
Ns.

fﬂ/a d2p 1

5 ———+C{(M,Ng).
77-rla(2'n')2 B p
fu? 2 p,zﬁ‘P
u=1
(61)

The coefficiemf:o as a function oM for variousN is plot-
ted in Fig. 1.

I, remaining in the continuum limit is easily calculated.
I1 (1) is alinear divergenfconstantterm in thea— 0 limit,
while I, (n=3) vanishes:

P s B 62
aTt aloa@azn
1= d%¢ [G']?
(63)

Figure 2 shows these coefficients as a functionNgffor
variousM.

From the above calculations, the effective potential in the
finite Ng case in the continuum limit is obtained as follows:

V—mf’+cll+ ot Cy | = o
eff™ g(ZT a fMO-R 2 l27 0 2 ff/l OR
+ ~-Co 1 24— (g2+113)
g% 4
2 2 2
a“(ox+IIg)
In RR (64)
e
where
(1—M)Ns
mffmf_ a y (TR:fM(T’, HR:fMH-
(65)

PHYSICAL REVIEW D 61 094501

Coefficient (C1) vs Ns
10° ;
', oM=05
] v o M=0.9
8’ v« °M=1.0
- Vv v M=1.7
v ° Vy
10° . vy
® vy
- PSR Vv v
g L Ty
10* ° g 8
o) ' 2
i
M 9 o
10° . —
0 5 10 15 20
Ns
Coefficient (C2) vs N,
0
10° —— ————— ————
g 0000O0
goA OOOOOOOooO@
4 8 A A A
10 g AAp ]
3 day
2 g Aag A
N \ e e A
o 100 8 3
v 8 o>
vaoo
OM=0.1 vo?o,
AM=0.3 v 0%,
107 OM=0.5 v g0 ]
VM=0.7 ¢ 0
a
OM=0.9 v 24
N .
0 2 4 8 8 10 12 14 16 18 20
N

FIG. 2. The coefficientsC, and C,, as a function ofNg for
fixed values ofM. The data forC, are plotted as absolute values
and solid symbols denot@;<0.

If the coupling constants and the mass parameter are renor-
malized as

! é+c—fﬁ”| ! 66
22 T an " e ©9
1 A_ffﬂl 1 .
2¢% T am " g2z ©7
1/m{ C
(f 2 =m, 689)
fM g(zr a

we obtain the correct effective potential of the continuum
theory (2).

We emphasize that the current quark mass terpre-
ceives O(1/a) additive renormalization for théNg=finite
case. As we described previously, fine-tuning for the bare
mass parameter in E¢68) is needed for finitdN, and chiral
symmetry is restored in the continuum limit.
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The restoration of chiral symmetry INg— could also  cusps arise from the fact that the doublers at the conventional
be seen in the scaling relatio86)—(68). The coefficients continuum limit, @2,M)=(0,1), become physical massless
C, andC, represent the magnitudes of the explicit breakingmodes atV = 3,5.
of chiral symmetry.C, is the additive mass counterterm,  On the other hand, in theg=0c limit, the parity broken
while C, is the mismatch between the quadratic terms ofphase does not exist because of the restoration of chiral sym-
scalar and pseudoscalar particles by a quantum correction. tfietry, whose explicit breaking causes the parity broken
we restrict the DW mass to-OM <2, as shown in Fig. 2, the phase.
coefficientsC, andC, decrease rapidly &8, becomes large. For 1<N¢ <, it is expected that the parity broken phase
The effects of shifting of the fields and the additive renor-exists and the chiral phase boundary forms the cusps as sur-
malization of the mass parameter in E(85) and(68) rap-  mised from the Wilson-like behavior in the previous section.
idly vanish with increasind\s; thus the necessity of fine- The region of the broken phase is distorted and shrinks rap-
tuning becomes absent in thg— oo limit. idly as N is increased, and vanisheshi—co limit.

On the other hand, even whés is set out of the region The parity symmetry is spontaneously broken at the pa-
(0,2), the scaling relation$6)—(68) lead the chiral symmet- rameter point £n;,g%,M,N,), where the gap equations have
ric continuum limit. In this cas€; andC, do not vanish in  a stable solutiodl # 0. Setting the parameters of this model
the largeNs limit and fine-tuning is necessary, similar to the (ms ,g(z,,gi,M,NS), observables are calculated by solving

WE. the gap equations
IV. PARITY BROKEN PHASE MNVers 1 1 _
AND THE RESTORATION OF CHIRAL SYMMETRY e _g_z("_mf)_"f("’n)_ oI =0, (70
For lattice QCD with the WF, the existence of a massless
pion for finite lattice spacing is explained by the parity bro- IVett 1
ken phase picture proposed by AdKi6]. Although chiral oL g—z—f(U,H) =0, (71)
symmetry is explicitly broken in the WF, one can tune the g
mass parameter to obtain an exawsslesgion in the spec- where
trum even for finite lattice spacing. This cannot be under-
stood by the ordinary picture of Nambu-Goldstone bosons in - d2 oF

continuum theory, in which chiral symmetry is the exact ]:(gﬂ):f , (72
symmetry of the action and is broken spontaneously. -7(2m)? H+Gao+Fa%(o?+11?)
Aoki examined the GN model and lattice QCD with the
WEF for a finite lattice spacing, and found that the parity m d2 G
symmetric phase and paritflavor) spontaneously broken G(o,I1)=
phase coexist in the parameter space of the model. The parity
broken phase is characterized by the nonzero condensation of
the pseudoscalar densityIl)={ivys¢)#0. Provided a . _ 2_ . 2_ 2 .
second-order phase trans)i(tio>n s<eparatir>19 the two phases froW'th €u=P,a. In the case of, =g, =g", the position of the
each other, the pion becomes massless at the phase transitfgjr‘]a‘?‘e boundary in parameter spi\ce cou!d be obtained by
point, which is regarded as a massless particle accompanyirf ving these gap eqqatlonzs féi=e. Taking _the e—0
the continuous phase transition. i, Egs. (70.)’(71) define g and My as funcuon; ofo
Before starting an analysis of the phase diagram of thg\/hlch is nothing but the parametric representation of the

DWF model for generaN,, we note the equivalence be- phase boundary if the phase transition i-s cont;nuogs.
tween theN.=1 DWF model and the Wilson fermion for- L€t us note that the DWGN model Wit =g, =97, has
malism. The effective potential of the WF, only a second-order phase transition between the parity sym-

metric and the broken phases. Rﬁri gf,, see Ref[22] in

~m(2m)2 H+Gao+Fa?(o?+11%)’
(73)

1 1 the WF case, in which a first-order phase transition is found.
VW:_z(‘T_mf)2+ —2H2 By differentiating Eq.(71) with respect toll, one can
9 2975 easily check that the pion mass squared
2 -
_fW/a d<k n E S|n2 kMa y o 1 82Veff(0',l_[=0)_ 171 B
wa(2m)? | % & MpeMo=r — o~ 2|z 71ol=0)
2 (74)

+ +112|, (69

r
ot a 2 (1— cosk,a)
y23

exactly vanishes at the phase boundary. The factbi,, Jdin

front of the RHS corrects the normalization of the auxiliary
can be seen easily by substitutiNg=1,0.=0—(1—M) in  field IT in the same sense as explained in the previous sec-
Eqg. (35. The phase boundary of Aoki phase forms threetion. (See below Eq(41).)

cusps which reach the weak-coupling lingf=0 at M Before drawing whole phase diagrams in the parameter
=1,3,5 in the WH16-18 andN,=1 DWF models. Three space (n;,g?), let us first examine the positions of the three
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tips of cusps — Ng= M=—0.1 M=0.1
---- N=4 240 240
Mvs am, , N, dependence —-— N=6
200 200
160 160
2
9 120 120
80 80
40 40
0 0
0 2 4 6 8 10 0 2 4 6 8 10
M=0.9 M=2.3

M 100 20
80 15

60

2

g 10

40
20 5
0 0

0o 2 4 6 8 o 1 2 3 4
am, am,

FIG. 4. The phase diagram Bt=2. The horizontal axis repre-

FIG. 3. The chiral symmetric continuum limit in thévi,am;) sentsam; while the vertical axis isg?. Each of four graphs is
plane forNg=even. The critical lines approaches=0 with in- plotted for fixed value oM. The inside region of the critical line is
creasingN; in each of three regions|ZM<2(1+1), 1=0,1,2. the parity broken phase.

chiral point for the momentum mode,(l) in Eq. (77) con-

tips of cusps,” which are the intersection points betweenverges tom;=0 asN, increases. Thus a massless pion can

g’=0 pl_ane an_d _thezcritica_l I?ne. These tips corresppnd e automatically obtained at;=0 in the limit of g?=0 by
the continuum limitgy“— 0 similar to the WF. The positions increasingN,. Other two critical points move rapidly to
can be obtained by the asymptotic form of the integrals i'}m | o0 in |\S|.—>30 limit

Egs. (70) and (71). The divergent behaviors of the integrals f'I'he actuaT calculatibn for the chiral phase boundary is

aroundp,a=(mm,mn), with m,n=0 or 1, are done by solving the gap equations numerically, and results
- d% are shown in Figs. 4, 5, 6, and 7. The former two figures are

Fo,1=0)— 2 f for Ng=even cases and the latter two shbly=o0dd cases.
mn=0T=m+n J -7 (27)? The schematic diagram of the phase boundary between

the parity symmetric and broken phase in;(g?) plane for

v 2 (75) fixed (M,Ny) is drawn in Fig. 8 for theNg=even case and in
' Fig. 9 forNg=o0dd. The phase boundaries in both cases show
Nq12 2
{o—(1-M+2)7 +§ At queer shapes which have three intercept pointss= (1
—M-+2)Ns with 1=0,1,2, on theg?=0 line.
T d2¢ We find that the phase diagram fg=even is different
G(o,I1=0)— Z f from that for Ng=odd. In theNg=even case, one can ana-
mn=0,1)=m+n J—-= (27T)2
M=-0.1 M=0.1
—2(1-M+20)Ns 10 10
X , (76) 80 80
{0'—(1—M+2|)NS}2+§#‘, B, g 60
40 0
where A, andB, are functions ot, o, M, andNs. From 20 20
these expressions it is easy to see that the RHS of the gap 0 0

o
N

equationg(70),(71) have a logarithmic divergence at=(1 05 1 15 2 0 05 1 15
—M+21)Ns with 1=0,1,2. This fact leads to, for eaththe M=0.9 M=2.3
phase boundary intercepting with?=0 at a point m;

-
8
-
=)

=(1—M+2I)Ns, Each of three critical points corresponds to 8
the massless particle pole of momentum g 60 5
p.(1=0)=(0,0, p,(1=1)=(m/a,0),(0mla), “
20
pf’“(l =2)=(wla,mla). 77 0o 05 1 15 2 oo 0.5 1
The positions of three points move as a functiomfwhich o o
is shown in Fig. 3. FoM in the region of(21,2(I + 1)), the FIG. 5. The phase diagrams ldt=4.
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M=0.1 M=0.9
5 5
4 4
2 3 3
9
2 2
1 1
0 0
0 1 2 3 4 ] 1 2 3 4
M=1.5 M=2.3
5 5
4 4
2 3 3
9
2 2
1 1
0 0
1 0 1 2 3 4 2 1 0 1 2 3 4

am,

FIG. 6. The phase diagrams ldf=1.

lytically verify from the sign definiteness of integrands of the
gap equations that the phase boundary exists only for th

m;>0 region.(For the notation in Refl23] and numerical
simulations, the broken phase always appears imthe0

region) On the other hand, the phase boundary intersect

with the m;=0 line in theN,=odd case. Ig? is decreased

from a finite value to zero, the phase boundary moves fro

the positive m; region to m;=(1—M+2I)Ns at g>=0,
which becomes negative in some regionMffor Ng=odd.
The chiral phase boundaries fg=o0dd are shown in Figs.
6 and 7. The parity broken phase lies acrossthe 0 plane
in the Ng=o0dd case. Similarly foN;=even, this boundary
for odd Ng also converges to the;=0 plane for largeiNs.

Another interesting observation from the phase diagram i
the finite g2 effect for the pion mass. The effective quark

mass from the free propagator analy@isean field analysjs
is

N
man(Mc_M) ) (78)
M=0.1 M=0.9
100 100
80 80
gz 60 60
40 40
20 20
0 1]
0 0.5 1 1.5 2 0 1 2 3
M=1.5 M=2.3
8 8
6 6
2
g 4 4
2 2
0 []
1 0 1 2 3 2 1 0 1
am, am,

FIG. 7. The phase diagrams ldt=3.
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mf

FIG. 8. The schematic phase diagram in thg (g%) plane for
Ng=even. The parity broken phase exists in the>0 region.

from which one may think that there exists optimal
M(=M,), where the quarkKand pion becomes massless
even for finiteNg. In the current model, for finitdNg the
parity broken phase boundary stays apart from rifje=0
planefor all M if g?>0. This fact indicates that there is no
massless pion an;=0 for finite Ny and finiteg?. We plot
the value ofm; whereM%=0 as a function oM in Fig. 10.
This is the distance of the phase boundary point from the
+=0 line. This quantity corresponds to the critical value of
the inverse hopping parameterxl/ in the WF) We find
that for fixed finiteNg and finiteg?, the pion does not be-
Zome massless ah;=0. We realize that this discrepancy
from the mean field picture in E¢78) is due to the part of

Mhe additive mass term which is proportional @ in Eq.

(68). For strong coupling, for exampleg?®=5.0, m(M .
=0) is almost flat at aroun ~2.0. This indicates a diffi-
culty of detecting the “allowed region” oM by observing
the pion mass for the strong coupling region. 80 the
theory turns out to be a free theory, aMi=1 givesM .
=0 atmy;=0. If Ng is increasedm;(M ,=0) becomes an

%xponentially small convergence to zero no matter whether

g? is finite or 0.(See Fig. 11.

The dependence of the phase diagraniNgrcan be seen
in Fig. 12. In the figure foM =0.9, the cusp of smallen;
corresponds to the chiral continuum limit of the conventional
momentum mod@ = (0,0) and other cusps show that of the
doubler modes. The first cusp converges to rfye=0 line
while the other cusps diverge io— o in the largeNg limit.
Below a critical coupling,gg, in Figs. 8 and 9, a pair of
critical lines forms either of three continuum limitshree
cusp$ similar to the WF, which can be understood as the
signal for the recovery of chiral symmetry. Fg?>g§ the

FIG. 9. Same as Fig. 8 falg=o0dd. The parity broken phase
lies across then;=0 line.
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N,=2 N,=4 M=-0.1
2.0 T T 1.0 T }

FIG. 10. The distance from th®;=0 line to the phase bound- M=0.9
ary, m{(M .=0), which corresponds to the critical value of the . '
current quark mass, as a functionMffor fixed Ng,g?. 10

parity broken phases are merged to a uniform structure. We -~ N=4
find thatgg increases exponentially witN,: 10° ¢

gz~eNs  (c>0). (79 2

At the same time, the phase boundary exponentially ap-
proaches then;=0 plane with increasing\s. For anyg?,
the phase boundaries converge at the=0 plane, which 10'
can be easily seen from Eq80) and(71). The width of the
parity broken phase scales proportional @ [25], and
shrinks exponentially foNs— 0. These facts are compatible . aa L .
with the exact chiral symmetry for finite lattice spacing in 10° 10° 10’ 10° 10" 10°
the Ns— oo limit, as discussed in the previous section. am,

On the other hand, & = — 0.1 the chiral continuum limit
and the phase boundary go away from the=0 line with

FIG. 12. Ng dependence of the phase boundary fr=
—0.1,0.9. The horizontal axis represemnis while the vertical axis
H 2
is g°.

M=0.1 M=0.9 g
10 ‘ o ‘ | ‘ ,

FIG. 11. m¢{(M ,=0) as a function ofNg for
fixed M, g?.
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g°=1.0 Ns=4

0.4

0.05 0.05 0.1

, FIG. 13. M2 and(qq)=m;— o as a function ofm;. Ny=4,
g-=1.0.

increasingNg. This behavior shows the violation of chiral
symmetry atm;=0 even in theNg— oo limit for M <0.

V. (M,N;) DEPENDENCES OF LATTICE OBSERVABLES

Let us turn to discuss the physical observables in this

model. We choose,, (qq), andM , as the physical observ-
ables.

In Fig. 13 we plotM?2 and(qq)=m;— o as a function of
m; for several values o with g?=1N¢=4. We find that
there exists a finitan; region in whichM . is zero? This
region is nothing but the parity broken phase. Tinedepen-

dence of théqq) shows a discontinuous leap in between the

parity broken phase.

The systematic dependences of observables on the param-

eterM are shown in Figs. 14 and 15. In Fig. 14 we plqy)
as a function ofVl for severalm; with g?=1 andN¢=20.

(qq) continuously gains in magnitude with increasiiy

aroundM ~1. (qq) for m{=0 turns out to have a minimum
magnitude aroundl ~2.

M2 also has a systematic dependenceVbrBecause the
ratio M2/M?2 is a smooth function ol andNg, M2 shows
essential characteristics of the pion mass. In Fig.M&f2,

=d?V4/dI1? is plotted againshl. Comparing the results of
strong coupling §>=5.0) with that of weak couplingg?

=1.0) in this figure, we find that the depressionM£fZ,
nearM ~ 1 for weak coupling is not very manifest for strong
coupling especially in the small limit. In fact the mini-

2We setlI=0 throughout our calculation, and the value of physi-

cal observables in the parity broken phase is not exact. For ex-

PHYSICAL REVIEW D 61094501

g'=1.0 Ns=20
0.8 T .

0.6

0.2

FIG. 14. (qq)=m;— o as a function oM. Ng=20, g?=1.0.

mum of M2fZ, places aM >2 for Ng=4. This implies that

in order to find the allowed region d¥l for the chiral con-
tinuum limit by observing the depression of the pion mass,
one needs largeM for strong coupling than that needed for
weak coupling in DWQCD simulations. Note that such an
allowed region ofM is unknowna priori in QCD by the
additive quantum corrections.

g°=1.0, ma=0.0
10° : :

10°

0 1

ample,Mf, should not be zero in the parity broken phase. Note that ~
all figures after this section except Fig. 13 are obtained in parity FIG. 15. Miff,l as a function ofM. g?=1.0 andg?=5.0 for

symmetric parameter region, in which our results are precise.

Ny=2,4,6,8,12.
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scaling of ¢ scaling of o
m/A=0.0 Ns=20

m/A=0.0 M=0.9
0.9 — .

0.9

olA

<
5
1.1 : : . .
0 0.1 0.2 0.3 0.4 05
aA
scaling of M62
m/A=0.2 M=0.9 scaling of M’
015 ' ' m/A=0.2 Ns=20
0.15 , ;
0.14 |
Cont. 0.14
)s* 013 ¢
st 013 |
012 |
0.12 |
0.1 : : : :
0 0.1 0.2 0.3 0.4 05
aA 0.1 : : : P
0 0.1 0.2 0.3 04 0.5
FIG. 16. o/A and M2 as a function ofaA for fixed M. The aA

continuum limit is taken using th@Vilson like) scaling relations in

N 2 : —
Egs. (66)—(68). FIG. 17. o/ A andM?_ as a function ofaA atNs=20 .

as shown in the previous section. From Egj7) the lattice

As we pointed out in the previous section, the pion Masgyacinalor the scale parameter of the thebiy also a func-
does not vanish for aM atm;=0 for finite N4 if g2>0. For tign of?\SI P ory

Ns=4, M2 at m;=0 has its minimum at arount =1.4.

For largerNg, M2(m;=0) in the region 62M <2 tends to
be flat with smaller pion mass. From this figure we conclude
that chiral symmetry is restored for largk if M is set in the

region 0<M<2. There is another region2M <4, where  gee Fig. 1 for theNI,N,) dependence of,. TheM depen-

the pion would be a massless particle in g~ limit.  gences of observables cancel with that of the lattice spacing,
This region corresponds to the region of massless “pion,"and the correct continuum values are reproduced afathe
which is made of the chiral modes pfa=(,0),(0m7). —0 limit. (See Fig. 16.

An interesting observation is the disappearance of the
O(a) scaling violation for the larg&g limit. From the the-
oretical point of view, exact chiral symmetry K— oo limit
is expected to prohibit the dimensio® (1) operators in

Toward the continuum limia— 0, the lattice bare param- the quantum correction, which cause @fa) scaling viola-
eters are tuned according to the scaling relatB8)—(68) for  tion. The slope at th@A =0 curve in Fig. 16 is finite at
finite Ng. We plot o and Mf, as a function of the lattice Ng=2 while the curve alNg=20 is flat nearaA =0. This
spacingaA in Fig. 16 for severaNg with fixed DW mass shows that théd(a) scaling violation vanishes in the large
M~1. N, limit and a scaling violation proportional t@? exists.

The lattice bare observables systematically depenon Figure 17 shows that the remaini@ya?) error is small

2

1.
Aa(M,NS)zexp[— m(zgi—CO(M,NS)”. (80)

VI. CONTINUUM LIMIT AND DISAPPEARANCE
OF O(a)SCALING VIOLATIONS
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scaling of M (m, =g’ mf,,)

m/A=0.0 M=0.9
0.2 ‘ :
\\\Q‘?
Y, S
z T
~ 01 A R
= @ e
Ns=10 e
Ns=20, Cont.
0
0 0.1 0.2 0.3 0.4 0.5
aA
scaling of 6 (mf=g°mf,,)
m/A=0 M=0.9
0.8 : :
Ns=10
Ns=20
Cont.

N

o/A

12

14

L

1.6

0.3
aA

0.1 0.2 0.4 0.5

FIG. 18.¢/A andM? as a function oAA atM=0.9. The DWF
scaling relations in Eqg82)—(84) are employed.

for M~1 in the largeNg limit, which is less than a few
percentage forA <0.5 in this model. The reason why this
O(a?) scaling violation is small nedvi=1 could be under-

stood by expanding the inverse integrand of the function

“lo(o,I1)” for small a:

'
—n2

p

Fa? ®

It3,+cpilfya’+c/ pbfgat+ .-

Since 1f,, is minimum atM =1, theO(a?) deviation from
the continuum formula is also minimum fét = 1. This fea-
ture might be similar for QCD simulations, excelgt re-

PHYSICAL REVIEW D 61094501

g’=1.0 M= 0.4

0.8

.05 0.1

04 ¢

..
-

FIG. 19. N dependence d?/lf, as a function ofm; .

fine-tuned toward a certain critical value. On the other hand,
we consider applying the scaling relation fdg—c (with-
out fine-tuning,

R 2 9
5‘3— C0+C2— ﬂln aZAZ, (82)
92=95, (83)
1 my
m ;i—m. (84)

to finite N lattice observables. This is similar to what is done
in the DWQCD simulation in a sense. The result of this
calculation for finiteNg is shown in Fig. 18. For eacNg,
MZ2 is apt to go to the correct continuum value for laaye
but tends to diverge for smaller lattice spacing. Such diver-

ceives additive renormalization from the quantum fluctuationgent behavior is never seen in current DWQCD simulations

of the gauge field.
The renormalization formula employed above for finite

[14,19 sinceaA ocp is larger than 0.1.
From Eg.(68) the renormalized mass is expressed as a

N, is similar to that of the WF. The bare mass needs to bdunction of the bare quark mass; :
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ma= _192[mfa—(1— M)Ns+g2Cy(M,Ng)].  (85)

fm

For eachg? (andaA), if N fulfills a condition

Ne>NS s.t. |amy|>|—(1—M)Ns+g2Cy(M, N,
(86)

PHYSICAL REVIEW D 61 094501

the critical coupIinggg. Forg?< gg, the parity broken phase
splits into O + 1) regions, each of which corresponds to a
chiral symmetric continuum limit. The restoration of the chi-
ral symmetry is also characterized by the fact tgétEXpo—
nentially goes to a large value with increasiNg.

We also show §,N;) dependences of lattice bare ob-
servables, which could be some hints for DWQCD simula-
tions. WhenNj is finite andg?>0, the pion mass ah;=0
never goes to zero for all. If M is set into the range (0,2),
the pion mass am;=0 is exponentially suppressed with

the renormalized mass approximately becomes that in thgcreasingN,. From the results ofm; at M_ =0 (Fig. 10

Ng—oo case. SuchNg can exist for finitem; if 0<M <2
because both (£ M)Ns and C;(M,Ns) go to zero for large
Ng. Thus, ifNg is larger tharNg, physical predictions from
DWF are saturated as a functiondf and could be regarded
as the value oNg—o. N¢ is a function ofg?, M, andm,
and tends to be larger for smalle . TheNg dependence of
I\N/If, could be seen in Fig. 19. For a large magnitudenpthe
N, dependence is saturated uphtg~ 12, whileM? varies as
a function of Ng nearm;=0. From this figure for §%,M)
=(1,0.4), we can estimate thdk is near 10 forjm;|~0.1
andN¢~ 20 for|m;¢|~0.02. In this modeN goes to a small
value forM~1. ForM=0.9 the value o2 for Ng=12 is
nearly identical to that oN =20 for almost all the region of
m; in Fig. 19.

VIl. CONCLUSIONS AND DISCUSSIONS

We have investigated the two-dimensional lattice GN
model with the DWF in the large flav@N) limit, as the toy
model of lattice QCD with the DWF. By calculating the

andM . atm;=0 (Fig. 15, we discussed that one needs to
take largem; for strong coupling than that needed for weak
coupling in DWQCD simulations, in order to search the al-
lowed region ofM for the chiral continuum limit by observ-
ing the depression of the pion mass. By observing Nhe
dependences of the observables we discuss the critiijon
>Ng, for which the physical observables can be considered
as approximate values foNg—o. NP is a function of

g, M, andm;.

The observables depend on the valuevbfeven for Ng
—o, This dependence is canceled by the renormalization
and the correct continuum theory is obtained. The disappear-
ance of theO(a) scaling violation for largeN in the con-
tinuum limit suggests the probability of obtaining reliable
physical predictions for smaller lattice spacing than that in
the WF.

Since the GN model in the lardelimit neglects quantum
fluctuations and omits gauge fields, we cannot insist that the
behavior of lattice QCD with the DWF be exactly the same
as the results in this paper. For example, the DW nhAss

the shifted intoM = M + const due to the back reaction of the

effective potential we study the nonperturbative prospects o§auge fields. Another important difference between the GN

this model, which are expected to be qualitatively similar to

DWQCD.

In the infinite Ng case, the effective potential has exact
chiral symmetry even for finite lattice spacing. The chiral
phase boundary is placed exactly on the=0 line, which
shows that the fine-tuning of the mass parametebecomes
needless. The parity broken phase does not exist for all co
pling constants. Thus the model fg=cc has similar prop-
erties as the continuum theory especially for chiral symme
try, by which the massless pion could be understood as a N
boson accompanying the spontaneous breakdown of t
symmetry.

The finite Ng case, for which numerical simulations are
carried out, is practically important. Chiral symmetry is ex-
plicitly broken by the finiteNg effect, which causes a parity
broken phase with[+1) cusps neag?=0 similar to the
Aoki phase of the WF. The restoration of chiral symmetry
only occurs in the continuum limit with fine-tuning ofi; to

model and DWQCD is the possibility of a zero mode along
extra dimension. If the fluctuation of gauge fields in
DWQCD makes part of the eigenvalues of the transfer ma-
trix along the extra direction close to unity with a finite path-
integral measure, the chiral symmetry of this model may be
violated. To nail down such a disaster, eigenvalue problems

lIgr DWQCD are worth exploring. Work in this direction is in

progress. Besides these different aspects, there are many
similarities between the GN model and QCD, at least for the
ilson action[16—18; we expect that the results shown in

h(E\é\/is paper will provide instructive and systematic informa-

tion about thenonperturbativeeffects of lattice QCD with
the DWF.
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