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n"—etyandut —ete"e” processes are analyzed in detail with polarized muons in supersymmetric
grand unified theories. We first present a Dalitz plot distributionf6r—-e* e e~ decay based on an effective
Lagrangian with general lepton-flavor-violating couplings and define vaswnd T-odd asymmetries. We
calculate branching ratios and asymmetries in supersymmetiis) @idd S@10) models taking into account
complex soft supersymmetry breaking terms. Imposing constraints from experimental bounds on the electron,
neutron, and atomic electric dipole moments, we find thafltoeld asymmetry fo. ™ —e*e*e™ can be 15%
in the SU5) case.P-odd asymmetry with respect to muon polarization fof—e™ y varies from—100 to
100 % for the S@LO) model while it is+100% in the SB) case. We also show that tieeodd asymmetries
in u*—e*ete” and the ratio ofu™ —e*e*e” andu ™ —e" y branching fractions are useful to distinguish
different models.

PACS numbsgps): 13.35.Bv, 11.30.Fs, 13.88e

[. INTRODUCTION m*'s stopped at target surface are 100% polarized in the
direction opposite to the muon momentdi®]. It is shown
In order to explore physics beyond the standard modein Ref.[11] that the muon polarization is useful to suppress
(SM), rare decay experiments can play a complementary roléhe background processes in fhaé —e* y search. As for the
to the direct search for new particles at the high energy fronsignal distribution of u™—e*y, the angular distribution
tier. Through forbidden or very suppressed processes withiith respect to the muon polarization can distinguish be-
the minimal SM, we may be able to obtain information ontweenu™ —e y andu® —egy. Foru™—e*e*e, distri-
the interaction at the energy scale not accessible by collidasution in the Dalitz plot and various asymmetries defined
experiments. The search for lepton flavor violati&®V) is  with help of the muon polarization carry information on
one of such windows to new physics. chirality and Lorentz structure of LFV couplings. In particu-
In recent years, LFV processes have received much attefar, we can defin@-odd asymmetry which is sensitive @P
tion because in the supersymmet(BUSY) grand unified  violation in LFV interactiong12]. In the previous papdi.3]
theory (GUT) the branching ratios fop"—e"y and ™  we pointed out that sizabl&odd asymmetry can occur in
—e’e’e” and theu-e conversion rate in a nucleus can the SU5) SUSY GUT when &CP violating phase is intro-
reach just below present experimental valliés-4]. The  duced in one of the soft SUSY breaking parameters, i.e., the
present experimental upper bounds of these LFV processefiversal trilinear scalar coupling constaky. The purpose
areB(u"—e'y)<1.2x10 " [5], B(u"—e*e’e7)<1.0  of this paper is to give a model-independent framework for
x10 ' [6], and o(u” Ti—e Ti)/o(n Ti—capture}<6.1  analyzing theu™ —e*y and u™—e*e*e” processes and
X103 [7]. It is possible that future experiments will im- investigate specific features of the &Jand S@10) SUSY
prove the sensitivity by two or three orders of magnitudeGUT focusing on the-odd and other asymmetries. Detailed
below the current bounds,9]. comparison of thél-odd asymmetry with the electron, neu-
In this paper we discuss thex™—e*y and u* tron and Hg electric dipole moment&DM) is also done
—ete’e processes in SUSY GUT. We focus on variousintroducing SUSYCP violating phases within the minimal
asymmetries defined with the help of initial muon polariza-supergravity SUGRA) model.
tion. Experimentally, polarized positive muons are available In Sec. Il we describe effective Lagrangian of the pro-
by the surface muon method because muons emitted fromessesu™ —e*y andu™—e"e"e”. We introduce &-odd
asymmetry foru™ —e*y and two types oP-odd asymme-
tries and aT-odd asymmetry for™ —e*e*te . In Sec. Il

*Email address: yasuhiro.okada@kek.jp we introduce the S(%) and S@10) SUSY GUT and briefly
"Email address: ken-ichi.okumura@kek.jp review how LFV processes arise in these theories. In Sec. IV
*Email address: yasuhiro.shimizu@kek.jp we present results of our numerical calculations. We calcu-
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FIG. 1. Kinematics of thee* —e*e* e~ decay in the center-of-

. 0
mass system of muon. Plane | represents the decay plane on which 0

the momentum vectorp;, p,, ps lie, wherep, and p, are mo-
menta of twoe*’s and f)3 is momentum ok ™, respectively. Plane
II'is the plane which the muon polarization vec®@rand f)3 make.
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FIG. 2. Kinematical region of thee " —e*e*e™ decay in the
center-of-mass system of muomx; (X,) represents a larger
(smalley energy of decay positrons normalized by, /2. A light

late the branching ratios and the asymmetries in the SUS\?haded region is allowed.

SU(5) and S@10) models taking into account complex soft

SUSY breaking terms under the constraints imposed by th

EDM experiments. We find that theodd asymmetry can be
15% in the SW5) case while it is less than 0.01% in the
SQO(10) case. We also show that theodd asymmetry for
n*—e"y varies —100-100 % for the SQ0) model and
100% for the Sb) case. In the S&) case theP-odd asym-
metries inu* —e*e*te” can reach+30% and the ratio of
n—e"y and u"—e"e*e” branching fractions varies

over SUSY parameter space. On the contrary these asymme-
tries are smaller and the ratio of two branching fractions is

almost constant in the S@0) case. In appendices, useful
formulas are listed.

Il. PHENOMENOLOGY OF THE p*—ety
AND p*t—etete” PROCESSES

We begin with the effective Lagrangian far* —e*y

and u*—e'e'te  processes. Using the electromagnetic
gauge invariance and the Fierz rearrangement we can write

without loss of generality:

4G

g

+01(1reL) (ereL) + 9o 1L er) (ELER)

L= {mﬂAR,U/RO"uVeLFMV"‘ mMAL/.LLO'MVeRFMV

+03( urY"eR) (ERYMGR) +0a(mLyrel) (e YulL)
+0s( 1Ry er)(EL YueL)+ 9s( L 'yMeL)(gR'yMeR)
+H.c}, (1)

whereGg is the Fermi coupling constant and, is the muon

ghoton—penguin coupling constant which contributesuto
~e/y (0" —eLy). These couplings also induce the
—e'e’e” processg’s (i=1—-6) are dimensionless four-
fermion coupling constants which only contribute to"
—e'e*e . g, andg, are scalar type coupling constants and
0i's (i=3—6) are vector type coupling constanfs. r and
g;'s (i=1-6) are generally complex numbers and calcu-
lated based on a particular model with LFV interactions.
The differential branching ratio fou ™ —e™ y is given by

dB(u"—e"y) iin 12

T doose 1927 {|A|_| (1+ P cosb)
+|Ag|%(1— P cos#)} 2
B(ut—e"
_Blu 5 Y){1+A(,ﬁ_>e+y)
X P cosé}, (3

where the total branching ratio fop™—e*y [B(u*
—e"y)] and theP-odd asymmetryA(u"—e" v)] are de-
fined as

B(u"—e"y)=384m2(|AL|?+|Agl), (4)
|ALIZ— AR

Alpt—ety)=———. (5
|ALI2+|Agl?

HereP is the muon polarization and is the angle between

the positron momentum and the polarization direction.
Kinematics of theu™ —e*e*e™ process with a polarized

muon is determined by two energy variables of decay posi-

mass. The chirality projection is defined by the projectiontrons and two angle variables which indicate the direction of

operatorsPg=(1+y5)/2 and P .=(1-ys5)/2. o,, is de-

fined aso,,=(i/2)[v,,v,]. AL(Ag) is the dimensionless

the muon polarization with respect to the decay plane. In Fig.
1 we take thez axis as the direction of the decay electron
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momentum Bs) and thez-x plane as the decay plane. Polar plot (Fig. 2. In our calculation we neglect the electron mass
angles @, ¢) (0= 6=1,0=< <2) indicate the direction of compared to the muon mass except for the total branching

h larizatio. We tak tion that the d ratio. In order to avoid logarithmic singularity we have to
€ muon pojarization. We take a convention that the de- .o jn1g account the electron mass properly to evaluate the
cay positron having larger energy is named positron 1 an

. ) . otal branching ratio.
the other is positron 2 andd(),=0. We define the energy . . . o
variables as¢, = 2E,/m, and x,=2E,/m, whereE; and Using the coupling constants in the Lagrangian in @g.

E, are the energy of the positron 1 and 2, respectively. |nthefd|i|ffere.ntial branching ratio for " —e*e*e™ is written
this convention X;,X,) represents one point of the Dalitz 85 '0IOWS:

dxldx;j%wqo =z[cla1(x1 ,X2)(1+ P cosé)+ Craq(X1,X0)(1—P cosh)

+ Ca{aa(Xq,Xo) + PB1(X1,X2)C0SO+ Pyi(X(,X,)SiN O COSe}
+ Ca{aa(X1,X2) — PB1(X1,X2)€0SO— Py1(X(,X5)Sin O COSe}
+ Cs{az(Xq,X2) + PBo(X1,X2)c0SO+ Pys(Xq,X5)SiN 6 COSe}
+ Ce{@a(X1,X2) = PB2(X1,X2)COSO— P ya(X1,X5)sin 6 COSe}
+ Caa(Xq,X2)(1—P cosh) + Pys(Xq,Xp)sin 6 cose}

+ Cg{aa(X1,X2)(1+ P cosh) — Pys(Xq,Xy)sinf cose}

+ Co as(X1,X2)(1+ P cosf) — Pya(X1,X,)Sin 6 cose}
+Ciof @5(X1,X2) (1 —P cosh) + Py(Xq,X5)SIiN 6 cOSe}

+C11Py3(X1,X5)sin @ sing — C 5P y4(Xq,X5)SINO Sing], (6)
whereC; are expressed by the coupling constamts(i=1—6) andA_ as

lga)? |g2)?
C1:1—6+|93|2: Cy= 16 +g4/%,

Cs=1gsl?> Cs=Igel’>, Cs=leAr|?, Ce=|eAl?,
C;=ReleArg;), Cg=ReeAg3), Co=Re(eArgs), Cio=Re(eAgs),
Cyi=Im(eArg} +eAG%), Ci=Im(eAgs +eAgs), W)
wheree(>0) is the positron charge arilis the magnitude of the polarization vector. Functiens B;, andy, are defined as
a1(X1,X2) = 8(2— X1 = Xz) (X1 +Xp— 1), (8)
az(Xy,X2) = 2{X1(1=X1) +Xa(1—X2)}, 9

2X5— 2%+ 1 2x2—2x;+1

az(Xq1,X2)=8 T-x 1-x, , (10)

a4(X1,X2)=32(X1+X2—1), (11)

as(X1,%X2) =8(2—X1—Xy), (12
(X1 + %) (X3 +X2) — 3(X1 +X2) 2+ 6(X,+X,) — 4

Bu(Xe )= 2 1T X2)(XT+X5 1t X2 17Xz ' 13

(2=X1—X3)
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_ 343y
ﬁZ(Xl’XZ)_ (1_Xl)(l_X2)(2_Xl_X2) X{Z(X1+X2)(X1+X2) 4(X1+X2)

X (2X3+ X Xp+ 2X3) + (193 + 30x Xp + 19x5) — 12(2x1 + 2x,— 1)}, (14)
V(1=X1) (1= X) (X3 +Xo— 1) (Xo— X1)
X1,X5)=4 , 15
Y1(X1,X2) (2—X1—%y) (15
(Xp+X—1) (Xg+Xa—1)(Xp—Xq)
Xq1,X5) =32 16
20X =8N TS 1) 2—x—xo) 19
(o) =167 XD 1 ) (17)
X1 ,X5) = —— (X1 +Xo— 1) (Xo—X4),
Y3l X1,X2 (1—x)(1—xy) 1T X2 27 X1
(xx0) =8| 22D, ) (Xo—x2) (19
X1,Xp) = (2= X1 X2) (Xp— Xq).
Ya(X1,X2 (1—x)(1—xy) 17 X2) (Ko™ Xq
I
In Eq. (6) there are three classes of terms: the first contri- 0—0, e—27—¢. (20)

bution arises from the four-fermion coupling constants _
(C,_4), the second from the photon-penguin coupling con-Thus only terms proportional 16,, andC,, areT-odd quan-
stants Cs ¢, and the third from interferences between thelities. Notice that these terms are given by imaginary parts of

four-fermion couplings and the photon-penguin Coup“ngslnterference terms between photon-penguin and vector type

(C,_1»). There is no interference between the Iohoton_four-fermion coupling constants. This means that effects of

penguin couplings and among the four-fermion couplings bygemvégftgﬁgsgicvgisjg?n;rélgntsq;%ligh a phase difference
themselves in our approximation neglecting the electron It is convenient to define integrated asymmetries in order

mass, because the chirality of the electrons cannot b separate four angular dependences, although in principle

matched bet\Neen. these couplings. For the same reason, $R can determin€; separately by fitting experimental data
scalar type coupling constangy and g, cannot interfere ;¢ phase space. In the Dalitz plots and 8, have a

with the photon-penguin coupling constadigandA, . The  gingylarity asl/(1—x, ) in the region near the kinematical
angular dependence with respect to the polarization d'reCt'OBoundary & ~1). v, i ys, andy, have a weaker singular-
is c!gssified il’.l'FO fqur types, nam(_aly, tgrms_ proportiondito ity as 1/ /——1_)(1 - as, B, andy, arise as square of photon-
1, (ii) cose, (iii) sinfcose, and(iv) sin@sine. Under the  henguin amplitudes whereas; and v, from interferences
parity operation B), 6, ¢ transform as between photon-penguin and four-fermion terms. On the
contrary, contributions from square of the four-fermion cou-
0— m— 0, pling constants have no singularity on the edge and have a
rather flat shape. These singular behaviors are cut off if we
(0<g<m), take into account the electron mass. To show this behavior
— (19 explicitly, we first integrate over smaller positron enersgy
3m—¢ (m=se<2m), fixing the larger positron energy, and define the following
differential branching ratio and three types of asymmetries
ap,, ap,, andar as a function of the larger positron energy

T
¢

so that terms proportional t@i) and (iii) areP odd. On the
other hand the time reversal operatiof) induces the fol-

lowing transformation: x1(3=<x,;=<1):
dB(xl)_fxl q fld 0[27d dB
dx;  Ji-x X -1 cos 0 qDdxldxzdcoséld@

=3{(C1+ Cy)F1(X1) +(C3+Cy)F (1) + (Cs+ Cg)F3(Xq) +(C7+ Cg)F4(Xy)

+(Co+CioFs(xp)}, (21)
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__1 fxl d jld afzwd 9 fxl d fod ajhd L R
aPl(Xl):m 1-x; % 0 cos o 7 dxdx,dcoséde 1-x%, % -1 €08 o 7 dxdx,dcosgdg

dxq
3 1
= 2 m{(cl_ Co)F1(X1) +(C3—Cy)G1(X1) +(Cs5—Cg)Ga(X1) = (C7— Cg)F4(Xq)
dxy

+(Co—CyoFs(x1)}, (22)

-1 X1 1 w2 dB
007 m L_dexzf_ld cos&fo de dx;dxpd cosfde

dxy

J dfd aJ%d 9 +f dfd 9f d a8
iy X CoS?) ., 9% dxdxyd cosode o “ X2 €080 ] 0. 0% dx,dx,d cosfde

=5 m{(cs_ Ca)H1(X1) +(Cs5—Cg)H2(X1) +(C7—Cg)H3(X1)

dxy
—(Co—CyoHa(x1)}, (23
LA BT R T e N IR
TOWT a8 | iy, P00 o W axdedoside iy, P2 10 *Frdaseonids
dxq
3 1
=5 M{CMH 3(X1) = CioHa(xq)}. (24
dx;

In these formulasF;, G;, and H; are functions of the variablg, and their analytic forms are found in Appendix A.
dB(x1)/dxq, ap (X1), ap,(X1), andar(x,) are defined to extract terniig—(iv) with different angular dependences andXx;)
is the T-odd quantity. In the above expressibg(x;) in dB(x;)/dx; andG,(X;) in ap, havel/(1—x;) singularity. Intro-

ducing the cutoffs for variablex, and integrating oves <x,<1— 4, we define the mtegrated branching raBcand three
asymmetrlesApl, Apz, andA+:

1-4 dB(xy)
B[ §]= dx
2] 1/2 ! dx,

=3{(C1+C)14[ 8]+ (C3+Cy)l [ 6]+ (Cs+ Cg)l 5[ 5]+ (C74 Co)l 4 61+ (Co+ Cyo)l 5[ 61}, (25
B 1 1-6 dB
Ap [8]= B3] f . dxlal(xl)d—xl(xl)

28[5]{(C1 C) [ 8]+ (C3—Cy)Iy[ 6]+ (Cs5—Cg) o[ 6] — (C7—Cg)l4[ 6]+ (Co—Cyo)ls[ 5]}, (26)

B 1 1-6 dB
Aol 31= g .G )

= m{(cs_C4)K1[5]+(C5_C6)K2[ 0]+ (C7—Cg)K3[ 8] = (Co— C19K4[ 5]}, (27)

1 (10 dB 3 3
Al 8]= mfm dxlaB(Xl)d_Xl(Xl) = m{Cusz] —C1 K[ 61} (29)
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li, J;, andK; are functipns of the putofﬁ and their analytic Loo=— (m$)ij'~|'ﬁ'j _ (m%)ijE_iTE_j _ mE‘HTH
forms are also found in Appendix A. Note thbf 6] and
Jo[ 6] have a logarithmic singularity &t=0. Because of this m
logarithmic dependence, the terfis |? and|Ag|? dominate _ma—ﬁ‘rﬁ_ —O(Au)iﬁﬁjH
over other terms in the branching ratio if coupling constants 8
eA , eAg, andg; have similar magnitudes. On the other 1
hand the numerator g% does not have a singular behavior = AT YR
so thatAy itself is suppressed when we take very sngalln T Mo(Ad)iFiTH+ 5 Mshephs +H.C.l, (32
the latter analysis of SUSY GUT cases we introduce the
cutoff § to optimize theT-odd asymmetry.
We have to take into account the electron mass properl
to get precise value of total branching ratio. If the photon-nents of the superfields, F.
penguin contribution dominates the branching ratio, we can At the Planck scale these soft SUSY breaking parameters

derive a model-independent relation between the two branctgatisfy flavor-blind universal conditions which are implied in
ing ratios[14]: the minimal SUGRA model:

)\;vherei,j are generation indicesl, F are scalar compo-

m2=mZ=mZ1l, mZ=m>=mZ,
Blut—e'e'e’) a
B(u*—e'y) 3w

(AWij=Ao(Yij» (Ag)ij=Ao(Ya)ij - (33

(29)
With these conditions the lepton and slepton mass matrices

where « is the fine structure constant. Neglecting the terms-2n be diagonalized simultaneously at the Planck scale, and

suppressed by /m.. , the total branching ratio is, therefore therefore there is no LFV at this scale. However, these con-
given by e ' " ditions receive corrections from the renormalization effect

between the Planck scale and the GUT scale mainly due to
the large top Yukawa coupling constant. As a result the mag-
nitude of the 3-3 element of the mass matrix i scalar

B(ut—etete )=2(C,+C,)+(C3+Cy) fields becomes smaller than 1-1 and 2-2 elements. In the
basis whergy,, is diagonalized at the Planck scale, the mass

m2\ 11 matrix for the 10 scalar fields at the GUT scale is approxi-
+32] log| —5 | — [ (Cs+Ce)+16(C7+Cy) mately given by
me
m2
+8(Cy+Cyp). (30
m3= m? :
m2+ Am?
Ill. SUSY GUT AND LFV
In this section we introduce §6) and S@10) SUSY 3 M
GUT and discuss LFV processes. We assume that SUSY is Ami=— _2|(yu)33|2mg(3+ |Ao|2)|n(M—P).
broken explicitly at the Planck scale with soft SUSY break- 8 G
ing terms and that these terms have universal structure with (34

respect to the flavor indices as suggested by the minimal
SUGRA model. First, we discuss the LFV process in theywhere My and Mg denote the reduced Planck mass2
SU(5) SUSY GUT and introduce the 300) SUSY GUT in 108 GeV) and the GUT scale~2x 10*® GeV). This cor-
the next subsection. rection amounts to about 50% of their original values and the
lepton and slepton mass matrices are no longer diagonalized
simultaneously. This becomes a source of LFV which could
A. SUS) SUSY GUT induce observ)gble effects " —e* y [1].

In the SU5) SUSY GUT, we have three generations of ~ The SU5) symmetry is broken to the SM groups at the
10(T) and5(F) representations of 38) as matter fields and GUT scale, and after integrating out heavy fields the effec-
5(H) and5(H) representations of Higgs fields. The Yukawa tive theory becomes the minimal supersymmetric standard

superpotential and the soft SUSY breaking Lagrangian argodel (MSSM). The superpotential and the soft SUSY
written as follows: breaking Lagrangian for the MSSM are written as follows:

1 Wussv= €*P(Ye)ijH1.EfLj s+ €*P(Yq)ijH1.D{Qj
Wsus)= g Yu)ij TiTiH+(ya)ijFiTjH, (3D +€B(yy)ijH2aUSQ 5+ €PuH 1 Hop, (35)
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L sor= — (M) EFE;— (m?);, Li*T; — (m3);; D D
—(ma)ijoi*oj—(m(zg)ijéi*éi—malHIHl
- mﬁzHZHz_ Mo(Ae)ij faﬁHlaEi*[JB

+my(Ag)ije“PH labi*bj/j'

+Mo(Ay)ij €PH2,UF Qs+ € uBH1,Hop

1 =- 1 == 1 =
+§MlBRBL+EM2WRWL+§M3GRGL

+H.c.|.

In this formula €*? is defined ase'l=e?’=0, %=

(36)

21

— €

PHYSICAL REVIEW D 61 094001

mass. From the MSSM Lagrangian at the electroweak scale
we can derive the LFV coupling constams g and g;_¢
through one-loop diagrams involving slepton, gaugino, and
Higgsino. The complete formulas are given in Appendix B 2.
In the SU5) model, only the right-handed slepton mass
matrix can develop off-diagonal terms if the ratio of vacuum
expectation values of two Higgs fields (t8r(H2)/(H?))
is not very large. In such a case oy , g;, andgs have
sizable contributions. Restricting to small or moderatean
cases, all effective coupling constants are proportional to the
product of the KM matrix element = (V%) sVu) i
since the LFV transition occurs throughm@)ﬂ or
(m2)%(m2)s;. This situation does not change even if we
take into account the LFV transition due to the left-right
mixing of the slepton mass matrix. This means that e
violating phase of Yukawa coupling constants cannot make a
phase difference betweefy, and g;, or A and gs, and
therefore theT-odd asymmetnA; cannot appear from this

=1. At the GUT scale these parameters satisfy the GUTSOUrce.

relations
ye:y-cli—v
A=Al
m2'=mZ =md=mZ, mi=m3=mZ,

2 _ 2 2 _ A2 — — —
My, =My, My, =My, M;=M,=M3=Ms;.

(37
(39

(39

In the basis wherg,, is diagonalized at the Planck scajg,
at the GUT scale still approximately remains diagonal. Inscale by Eq(37). On the other hand, it is known that this

this basisy, is diagonalized in the following way:

VRrYeV, = diagonal,

(40

whereV, andVy are unitary matrices and using E§7) Vg

is given by

(VR)ij=(Vem)ji »

whereV},, is the Kobayashi-MaskawéKM) matrix at the

GUT scale.

(41)

It is useful to make unitary transformations BpandL

to go to the basis wheng, is diagonalized at the GUT scale.
In the new basis the off-diagonal elementroﬁ is given by

3
(Mg)jj=— Q(VQM)?A(V&M);]|(yu)33|2m(2)

X (3+ |A0|2)|n($).
G

(42

There is another important source©P violating phases
in soft SUSY breaking terms. Within the SUGRA model, we
can introduce four phases: phasesvof, A,, B, andu, but
not all of them are physically independent. By field redefini-
tion, we can take the phases Af and u as independent
phases. If we take into account these phasges;an be gen-
erated. Since these phases also induce the electron, neutron,
and Hg EDMs[15,16, we take into account these EDM
constraints to obtain allowed regions of SUSY phases.

Up to now we consider that the Yukawa coupling con-
stants are given by E@31), so that the lepton and down-type
quark Yukawa coupling constants are related at the GUT

relation does not reproduce realistic mass relations for
charged leptons and down-type quarks in the first and second
generations. It is therefore important to study how the pre-
diction for LFV processes depends on details of the origin of
the Yukawa coupling constant in the MSSM Lagrangian.
One way to generate realistic mass matrix is to introduce
higher-dimensional operators in the &Y superpotential.
Once this is done the simple relationship between the
charged lepton and down-type quark Yukawa coupling con-
stants does not hold. Although the effect of higher dimen-
sional operators is suppressed ®YyMs/Mp), masses and
mixings for the first and second generations can receive large
corrections to the GUT relation. If ta# is not very large,
LFV is still induced only for the right-handed slepton sector
and Eq.(42) holds with replacement of,, by V§ which is

not necessarily related to the KM matrix elements. In the
following, therefore, we treak . as a free parameter. Since
the u*—e*y and theu™ —e*e*e” branching ratios are
proportional to|\ |2, we present these branching ratios di-
vided by|\,|2. If tan B is as large as 30, the bottom Yukawa
coupling constant can induce the LFV in the left-handed

The off-diagonal element of the slepton mass matrix beslepton sector. In such a case, if we include the effect of

comes a source of LFV.

higher-dimensional operators at the GUT scale, there are

In the actual numerical analysis, we solved the MSSMphoton-penguin diagrams which are proportionahtpand
renormalization group equation from the GUT scale to thethese contributions tend to dominate over other contributions
electroweak scale and determine the masses and mixings fas shown in Ref[17]. Because the LFV branching ratios
SUSY particles. We also require that the electroweak symeepend on many unknown parameters in such a case, we do

metry breaking occur properly to give the correeboson

not consider this possibility here.
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B. SO(10) SUSY GUT gl 41

In the minimal S@10) model, we assume three genera-
tions of 16 representation matter field¥() and two10 rep-
resentation Higgs fieldsd{,,®4) of SO(10). The Yukawa
superpotential and the soft SUSY breaking Lagrangian are
written as follows: wherey, is a real diagonal matrix, and therefore the unitary

matrix U is related to the KM matrix at the GUT scale as

i
p= e, (50)
e' ¢3

1 1
Wso(10/= E(Yu)ij‘l’iq’u‘[’j + E(Yd)ij‘l’i@d‘l’j . (43 U=Vl . (51)

If we go to they.-diagonalized basis at the GUT scale, the

~ e off-diagonal elements of slepton mass matrices become as
‘Csoft: - (m\zlf)ijqjihyj - m<21>u‘1’$q’u— m<21>dq)£q)d g P

follows:
- @(A IRIR \Tf—+@(A ) U DT 5
2 Vi HiRuE T 5 Aa)i HiP e (mg)j=— Fef'“’f¢i><V&M>3i<vaM>§j|<yu>33|2m3
ar
v Ao +H (44) M
= .C.i.
7 MiohiorMa ><(3+|Ao|2)ln(—P), (52)
Mg
At the Planck scale, we have the universal boundary condi-
tions )
(mE)ij:_ Q(V&M)gi(VgM)Bj|(yu)33|2m%
mi=mgl, mg =mg =mg, (A))i;=Ao(Yu)ij, Mo
><(3+|A0|2)In(—). (53
Mg
(Aa)ij=AoYa)ij - (49 Since the left-handed slepton also has the LFV effect in the

case of the SA0) SUSY GUT, there are dominant photon-

In contrast with the S(b) SUSY GUT, all matter fields are L - - .
unified in a single representatioh of SO(10) and masses of F;Fﬁ;m %?)g:%mass\,\g;;zssrgdngpsganam inthe slepton

all squarks and sleptons of the third generation receive a In addition to the KM phase, there are two physical

pphases in Eq(50) up to an overall phase. A combination of
these phases and the KM phase is responsible to the electron
BDM [2,18]. If the photon-penguin diagram proportional to
m, dominates in thex ™ —e™ y amplitude, there is a simple
relation between the electron EDM and the"—e’y
branching ratid 2]. Defining a phase as

Im[e'(?s™ D{(VR\) 31( Vi) 3321

At the GUT scale, the initial conditions for the parameters of =] (Vi) a1 View) 5 sin @, (54
MSSM Lagrangian in Eqs35) and (36) at the GUT scale
are written as follows:

B(u—
Ye=VYd (47) |de|=1.3\/%|sin ¢| (107%"ecm). (55

A=Ay, (48 Later we see that the diagram pr_oportionalnuo does not
necessarily dominate over other diagrams. In such a case the
above relation does not hold.

and that of the first and second generation is given by:

Mp

el @9

5
Am%,———8 2|(yu>33|2m3<3+|Ao|2>|n(
ar

the relation is given by

ME=m=m3=mg=ma=mg,
IV. RESULTS OF NUMERICAL CALCULATIONS

mﬁlzméd, mﬁ;miu, M;=M,=Mz=M,, (49 We present results of our numerical analysis @f
—e"y and u"—e"e*e” processes for the §6) and

and Hg EDMs as constraints on tkeP violating phases of
R the soft SUSY breaking terms. Following the procedure dis-
Ye=UTPy.U, cussed in the previous section, we solve the renormalization
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group equations with the universal condition for the SUSY 2 2 ¢
breaking terms at the Plank scale. Though the approximate” '2 E
formulas for the slepton mass difference are given in the |,
previous section to explain qualitative features, we solve the 1.2 E
renormalization group equations from the Planck scale to the ' ¢
electroweak scale numerically taking into account the full 22 :
flavor-mixing matrix for fermions and sfermions. To deter-  ,,
mine allowed range of SUSY parameter space we use the o2 ¢
results of various SUSY particle searches at LEP and Teva °
tron and the branching rati®(b—sy). The details on these
constraints are described in REF9].! We take the top quark -, 2 .
mass asm,=175 GeV. Because we calculate the LFV ~ 18 ¢
branching ratios divided b\ ,|2, the result is almost inde- ek '
pendent of the KM matrix elements. For definiteness, we use ,, i e 2 E
the input parameters of the KM matrix elements as : ol :
|(Vikm) bl =0.041, [(Vim)tal = 0.006, and|(Viw)us =0.22.
Requiring the radiative electroweak symmetry breaking the
free parameters of the supergravi§8JGRA) model can be
taken as ta, My, Mo, |Ao| and the phase ok, (6, and

that of u (6,).

02 B |/ (
J b 1 1

L N PR I I
800 1000 200 400 800 800 1000

‘zgn( eV)

m(GeV)
(0) B(u—>e7)/M (b) B(u—> 3)/MF

1A,

E fi i'/
1 TR WL i Lt 11
00 200 400 600 800 1000

(@) A —> o) () Y

A. SU(5) GUT

Let us first discuss the case without tREP violating
phases in the S@8) GUT. In Fig. 3 we present the following
guantities:

!
L R B 0 AL A R R
200 400 600 800 1000 200 400 600 800 1000

2 ) > ) , oy .
| A r| | A T| B(M+ —e’ Y) (e) Aey (%) x(GeV) () Aez (%) (G

B(ut—e'ty) B(ut—e'e'e) B(ut—etee)

FIG. 3. The observables in the 8) model without the SUSY
A(p"—e'y), Ap,: Ap,, (56) CP violating phases in ther, -|Aq| plane. We fix the SUSY pa-
rameters as ta@=3, M,=150 GeV, andu>0 and the top quark
. _ _ mass as 175 Ge\(@) Branching ratio forw* —e* y normalized b
in the plane ofmg, a_nd |A9| for tan,8—3_, _MZ_:LSQ Ge\(, INS2=](VR) 2 VR) 542 (b) Bragching raiiLo for,u+7—>e+e+e‘ nor-y
0a,= 0,=0. Here\  is defined by the mixing matrix which  majized by|x,|2. (c) The ratio of two branching fractionB(u
diagonalizes the right-handed slepton mass matrix at the>3e)/B(u—evy). (d) The P-odd asymmetry foru™—e*y. ()
electroweak scale in the basis where the charged lepton ma¥ke P-odd aSymmEtrieS’-\p for u*™—e’e"e". (f) The P-odd
matrix is diagonalized. For the asymmetrles We take the cutasymmetriesAp, for u *—ete'e . The cutoff parametes is
off parameters=0. 02 IfI\,]=10"2, B(u"—e'y) can be taken to be 0.02.
10 andB(u—e*ete™) can be 1028 level, but if X, is
given by the corresponding KM matrix elemems,,| be- andAp, changes from-10 to 15 %. For§=0.02 the asym-
comes(3-5x 104, so that the branching ratios are Sma”efmetnesAP andAp_are expressed as
by three orders of magnitude. In Fig(c the ratio of two
branching fractions is shown. If the photon-penguin contri- 3
bution dominates over four-fermion ones this ratio is given Ay = ==1{0.6(C;—C,)—0.12C3—C,)
by Eqg. (29). We can see that for large parameter region the 1 2B
ratio is enhanced. In partlcular, neag_=400-600 GeV .aI- +5.6(C5—Cg) —4.7C;—Cg) +2.5Cq—C1p)},
most exact cancellation occurs for the photon-penguin am-

plitudes[3]. In Fig. 3d) A(u*—e*y) is shown. It is close (57)
to 100% except for small region where the almost exact can- 3
cellation occurs. Thé>-odd asymmetrief\p, and Ap, are Ap. = 2_{0 1(C4—Cy)+10(C5— Cg)
shown in Figs. &) and 3f). APl changes from-30 to 40 %
+2(C7—Cg)—1.6(Co—Cyp)}- (58)

The branching rati®(b—sy) is updated as 2010 “<B(B In the SU5) case, because ondg, gs, andA, have sizable
—Xgy)<4.5x10 4 [20]. contributions, we obtain the following expressions:
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3
Ap,= E{0.6|93|2— 0.12gs|°—5.6eA|?

+4.7RdeA g3)-2.5RdeAgs)}, (59

3
Ap,= 1015~ 10/eA |

—2ReeAg})+1.6ReeAgs)}. (60 Lot borE e 002 605 TL0.05 0.0 0 \o.o 0.05

eu/n e”/ﬂ:

d_(107e.cm
In the above formulas we can see that the coefficients for, i
|A |2, Re(A_0%), and Ref gi) are large. Therefore these < 8 |
asymmetries represent the dependence of square of photor gi
penguin terms and interference terms. It is interesting to se€ o, 3
that we can overdetermine the three coupling constgsits o 5
gs, and A, from observablesB(u"—e*y), B(u* 0.2

—e'e’e’), Ap, andAp, if we assume the S8) SUSY o

GUT without the SUSYCP violating phases. For example, -08 ¢

we can determings, gs, andA, from the three observables “Lo0s o0 0 0025 005 005 602 0 0025 005
B(u*—e’y), B(u—e'e'e), andAp , then,Ap, can be Ga0%eem O G (0%
predicted. In addition we should havé(u'—e®y)

=100% andA;=0. FIG. 4. 0, and¢, dependences on the EDMs aAg. We take

Next, we include the SUSCP violating phases and dis- @ SPecific set of SUSY parameters fan 3, M,=300 GeV,m_
cuss EDM constraints an@-odd asymmetry. We calculate =650 GeV, andAg|=1 in the parameter region 7< g, < and
the electron and neutron EDMs according to Ref]. Dis-  —0.05m<6,<0.057. Dark shaded regions are excluded by the
cussion on QCD correction is given in Appendix D. For the EDM experiments.

Hg EDM, we use the result of Reff16]. dyq is given . o
figure are almost exactly the same. In this figure we also

dyg=—(C§—CG—0.01F)x3.2x10 %,  (61)  show the parameter region which is not allowed by the EDM

constraints even if we change, around ¢,=0 for HAO
whereC{, Cg, andCg are chromomagnetic moments dis- = /2. Within the allowed region, the maximum value/Af
cussed in Appendix D. is 15%. Similar plots are shown for t@#+ 10 in Fig. 6. In

In order to se&, and 6, dependences on the EDMs and this case also the maximum valueAf is about 15%. Note

A7, we first show these quantities for a specific set of SUSYthat, in the case with th€P violating phases, we can still
parameters. In Fig. 4, the electron, neutron, and Hg EDMsletermine the complex coupling constagis gs, andA_ up
and A; are shown for taBg=3, M,=300 GeV, Me, to a total phase from the two branching rati@w"
=650 GeV, |Ag|=1 in the parameter regior 7< (5 < —e’y), B(u"—e’e’e”) and three asymmetried,

and —0.057= #,=<0.057. The experimental bounds on the Ap,, andAr.

EDMs are given bylds|<4x10 ?/(ecm) [22], |d,|<0.63

X 10~ %(ecm) [23], and|dyq|<9x 10~ #(ecm) [24]. As is B. SO(10) GUT

well known in Ref.[25] the EDMs are very sensitive 9, , In the SQ10) case, from Eq.(50), there are two

so thatd, is strgngly cpnstramed. On the other haﬁ}g can physical phases which contribute to the EDMs aad

be large. In this particular parameter séj =m/2 is not  _,a*, amplitudes. In the u*—e*y amplitudes

excluded by three EDM constraints. Maximum value of thethe term proportional tom, has a dependence of

T-odd asymmetnyAt in allowed region in this figure is 15%. ei(éa—¢z)(\/2M)32{(V2M)§3}2(\/QM)31 and other contributions

Note thatAr is proportional to sir, in a good approxima- are proportional to Wiy )%(Vey)s1. Therefore, the branch-

tion because the magnitude 6f, is strongly constraint by ing ratio " —e"y depends on the relative phase of two

the EDMs. terms. In the following we consider the case where there is
In Fig. 5 we show the quantities in E¢66) and At for  no relative phase so that the amplitude is proportional to

tang=3, M,=300 GeV, 05 = /2, 6,=0. We also show Also we do not consider EDM constraints from E@5)

the constraints from the electron, neutron, and Hg EDMséeXplicitly since this can be suppressed whis small.

Within the EDM constrainté\; can be 10%. As discussed in  In Fig. 7 the branching ratios and the asymmetries are
Fig. 4, when we varyd, around#,=0, the EDM values shown for the SQL0) model. We first show the case without

change considerably bit; is almost constant. Therefore the the SUSYCP violating phases. Input SUSY parameters are
allowed region by the EDM constraints moves in Fig. 5 if we taken as tag=3, M,=150 GeV, 6, =0, and§,=0. We
take 6, as slightly different value from 0. On the other hand see thaB(u"—e™ y)/|\,|? can be 10°. This value is en-
the contours for branching ratios and the asymmetries in thisanced by 2—4 orders of magnitude compared to thé&65U
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FIG. 5. The observables in the 8) model with the SUSYCP FIG. 6. The observables in the 88 model for tan3=10 in

violating phases in thméR-|A0| plane. We fix the SUSY parameters m;R-|Ao| plane. Other parameters are the same as in Fig. 5.
as tan3=3, M,=300 GeV, 0A0=7T/2, and #,=0 and the top

quark mass as 175 GeVa)—(f) are the same as Fig. &) The  magnitude in this model. Although the diagram proportional
T-odd asymmetry foru™ —e"e"e . The cutoff parameted is o m_gives the same contribution to thg andAg, there is
taken to be 0.02. The experimental bounds from the electron, neu chargino loop diagram which only contributesAg. In

}irr?glci?rde;goriizl\fs ?r:s 2:thrsohn°"ég|i\; ?ﬁghrig%‘:rsbgehre”fgtt‘;pg]i%pite of nom, enhancement, the contribution from the latter
neutron EDM, and the right lower line to the Hg EDM. The lower diagram can be comparable to that from the former one,

side of each bound is allowed by these experiments. A dark shade(%jSpeCIa”y when the slepton mass is larger than the chargino

region is excluded by the EDM bounds even if we allgyytaking mass.d'Lhe %omlnant co_ntrlbu]tclons flﬂ_ _and Ar 6.“? dis-
slightly different value from 0. cussed based on approximate formulas in a special parameter

region in Appendix C. In Figs.(&) and 7f) the P-odd asym-
case. The ratio of two branching fractions is almost constantetries foru™—e*"e"e™ are shown and these asymmetries
because the photon-penguin diagrams give dominant contrare small compared to the 8&) case.Ap; is less than 10%
butions to u*—efete”. The u*—e"y asymmetry andAp, is less than 14%. In this cae; and Cq terms
A(u*—e"y) varies from—20 to —90%. This is in con- dominate in Eqs(57) and(58) so that these asymmetries are
trast to the previous belief tha, and Agr have a similar  proportional toA(u"—e" y) and expressed as follows:
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FIG. 7. The observables in the 80) model without the SUSY 1.8
CP violating phase im;_-|Ao| plane. The input parameters are the ]j
same as in Fig. 3. The upper right black region is excluded by

phenomenological constraints and the left black region is not al- 1

lowed in the minimal SUGRA model. 0.8
0.6
l 0.4 !
~_ + + oz { ;
Apli 10A(,u —e), (62) 0 s T e a0 o0
my(GeV)
(9) A (%)
1
Ap,=— gA(,u*He+ Y). (63 FIG. 8. The obsevables in the §10) model with the SUSYCP

violating phase inm;R-|A0| plane. The input parameters are the

It is interesting to see that we can predict two observables iffame s in Fig. 5.

the u* —e"e’e” process from the.” —e" y asymmetry. (1) When we take into account the phase in Esf)), the
We have also investigated the case with fanl0. We  EpwM is generated as discussed in B86). We note that the
found the parity asymmetry fop"—e"y and Ap;, Ap,  T-odd asymmetry cannot be large even in such a case be-
have a similar magnitudes as Fig. 7, namélyx"—e"y)  cause the photon-penguin diagram dominates over the four-
varies —20— 100 %, APl varies 2-10% an(Apz varies fermion Contributionsl
4-16 % in the same parameter space. (2) If the " —e™y asymmetry is sizable, the simple re-

In Fig. 8 we consider the case with the SUEW violat- lationship between the EDM and the* —e* y branching
ing phase and take input parameters asp@a8, M,  ratio as in Eq(55) does not hold. This is because the EDM
=300 GeV, 05 = m/2, and6,=0. The branching ratio and amplitude is no longer proportional to the" —e* y ampli-
other asymmetries have similar magnitudes compared to theide due to the chargino loop contribution.

case in Fig. 7. We can see that theodd asymmetnA; is (3) Even if we include relative phases between the term

less than 0.01% because only the photon-penguin amplitudgroportional tom, and other contributions in the " —e*y

becomes large. amplitude, we expect larg&(u"—e"y) as long as two
Some remarks are in order. contributions have a similar magnitude. By numerical calcu-
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FIG. 9. The differential branching ratio and asymmetries for the ~ FIG. 10. The differential branching ratio and asymmetries for
ut—etete” process in the S(B) model as a function ok, theu™—e*e*e™ process in the SQ0) model as a function of;.
which is a larger energy of decay positron€¢Zm,). We fix the ~ The input parameters are the same as in Fig. 9.

SUSY parameters as t#r3, M,=300 GeV, ng=7OO GeV,

|Ao|=0.5, 65 =m/2, and6,=0. (a) The differential branching ra- V. CONCLUSION

tio for the u™ —e*e*e™ normalized by the total branching ratio.
(b) The differential P-odd asymmetryap . (c) The differential
P-odd asymmetnap,. (d) The differentialT-odd asymmetrya.

We developed the model-independent formalism for the
processu’ —e*y andut —e*e*e” with polarized muon
and defined convenient observables such asPtoeld and
. _ T-odd asymmetries. Using explicit calculation based on the
lation we have checked that the asymmetry varies from SU(5) and S@10) SUSY GUT, we show that various com-

N 100 to 100% if we include the relative phases. Quf"‘“ta'bination of LFV coupling constants can be determined from
tively, this feature can be understood by the approximat,s measurement of branching ratio and asymmetries. In the
formulas in Appendix C. From EqC1) we can see that the SQ(10) case theP-odd asymmetry in.* — e y varies from

neutralino and chargino contributions Ag can interfere ei-  _ 100'tg 100 % whereas it is 100% for the SUE) case. The
ther constructively or destructively depending on the relatives_j 44 asymmetries i —e“e"e are simply propor-
+ + ; ;
phase so tha(u " —e"y) can change its sign. tional to thex ™ —e*y asymmetry in the SQ0) case and
can be predicted from it. On the other hand, with the branch-
C. Differential branching ratio and asymmetries ing ratios and thé>-odd asymmetries in the™ —e*ete”

. . ; determine the coupling constants in the
Up to now we only discussed the integrated branchmgmoce.ss' We can over ;
ratio and asymmetries gi* —e'e*e . In the actual ex- effective Lagrangian in the §8) SUSY GUT if there are no

periment, the differential quantities are useful to distinguishSUSY CP violating phases. We also calculated thedd

; + + ot o :
different models. For example, in Figs. 9 and 10, we showSymmetry in the.™ —e"e"e process with the SUSTP

the differential branching ratio and asymmetries for a par—v'0|"’ltlng phases and compare it with the neutron, electron,

ticular parameter set in the $& and S@10) models. and I—!g EDMs. In the 5(5) case we can still dgtermine these
dB/dx,, ap., ap., andar are plotted for the parameter set of coupling constants using additional information of lf_*e_dd

2 asymmetry. Th&-odd asymmetry can reach 15% within the
tang=3, mg =700 GeV, M,=300 GeV, |Ag|=0.5, 0,  constraints of the EDMs. In the $D) case tha-odd asym-
=m/2, andd,=0. We can see clear differences between thanetry is small as a result of the dominance of photon-
SU(5) and S@10) models. The differential branching has the penguin diagram. These results are summarized in Table I.
steep peak near; =1 for the SQ10) case whereas the dis- We stress that although the magnitude of the branching ratio
tribution is broader for the S@3) case. This is because the has a large uncertainty due to the unknown parameter
photon-penguin contribution has 1AXk;) behavior near asymmetries and the ratio of two branching ratios are inde-
X;=1 and the four-fermion operators give a broad spectrumpendent of this ambiguity. Thus these quantities are useful to
We also see th&-odd asymmetry has the peakxitclose to  distinguish different models.

1. This fact arises from the {1 —x, behavior in they; and The experimental prospects for measuring these quantities
v4 Nearx;=1. Because of this feature of distribution, we depend on the branching ratio. For the (3@ model we
have choserd=0.02 to optimize thél-odd asymmetry. expect theu ™ —e™ y branching ratio can be 10? when the
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TABLE |. Summary of the results.

X
Fa(x)=16 In( 1T)(2x2—2x+ 1)
SU(5) SUSY GUT  S@10) SUSY GUT X

) (x2—
A(u"—e'y) +100% —100% —+ 100% LB EE)Xx ) (A6)
B(u"—etete) 0.007-O(1) constant {-0.0062) 3 1-x '

B(M+_)e+Y) 0 0 1 + +

P, —30% —+40% Ap1=— AL —e"y) F4(X):32(2X—1)2, (A?)
Ap, —20%—+20%  Ap,=—:A(u"—e"y)

A <15% <0.01%
(Al = =000 Fo(x)= —8(2x—1)(2x—3), (A8)

N\, is given by the corresponding KM matrix elements. In 2

such a case the " —e*y asymmetry can be measurable in ~ G1(¥)=—16(1-x)?In2(1—x) - 3(2x-1)

an experiment with a sensitivity of 16* level. For the

SU(5) model, to get theu* —e* y branching ratio of order X (8x%—32x+23), (A9)
10 2 andu™—e*e*e” branching ratio of 104 we have
to assume . is larger than several times 19 If the branch-

i i : =—16(2x*>—2x—7)In2(1—
ing ratio turns out to be as large, the" —e*e*e™ experi- Ga(x) 6(2x°—2x—7)In2(1—x)

ments with a sensitivity of 10'° level could reveal various +16(2x2—2x+1)In 2x

asymmetries. Because various asymmetries are defined with )

respect to muon polarization, experimental searcheg.for n 32 (2x=1D(x"—1x+13) (A10)
—e*y and u"—e"e*e” with polarized muons are very 3 1-x ’

important to uncover the nature of the LFV interactions.

Hi(X)=2(6—5x)(1—x)y2x—1
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APPENDIX A: BRANCHING RATIO AND ASYMMETRIES -8 arcco
1-x
In this appendix, we give kinematic functions which ap-
pear in the calculation of branching ratio and asymmetries 1-x
—128arcco —~ | (A12)
X
FI(X)EZJ dXzai(X,Xz), (Al) 4
1-x
Ha(x)=— §\/2x— 1(17x°— 24x+ 4)
X
()= : 7X—6)x? 2—3x
Gi(x) ZL_xde,Bl(x,xz), (A2) ) arcco% ) (A19
V1—x
jx
H;(x)=-2 dx,yi(X,X5), A3 2
0 L Penixxe) (A3) Ha(X) = + 32X~ 1(17*~ 30+ 16)
8 (7x2—16x+ 8)x 2—3x
Fi(x) =~ 5(4x=5)(2x~1)?, (A4) - T, areco ! (A14)
2 1-6
F2(x)=—§(2x—1)(8x2—8x—1), (A5) Ii[5]:J1/2 dxFi(x), (A15)
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1-6
Ji[a]:f/ dxG(x)dx, (A16) 2[5]_ 4+95+ )\1-268
1/2
36—1
—16\5(3+65— 52)arcco€ )
1-6 1-6
Ki[5]=f dxH;(x)dx, (A17)
1/2
+1285arcco€1 5) (A26)
1,[8]= 2 1+25)(1 26)3, (A18)
e K4l 8]= 105\/1 25(48—575— 6852+ 856°)
36—1
1 —4(1—6)3\/5arcc0% " (A27)
2[5]— (1426—268%)(1-26)2, (A19)
Ka8]= \/1 25(64— 415+ 265%— 855°)
1[8]= = (1-5)(2 5+252|(1_5) e
L 6]= 5 (1-9)( )in| = 251
—2(1— 86— 8%+ 8%)/sarcco 5
8
- §(1—25)(13—45+452), (A20) (A28)
APPENDIX B: LFV EFFECTIVE COUPLING CONSTANTS
16 3 IN MSSM
l4[6]= 5 (1-20)°, (A21)
3 1. MSSM Lagrangian
We first fix our notations of the MSSM for the numerical
calculation. Using
l[8]= = (1+ 5)(1-26)?, (A22)
v=12((H3)*+(H})?) (B1)
1 2 16 4 8 and
_-_Z 2, —° 58 =
Ji[8]=—gG—30+68%+ = |In2s 3)(5\3 354, O
A23 H
(A23) tan,BE< f) (B2)
(H1
16 16 o
J [ 8]=— E(2+215+ 382-28%In25+ 3(1_ 5) the charged lepton mass matrix is given:
X (2—6+26%)In2(1-9)
8 (me)ij (ye)lj COSB (83)
\/_
- 5(1—25)(49+ 685+465°%), (A24)
The neutralino and chargino mass matrices are written as
follows:
K, 8]= 315(8+85 935%—2256%)\1—-26
B
2 3 36—-1 ~
—5&(1—65—352)arcco =5 1= =— =5 == Wi,
[’N: - E(BR W3R HlR HZR)MN ~0 + H.C.,
HlL
1653 % d A25 =
— — S8°arcco =5/ (A25) HgL
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M, 0 —m,siné,cosB  m,SinbysinB
0 M, m,cosf,,cosB  —m,coshysinB
My= . , (B4)
—m,sin#,cosB  m,CosH,CcosSB 0 — M
m,sinéysinB  —m,cosé,,sin B - 0
Lo=— W FylMe M e, MC=( Mz V2mycoss) (B5)
Ay V2mysin B n
They are diagonalized with unitary matrices as follows:
T_ A - -
ONM\ Oy =diagm g,mxg,rm(g,m;g), (B6)
Onr=On, (B7)
On =0y, (B8)
OcrMcOg, =diag ;). (BY)
The slepton mass matrices are written as follows:
o L
Le=— (T ET)mg(~ )
E
2., ¢t 2 1 . v +
m; + mgMg+ mscos 28| — §+S|n20W Ecosﬁ(mOAeereM*tanﬂ)
mé= : (810
v " 2 T2 ir?
Ecosﬁ(merwL Yeu*tang) Mg+ MM — M5 COS 25 Sin’ Oy
|
7= —ToméLO,
Y Niax=—01 v2tanfy(On) k1 (Ue)i 3
me=m; - Emzcos?ﬂ (B11) LY (OnL)Ea(UQ)E (B15)
v z " —_— -
2 \/EmWCOSB NL A3\ Y e/ Xj
They are diagonalized with unitary matrices as follows: R 1 N N .
Niax=—0| = ={(Onr) A2+ tandw(Onr) At (Ue)%;
V2
200t g 2 2 2 2 2 2
e (B0 Te, My ey Moy Mg ey (12 L TR (B16)
\/EmWCOSB NR/A3\Ye)xj+3 |
UVm%UI=dian§1,rréz,m~f3). (B13) ()
Clax=97=——(OcDR(U)%;, (B17)
iAX \/§mwcos,6' CL/A2 Xj
The neutralino and chargino vertices for leptons and sleptons
are written as follows: CRx=—0(0cr % (U )% (B18)
CEE(NbxxPLJF NiRAxPR)}géX 2. LFV effective coupling constants
— R - The formulas of effective coupling constants fer—ey
+€(CiaxPLt CiaxPrIXavx+H.C, (B14)  andu— 3e processes written in the minimal supersymmetric
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standard modeIMSSM) variables are given in Reff26]. We m}om}odo(m}oz,m}oz,r‘r@ 2 mg ?), (B20)
present these formulas for completeness with taking care of A TB ACTB X
the CP violating phases.

Each coupling constant is divided into a neutralino- c J2 2 3
charged-slepton-loop contribution and chargino-sneutrino- 91~ ~ =5~ 2 lx;_ CoaxCTAvCravCiax
loop contribution. The four-Fermi coupling constants are T F
given as follows:

-, do(m,- 2, -2, 2,nm;, 2). (B21)
gi=0l'+gf(i=1-6). (B19) o Xe Ya e o

The coupling constarg,; comes only from box diagrams: ~ The coupling constard; is divided into three partgs, is a
contribution of box diagrams angs, is that of Z-penguin

\/f ‘ o diagrams.gs; is a contribution of off-shell photon-penguin

NS, NREONY L NPRE :
64’772G|: ABZ1 X;l( 2AXTY1AY'YIBY!'Y1BX d|agrams-

n

0:=—

— 2N5 XN N NTE X 03=03117 09321 33, (B22)

6
Loonl* Lo NL* 2 2 e 2 e 2
YE:1 [NzAleAYN1BYN1Bxd2(m}2 /MG, Me, =, Me,, )

64m°Gr AB=1 X;
1 * 2 2 e 2 e 2
+ EN AleAYN13YN1me}2m}gdo(mXOA ULV ) (s (B23)
4 6
95= — 1672 ZR E= Zl 2AxN15x{4(Y}E)A302(méX2,m}gzym}gz)
— 2momo(Y50) AsCo( M, 2, My0%, Mio?)}
4 6
+22 2 NEAXNI:[X\Y(XEL)XYCZ(m}OzymésznéYz)}1 (B24)
A=1 XY=1 A
V2 &S Mo
3 Niix—bj| —=|. (B25)
933= 1152772GF AZI le 2AxN1IAX 2~ ix ix

2
951= 6472G A; L x; 1 CzaxCiAvCipy 1Bxd2(W AL szymlyz), (B26)

2 3
1
_ 2 2 2
9%2—_@2%321 x§=:1 CoaxCrax{4(Yy ) agC2(Mm, %S my-©)
—Zm;;m);g(Y;(';)ABCo(WGXZ.m;(;z,mr;(gz)}, (B27)
2e2 G 2 1 mi;
c _ CL CL* _bC L B28
033 11527726F Azl le 2AX 1Axm;z,x 0 m%x (B29)

The coupling constangs is divided into three partsgs; is a contribution of box diagrams argl, is that of Z-penguin
diagramsgs; is a contribution of off-shell photon-penguin diagrams.

0U5=0511 Jso1 Os3, (B29)
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\/E 4 6
921:_—2 2 ((NZAXNlAYNlBYNlBX NZAXNlAYNlBYNlBX
647°Gg AB=1 X,Y=1
+ N5, N NEE yd,(m; 2m~02rrr2rrr2)—l och NEONR d(m~o mo mg. 2, ?)
2AXTN1AY lBY lBX ixg 1 ex ey 2 2AX'N1AY lBY 1BX 0 ex ey ’
(B30)
4 6
_ L - _ - .
O5=— 1&72 ZL A;l le Nz leBX{4(YXE)ABCZ(rTreX2,m;gz,mxgz)—2m;2m;g(YX%)ABCO(m”eX2,m;gz,mxgz)}
4 6
+22 X NaaNEAV(Xe )xvea(myo? me 2 me, 2) |, (B31)
A=1 X,Y=1 L A X Y
U53= 033, (B32)
\/E 2 3
951~ — m A; . x; L rCZAxclAYclBY Claxda(m Z,m}gz,mT;xzam?Yz)
5 C2AxclAYclBYclBXm ;m}gdo(m}gz,m}gzymlxzymyz)] , (B33
c _ 1292 EC C A(Y~ 2 2 2_2 (Y~ 2 e 2 2
952~ ~ 1602 LAty 2y T2AX Tex{4( X[)ABCZ(m;/X UL ,m}g) m};mxg( X;)ABCO(m;X SULL )}
(B34)
053=033- (B39
Various mixing matrices and Z coupling constants which appear in the above formulas are given as follows:
1 * *
(Y30 ne=— E{(ONL)A3(ONL)BB_(ONL)A4(ONL)B4}! (B36)
' 1 * *
(ng)AB: E{(ONR)A3(ONR)B3_(ONR)A4(ONR)B4}! (B37)
1 *
(Y3 )ae="— E(OCL)AZ(OCL)BZv (B39
1 *
(Y3s)aB=— E(OCR)AZ(OCR)BZ! (B39
(Xe)xv== 2, (UohxdUe)yi, (B40)
3
(Xexv= 2 (Uolxicra(Ue)icea, (B41)
e 1 H
Ze= —§+Sln20W : (B42)
The photon-penguin coupling constant is written as follows:
AR=AR+AS, (B44)
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2 2
J2e & 11 Mo myo [ Mo
n_ T U INRONRE N A L NL L NRY Apn| A (B45)
R 2567TZG|: Azl le mg 6 2AXTY1IAXML 2 2AX"Y1AX m,u 2 mg
X X X
J2e 2 1 |1 m’i* my - m’i*
o=— ——{ 2R, CREbS| 2 | + b O —2bs| 2] ;. B46)
R 1287TZGF A§=:1 X§=:l I’T’éx 6 2AX~1AXM1 m]gjx 2AX~1AX mM 2 ix (
|
The other coupling constants can be obtained by simply ex- ( ) 1[3 x2In(x) y2In(y)
i i : Co(X,Y,2)==|5— -
changing the suffix of above formulas: 2(X,y 427 (y=x)(z=%)  (x=y)(z-y)
92=01(L<R), (B47) Z%In(z)
- (B58)
92=93(L<R), (B48) (X=2)(y—2)
=gs(L—R B4 X In(x
96=0s( ), (B49) do(X,y,Z:W) = x)
(y=x)(z=x)(W—Xx)
A =Ag(L—R). (B50)
y In(y)
3. Mass functions (X=y)(z=y)(w=y)
The mass functions used in the effective coupling con- zIn(z)
stants of theu™ —e*yandu™ —e*e’e™ processes are de- + (x—2)(y—2)(W—2)
fined as follows:
w In(w)
1 twywew
bl(x) = ————[2—9x+ 18— 113+ 6x3In(x)], y
2(1—x)4
(B51) . 1 x2In(x)
2XY.2 W)= 21 00 (w—x)
bT(X)=(1_X)4[1—6x+3x2+2x3—6x2|n(x)], y2In(y)
(B52) (X=y)(z=y)(w=y)
Z°In(z)
bl(x) = 5 )3[1—x2+2xln(x)], (B53) T ay-2w—2)
—X
w?In(w) (860
1 X=W)(y—w)(z—w) /|’
b§(x) =—————[ — 16+ 45x— 36x*+ 7x> ( Hy=wi( )
2(1—x)*
APPENDIX C: APPROXIMATE EXPRESSIONS
+6(3x=2)In(x)], (B54) OF THE PHOTON-PENGUIN AMPLITUDES
1 FOR THE SO(10) MODEL
bi(X)ZF[2+3X—6X2+X3+ 6xIn(x)], In this Appendix we discuss the*—e" y amplitude for
(1=x) (B55) SO(10) GUT using approximate formulas. Although we used
full formulas for numerical analysis, more transparent ex-
1 pressions are obtained in a special parameter region.
b3(x)= ————[—3+4x—x*=21In(x)], The expressions foAg and A, are simplified if we use
2(1-x)° the following approximations.
(B56) (1) Keep only dominant contributions. These are parts of
terms proportional tom, in the neutralino and charged-
__ xInx)  yincy) slepton loop diagrams for botkg andA, . ForAg, a part of
Colxy.2)= (Yy=x)(z=x)  (X=y)(z—y) the chargino-sneutrino loop contribution can also give a
large contribution.
_ zIn(2) (857 (2) Use the fact that, except for the left-right slepton mix-
(x—=2)(y—2)’ ings, the slepton mass matrix is almost diagonalized in the
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basis whergy, is diagonal and the diagonal elements for the  (3) Take the limit nmy =mg =nv, =m> M-, Mo,
first-two-generations are almost the same. The third gener?famely the average sIeptoLn maZs is Lmuch Iarg?er tr?an the
tion sleptons become lighter beccause of the effect of th%hargino and neutralino masses

GUT interaction. We treat diagonal elements for the first two Within these approximationa .andA are aiven b
generations in the slepton mass matrix exactly degenerate in PP R L 9 y

the approximate formulas and the difference between the etartfy,

third and the first components are denotedAemsER, AmgL, Ar=— ?[e*'(‘/’f%)a% a‘l, (C1
T

and Am%L, respectively. Neglecting the renormalization ef-

fects between the GUT and electroweak §cales by smallllep— A e etar?aw[e*i(zﬁswl)an*] (2

ton Yukawa coupling constants, these difference are given L 30572 '

by Eq.(46). We take into account the left-right mixing of the

slepton mass matrix as perturbation. where

Acs

m + p*tan 2 2 2
n_ /0 0 \%2/\,0 m,( oy, ¥ p M| [ My AméL AméR
a"=(Vim)ad Viem)zs (Vikm) a1 m — = | =|| = =, (Cy
» m m m m m
_ 2
J2cotay, & my [ m?\ [ M| A
c_(\/0 \* 0 * oW A L
a (VKM)32(VKM)31—COSIB Azl(OCL)AZ(OCL)Alam M»)z—(, = = (CH
A

For the neutralino contributions, difference between the c [
above expression and the exact calculation is within 10 % Ogq=- EanyJaanW, (D3)
above Mg, >500 GeV for the parameter set of Fig. 7. For

chargino contributions the approximation is slightly worse.
At mz_>500 GeV the difference is within a factor of 2 and

becomes about 10% level fang =1000 GeV. From the
above expression we can see that despite lack of the factor
m./m, the chargino contribution can become comparable to
or even dominant over the neutralino contribution wimen Here, €?'?*=1, and f2*° is the structure constant of the

>m,, because of the enhancement factg&cofé,/cosp  SU(3) group.
and (E/mw)ln(HZ/Mgf). In SUSY models, we can obtain the Wilson coefficients at
XA

the electroweak scale by evaluating one-loop diagr@ﬁés
induced by the photon-penguin diagramf1 is induced by
APPENDIX D: NEUTRON EDM the gluon-penguin diagram. There are three types of SUSY
_ o ) contribution, chargino-squark loop, neutralino-squark loop,
We discuss QCD correction in the calculation of the neu-ng gluino-squark loop diagrams. The gluonic Weinberg's
tron EDM [21,27). The neutron EDM are calculated by the gperator is induced at a two-loop level and the diagram in-
following effective Lagrangian: volving the stop and the gluino gives dominant contribution.
These contributions are listed in RE21].
We can take into account a QCD correction from the elec-

1
— v b a
0F=— 156 G, G

(D4)

Eeﬁ:% CE(M)OE(“H; ch('“)og(f“) troweak scale to a hadronic scalé GeV), by using the
following renormalization group equations for the Wilson
+CC(w)O%(w), (D1)  coefficients:
whereO§, O, O° correspond to the quark electric dipole, A&(w)  agp)
chromomagnetic dipole, and gluonic Weinberg’s operators, n = S—’MyTé(,u), (D5)
respectively, which are given by du 4

whereC = (CE ,ch ,C®T and the anomalous dimension ma-

i—
E__ _ my
Oq ZCIUW%QF ’ (D2) trix ;; is written by
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8/3 0 0
= 32eQ/(3gs) (—29+2N¢)/3 0
0 6my 2N¢+3

(D6)

Here,N; is a number of the quark flavor ari@ denotes the
electromagnetic charge of the quark in uai{e>0). The
RGEs can be solved analytically as follows:

Cglu)=n*72N0) CG( o)

c
+8eQ(1— 7774/(33—2Nf))cq (#o)  722Qmy(po)

gs(MO) 7+2N¢
. —4I(33-2Ny)
X|1=7 TN+ 5
Co(mo)
< (1— (10+4Nf)/(332Nf))) Aol (D7)
( 7 9s(&0)
ch(m: 7~ 29+ 2ND/(33-2Ny) CqC(Mo)

(l— 77(14+4Nf)/(3372Nf))

T 742N
X Mg(10)CC(1o) |, (D8)
CG(M) — ,)7(9+6Nf)/(337 2Nf)CG(MO)! (Dg)

PHYSICAL REVIEW D 61 094001

where 7=gs(10)/gs(1)-
We solve RGE fronmy, to m,, m, to m., andm to the

1 GeV scale. When the heavy quarksk) decouple at their
mass thresholdC® is induced through the chromoelectric
dipole moment of the heavy quarks. Differen€& below
and above the threshold is given 28]

ag( mq) c

Taking into account the QCD and threshold corrections, we
obtain the effective Lagrangian at the hadronic scale. It is
then straightforward to evaluate the effectigeat 1 GeV
scale fromm,, scale.

The neutron EDM d,) is given by the Wilson coeffi-
cients at a hadronic scale as follows:

CG( mq) below CG( mq)above: +

dy=dE+dS+dS, (D11
E 1 E E
dn=3(4C5—Cy), (D12
1l e
di=3 7-(4C§—CD), (D13
eM
dnGZE e (D14)

whereM is a chiral symmetry breaking parameter, which is
estimated as 1.19 GeV. In the above we use nonrelativistic
quark model ford and naive dimensional analysis fdf
anddS .

[1] R. Barbieri and L. J. Hall, Phys. Lett. B38 212 (1994).

[2] R. Barbieri, L. Hall, and A. Strumia, Nucl. PhyB445 219
(1995; B449, 437 (1995.

[3] J. Hisano, T. Moroi, K. Tobe, and M. Yamaguchi, Phys. Lett.
B 391, 341(1997; 397, 357E) (1997.

[4] N. Arkani-Hamed, H. Cheng, and L. J. Hall, Phys. Rev5®
413(1996; P. Ciafaloni, A. Romanino, and A. Strumia, Nucl.
Phys.B458 3 (1996; T. V. Duong, B. Dutta, and E. Keith,
Phys. Lett. B378 128(1996; M. E. Gomez and H. Goldberg,
Phys. Rev. b3, 5244(1996; N. G. Deshpande, B. Dutta, and
E. Keith, ibid. 54, 730 (1996; S. F. King and M. Oliveira,
ibid. 60, 035003(1999.

[5] M. L. Brooks et al,, Phys. Rev. Lett83, 1521(1999.

[6] SINDRUM Collaboration, U. Bellgradtet al, Nucl. Phys.
B299 1 (1988.

[7] SINDRUM Il Collaboration, talk given at the International

Conference on High Energy Physics, Vancouver, July, 1998

(unpublished
[8] L. M. Barkov et al.,""Search for the decay. ™ —e* y down to

10~ % branching ratio,” research proposal to Paul Scherrer

Institut, 1999(unpublished
[9] M. Bachmanet al., "A Search for uN—eN with sensitivity
below 10 ¥ MECO,” proposal to Brookhaven National Labo-

ratory AGS, 1997unpublishegl

[10] A. E. Pifer, T. Bowen, and K. R. Kendall, Nucl. Instrum.
Methods135, 39 (1976.

[11] Y. Kuno and Y. Okada, Phys. Rev. Left7, 434 (1996); Y.
Kuno, A. Maki, and Y. Okada, Phys. Rev. %5, 2517(1997.

[12] S. B. Treiman, F. Wilczek, and A. Zee, Phys. Revlg 152
(1977; A. Zee, Phys. Rev. Let5, 2382(1985.

[13] Y. Okada, K. Okumura, and Y. Shimizu, Phys. Rev.5B,
051901(1998.

[14] J. Hisano and D. Nomura, Phys. Rev.50, 116005(1999.

[15] J. Ellis, S. Ferrara, and D. V. Nanopoulos, Phys. L&t4B

231 (1982; W. Buchmiiler and D. Wyler,ibid. 121B, 393

(1983; J. Polchinski and M. Wisdbid. 125B, 393(1983; F.

del Aguila, M. Gavela, J. Grifols, and A. Mendebijd. 1268,

71(1983; D. V. Nanopoulos and M. Srednickhid. 128B, 61

(1983; M. Dugan, B. Grinstein, and L. Hall, Nucl. Phys.

B255, 413(1985; Y. Kizukuri and N. Oshimo, Phys. Rev. D

45, 1806(1992; 46, 3025(1992.

[16] T. Falk, K. A. Olive, M. Pospelov, and R. Roiban, Nucl. Phys.
B560, 3 (1999.

[17] J. Hisano, D. Nomura, Y. Okada, Y. Shimizu, and M. Tanaka,
Phys. Rev. D68, 116010(1998.

[18] S. Dimopoulos and L. J. Hall, Phys. Lett. 814, 185 (1995.

094001-21



OKADA, OKUMURA, AND SHIMIZU PHYSICAL REVIEW D 61 094001

[19] T. Goto, Y. Okada, and Y. Shimizu, Phys. Rev5B 094006 [24] J. P. Jacobst al, Phys. Rev. Lett71, 3782(1993.

(1998. [25] T. Falk and A. Olive, Phys. Lett. B75 196 (1996.

[20] CLEO Collaboration, Report No. CONF 98-17, ICHEP98 [26] J. Hisano, T. Moroi, K. Tobe, and M. Yamaguchi, Phys. Rev.
1011. D 53, 2442(1996.

[21] T. Ibrahim and P. Nath, Phys. Lett. 818 98 (1998; Phys.  [27] E. Braaten, C. S. Li, and T. C. Yuan, Phys. Rev. L&#.1709
Rev. D57, 478(1998; 58, 111301(1998. (1990; R. Arnowitt, J. L. Lopez, and D. V. Nanopoulos, Phys.

[22] E. D. Commins, S. B. Ross, D. DeMille, and B. C. Regan, Rev. D42, 2423(1990.

Phys. Rey. A50, 2960(1994. - [28] D. Chang, W. Y. Keung, C. S. Li, and T. C. Yuan, Phys. Lett.
[23] P. G. Harris, C. A. Baker, K. Green, P. laydjiev, and S. Ivanov, B 241, 589(1990.

Phys. Rev. Lett82, 904 (1999.

094001-22



