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m1→e1g and m1→e1e1e2 processes are analyzed in detail with polarized muons in supersymmetric
grand unified theories. We first present a Dalitz plot distribution form1→e1e1e2 decay based on an effective
Lagrangian with general lepton-flavor-violating couplings and define variousP- andT-odd asymmetries. We
calculate branching ratios and asymmetries in supersymmetric SU~5! and SO~10! models taking into account
complex soft supersymmetry breaking terms. Imposing constraints from experimental bounds on the electron,
neutron, and atomic electric dipole moments, we find that theT-odd asymmetry form1→e1e1e2 can be 15%
in the SU~5! case.P-odd asymmetry with respect to muon polarization form1→e1g varies from2100 to
100 % for the SO~10! model while it is1100% in the SU~5! case. We also show that theP-odd asymmetries
in m1→e1e1e2 and the ratio ofm1→e1e1e2 andm1→e1g branching fractions are useful to distinguish
different models.

PACS number~s!: 13.35.Bv, 11.30.Fs, 13.88.1e
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I. INTRODUCTION

In order to explore physics beyond the standard mo
~SM!, rare decay experiments can play a complementary
to the direct search for new particles at the high energy fr
tier. Through forbidden or very suppressed processes wi
the minimal SM, we may be able to obtain information
the interaction at the energy scale not accessible by coll
experiments. The search for lepton flavor violation~LFV! is
one of such windows to new physics.

In recent years, LFV processes have received much a
tion because in the supersymmetric~SUSY! grand unified
theory ~GUT! the branching ratios form1→e1g and m1

→e1e1e2 and them-e conversion rate in a nucleus ca
reach just below present experimental values@1–4#. The
present experimental upper bounds of these LFV proce
are B(m1→e1g)<1.2310211 @5#, B(m1→e1e1e2)<1.0
310212 @6#, and s(m2Ti→e2Ti)/s(m2Ti→capture)<6.1
310213 @7#. It is possible that future experiments will im
prove the sensitivity by two or three orders of magnitu
below the current bounds@8,9#.

In this paper we discuss them1→e1g and m1

→e1e1e2 processes in SUSY GUT. We focus on vario
asymmetries defined with the help of initial muon polariz
tion. Experimentally, polarized positive muons are availa
by the surface muon method because muons emitted f
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p1’s stopped at target surface are 100% polarized in
direction opposite to the muon momentum@10#. It is shown
in Ref. @11# that the muon polarization is useful to suppre
the background processes in them1→e1g search. As for the
signal distribution ofm1→e1g, the angular distribution
with respect to the muon polarization can distinguish b
tweenm1→eL

1g andm1→eR
1g. For m1→e1e1e2, distri-

bution in the Dalitz plot and various asymmetries defin
with help of the muon polarization carry information o
chirality and Lorentz structure of LFV couplings. In particu
lar, we can defineT-odd asymmetry which is sensitive toCP
violation in LFV interactions@12#. In the previous paper@13#
we pointed out that sizableT-odd asymmetry can occur in
the SU~5! SUSY GUT when aCP violating phase is intro-
duced in one of the soft SUSY breaking parameters, i.e.,
universal trilinear scalar coupling constantA0. The purpose
of this paper is to give a model-independent framework
analyzing them1→e1g and m1→e1e1e2 processes and
investigate specific features of the SU~5! and SO~10! SUSY
GUT focusing on theT-odd and other asymmetries. Detaile
comparison of theT-odd asymmetry with the electron, neu
tron and Hg electric dipole moments~EDM! is also done
introducing SUSYCP violating phases within the minima
supergravity~SUGRA! model.

In Sec. II we describe effective Lagrangian of the pr
cessesm1→e1g andm1→e1e1e2. We introduce aP-odd
asymmetry form1→e1g and two types ofP-odd asymme-
tries and aT-odd asymmetry form1→e1e1e2. In Sec. III
we introduce the SU~5! and SO~10! SUSY GUT and briefly
review how LFV processes arise in these theories. In Sec
we present results of our numerical calculations. We cal
©2000 The American Physical Society01-1
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late the branching ratios and the asymmetries in the SU
SU~5! and SO~10! models taking into account complex so
SUSY breaking terms under the constraints imposed by
EDM experiments. We find that theT-odd asymmetry can be
15% in the SU~5! case while it is less than 0.01% in th
SO~10! case. We also show that theP-odd asymmetry for
m1→e1g varies 2100–100 % for the SO~10! model and
100% for the SU~5! case. In the SU~5! case theP-odd asym-
metries inm1→e1e1e2 can reach630% and the ratio of
m1→e1g and m1→e1e1e2 branching fractions varies
over SUSY parameter space. On the contrary these asym
tries are smaller and the ratio of two branching fractions
almost constant in the SO~10! case. In appendices, usef
formulas are listed.

II. PHENOMENOLOGY OF THE µ¿\e¿g
AND µ¿\e¿e¿eÀ PROCESSES

We begin with the effective Lagrangian form1→e1g
and m1→e1e1e2 processes. Using the electromagne
gauge invariance and the Fierz rearrangement we can w
without loss of generality:

L52
4GF

A2
$mmARm̄RsmneLFmn1mmALm̄LsmneRFmn

1g1~m̄ReL!~ ēReL!1g2~m̄LeR!~ ēLeR!

1g3~m̄RgmeR!~ ēRgmeR!1g4~m̄LgmeL!~ ēLgmeL!

1g5~m̄RgmeR!~ ēLgmeL!1g6~m̄LgmeL!~ ēRgmeR!

1H.c.%, ~1!

whereGF is the Fermi coupling constant andmm is the muon
mass. The chirality projection is defined by the projecti
operatorsPR5(11g5)/2 and PL5(12g5)/2. smn is de-
fined assmn5( i /2)@gm ,gn#. AL(AR) is the dimensionless

FIG. 1. Kinematics of them1→e1e1e2 decay in the center-of-
mass system of muon. Plane I represents the decay plane on w

the momentum vectorspW 1 , pW 2 , pW 3 lie, wherepW 1 and pW 2 are mo-

menta of twoe1’s andpW 3 is momentum ofe2, respectively. Plane

II is the plane which the muon polarization vectorPW andpW 3 make.
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photon-penguin coupling constant which contributes tom1

→eL
1g (m1→eR

1g). These couplings also induce them1

→e1e1e2 process.gi ’s ( i 5126) are dimensionless four
fermion coupling constants which only contribute tom1

→e1e1e2. g1 andg2 are scalar type coupling constants a
gi ’s ( i 5326) are vector type coupling constants.AL,R and
gi ’s ( i 5126) are generally complex numbers and calc
lated based on a particular model with LFV interactions.

The differential branching ratio form1→e1g is given by

dB~m1→e1g!

d cosu
5192p2$uALu2~11P cosu!

1uARu2~12P cosu!% ~2!

5
B~m1→e1g!

2
$11A~m1→e1g!

3P cosu%, ~3!

where the total branching ratio form1→e1g @B(m1

→e1g)# and theP-odd asymmetry@A(m1→e1g)# are de-
fined as

B~m1→e1g!5384p2~ uALu21uARu2!, ~4!

A~m1→e1g!5
uALu22uARu2

uALu21uARu2
. ~5!

HereP is the muon polarization andu is the angle between
the positron momentum and the polarization direction.

Kinematics of them1→e1e1e2 process with a polarized
muon is determined by two energy variables of decay po
trons and two angle variables which indicate the direction
the muon polarization with respect to the decay plane. In F
1 we take thez axis as the direction of the decay electro

ich

FIG. 2. Kinematical region of them1→e1e1e2 decay in the
center-of-mass system of muon.x1 (x2) represents a large
~smaller! energy of decay positrons normalized bymm/2. A light
shaded region is allowed.
1-2
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m→eg AND m→3e PROCESSES WITH POLARIZED MUONS . . . PHYSICAL REVIEW D 61 094001
momentum (pW 3) and thez-x plane as the decay plane. Pol
angles (u,w) (0<u<p,0<w,2p) indicate the direction of
the muon polarizationPW . We take a convention that the de
cay positron having larger energy is named positron 1
the other is positron 2 and (p1)x>0. We define the energy
variables asx152E1 /mm and x252E2 /mm where E1 and
E2 are the energy of the positron 1 and 2, respectively
this convention (x1 ,x2) represents one point of the Dalit
09400
d

n

plot ~Fig. 2!. In our calculation we neglect the electron ma
compared to the muon mass except for the total branch
ratio. In order to avoid logarithmic singularity we have
take into account the electron mass properly to evaluate
total branching ratio.

Using the coupling constants in the Lagrangian in Eq.~1!
the differential branching ratio form1→e1e1e2 is written
as follows:
dB

dx1dx2d cosudw
5

3

2p
@C1a1~x1 ,x2!~11P cosu!1C2a1~x1 ,x2!~12P cosu!

1C3$a2~x1 ,x2!1Pb1~x1 ,x2!cosu1Pg1~x1 ,x2!sinu cosw%

1C4$a2~x1 ,x2!2Pb1~x1 ,x2!cosu2Pg1~x1 ,x2!sinu cosw%

1C5$a3~x1 ,x2!1Pb2~x1 ,x2!cosu1Pg2~x1 ,x2!sinu cosw%

1C6$a3~x1 ,x2!2Pb2~x1 ,x2!cosu2Pg2~x1 ,x2!sinu cosw%

1C7$a4~x1 ,x2!~12P cosu!1Pg3~x1 ,x2!sinu cosw%

1C8$a4~x1 ,x2!~11P cosu!2Pg3~x1 ,x2!sinu cosw%

1C9$a5~x1 ,x2!~11P cosu!2Pg4~x1 ,x2!sinu cosw%

1C10$a5~x1 ,x2!~12P cosu!1Pg4~x1 ,x2!sinu cosw%

1C11Pg3~x1 ,x2!sinu sinw2C12Pg4~x1 ,x2!sinu sinw#, ~6!

whereCi are expressed by the coupling constantsgi ( i 5126) andAL,R as

C15
ug1u2

16
1ug3u2, C25

ug2u2

16
1ug4u2,

C35ug5u2, C45ug6u2, C55ueARu2, C65ueALu2,

C75Re~eARg4* !, C85Re~eALg3* !, C95Re~eARg6* !, C105Re~eALg5* !,

C115Im~eARg4* 1eALg3* !, C125Im~eARg6* 1eALg5* !, ~7!

wheree(.0) is the positron charge andP is the magnitude of the polarization vector. Functionsa i , b i , andg i are defined as

a1~x1 ,x2!58~22x12x2!~x11x221!, ~8!

a2~x1 ,x2!52$x1~12x1!1x2~12x2!%, ~9!

a3~x1 ,x2!58H 2x2
222x211

12x1
1

2x1
222x111

12x2
J , ~10!

a4~x1 ,x2!532~x11x221!, ~11!

a5~x1 ,x2!58~22x12x2!, ~12!

b1~x1 ,x2!52
~x11x2!~x1

21x2
2!23~x11x2!216~x11x2!24

~22x12x2!
, ~13!
1-3
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b2~x1 ,x2!5
8

~12x1!~12x2!~22x12x2!
3$2~x11x2!~x1

31x2
3!24~x11x2!

3~2x1
21x1x212x2

2!1~19x1
2130x1x2119x2

2!212~2x112x221!%, ~14!

g1~x1 ,x2!54
A~12x1!~12x2!~x11x221!~x22x1!

~22x12x2!
, ~15!

g2~x1 ,x2!532A ~x11x221!

~12x1!~12x2!

~x11x221!~x22x1!

~22x12x2!
, ~16!

g3~x1 ,x2!516A ~x11x221!

~12x1!~12x2!
~x11x221!~x22x1!, ~17!

g4~x1 ,x2!58A ~x11x221!

~12x1!~12x2!
~22x12x2!~x22x1!. ~18!
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In Eq. ~6! there are three classes of terms: the first con
bution arises from the four-fermion coupling constan
(C124), the second from the photon-penguin coupling co
stants (C5,6), and the third from interferences between t
four-fermion couplings and the photon-penguin couplin
(C7212). There is no interference between the photo
penguin couplings and among the four-fermion couplings
themselves in our approximation neglecting the elect
mass, because the chirality of the electrons cannot
matched between these couplings. For the same reason
scalar type coupling constantsg1 and g2 cannot interfere
with the photon-penguin coupling constantsAR andAL . The
angular dependence with respect to the polarization direc
is classified into four types, namely, terms proportional to~i!
1, ~ii ! cosu, ~iii ! sinu cosw, and ~iv! sinu sinw. Under the
parity operation (P), u, w transform as

u→p2u,

w→H p2w ~0<w,p!,

3p2w ~p<w,2p!,
~19!

so that terms proportional to~ii ! and ~iii ! areP odd. On the
other hand the time reversal operation~T! induces the fol-
lowing transformation:
09400
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s
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u→u, w→2p2w. ~20!

Thus only terms proportional toC11 andC12 areT-odd quan-
tities. Notice that these terms are given by imaginary parts
interference terms between photon-penguin and vector
four-fermion coupling constants. This means that effects
CP violation can be seen only through a phase differen
between these two coupling constants.

It is convenient to define integrated asymmetries in or
to separate four angular dependences, although in princ
we can determineCi separately by fitting experimental da
in full phase space. In the Dalitz plot,a3 and b2 have a
singularity as1/(12x1,2) in the region near the kinematica
boundary (x1,2;1). g2 , g3, andg4 have a weaker singular
ity as 1/A12x1,2. a3 , b2, andg2 arise as square of photon
penguin amplitudes whereasg3 and g4 from interferences
between photon-penguin and four-fermion terms. On
contrary, contributions from square of the four-fermion co
pling constants have no singularity on the edge and hav
rather flat shape. These singular behaviors are cut off if
take into account the electron mass. To show this beha
explicitly, we first integrate over smaller positron energyx2
fixing the larger positron energyx1 and define the following
differential branching ratio and three types of asymmetr
aP1

, aP2
, andaT as a function of the larger positron energ

x1( 1
2 <x1<1):
dB~x1!

dx1
[E

12x1

x1
dx2E

21

1

d cosuE
0

2p

dw
dB

dx1dx2d cosudw

53$~C11C2!F1~x1!1~C31C4!F2~x1!1~C51C6!F3~x1!1~C71C8!F4~x1!

1~C91C10!F5~x1!%, ~21!
1-4
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aP1
~x1![

1

P
dB~x1!

dx1

S E
12x1

x1
dx2E

0

1

d cosuE
0

2p

dw
dB

dx1dx2d cosudw
2E

12x1

x1
dx2E

21

0

d cosuE
0

2p

dw
dB

dx1dx2d cosudw D
5

3

2

1

dB~x1!

dx1

$~C12C2!F1~x1!1~C32C4!G1~x1!1~C52C6!G2~x1!2~C72C8!F4~x1!

1~C92C10!F5~x1!%, ~22!

aP2
~x1![

21

P
dB~x1!

dx1

S E
12x1

x1
dx2E

21

1

d cosuE
0

p/2

dw
dB

dx1dx2d cosudw

2E
12x1

x1
dx2E

21

1

d cosuE
p/2

3/2p

dw
dB

dx1dx2d cosudw
1E

12x1

x1
dx2E

21

1

d cosuE
3/2p

2p

dw
dB

dx1dx2d cosudw D
5

3

2

1

dB~x1!

dx1

$~C32C4!H1~x1!1~C52C6!H2~x1!1~C72C8!H3~x1!

2~C92C10!H4~x1!%, ~23!

aT~x1![
21

P
dB~x1!

dx1

S E
12x1

x1
dx2E

21

1

d cosuE
0

p

dw
dB

dx1dx2d cosudw
2E

12x1

x1
dx2E

21

1

d cosuE
p

2p

dw
dB

dx1dx2d cosudw D
5

3

2

1

dB~x1!

dx1

$C11H3~x1!2C12H4~x1!%. ~24!

In these formulas,Fi , Gi , and Hi are functions of the variablex1 and their analytic forms are found in Appendix A.
dB(x1)/dx1 , aP1

(x1), aP2
(x1), andaT(x1) are defined to extract terms~i!–~iv! with different angular dependences andaT(x1)

is theT-odd quantity. In the above expressionF3(x1) in dB(x1)/dx1 andG2(x1) in aP1
have1/(12x1) singularity. Intro-

ducing the cutoffd for variablex1 and integrating over12 <x1<12d, we define the integrated branching ratioB and three
asymmetriesAP1

, AP2
, andAT :

B@d#5E
1/2

12d
dx1

dB~x1!

dx1

53$~C11C2!I 1@d#1~C31C4!I 2@d#1~C51C6!I 3@d#1~C71C8!I 4@d#1~C91C10!I 5@d#%, ~25!

AP1
@d#5

1

B@d#
E

1/2

12d
dx1a1~x1!

dB

dx1
~x1!

5
3

2B@d#
$~C12C2!I 1@d#1~C32C4!J1@d#1~C52C6!J2@d#2~C72C8!I 4@d#1~C92C10!I 5@d#%, ~26!

AP2
@d#5

1

B@d#
E

1/2

12d
dx1a2~x1!

dB

dx1
~x1!

5
3

2B@d#
$~C32C4!K1@d#1~C52C6!K2@d#1~C72C8!K3@d#2~C92C10!K4@d#%, ~27!

AT@d#5
1

B@d#
E

1/2

12d
dx1a3~x1!

dB

dx1
~x1!5

3

2B@d#
$C11K3@d#2C12K4@d#%. ~28!
094001-5
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I i , Ji , andKi are functions of the cutoffd and their analytic
forms are also found in Appendix A. Note thatI 3@d# and
J2@d# have a logarithmic singularity atd50. Because of this
logarithmic dependence, the termsuALu2 anduARu2 dominate
over other terms in the branching ratio if coupling consta
eAL , eAR, and gi have similar magnitudes. On the oth
hand the numerator ofAT does not have a singular behavi
so thatAT itself is suppressed when we take very smalld. In
the latter analysis of SUSY GUT cases we introduce
cutoff d to optimize theT-odd asymmetry.

We have to take into account the electron mass prop
to get precise value of total branching ratio. If the photo
penguin contribution dominates the branching ratio, we
derive a model-independent relation between the two bran
ing ratios@14#:

B~m1→e1e1e2!

B~m1→e1g!
.

a

3p F lnS mm
2

me
2 D 2

11

4 G.0.0061,

~29!

wherea is the fine structure constant. Neglecting the ter
suppressed byme /mm , the total branching ratio is, therefore
given by

B~m1→e1e1e2!52~C11C2!1~C31C4!

132H logS mm
2

me
2 D 2

11

4 J ~C51C6!116~C71C8!

18~C91C10!. ~30!

III. SUSY GUT AND LFV

In this section we introduce SU~5! and SO~10! SUSY
GUT and discuss LFV processes. We assume that SUS
broken explicitly at the Planck scale with soft SUSY brea
ing terms and that these terms have universal structure
respect to the flavor indices as suggested by the mini
SUGRA model. First, we discuss the LFV process in
SU~5! SUSY GUT and introduce the SO~10! SUSY GUT in
the next subsection.

A. SU„5… SUSY GUT

In the SU~5! SUSY GUT, we have three generations
10(T) and5̄(F̄) representations of SU~5! as matter fields and
5(H) and5̄(H̄) representations of Higgs fields. The Yukaw
superpotential and the soft SUSY breaking Lagrangian
written as follows:

WSU(5)5
1

8
~yu! i j TiTjH1~yd! i j F̄ iTj H̄, ~31!
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Lsoft52~mT
2! i j T̃i

†T̃j2~mF̄
2
! i j F̃̄ i

†F̃̄ j2mH
2 H†H

2mH̄
2

H̄†H̄2H m0

8
~Au! i j T̃i T̃ jH

1m0~Ad! i j F̃̄ i T̃ j H̄1
1

2
M5l̄5Rl5L1H.c.J , ~32!

where i , j are generation indices.T̃, F̃̄ are scalar compo-
nents of the superfieldsT, F̄.

At the Planck scale these soft SUSY breaking parame
satisfy flavor-blind universal conditions which are implied
the minimal SUGRA model:

mT
25mF̄

2
5m0

21, mH
2 5mH̄

2
5m0

2 ,

~Au! i j 5A0~yu! i j , ~Ad! i j 5A0~yd! i j . ~33!

With these conditions the lepton and slepton mass matr
can be diagonalized simultaneously at the Planck scale,
therefore there is no LFV at this scale. However, these c
ditions receive corrections from the renormalization effe
between the Planck scale and the GUT scale mainly du
the large top Yukawa coupling constant. As a result the m
nitude of the 3-3 element of the mass matrix for10 scalar
fields becomes smaller than 1-1 and 2-2 elements. In
basis whereyu is diagonalized at the Planck scale, the ma
matrix for the10 scalar fields at the GUT scale is approx
mately given by

mT
2.S m2

m2

m21Dm2
D ,

Dm2.2
3

8p2
u~yu!33u2m0

2~31uA0u2!lnS M P

MG
D ,

~34!

where M P and MG denote the reduced Planck mass (;2
31018 GeV) and the GUT scale (;231016 GeV). This cor-
rection amounts to about 50% of their original values and
lepton and slepton mass matrices are no longer diagona
simultaneously. This becomes a source of LFV which co
induce observable effects inm1→e1g @1#.

The SU~5! symmetry is broken to the SM groups at th
GUT scale, and after integrating out heavy fields the eff
tive theory becomes the minimal supersymmetric stand
model ~MSSM!. The superpotential and the soft SUS
breaking Lagrangian for the MSSM are written as follows

WMSSM5eab~ye! i j H1aEi
cL j b1eab~yd! i j H1aDi

cQj b

1eab~yu! i j H2aUi
cQj b1eabmH1aH2b , ~35!
1-6
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L soft52~mE
2 ! i j Ẽi* Ẽj2~mL

2! i j L̃ i* L̃ j2~mD
2 ! i j D̃ i* D̃ j

2~mU
2 ! i j Ũ i* Ũ j2~mQ

2 ! i j Q̃i* Q̃i2mH1

2 H1
†H1

2mH2

2 H2
†H22Fm0~Ae! i j e

abH1aẼi* L̃ j b

1m0~Ad! i j e
abH1aD̃ i* Q̃j b

1m0~Au! i j e
abH2aŨ i* Q̃j b1eabmBH1aH2b

1
1

2
M1B̄̃R B̃L1

1

2
M2WR̄
˜ W̃L1

1

2
M3G̃̄R G̃L

1H.c.G . ~36!

In this formula eab is defined ase115e2250, e1252e21

51. At the GUT scale these parameters satisfy the G
relations

ye5yd
T , ~37!

Ae5Ad
T , ~38!

mE
2T5mU

2T5mQ
2 5mT

2 , mL
25mD

2 5mF̄
2 ,

mH1

2 5mH̄
2 , mH2

2 5mH
2 , M15M25M35M5 . ~39!

In the basis whereyu is diagonalized at the Planck scale,yu
at the GUT scale still approximately remains diagonal.
this basis,ye is diagonalized in the following way:

VRyeVL
†5diagonal, ~40!

whereVL andVR are unitary matrices and using Eq.~37! VR
is given by

~VR! i j 5~VKM
0 ! j i , ~41!

whereVKM
0 is the Kobayashi-Maskawa~KM ! matrix at the

GUT scale.
It is useful to make unitary transformations onEi andL j

to go to the basis whereye is diagonalized at the GUT scale
In the new basis the off-diagonal element ofmE

2 is given by

~mE
2 ! i j .2

3

8p2
~VKM

0 !3i~VKM
0 !3 j* u~yu!33u2m0

2

3~31uA0u2!lnS M P

MG
D . ~42!

The off-diagonal element of the slepton mass matrix
comes a source of LFV.

In the actual numerical analysis, we solved the MSS
renormalization group equation from the GUT scale to
electroweak scale and determine the masses and mixing
SUSY particles. We also require that the electroweak sy
metry breaking occur properly to give the correctZ-boson
09400
T

-

e
for
-

mass. From the MSSM Lagrangian at the electroweak s
we can derive the LFV coupling constantsAL,R and g126
through one-loop diagrams involving slepton, gaugino, a
Higgsino. The complete formulas are given in Appendix B

In the SU~5! model, only the right-handed slepton ma
matrix can develop off-diagonal terms if the ratio of vacuu
expectation values of two Higgs fields (tanb5^H2

0&/^H1
0&)

is not very large. In such a case onlyAL , g3, andg5 have
sizable contributions. Restricting to small or moderate tab
cases, all effective coupling constants are proportional to
product of the KM matrix elementlt5(VKM

0 )32(VKM
0 )31*

since the LFV transition occurs through (mE
2)21 or

(mE
2)32* (mE

2)31. This situation does not change even if w
take into account the LFV transition due to the left-rig
mixing of the slepton mass matrix. This means that theCP
violating phase of Yukawa coupling constants cannot mak
phase difference betweenAL and g3, or AL and g5, and
therefore theT-odd asymmetryAT cannot appear from this
source.

There is another important source ofCP violating phases
in soft SUSY breaking terms. Within the SUGRA model, w
can introduce four phases: phases ofM5 , A0 , B, andm, but
not all of them are physically independent. By field redefi
tion, we can take the phases ofA0 and m as independen
phases. If we take into account these phases,AT can be gen-
erated. Since these phases also induce the electron, neu
and Hg EDMs@15,16#, we take into account these EDM
constraints to obtain allowed regions of SUSY phases.

Up to now we consider that the Yukawa coupling co
stants are given by Eq.~31!, so that the lepton and down-typ
quark Yukawa coupling constants are related at the G
scale by Eq.~37!. On the other hand, it is known that th
relation does not reproduce realistic mass relations
charged leptons and down-type quarks in the first and sec
generations. It is therefore important to study how the p
diction for LFV processes depends on details of the origin
the Yukawa coupling constant in the MSSM Lagrangia
One way to generate realistic mass matrix is to introdu
higher-dimensional operators in the SU~5! superpotential.
Once this is done the simple relationship between
charged lepton and down-type quark Yukawa coupling c
stants does not hold. Although the effect of higher dime
sional operators is suppressed byO(MG /M P), masses and
mixings for the first and second generations can receive la
corrections to the GUT relation. If tanb is not very large,
LFV is still induced only for the right-handed slepton sect
and Eq.~42! holds with replacement ofVKM

0 by VR
T which is

not necessarily related to the KM matrix elements. In t
following, therefore, we treatlt as a free parameter. Sinc
the m1→e1g and them1→e1e1e2 branching ratios are
proportional toultu2, we present these branching ratios d
vided byultu2. If tanb is as large as 30, the bottom Yukaw
coupling constant can induce the LFV in the left-hand
slepton sector. In such a case, if we include the effect
higher-dimensional operators at the GUT scale, there
photon-penguin diagrams which are proportional tomt and
these contributions tend to dominate over other contributi
as shown in Ref.@17#. Because the LFV branching ratio
depend on many unknown parameters in such a case, w
not consider this possibility here.
1-7
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B. SO„10… SUSY GUT

In the minimal SO~10! model, we assume three gener
tions of16 representation matter fields (C i) and two10 rep-
resentation Higgs fields (Fu ,Fd) of SO~10!. The Yukawa
superpotential and the soft SUSY breaking Lagrangian
written as follows:

WSO(10)5
1

2
~yu! i j C iFuC j1

1

2
~yd! i j C iFdC j , ~43!

Lsoft52~mC
2 ! i j C̃ i

†C̃ j2mFu

2 Fu
†Fu2mFd

2 Fd
†Fd

2H m0

2
~Au! i j C̃ iFuC̃ j1

m0

2
~Ad! i j C̃ iFdC̃ j

1
1

2
M10l10R̄ l10L1H.c.J . ~44!

At the Planck scale, we have the universal boundary co
tions

mC
2 5m0

21, mFu

2 5mFd

2 5m0
2 , ~Au! i j 5A0~yu! i j ,

~Ad! i j 5A0~yd! i j . ~45!

In contrast with the SU~5! SUSY GUT, all matter fields are
unified in a single representationC of SO~10! and masses o
all squarks and sleptons of the third generation receiv
large correction due to the renormalization effect by the
Yukawa coupling constant. In theyu-diagonalized basis, dif-
ference between the mass of the third generation sferm
and that of the first and second generation is given by:

DmC
2 .2

5

8p2
u~yu!33u2m0

2~31uA0u2!lnS M P

MG
D . ~46!

At the GUT scale, the initial conditions for the parameters
MSSM Lagrangian in Eqs.~35! and ~36! at the GUT scale
are written as follows:

ye5yd , ~47!

Ae5Ad , ~48!

mE
25mL

25mD
2 5mU

2 5mQ
2 5mC

2 ,

mH1

2 5mFd

2 , mH2

2 5mFu

2 , M15M25M35M10, ~49!

where the symmetric matrixye can be expressed as

ye5UTPŷeU,
09400
-

re

i-

a
p

n

f

P5S eif1

eif2

eif3
D , ~50!

whereŷe is a real diagonal matrix, and therefore the unita
matrix U is related to the KM matrix at the GUT scale as

U5VKM
0† . ~51!

If we go to theye-diagonalized basis at the GUT scale, t
off-diagonal elements of slepton mass matrices become
follows:

~mE
2 ! i j .2

5

8p2
e2 i (f i2f j )~VKM

0 !3i~VKM
0 !3 j* u~yu!33u2m0

2

3~31uA0u2!lnS M P

MG
D , ~52!

~mL
2! i j .2

5

8p2
~VKM

0 !3i* ~VKM
0 !3 j u~yu!33u2m0

2

3~31uA0u2!lnS M P

MG
D . ~53!

Since the left-handed slepton also has the LFV effect in
case of the SO~10! SUSY GUT, there are dominant photon
penguin diagrams which are proportional tomt in the slepton
left-right mixing as discussed in Ref.@2# .

In addition to the KM phase, there are two physic
phases in Eq.~50! up to an overall phase. A combination o
these phases and the KM phase is responsible to the ele
EDM @2,18#. If the photon-penguin diagram proportional
mt dominates in them1→e1g amplitude, there is a simple
relation between the electron EDM and them1→e1g
branching ratio@2#. Defining a phase as

Im@ei (f32f1)$~VKM
0 !31~VKM

0 !33* %2#

5u~VKM
0 !31~VKM

0 !33* u2sinf, ~54!

the relation is given by

udeu51.3AB~m→eg!

10212
usinfu ~10227e cm!. ~55!

Later we see that the diagram proportional tomt does not
necessarily dominate over other diagrams. In such a case
above relation does not hold.

IV. RESULTS OF NUMERICAL CALCULATIONS

We present results of our numerical analysis onm1

→e1g and m1→e1e1e2 processes for the SU~5! and
SO~10! SUSY GUT. We also calculate the electron, neutro
and Hg EDMs as constraints on theCP violating phases of
the soft SUSY breaking terms. Following the procedure d
cussed in the previous section, we solve the renormaliza
1-8
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group equations with the universal condition for the SUS
breaking terms at the Plank scale. Though the approxim
formulas for the slepton mass difference are given in
previous section to explain qualitative features, we solve
renormalization group equations from the Planck scale to
electroweak scale numerically taking into account the
flavor-mixing matrix for fermions and sfermions. To dete
mine allowed range of SUSY parameter space we use
results of various SUSY particle searches at LEP and Te
tron and the branching ratioB(b→sg). The details on these
constraints are described in Ref.@19#.1 We take the top quark
mass asmt5175 GeV. Because we calculate the LF
branching ratios divided byultu2, the result is almost inde
pendent of the KM matrix elements. For definiteness, we
the input parameters of the KM matrix elements
u(VKM)cbu50.041, u(VKM) tdu50.006, andu(VKM)usu50.22.
Requiring the radiative electroweak symmetry breaking
free parameters of the supergravity~SUGRA! model can be
taken as tanb, M2 , m0 , uA0u and the phase ofA0 (uA0

) and

that of m (um).

A. SU„5… GUT

Let us first discuss the case without theCP violating
phases in the SU~5! GUT. In Fig. 3 we present the following
quantities:

B~m1→e1g!

ultu2
,

B~m1→e1e1e2!

ultu2
,

B~m1→e1e1e2!

B~m1→e1g!
,

A~m1→e1g!, AP1
, AP2

, ~56!

in the plane ofmẽR
and uA0u for tanb53, M25150 GeV,

uA0
5um50. Herelt is defined by the mixing matrix which

diagonalizes the right-handed slepton mass matrix at
electroweak scale in the basis where the charged lepton m
matrix is diagonalized. For the asymmetries we take the
off parameterd50.02. If ultu51022, B(m1→e1g) can be
10211 andB(m→e1e1e2) can be 10213 level, but if lt is
given by the corresponding KM matrix element,ultu be-
comes~3–5!31024, so that the branching ratios are smal
by three orders of magnitude. In Fig. 3~c! the ratio of two
branching fractions is shown. If the photon-penguin con
bution dominates over four-fermion ones this ratio is giv
by Eq. ~29!. We can see that for large parameter region
ratio is enhanced. In particular, nearmẽR

5400–600 GeV al-
most exact cancellation occurs for the photon-penguin
plitudes@3#. In Fig. 3~d! A(m1→e1g) is shown. It is close
to 100% except for small region where the almost exact c
cellation occurs. TheP-odd asymmetriesAP1

and AP2
are

shown in Figs. 3~e! and 3~f!. AP1
changes from230 to 40 %

1The branching ratioB(b→sg) is updated as 2.031024,B(B
→Xsg),4.531024 @20#.
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andAP2
changes from210 to 15 %. Ford50.02 the asym-

metriesAP1
andAP2

are expressed as

AP1
.

3

2B
$0.6~C12C2!20.12~C32C4!

15.6~C52C6!24.7~C72C8!12.5~C92C10!%,

~57!

AP2
.

3

2B
$0.1~C32C4!110~C52C6!

12~C72C8!21.6~C92C10!%. ~58!

In the SU~5! case, because onlyg3 , g5, andAL have sizable
contributions, we obtain the following expressions:

FIG. 3. The observables in the SU~5! model without the SUSY
CP violating phases in themẽR

-uA0u plane. We fix the SUSY pa-
rameters as tanb53, M25150 GeV, andm.0 and the top quark
mass as 175 GeV.~a! Branching ratio form1→e1g normalized by
ultu2[u(VR)23(VR)13* u2. ~b! Branching ratio form1→e1e1e2 nor-
malized by ultu2. ~c! The ratio of two branching fractionsB(m
→3e)/B(m→eg). ~d! The P-odd asymmetry form1→e1g. ~e!
The P-odd asymmetriesAP1

for m1→e1e1e2. ~f! The P-odd
asymmetriesAP2

for m1→e1e1e2. The cutoff parameterd is
taken to be 0.02.
1-9
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AP1
.

3

2B
$0.6ug3u220.12ug5u225.6ueALu2

14.7 Re~eALg3* !22.5 Re~eALg5* !%, ~59!

AP2
.

3

2B
$0.1ug5u2210ueALu2

22 Re~eALg3* !11.6 Re~eALg5* !%. ~60!

In the above formulas we can see that the coefficients
uALu2, Re(ALg3* ), and Re(ALg5* ) are large. Therefore thes
asymmetries represent the dependence of square of ph
penguin terms and interference terms. It is interesting to
that we can overdetermine the three coupling constantsg3 ,
g5, and AL from observables B(m1→e1g), B(m1

→e1e1e2), AP1
, and AP2

if we assume the SU~5! SUSY

GUT without the SUSYCP violating phases. For example
we can determineg3 , g5, andAL from the three observable
B(m1→e1g), B(m→e1e1e2), andAP1

, then,AP2
can be

predicted. In addition we should haveA(m1→e1g)
5100% andAT50.

Next, we include the SUSYCP violating phases and dis
cuss EDM constraints andT-odd asymmetry. We calculat
the electron and neutron EDMs according to Ref.@21#. Dis-
cussion on QCD correction is given in Appendix D. For t
Hg EDM, we use the result of Ref.@16#. dHg is given

dHg52~Cd
C2Cu

C20.012Cs
C!33.231022e, ~61!

whereCu
C , Cd

C , andCs
C are chromomagnetic moments di

cussed in Appendix D.
In order to seeuA0

andum dependences on the EDMs an

AT , we first show these quantities for a specific set of SU
parameters. In Fig. 4, the electron, neutron, and Hg ED
and AT are shown for tanb53, M25300 GeV, mẽR

5650 GeV, uA0u51 in the parameter region2p,uA0
<p

and 20.05p<um<0.05p. The experimental bounds on th
EDMs are given byudeu,4310227(e cm) @22#, udnu,0.63
310225(e cm) @23#, andudHgu,9310228(e cm) @24#. As is
well known in Ref.@25# the EDMs are very sensitive toum ,
so thatum is strongly constrained. On the other handuA0

can

be large. In this particular parameter set,uA0
5p/2 is not

excluded by three EDM constraints. Maximum value of t
T-odd asymmetryAT in allowed region in this figure is 15%
Note thatAT is proportional to sinuA0

in a good approxima-

tion because the magnitude ofum is strongly constraint by
the EDMs.

In Fig. 5 we show the quantities in Eq.~56! and AT for
tanb53, M25300 GeV, uA0

5p/2, um50. We also show
the constraints from the electron, neutron, and Hg EDM
Within the EDM constraintsAT can be 10%. As discussed i
Fig. 4, when we varyum aroundum50, the EDM values
change considerably butAT is almost constant. Therefore th
allowed region by the EDM constraints moves in Fig. 5 if w
takeum as slightly different value from 0. On the other han
the contours for branching ratios and the asymmetries in
09400
r

on-
ee

Y
s

.

is

figure are almost exactly the same. In this figure we a
show the parameter region which is not allowed by the ED
constraints even if we changeum around um50 for uA0

5p/2. Within the allowed region, the maximum value ofAT
is 15%. Similar plots are shown for tanb510 in Fig. 6. In
this case also the maximum value ofAT is about 15%. Note
that, in the case with theCP violating phases, we can stil
determine the complex coupling constantsg3 , g5, andAL up
to a total phase from the two branching ratiosB(m1

→e1g), B(m1→e1e1e2) and three asymmetriesAP1
,

AP2
, andAT .

B. SO„10… GUT

In the SO~10! case, from Eq. ~50!, there are two
physical phases which contribute to the EDMs andm1

→e1g amplitudes. In the m1→e1g amplitudes
the term proportional to mt has a dependence o
ei (f32f2)(VKM

0 )32$(VKM
0 )33* %2(VKM

0 )31 and other contributions
are proportional to (VKM

0 )32* (VKM
0 )31. Therefore, the branch

ing ratio m1→e1g depends on the relative phase of tw
terms. In the following we consider the case where there
no relative phase so that the amplitude is proportional tolt .
Also we do not consider EDM constraints from Eq.~55!
explicitly since this can be suppressed whenf is small.

In Fig. 7 the branching ratios and the asymmetries
shown for the SO~10! model. We first show the case withou
the SUSYCP violating phases. Input SUSY parameters a
taken as tanb53, M25150 GeV,uA0

50, andum50. We

see thatB(m1→e1g)/ultu2 can be 1023. This value is en-
hanced by 2–4 orders of magnitude compared to the SU~5!

FIG. 4. uA0
andum dependences on the EDMs andAT . We take

a specific set of SUSY parameters tanb53, M25300 GeV, mẽR

5650 GeV, anduA0u51 in the parameter region2p,uA0
<p and

20.05p<um<0.05p. Dark shaded regions are excluded by t
EDM experiments.
1-10
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case. The ratio of two branching fractions is almost cons
because the photon-penguin diagrams give dominant co
butions to m1→e1e1e2. The m1→e1g asymmetry
A(m1→e1g) varies from220 to 290 %. This is in con-
trast to the previous belief thatAL and AR have a similar

FIG. 5. The observables in the SU~5! model with the SUSYCP
violating phases in themẽR

-uA0u plane. We fix the SUSY parameter
as tanb53, M25300 GeV, uA0

5p/2, and um50 and the top
quark mass as 175 GeV.~a!–~f! are the same as Fig. 3.~g! The
T-odd asymmetry form1→e1e1e2. The cutoff parameterd is
taken to be 0.02. The experimental bounds from the electron,
tron, and Hg EDMs are also shown in each figure. The left up
line corresponds to the electron EDM, the right upper line to
neutron EDM, and the right lower line to the Hg EDM. The low
side of each bound is allowed by these experiments. A dark sha
region is excluded by the EDM bounds even if we allowum taking
slightly different value from 0.
09400
nt
ri-

magnitude in this model. Although the diagram proportion
to mt gives the same contribution to theAL andAR , there is
a chargino loop diagram which only contributes toAR . In
spite of nomt enhancement, the contribution from the latt
diagram can be comparable to that from the former o
especially when the slepton mass is larger than the char
mass. The dominant contributions toAL and AR are dis-
cussed based on approximate formulas in a special param
region in Appendix C. In Figs. 7~e! and 7~f! theP-odd asym-
metries form1→e1e1e2 are shown and these asymmetri
are small compared to the SU~5! case.AP1 is less than 10%
and AP2 is less than 14%. In this caseC5 and C6 terms
dominate in Eqs.~57! and~58! so that these asymmetries a
proportional toA(m1→e1g) and expressed as follows:

u-
r

e

ed

FIG. 6. The observables in the SU~5! model for tanb510 in
mẽR

-uA0u plane. Other parameters are the same as in Fig. 5.
1-11
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AP1
.2

1

10
A~m1→e1g!, ~62!

AP2
.2

1

6
A~m1→e1g!. ~63!

It is interesting to see that we can predict two observable
the m1→e1e1e2 process from them1→e1g asymmetry.
We have also investigated the case with tanb510. We
found the parity asymmetry form1→e1g and AP1 , AP2
have a similar magnitudes as Fig. 7, namely,A(m1→e1g)
varies 220–2100 %, AP1 varies 2–10 % andAP2 varies
4–16 % in the same parameter space.

In Fig. 8 we consider the case with the SUSYCP violat-
ing phase and take input parameters as tanb53, M2
5300 GeV,uA0

5p/2, andum50. The branching ratio and
other asymmetries have similar magnitudes compared to
case in Fig. 7. We can see that theT-odd asymmetryAT is
less than 0.01% because only the photon-penguin ampli
becomes large.

Some remarks are in order.

FIG. 7. The observables in the SO~10! model without the SUSY
CP violating phase inmẽR

-uA0u plane. The input parameters are th
same as in Fig. 3. The upper right black region is excluded
phenomenological constraints and the left black region is not
lowed in the minimal SUGRA model.
09400
in

he

de

~1! When we take into account the phase in Eq.~54!, the
EDM is generated as discussed in Eq.~55!. We note that the
T-odd asymmetry cannot be large even in such a case
cause the photon-penguin diagram dominates over the f
fermion contributions.

~2! If the m1→e1g asymmetry is sizable, the simple re
lationship between the EDM and them1→e1g branching
ratio as in Eq.~55! does not hold. This is because the ED
amplitude is no longer proportional to them1→e1g ampli-
tude due to the chargino loop contribution.

~3! Even if we include relative phases between the te
proportional tomt and other contributions in them1→e1g
amplitude, we expect largeA(m1→e1g) as long as two
contributions have a similar magnitude. By numerical calc

y
l-

FIG. 8. The obsevables in the SO~10! model with the SUSYCP
violating phase inmẽR

-uA0u plane. The input parameters are th
same as in Fig. 5.
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lation we have checked that the asymmetry varies fro
2100 to 100 % if we include the relative phases. Quali
tively, this feature can be understood by the approxim
formulas in Appendix C. From Eq.~C1! we can see that the
neutralino and chargino contributions toAR can interfere ei-
ther constructively or destructively depending on the relat
phase so thatA(m1→e1g) can change its sign.

C. Differential branching ratio and asymmetries

Up to now we only discussed the integrated branch
ratio and asymmetries ofm1→e1e1e2. In the actual ex-
periment, the differential quantities are useful to distingu
different models. For example, in Figs. 9 and 10, we sh
the differential branching ratio and asymmetries for a p
ticular parameter set in the SU~5! and SO~10! models.
dB/dx1 , aP1

, aP2
, andaT are plotted for the parameter set

tanb53, mẽR
5700 GeV, M25300 GeV, uA0u50.5, uA0

5p/2, andum50. We can see clear differences between
SU~5! and SO~10! models. The differential branching has th
steep peak nearx151 for the SO~10! case whereas the dis
tribution is broader for the SU~5! case. This is because th
photon-penguin contribution has 1/(12x1) behavior near
x151 and the four-fermion operators give a broad spectru
We also see theT-odd asymmetry has the peak atx1 close to
1. This fact arises from the 1/A12x1 behavior in theg3 and
g4 near x151. Because of this feature of distribution, w
have chosend50.02 to optimize theT-odd asymmetry.

FIG. 9. The differential branching ratio and asymmetries for
m1→e1e1e2 process in the SU~5! model as a function ofx1

which is a larger energy of decay positrons (2E1 /mm). We fix the
SUSY parameters as tanb53, M25300 GeV, mẽR

5700 GeV,
uA0u50.5, uA0

5p/2, andum50. ~a! The differential branching ra-
tio for the m1→e1e1e2 normalized by the total branching ratio
~b! The differential P-odd asymmetryaP1

. ~c! The differential
P-odd asymmetryaP2

. ~d! The differentialT-odd asymmetryaT .
09400
-
te

e

g

h

-

e

.

V. CONCLUSION

We developed the model-independent formalism for
processm1→e1g andm1→e1e1e2 with polarized muon
and defined convenient observables such as theP-odd and
T-odd asymmetries. Using explicit calculation based on
SU~5! and SO~10! SUSY GUT, we show that various com
bination of LFV coupling constants can be determined fro
the measurement of branching ratio and asymmetries. In
SO~10! case theP-odd asymmetry inm1→e1g varies from
2100 to 100 % whereas it is1100% for the SU~5! case. The
P-odd asymmetries inm1→e1e1e2 are simply propor-
tional to them1→e1g asymmetry in the SO~10! case and
can be predicted from it. On the other hand, with the bran
ing ratios and theP-odd asymmetries in them1→e1e1e2

process, we can overdetermine the coupling constants in
effective Lagrangian in the SU~5! SUSY GUT if there are no
SUSY CP violating phases. We also calculated theT-odd
asymmetry in them1→e1e1e2 process with the SUSYCP
violating phases and compare it with the neutron, electr
and Hg EDMs. In the SU~5! case we can still determine thes
coupling constants using additional information of theT-odd
asymmetry. TheT-odd asymmetry can reach 15% within th
constraints of the EDMs. In the SO~10! case theT-odd asym-
metry is small as a result of the dominance of photo
penguin diagram. These results are summarized in Tab
We stress that although the magnitude of the branching r
has a large uncertainty due to the unknown parameterlt ,
asymmetries and the ratio of two branching ratios are in
pendent of this ambiguity. Thus these quantities are usefu
distinguish different models.

The experimental prospects for measuring these quant
depend on the branching ratio. For the SO~10! model we
expect them1→e1g branching ratio can be 10212 when the

e FIG. 10. The differential branching ratio and asymmetries
them1→e1e1e2 process in the SO~10! model as a function ofx1.
The input parameters are the same as in Fig. 9.
1-13
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lt is given by the corresponding KM matrix elements.
such a case them1→e1g asymmetry can be measurable
an experiment with a sensitivity of 10214 level. For the
SU~5! model, to get them1→e1g branching ratio of order
10212 andm1→e1e1e2 branching ratio of 10214, we have
to assumelt is larger than several times 1023. If the branch-
ing ratio turns out to be as large, them1→e1e1e2 experi-
ments with a sensitivity of 10216 level could reveal various
asymmetries. Because various asymmetries are defined
respect to muon polarization, experimental searches form1

→e1g and m1→e1e1e2 with polarized muons are ver
important to uncover the nature of the LFV interactions.
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APPENDIX A: BRANCHING RATIO AND ASYMMETRIES

In this appendix, we give kinematic functions which a
pear in the calculation of branching ratio and asymmetrie

Fi~x![2E
12x

x

dx2a i~x,x2!, ~A1!

Gi~x![2E
12x

x

dx2b i~x,x2!, ~A2!

Hi~x![22E
12x

x

dx2g i~x,x2!, ~A3!

F1~x!52
8

3
~4x25!~2x21!2, ~A4!

F2~x!52
2

3
~2x21!~8x228x21!, ~A5!

TABLE I. Summary of the results.

SU~5! SUSY GUT SO~10! SUSY GUT

A(m1→e1g) 1100% 2100% –1100%

B(m1→e1e1e2)

B(m1→e1g)

0.007–O(1) constant (;0.0062)

AP1
230% –140% AP1.2

1
10A(m1→e1g)

AP2
220% –120% AP2.2

1
6 A(m1→e1g)

uATu &15% &0.01%
09400
ith

F3~x!516 lnS x

12xD ~2x222x11!

1
32

3

~2x21!~x22x11!

12x
, ~A6!

F4~x!532~2x21!2, ~A7!

F5~x!528~2x21!~2x23!, ~A8!

G1~x!5216~12x!2ln 2~12x!2
2

3
~2x21!

3~8x2232x123!, ~A9!

G2~x!5216~2x222x27!ln 2~12x!

116~2x222x11!ln 2x

1
32

3

~2x21!~x2213x113!

12x
, ~A10!

H1~x!52~625x!~12x!A2x21

2~7x2224x116!A12xarccosS 223x

x D
116~12x!2arccosS 12x

x D , ~A11!

H2~x!5216~62x!A2x21

28
5x218x216

A12x
arccosS 223x

x D
2128arccosS 12x

x D , ~A12!

H3~x!52
4

3
A2x21~17x2224x14!

12
~7x26!x2

A12x
arccosS 223x

x D , ~A13!

H4~x!51
2

3
A2x21~17x2230x116!

2
~7x2216x18!x

A12x
arccosS 223x

x D , ~A14!

I i@d#5E
1/2

12d
dxFi~x!, ~A15!
1-14
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Ji@d#5E
1/2

12d
dxGi~x!dx, ~A16!

Ki@d#5E
1/2

12d
dxHi~x!dx, ~A17!

I 1@d#5
2

3
~112d!~122d!3, ~A18!

I 2@d#5
1

3
~112d22d2!~122d!2, ~A19!

I 3@d#5
16

3
~12d!~22d12d2!lnS 12d

d D
2

8

9
~122d!~1324d14d2!, ~A20!

I 4@d#5
16

3
~122d!3, ~A21!

I 5@d#5
8

3
~11d!~122d!2, ~A22!

J1@d#52
1

9
2

2

3
d16d21

16

3 S ln 2d2
4

3D d32
8

3
d4,

~A23!

J2@d#52
16

3
~2121d13d222d3!ln 2d1

16

3
~12d!

3~22d12d2!ln 2~12d!

2
8

9
~122d!~49168d14d2!, ~A24!

K1@d#5
4

315
~818d293d22225d3!A122d

2
2

3
d

3
2~126d23d2!arccosS 3d21

12d D
2

16

3
d3arccosS d

12d D , ~A25!
09400
K2@d#5
32

5
~419d1d2!A122d

216Ad~316d2d2!arccosS 3d21

12d D
1128darccosS d

12d D , ~A26!

K3@d#5
8

105
A122d~48257d268d2185d3!

24~12d!3AdarccosS 3d21

12d D , ~A27!

K4@d#5
4

105
A122d~64241d126d2285d3!

22~12d2d21d3!AdarccosS 3d21

12d D .

~A28!

APPENDIX B: LFV EFFECTIVE COUPLING CONSTANTS
IN MSSM

1. MSSM Lagrangian

We first fix our notations of the MSSM for the numeric
calculation. Using

v[A2~^H2
0&21^H1

0&2! ~B1!

and

tanb[
^H2

0&

^H1
0&

~B2!

the charged lepton mass matrix is given:

~me! i j 52~ye! i j

v

A2
cosb. ~B3!

The neutralino and chargino mass matrices are written
follows:

LN52
1

2
~B̃R W̃3R

H̃1R
0c

H̃2R
0c

!MNS B̃L

W̃3L

H̃1L
0

H̃2L
0

D 1H.c.,
1-15
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MN5S M1 0 2mzsinuWcosb mzsinuWsinb

0 M2 mzcosuWcosb 2mzcosuWsinb

2mzsinuWcosb mzcosuWcosb 0 2m

mzsinuWsinb 2mzcosuWsinb 2m 0

D , ~B4!

LC52 SW̃R
2 H̃2R

2cDMCS W̃L
2

H̃1L
2 D 1H.c., MC5S M2 A2mWcosb

A2mWsinb m
D . ~B5!

They are diagonalized with unitary matrices as follows:

ONMNON
T5diag~mx̃

1
0,mx̃

2
0,mx̃

3
0,mx̃

4
0!, ~B6!

ONR[ON , ~B7!

ONL[ON* , ~B8!

OCRMCOCL
† 5diag~mx̃

1
2,mx̃

2
2!. ~B9!

The slepton mass matrices are written as follows:

Lẽ52~ L̃2† Ẽ†!mẽ
2S L̃2

Ẽ
D ,

mẽ
2
5S mL

21me
†me1mz

2cos 2bS 2
1

2
1sin2uWD v

A2
cosb~m0Ae1yem* tanb!†

v

A2
cosb~m0Ae1yem* tanb! mE

21meme
†2mz

2cos 2b sin2uW
D , ~B10!
to

ric
Lñ52L̃0†mñ
2
L̃0,

mñ
2
5mL

22
1

2
mz

2cos 2b. ~B11!

They are diagonalized with unitary matrices as follows:

Uemẽ
2
Ue

†5diag~mẽ1

2 ,mẽ2

2 ,mẽ3

2 ,mẽ4

2 ,mẽ5

2 ,mẽ6

2
!, ~B12!

Unmñ
2
Un

†5diag~mñ1

2 ,mñ2

2 ,mñ3

2
!. ~B13!

The neutralino and chargino vertices for leptons and slep
are written as follows:

L[ēi~NiAX
L PL1NiAX

R PR!x̃A
0 ẽX

1ēi~CiAX
L PL1CiAX

R PR!x̃A
2ñX1H.c., ~B14!
09400
ns

NiAX
L 52gH A2tanuW~ONL!A1* ~Ue!Xi13*

1
~me! i j

A2mWcosb
~ONL!A3* ~Ue!X j* J , ~B15!

NiAX
R 52gF2

1

A2
$~ONR!A2* 1tanuW~ONR!A1* %~Ue!Xi*

1
~me

†! i j

A2mWcosb
~ONR!A3* ~Ue!X j13* G , ~B16!

CiAX
L 5g

~me! i j

A2mWcosb
~OCL!A2* ~Un!X j* , ~B17!

CiAX
R 52g~OCR!A1* ~Un!Xi* . ~B18!

2. LFV effective coupling constants

The formulas of effective coupling constants form→eg
andm→3e processes written in the minimal supersymmet
1-16
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standard model~MSSM! variables are given in Ref.@26#. We
present these formulas for completeness with taking car
the CP violating phases.

Each coupling constant is divided into a neutralin
charged-slepton-loop contribution and chargino-sneutri
loop contribution. The four-Fermi coupling constants a
given as follows:

gi5gi
n1gi

c~ i 5126!. ~B19!

The coupling constantg1 comes only from box diagrams:

g1
n52

A2

64p2GF
(

A,B51

4

(
X,Y51

6

~N2AX
L N1AY

R* N1BY
L N1BX

R*

22N2AX
L N1AY

L N1BY
R* N1BX

R* !
09400
of

-
-

mx̃
A
0mx̃

B
0d0~mx̃

A
02,mx̃

B
02,mẽX

2,mẽY

2!, ~B20!

g1
c52

A2

64p2GF
(

A,B51

2

(
X,Y51

3

C2AX
L C1AY

R* C1BY
L C1BX

R*

mx̃
A
2mx̃

B
2d0~mx̃

A
2

2,mx̃
B
2

2,mñX

2,mñY

2!. ~B21!

The coupling constantg3 is divided into three parts.g31 is a
contribution of box diagrams andg32 is that of Z-penguin
diagrams.g33 is a contribution of off-shell photon-pengui
diagrams.

g35g311g321g33, ~B22!
g31
n 52

A2

64p2GF
(

A,B51

4

(
X,Y51

6 H N2AX
L N1AY

L* N1BY
L N1BX

L* d2~mx̃
A
02,mx̃

B
02,mẽX

2,mẽY

2!

1
1

2
N2AX

L N1AY
L N1BY

L* N1BX
L* mx̃

A
0mx̃

B
0d0~mx̃

A
02,mx̃

B
02,mẽX

2,mẽY

2!J , ~B23!

g32
n 52

1

16p2
ZR

eF (
A,B51

4

(
X51

6

N2AX
L N1BX

L* $4~Yx̃
L
0!ABc2~mẽX

2,mx̃
A
02,mx̃

B
02!

22mx̃
A
0mx̃

B
0~Yx̃

R
0 !ABc0~mẽX

2,mx̃
A
02,mx̃

B
02!%

12 (
A51

4

(
X,Y51

6

N2AX
L N1AY

L* ~XẽL
!XYc2~mx̃

A
02,mẽX

2,mẽY

2!G , ~B24!

g33
n 52

A2e2

1152p2GF
(
A51

4

(
X51

6

N2AX
L N1AX

L*
1

mẽX

2 b0
nS mx̃

A
0

2

mẽX

2 D , ~B25!

g31
c 52

A2

64p2GF
(

A,B51

2

(
X,Y51

3

C2AX
L C1AY

L* C1BY
L C1BX

L* d2~mx̃
A
2

2,mx̃
B
2

2,mñX

2,mñY

2!, ~B26!

g32
c 52

1

16p2
ZR

e (
A,B51

2

(
X51

3

C2AX
L C1BX

L* $4~Yx̃
L
2!ABc2~mñX

2,mx̃
A
2

2,mx̃
B
2

2!

22mx̃
A
2mx̃

B
2~Yx̃

R
2!ABc0~mñX

2,mx̃
A
2

2,mx̃
B
2

2!%, ~B27!

g33
c 52

A2e2

1152p2GF
(
A51

2

(
X51

3

C2AX
L C1AX

L*
1

mñX

2 b0
cS mx̃

A
2

2

mñX

2 D . ~B28!

The coupling constantg5 is divided into three parts.g51 is a contribution of box diagrams andg52 is that of Z-penguin
diagrams.g53 is a contribution of off-shell photon-penguin diagrams.

g55g511g521g53, ~B29!
1-17



OKADA, OKUMURA, AND SHIMIZU PHYSICAL REVIEW D 61 094001
g51
n 52

A2

64p2GF
(

A,B51

4

(
X,Y51

6 H ~N2AX
L N1AY

L* N1BY
R N1BX

R* 2N2AX
L N1AY

R N1BY
R* N1BX

L*

1N2AX
L N1AY

R N1BY
L* N1BX

R* !d2~mx̃
A
02,mx̃

B
02,mẽX

2,mẽY

2!2
1

2
mx̃

A
0mx̃

B
0N2AX

L N1AY
R* N1BY

R N1BX
L* d0~mx̃

A
02,mx̃

B
02,mẽX

2,mẽY

2!J ,

~B30!

g52
n 52

1

16p2
ZL

eF (
A,B51

4

(
X51

6

N2AX
L N1BX

L* $4~Yx̃
L
0!ABc2~mẽX

2,mx̃
A
02,mx̃

B
02!22mx̃

A
0mx̃

B
0~Yx̃

R
0 !ABc0~mẽX

2,mx̃
A
02,mx̃

B
02!%

12 (
A51

4

(
X,Y51

6

N2AX
L N1AY

L* ~XẽL
!XYc2~mx̃

A
02,mẽX

2,mẽY

2!G , ~B31!

g53
n 5g33

n , ~B32!

g51
c 52

A2

64p2GF
(

A,B51

2

(
X,Y51

3 H C2AX
L C1AY

L* C1BY
R C1BX

R* d2~mx̃
A
2

2,mx̃
B
2

2,mñX

2,mñY

2!

2
1

2
C2AX

L C1AY
R* C1BY

R C1BX
L* mx̃

A
2mx̃

B
2d0~mx̃

A
2

2,mx̃
B
2

2,mñX

2,mñY

2!J , ~B33!

g52
c 52

1

16p2
ZL

e (
A,B51

2

(
X51

3

C2AX
L C1BX

L* $4~Yx̃
L
2!ABc2~mñX

2,mx̃
A
2

2,mx̃
B
2

2!22mx̃
A
2mx̃

B
2~Yx̃

R
2!ABc0~mñX

2,mx̃
A
2

2,mx̃
B
2

2!%,

~B34!

g53
c 5g33

c . ~B35!

Various mixing matrices and Z coupling constants which appear in the above formulas are given as follows:

~Yx̃
L
0!AB52

1

2
$~ONL!A3~ONL!B3* 2~ONL!A4~ONL!B4* %, ~B36!

~Yx̃
R
0 !AB5

1

2
$~ONR!A3~ONR!B3* 2~ONR!A4~ONR!B4* %, ~B37!

~Yx̃
L
2!AB52

1

2
~OCL!A2~OCL!B2* , ~B38!

~Yx̃
R
2!AB52

1

2
~OCR!A2~OCR!B2* , ~B39!

~XẽL
!XY52 (

k51

3

~Ue!Xk~Ue!Yk* , ~B40!

~XẽR
!XY5 (

k51

3

~Ue!Xk13~Ue!Yk13* , ~B41!

ZL
e5S 2

1

2
1sin2uWD , ~B42!

ZR
e5sin2uW . ~B43!

The photon-penguin coupling constant is written as follows:

AR5AR
n1AR

c , ~B44!
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AR
n5

A2e

256p2GF
(
A51

4

(
X51

6
1

mẽX

2 H 1

6
N2AX

R N1AX
R* b1

nS mx̃
A
0

2

mẽX

2 D 1N2AX
L N1AX

R*
mx̃

A
0

mm
b2

nS mx̃
A
0

2

mẽX

2 D J , ~B45!

AR
c 52

A2e

128p2GF
(
A51

2

(
X51

3
1

mñX

2 H 1

6
C2AX

R C1AX
R* b1

cS mx̃
A
2

2

mñX

2 D 1C2AX
L C1AX

R*
mx̃

A
2

mm
b2

cS mx̃
A
2

2

mñX

2 D J . ~B46!
e

on
-

ed
x-

of
-

a

x-
the
The other coupling constants can be obtained by simply
changing the suffix of above formulas:

g25g1~L↔R!, ~B47!

g45g3~L↔R!, ~B48!

g65g5~L↔R!, ~B49!

AL5AR~L↔R!. ~B50!

3. Mass functions

The mass functions used in the effective coupling c
stants of them1→e1g andm1→e1e1e2 processes are de
fined as follows:

b0
n~x!5

1

2~12x!4
@229x118x2211x316x3ln~x!#,

~B51!

b1
n~x!5

1

~12x!4
@126x13x212x326x2ln~x!#,

~B52!

b2
n~x!5

1

~12x!3
@12x212x ln~x!#, ~B53!

b0
c~x!5

1

2~12x!4
@216145x236x217x3

16~3x22!ln~x!#, ~B54!

b1
c~x!5

1

2~12x!4
@213x26x21x316x ln~x!#,

~B55!

b2
c~x!5

1

2~12x!3
@2314x2x222 ln~x!#,

~B56!

c0~x,y,z!52
x ln~x!

~y2x!~z2x!
2

y ln~y!

~x2y!~z2y!

2
z ln~z!

~x2z!~y2z!
, ~B57!
09400
x-

-

c2~x,y,z!5
1

4 F3

2
2

x2ln~x!

~y2x!~z2x!
2

y2ln~y!

~x2y!~z2y!

2
z2ln~z!

~x2z!~y2z!G , ~B58!

d0~x,y,z,w!5
x ln~x!

~y2x!~z2x!~w2x!

1
y ln~y!

~x2y!~z2y!~w2y!

1
z ln~z!

~x2z!~y2z!~w2z!

1
w ln~w!

~x2w!~y2w!~z2w!
, ~B59!

d2~x,y,z,w!5
1

4 H x2ln~x!

~y2x!~z2x!~w2x!

1
y2ln~y!

~x2y!~z2y!~w2y!

1
z2ln~z!

~x2z!~y2z!~w2z!

1
w2ln~w!

~x2w!~y2w!~z2w!J . ~B60!

APPENDIX C: APPROXIMATE EXPRESSIONS
OF THE PHOTON-PENGUIN AMPLITUDES

FOR THE SO„10… MODEL

In this Appendix we discuss them1→e1g amplitude for
SO~10! GUT using approximate formulas. Although we us
full formulas for numerical analysis, more transparent e
pressions are obtained in a special parameter region.

The expressions forAR and AL are simplified if we use
the following approximations.

~1! Keep only dominant contributions. These are parts
terms proportional tomt in the neutralino and charged
slepton loop diagrams for bothAR andAL . ForAR , a part of
the chargino-sneutrino loop contribution can also give
large contribution.

~2! Use the fact that, except for the left-right slepton mi
ings, the slepton mass matrix is almost diagonalized in
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basis whereyu is diagonal and the diagonal elements for t
first-two-generations are almost the same. The third gen
tion sleptons become lighter beccause of the effect of
GUT interaction. We treat diagonal elements for the first t
generations in the slepton mass matrix exactly degenera
the approximate formulas and the difference between
third and the first components are denoted asDmẽR

2 , DmẽL

2 ,

and DmñL

2 , respectively. Neglecting the renormalization e

fects between the GUT and electroweak scales by small
ton Yukawa coupling constants, these difference are gi
by Eq.~46!. We take into account the left-right mixing of th
slepton mass matrix as perturbation.
th
%

or
e
d

c
t

u
e

e,
r

09400
a-
e

o
in
e

p-
n

~3! Take the limit mẽL
.mẽR

.mñL
5m̄@M x̃

A
2,M x̃

A
0,

namely the average slepton mass is much larger than
chargino and neutralino masses.

Within these approximationsAR andAL are given by

AR.2
e tan2uW

32p2
@e2 i (f22f3)an1ac#, ~C1!

AL.2
e tan2uW

32p2
@e2 i (f32f1)an* #, ~C2!

where
an5~VKM
0 !32~VKM

0 !33*
2~VKM

0 !31S mt

mm
D S m0

Ae3

yt
1m* tanb D
m̄

S mW

m̄
D 2S M1

m̄
D S DmẽL

2

m̄2 D S DmẽR

2

m̄2 D , ~C3!

ac5~VKM
0 !32* ~VKM

0 !31

A2cot2uW

cosb (
A51

2

~OCL!A2* ~OCL!A1

mW

m̄
lnS m̄2

M x̃
A
2

2 D S M x̃
A
2

m̄
D S DmñL

2

m̄2 D . ~C4!
e

at

SY
p,

g’s
in-
n.

ec-

n

a-
For the neutralino contributions, difference between
above expression and the exact calculation is within 10
abovemẽR

.500 GeV for the parameter set of Fig. 7. F
chargino contributions the approximation is slightly wors
At mẽR

.500 GeV the difference is within a factor of 2 an

becomes about 10% level formẽR
51000 GeV. From the

above expression we can see that despite lack of the fa
mt /mm the chargino contribution can become comparable
or even dominant over the neutralino contribution whenm̄
@mW because of the enhancement factorsA2cot2uW/cosb

and (m̄/mW)ln(m̄2/Mx̃
A
2

2
).

APPENDIX D: NEUTRON EDM

We discuss QCD correction in the calculation of the ne
tron EDM @21,27#. The neutron EDM are calculated by th
following effective Lagrangian:

Leff5(
q

Cq
E~m!O q

E~m!1(
q

Cq
C~m!O q

C~m!

1CG~m!O G~m!, ~D1!

whereO q
E , O q

C , O G correspond to the quark electric dipol
chromomagnetic dipole, and gluonic Weinberg’s operato
respectively, which are given by

O q
E52

i

2
q̄smng5qFmn, ~D2!
e

.

tor
o

-

s,

O q
C52

i

2
q̄smng5TaqGamn, ~D3!

O G52
1

6
f abcemnlrGlr

a Gma
b Gn

ca .

~D4!

Here, e012351, and f abc is the structure constant of th
SU~3! group.

In SUSY models, we can obtain the Wilson coefficients
the electroweak scale by evaluating one-loop diagrams.Cq

E is
induced by the photon-penguin diagram.Cq

c is induced by
the gluon-penguin diagram. There are three types of SU
contribution, chargino-squark loop, neutralino-squark loo
and gluino-squark loop diagrams. The gluonic Weinber
operator is induced at a two-loop level and the diagram
volving the stop and the gluino gives dominant contributio
These contributions are listed in Ref.@21#.

We can take into account a QCD correction from the el
troweak scale to a hadronic scale~1 GeV!, by using the
following renormalization group equations for the Wilso
coefficients:

m
dCW ~m!

dm
5

as~m!

4p
gTCW ~m!, ~D5!

whereCW 5(Cq
E ,Cq

C ,CG)T and the anomalous dimension m
trix g i j is written by
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g5S 8/3 0 0

32eQ/~3gs! ~22912Nf !/3 0

0 6mq 2Nf13
D .

~D6!

Here,Nf is a number of the quark flavor andQ denotes the
electromagnetic charge of the quark in unite (e.0). The
RGEs can be solved analytically as follows:

Cq
E~m!5h8/(3322Nf )FCq

E~m0!

18eQ~12h24/(3322Nf )!
Cq

C~m0!

gs~m0!
2

72eQmq~m0!

712Nf

3S 12h24/(3322Nf )1
2

2Nf15

3~12h (1014Nf )/(3322Nf )! D CG~m0!

gs~m0!
G , ~D7!

Cq
C~m!5h (22912Nf )/(3322Nf )FCq

C~m0!

2
9

712Nf
~12h (1414Nf )/(3322Nf )!

3mq~m0!CG~m0!G , ~D8!

CG~m!5h (916Nf )/(3322Nf )CG~m0!, ~D9!
tt

l.
,
,
d

l
9

re

-

09400
whereh5gs(m0)/gs(m).
We solve RGE frommW to mb , mb to mc, andmc to the

1 GeV scale. When the heavy quarks (c,b) decouple at their
mass threshold,CG is induced through the chromoelectr
dipole moment of the heavy quarks. DifferenceCG below
and above the threshold is given by@28#

CG~mq!below2CG~mq!above51
as~mq!

8pmq~mq!
Cq

C~mq!.

~D10!

Taking into account the QCD and threshold corrections,
obtain the effective Lagrangian at the hadronic scale. I
then straightforward to evaluate the effectiveL at 1 GeV
scale frommW scale.

The neutron EDM (dn) is given by the Wilson coeffi-
cients at a hadronic scale as follows:

dn5dn
E1dn

C1dn
G , ~D11!

dn
E5

1

3
~4Cd

E2Cu
E!, ~D12!

dn
C5

1

3

e

4p
~4Cd

C2Cu
C!, ~D13!

dn
G5

eM

4p
CG, ~D14!

whereM is a chiral symmetry breaking parameter, which
estimated as 1.19 GeV. In the above we use nonrelativ
quark model fordn

E and naive dimensional analysis fordn
C

anddn
G .
.
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