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Electromagnetic corrections toK\pp. II. Dispersive matching
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We express the leading electromagnetic corrections inK→pp as integrals over the virtual photon squared
momentumQ2. The highQ2 behavior is obtained via the operator product expansion. The lowQ2 behavior is
calculated using chiral perturbation theory. We model the intermediateQ2 region using resonance contribu-
tions in order to enforce the matching of these two regimes. Our results confirm our previous estimates that the
electromagnetic corrections provide a reasonably small shift in theDI 53/2 amplitude.

PACS number~s!: 13.40.Ks, 13.25.Es
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I. INTRODUCTION

In the preceding paper@1#, we calculated the leading elec
tromagnetic corrections toK→pp nonleptonic decays
within chiral perturbation theory~ChPT!.1 The only hadronic
degrees of freedom were the pseudoscalar mesons. Loo
tegrals were analyzed in terms of dimensional regularizat
and counterterm amplitudes were introduced to cancel
divergences. The finite counterterms parametrize the s
distance effects of heavy degrees of freedom. Our Ch
analysis yielded effects which were estimated to be at
several percent level. Unfortunately, because of the pres
of many unknown finite counterterms, the results were
companied by error bars as large as the signals.

Method of dispersive matching

In this paper we extend the previous calculation to hig
energies by using a ‘‘dispersive matching’’ approach. He
active degrees of freedom include not only the ground s
pseudoscalar mesons but also the spin-zero and spin
low-lying meson resonances. Amplitudes are expresse
integrals over the virtual photon Euclidean squared mom
tum Q2. Within chiral perturbation theory, theQ2 integral is
regulated dimensionally, and unknown constants are in
duced to parametrize the contributions from intermediate
high energy. In contrast, the dispersive matching approac
an attempt to construct an intermediate energy contribu
that sucessfully interpolates between the low and high
ergy regions. This allows the fullQ2 integral to be calcu-
lated.

The K→pp amplitude with EM interactions present
given generally to ordere2 by

Ai5e2E d4qDmn~q!Wi
mn~q,p! ~ i 512,00,10!,

~1!

*Email address: vincenzo@het2.physics.umass.edu
†Email address: donoghue@physics.umass.edu
‡Email address: golowich@physics.mass.edu
1By ‘‘leading’’ is meant the component which arises from ele

tromagnetic corrections to the~large! DI 51/2 amplitude~cf. Fig.
1!. This approach will be followed here.
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whereDmn(q) is the photon propagator andWi
mn(q,p) de-

scribes the scatteringgK(p)→gpp. Rotation to Euclidean
momentum space followed by evaluation of the angular
tegral yields the equivalent form

Ai5
a

4p E dQ2Wi~Q2! ~ i 512,00,10!. ~2!

To determine theK→pp amplitudes to ordere2p2 in chiral
power counting requires knowingWmn(q,p) @or equivalently
W(Q2)# at orderp2 and for all values ofQ2. We have rig-
orous information onWmn(q,p) only in the two asymptotic
regimes of~i! low Q2, where ChPT provides the appropria
couplings, and~ii ! high Q2, where the quark degrees of free
dom couple to the photon according to the standard e
troweak theory. Our goal will be to match these regions.

Consider the process of buildingW(Q2) from the low-Q2

end. In principle we can use ChPT to generateWmn(q,p) to
orderp2Q2n. At the lowest energies, the dominant contrib
tion is from the ground state mesons. At intermediate en
gies resonance degrees of freedom become active, an
can use effective Lagrangians to describe their interactio
Such resonance contributions serve to soften the polyno
behavior asQ2 increases@2#. Eventually, the low or interme-
diateQ2 description is matched to the high-Q2 effects of Fig.
2.

Neither of the short distance contributions depicted in F
2 plays a dynamical role in the radiative problem but f
different reasons. The process of Fig. 2~a! leads merely to an
overall shift in the strength of the weak interaction but do
not give rise to mixing between the isospin amplitudes. T
electroweak penguin operators of Fig. 2~b! do contribute to
K→pp decay, but are found to be quite small@2# and so are

FIG. 1. Leading electromagnetic correction toK→pp.
©2000 The American Physical Society02-1
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CIRIGLIANO, DONOGHUE, AND GOLOWICH PHYSICAL REVIEW D61 093002
neglected in the work reported here. Physics of the low
intermediateQ2 region is therefore the dominating influenc
in our calculation.

In Sec. II, we define the various interaction Lagrangia
which are needed in the course of the calculation. We pre
a detailed account of the calculational program in Sec.
from its content through to the results and some phenome
logical implications. We pay particular attention to the u
certainties inherent in our calculation, and attempt to prov
realistic error estimates. Final remarks appear in Sec. IV

II. EFFECTIVE LAGRANGIANS

Our starting point will be a tree level calculation of th
$Wi

mn(Q2)% including as intermediate states the ground st
mesons and the low lying resonances. Their interactions

FIG. 2. High-Q2 electroweak dynamics of quarks.
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dictated by the lowest order chiral Lagrangians~of orderp2).
Specifically, in the resonance sector we include the vec
~V!, axial vector~A!, scalar~S! and pseudoscalar~P! octets
and the scalar~S1! and pseudoscalar~P1! singlets.

A. Ground state mesons

The uDSu51 octet Lagrangian which governs the spinle
ground state mesons begins at chiral orderp2,

L 8
(2)5g8Tr~l6DmUDmU†!, ~3!

with g8.6.731028Fp
2 andU[exp(il•F). The correspond-

ing DS50 strong and electromagnetic Lagrangian is

L str
(2)5

Fp
2

4
Tr~DmUDmU†!1

Fp
2

4
Tr~xU†1Ux†!, ~4!

where x[2B0 diag(mu ,md ,ms) and DmU[]mU
1 ie@Q,U#Am , with Am being the photon field.

B. Spin-one resonances

The spin-one vector and axial vector resonances wh
enter our calculation are represented respectively by the
matricesRmn5Vmn ,Amn :
Vmn5F r0/A21v8 /A6 r1 K* 1

r2 2r0/A21v8 /A6 K* 0

K* 2 K̄* 0 22v8 /A6
G

mn

~5!

and

Amn5F a1
0/A21 f 1 /A6 a1

1 K1
1

a1
2 2a1

0/A21 f 1 /A6 K1
0

K1
2 K̄1

0 22 f 1 /A6
G

mn

. ~6!
by
The normalization ofRmn is given by

^0uRmnuR~p,l!&5
i

MR
@pmen~p,l!2pnem~p,l!#. ~7!

Analogous to interactions among the spinless ground-s
mesons, interactions of the resonances are likewise give
terms of effective Lagrangians@4#. For DS50 vertices we
have

Lstr
(R)5

FV

2A2
Tr~Vmn f 1

mn!1 i
GV

2A2
Tr~Vmnumun!

1
FA

2A2
Tr~Amn f 2

mn!, ~8!
te
in

where

U5uu, um5 iu†DmUu†,

f 6
mn5u†Fmnu6uFmnu†, Fmn5eQ~]mAn2]nAm!.

~9!

The couplingsFV ,GV ,FA have the numerical values@3#

FV.0.154 GeV, GV.
Fp

2

FV
, FA.~FV

22Fp
2 !1/2.

~10!

Although the effective Lagrangian used to describeuDSu
51 interactions of the resonances is given most generally
@5#
2-2
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ELECTROMAGNETIC CORRECTIONS TOK→pp. II. . . . PHYSICAL REVIEW D 61 093002
LR5 (
k51

10

gk
(R)Kk

(R), ~11!

only four of the ten possible operators are relevant to
K→pp analysis,

K1
(R)5Tr~D@Rmn , f 1

mn#1!, K2
(R)5Tr~D@Rmn , f 2

mn#1!,

K5
(R)5 iTr~D@Rmn ,@um,un##1!, K6

(R)5 iTr~DumRmnun!,
~12!

where D5u†l6u. Use of the$Kk
(R)% introduces eight cou-

plings $gk
(R)% (R5V,A andk51,2,5,6) into the calculation

It is convenient to convert these to dimensionless quanti

gk
(V)5

g8FV

F2 ḡk
(V) , gk

(A)5
g8FA

F2 ḡk
(A) ~k51,2,5,6!.

~13!

C. Spin-zero resonances

Finally, we list effective Lagrangians for the spinle
resonances, including the octet scalarsS, the singlet scalarS1
and their pseudoscalar analoguesP and P1. We begin with
the strong Lagrangians,

Lstr
(scalar)5cdTr~Sumum!1cmTr~Sx1!1 c̃dS1Tr~umum!

1 c̃mS1Tr~x1!,

Lstr
(pseudo)5 idmTr~Px2!1 i d̃mP1Tr~x2!, ~14!

wherex6[ux†u6u†xu†. The weak Lagrangian for the oc
tet spinless resonances is

Lwk
(octet)5(

i 51

6

gS
i Ki

S1(
i 51

4

gP
i Ki

P , ~15!

where

K1
S5Tr~D@S,x1#1!, K2

S5Tr~SD!•Tr~x1!,

K3
S5Tr~D@S,x2#1!, K4

S5Tr~D@S,umum#1!,

K5
S5Tr~Dum!•Tr~umS!, K6

S5Tr~DS!•Tr~umum!,
~16!

and

K1
P5 iTr~D@P,x2#1!, K2

P5 iTr~DP•Tr~x2!,

K3
P5 iTr~D@x1 ,P# !, K4

P5 iTr~D@P,umum#!.
~17!

The weak Lagrangian for the singlets is given by

Lwk
(singlet)5g̃P

1 K̃1
P1(

i 51

2

g̃S
i K̃ i

S, ~18!

with
09300
r

s

K̃1
S5S1Tr~Dx1!, K̃2

S5S1Tr~Dumum!,

K̃1
P5 iP1Tr~Dx2!. ~19!

III. DETAILS OF THE CALCULATION

We have at hand the tools to construct reliable expr
sions at low and intermediateQ2 for the $Wi(Q

2)% functions
of Eq. ~2!. The two major components will be the following

~1! Tree diagrams@Figs. 3~a!, 3~b!# involving exchange of
the ground state pseudoscalar mesons~Born terms! and of
resonances:

Within chiral perturbation theory, the vertices in the tr
diagrams are described by point-like couplings at lead
order. However, in QCD we know that the couplings fall o
at higherQ2. In order to incorporate this feature, we mod
form factor corrections to the Born terms with vector res
nance contributions. The set of Born diagrams~together with
insertions of meson form factors! is free of unknown param-
eters.

The remaining vector and axial vector resonance con
butions depend on eight unknown weak couplings. Vario
phenomenological inputs can be used to fix them, but so
remain unconstrained. In principle this part of the amplitu
requires matching to the penguin short distance contribut
The requirement that matching occur successfully afford
way to further constrain the unknowns. This is further d
cussed in Sec. III B. The terms involving scalar and pseu
scalar resonance exchange will also contain largely unc
strained couplings. At chiral ordere2p2, there are
contributions from mass renormalizations on external le
and also from vertex-like corrections. The net effect at t
order turns out to vanish.

~2! The low-energy parts of meson loop diagrams@Fig.
3~c!#:

We refer to these as theunitarity contributions. They con-
stitute a genuine low-Q2 effect distinct from that of the reso
nance component. In Sec. III C we shall describe such u
tarity terms and provide a natural extension to allQ2 scales,
without introducing new parameters.

Before proceeding to a description of the calculation,
introduce a parametrization in terms of reduced amplitu

$Ci% and$W̄i%,

dA i
(em)5h i

g8MK
2

Fp
2 FK

a

4p
Ci and Wi5h i

g8MK
2

Fp
2 FK

a

4p
W̄i

~20!

FIG. 3. Contributions toWi
mn : ~a! Born, ~b! resonance,~c! loop.
2-3
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CIRIGLIANO, DONOGHUE, AND GOLOWICH PHYSICAL REVIEW D61 093002
with

Ci[E
0

`

dQ2W̄i~Q2! ~21!

and h125h005A2 andh1051. In addition, we partition
eachC amplitude into additive components as

Ci5C i
(e2p0)1C i

(mtchg)1C i
(unty) . ~22!

The matching componentC i
(mtchg), encompassing the sum o

the Born1 form factor and resonance contributions, is d
cussed in Secs. III A and III B whereas the unitarity comp
nent C i

(unty) is discussed in Sec. III C. The contribution
each component to the full amplitude is given in Table I~cf.
Sec. IV!.

A. Born and resonance diagrams

The class of diagrams involving exchanges of the grou
state pseudoscalar mesons and of the low-lying spin-o
spin-zero resonances generates contributions at ordere2p0

and at ordere2p2. However, we already know thee2p0 con-
tributions because chiral symmetry relates theK→pp am-
plitudes to theK1→p1 matrix element and we have calcu
lated this in Ref.@2#. Therefore we focus on thee2p2 piece in
the following. We treat first in some detail the Born cont
butions and their corrections which arise from the insert
of meson form factors. Then we describe the parame
dependent spin-one resonance terms and finally the spin-
resonance terms.

1. Born and form factor contributions

The Born diagrams do not contribute toW̄00(Q
2) ~which

involves only neutral particles! while giving nonzero contri-
butions to bothW̄10(Q2) andW̄12(Q2). For W̄10(Q2) we
find

W̄10~Q2!5
3

MK
2

J~Q2,Mp
2 !, ~23!

with

J~Q2,m2!5
Q2

6m2 F S 114
m2

Q2D 3/2

2S 116
m2

Q2D G . ~24!

This contribution is logarithmically divergent at highQ2 and
has an infrared 1/Q integrable singularity atQ250. In addi-
tion, it is suppressed by a factor ofMp

2 /MK
2 . This suppres-

sion is ‘‘accidental’’ in that it is not required by any symm
try at moderate or high values ofQ2. The result is shown as
the dashed line in Fig. 4.

The Born contribution toW̄12(Q2) is analytically more
involved. Once one extracts the infrared divergent singu
ity @6#, it reads

W̄12~Q2!5C~Q2!1S1~Q2,Mp
2 !2S2~Q2,Mp

2 !. ~25!
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The functionsC(Q2), S1(Q2,m2) andS2(Q2,m2) are given
in Appendix A, and we displayW̄12(Q2) as the dashed line
in Fig. 5. Again, this contribution is logarithmically diver
gent at highQ2. The cusp is due to the singularity related
the Coulombic rescattering.

The set of Born diagrams, required by chiral symmet
provides a good description of the very lowQ2 region, in
which the photon ‘‘sees’’ only point-like pseudoscalars. A
Q2 increases this is no longer true, and one needs to acc
for structure dependence in the couplings. In our model
is accomplished by introducing the low-lying resonances

We consider first the diagrams involving pion and ka
electromagnetic form factors~saturated in this model by th
vector meson resonances!. This is a subclass of all diagram
required by chiral symmetry but has some nice features
does not introduce any new parameters and improves
high-Q2 behavior of the$W̄i(Q

2)% while having minimal
effect on the model-independent Born contributions at l
Q2. The results of this improved description are show
graphically in Figs. 4 and 5~solid lines!. The anlytical ex-
pressions are

W̄105
M r

2

Q21M r
2 F 3

MK
2

J~Q2,Mp
2 !1

Q2

Q21M r
2
J̃~Q2,MK

2 !G
~26!

and

FIG. 4. Born~dashed line! and Born plus form factor~solid line!
contributions.

FIG. 5. Born~dashed line! and Born plus form factor~solid line!
contributions.
2-4
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W̄125S M r
2

Q21M r
2D 2

C~Q2!1
M r

2

Q21M r
2 S M r

2

Q21M r
2

S1~Q2!

2S2~Q2!D , ~27!

where J̃(Q2,m2) is defined in Appendix A. Note that th
new contribution toW̄10 is not suppressed byMp

2 /MK
2 and

thus gives a substantial correction to the Born amplitude
the case ofW̄12 , however, the form factor contribution ha
simply the effect of softening the high-Q2 behavior.

In principle, given the convergence properties of t
‘‘Born 1 form factor’’ contributions, their integrations ove
Q2 can be performed up to infinity. This contribution
dominated by the low and intermediate energy regio
where the formalism is valid. This gives a first clean con
bution to the$Ci% coefficients beyond the Born approxim
tion.

2. Resonance contributions

Our analysis contains two classes of resonances cont
tions, spin-one and spin-zero. We consider each one s
rately in the following. It turns out that the spin-zero cont
butions sum to zero, so that only the spin-one contributi
are subject to the matching procedure of Sec. III B.

As noted earlier, chiral symmetry requires the presenc
all possible vector and axial vector resonance exchange
grams. In principle these introduce to the$W̄i(Q

2)% a depen-
dence on eight new parameters, describing the weak
plings of resonances. Since the analytical expressions for
large class of contributions are rather lengthy and do
illuminate the underlying physics, we refrain from reportin
them here. The only feature relevant for our discussion is
general form

W̄i~Q2!5(
a

ḡa f a
( i )~Q2!. ~28!

Explicit calculation shows that the physical amplitudes ac
ally depend only on the seven parameters

ḡ1,2,5,6
(V) , ḡ5,6

(A) , ḡ2
(A)2ḡ1

(A) . ~29!

Let us consider the high-Q2 behavior of the functions
f a

( i )(Q2) appearing in Eq.~28!. Many of them go to a con-
stant at highQ2 or fall off as 1/Q2, thus leading to diver-
gences in the integration process. Such behavior has alr
been observed in similar calculations of the electromagn
mass shift of the kaon@3,7#. This simply means that the
resonance dominance approximation can be trusted onl
to some intermediate energy region and cannot be exten
up to Q2→`. In Sec. III B we shall try to solve both thes
problems~proliferation of unknown parametersandhigh-Q2

divergences! by requiring that the resonance amplitude co
tribution match the high-Q2 behavior of the$W̄i(Q

2)%.
We consider next the spin-zero resonance contributio

In the absence of electromagnetism, the tree level excha
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of the scalar and pseudoscalar resonances contributes a m
part of theK→pp amplitudes at chiral orderp4 @5#. Dress-
ing these diagrams with one virtual photon generates con
butions to the amplitudedA i

em at orderse2p2 ande2p4. It is
easy to convince oneself that diagrams with vertices com
from mass matrix Lagrangians, having already four pow
of the pseudoscalar masses, will contribute at ordere2p4 to
dA i

em. On the other hand, diagrams involving derivative ve
tices can give rise to effects of ordere2p2, which we are
interested in. This happens through two classes of contr
tions:

~1! mass renormalization on external legs and
~2! vertex correction diagrams, with virtual photons i

serted according to minimal coupling.
Upon explicitly identifying and calculating these diagram
we find an exact cancellation between the two contributio
This is identical in nature to the one found in Ref.@2# for the
Born contributions at ordere2p0. The explicit results~show-
ing the cancellation! can be found in Appendix B.

B. Matching procedure

As stated in the above discussions, the resonance exh
contribution provides a good description for the$W̄i(Q

2)%
only up to some intermediateQ2 region, beyond which the
quark electroweak and strong interactions provide the cor
framework. Experience in similar hadronic calculations h
shown that the transition or matching region occurs forQ
between 1.5 GeV and 2 GeV@or 2<Q2 (GeV2)<4#. The
genuine short distance contributions were studied in the
ral limit in Ref. @2#. The outcome was that the short distan
contribution to the$W̄i(Q

2)% is rather small compared to th
long distance component. Corrections to the chiral limit ca
not dramatically change this qualitative picture. We c
imagine assigning a 100% uncertainty to the short dista
component around the central value given by the chiral li
calculation. Even in this case the long distance contribut
would dominate and our ignorance of short distance phy
would not significantly alter the final answer. For our pu
poses, the most important feature emerging from this an
sis is that forQ2.m2 the $W̄i(Q

2)% can be set to zero, eve
if we do not know the details of this transition.

On the other hand, for low and intermediateQ2 we have
reliable expressions for the$W̄i(Q

2)%, i.e., the most genera
parametrization implied by chiral symmetry and the lo
lying part of the hadronic spectrum. The only problem w
these expressions is the presence of a large number of
nance parameters unconstrained by phenomenology. In w
follows we shall present a set of reasonable theoretical c
straints to be imposed on them. The underlying strategy i
use on the one hand the few phenomenological inputs p
ently available and, on the other, to enforce the transition
the high-Q2 region, meaning in our case that the$W̄i(Q

2)%
have to approach zero in the matching region.

1. Physical constraints on the gk̄
„V,A…

Although the$ḡk
(V,A)% of Eq. ~13! @see also Eq.~28!# are

not predictable from a purely theoretical approach, some
2-5
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formation can be gleaned from the phenomenology of k
decays and assorted theoretical requirements.

The phenomenology of kaon decays, especially the ra
tive kaon decays, allows in principle the extraction of a lar
number of orderp4 constants of the weak chiral Lagrangia
@5#. Assuming resonance dominance for these couplings~or,
whenever possible, subtracting the short distance contr
tion! allows one to extract information on the resonance c
pling constants. The present experimental situation does
however, yet permit a complete implementation of this p
gram, as only limited information is available. FromK
→2p,3p data and assuming resonance saturation of the
evantO(p4) counterterms, one finds

4ḡ5
(V)2ḡ6

(V)50.43, ~30!

with a 20% uncertainty associated with the extraction
O(p4) coupling constants@5#. The K1→p1l 1l 2 transition
provides additional information. The decay amplitude d
pends on a parameterw1 , whose experimental value i
w150.8920.14

10.24. It receives both long and short distance co
tributions. Using resonance saturation atmChPT5M r and in-
cluding explicitly the penguin contribution we find

1

64p2 S 3w12 log
M r

2

MpMK
D 2

3Fp
2

2M r
2

2
3

72p2
log

mc

M r

5
A2

M r
2 FFV

2

2
~ ḡ6

(V)22ḡ5
(V)!2FVGVḡ1

(V)G . ~31!

At present no other phenomenological constraints are av
able and we thus turn to a description of the theoretical on

In the first place there are two conditions coming from t
analysis performed in the chiral limit@2#. Let us recall the
reasoning behind this. In the chiral limit, using soft-pio
methods, one can relate theK→pp amplitude to the off-
shell K1-to-p1 matrix element. Moreover the invariant am
plitude A K1→p1 is expressible as

A K1→p15E
0

`

dQ2Ā11~Q2!. ~32!

We get one condition by demanding thatĀ11(Q2) vanish at
infinity ~no quadratic divergences!. A second condition
comes from demanding thatĀ11(Q2) have no short dis-
tance component, i.e., that it vanish in the matching reg
defined above. Together these amount to

lim
Q2→`

Ā11~Q2!50 and Ā11~m2!50. ~33!

Here we have introduced the matching scalem and, accord-
ing to our previous discussion, let it vary between 1.5 G
and 2 GeV. The following two constraints then emerge fro
Eq. ~33!:
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ḡ1
(V)1ḡ2

(V)5 f V~m![
3

2A2

Fp
2

FV
22FA

2
MA

21m2

MV
21m2

,

ḡ1
(A)23ḡ2

(A)5 f A~m![
3

2A2

Fp
2

FA
22FV

2
MV

21m2

MA
21m2

.

~34!

Adopting the same argument, we require thatW̄12(Q2) and
W̄00(Q

2) vanish in the matching region:

W̄12~m2!50 and W̄10~m2!50. ~35!

We do not include the analogous condition forW̄00(Q
2) be-

cause this function, independent of any choice of the par
eters, is already very small in the matching region~it does
not contain any term going to a constant for highQ2). We
believe that the conditions in Eqs.~30!,~31!,~33!,~35! form a
consistent set of physical requirements and provide us wi
solid basis for any attempt to obtain a sensible answer for
so-called matching amplitudes$C i

(mtchg)%.

2. Results

The above constraints are well motivated and reasona
but are not sufficient to completely fix all of the resonan
parameters. At this stage, we could use specific model
resonance behavior to estimate the remaining parameters
then accept the range of model dependence as an estima
our uncertainty. In doing so, however, we have found t
models generally give a rather small range of results.~The
exception concernsC10

(mtchg).! The reason is that the matchin
constraint is more important than the remaining paramet
Therefore, rather than using particular models we elec
follow a more model independent procedure of allowi
these remaining parameters to vary completely over th
reasonable physical range and to use the resulting varia
to estimate the error bars for our result.

The conditions described above imply a set of line
equations for the parametersḡi

(V,A) . In particular, we can
express all the parameters in terms of just two coupling c
stants. That is, using what we believe are well-found
physical constraints, we select a two-dimensional hyperpl
in the parameter space which we call the reduced param
space. We chose as independent variables spanning
planex5ḡ1

(V) andy5ḡ2
(A)2g1

(A) . By looking at the structure
of the constraints one discovers that the other parame
depend onx, y andm as

ḡ2
(V)~x,m!, ḡ5,6

(V)~x!, and ḡ5,6
(A)~x,y,m!. ~36!

We are now in a position to determine the compon
C i

(mtchg) of the full amplitudeCi which is determined via
matching. The construction described above allows us to
press the predictions for eachC i

(mtchg) as a linear function of
x andy:
2-6
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C12
(mtchg)~x,y!5~12.220.72x10.02y!6u21.011.35x

10.006yu,

C10
(mtchg)~x,y!5~29.2111.47x13.2y!6u24.316.0x

11.0yu,

C 00
(mtchg)~x,y!5~20.003521.53x!6u20.000320.42xu.

~37!

The uncertainties cited in Eq.~37! are associated with th
matching procedure~the variation of the parameterm). Still,
this leaves freedom to pick any value for (x,y). We can
further narrow our predictions by requiring that all the co
plings simultaneously@as a function of (x,y)# have a ‘‘natu-
ral’’ order of magnitude, which can be shown to beO(1).
The existence of a region in the (x,y) plane such that this
happens is not guaranteeda priori and provides a good con
sistency check for our method. We call this thephysical
region in the reduced parameter space. Studying the exp
dependence of the parameters onx, y and m we are led to
define the physical region asx:0.5→1.5 andy:21→1.

A first qualitative conclusion can be already drawn
looking at Eq.~37! with (x,y) restricted to the physical re
gion and no further assumptions. The expressions show
C12

(mtchg) depends very weakly on the choice of (x,y) in this
region, and thus we arrive at a good prediction for this
rameter~see Fig. 6!. C 00

(mtchg) has a moderate dependence ox
and does not depend at all ony ~see Fig. 7!. This implies that

FIG. 6. Probability density function forC12
(mtchg) .

FIG. 7. Probability density function forC 00
(mtchg).
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theK0 decay amplitudes can be predicted in our model w
a reasonably small uncertainty. Problems arise in the exp
sion for C10

(mtchg), which displays a fairly strong dependenc
on x and a moderate one ony ~see Fig. 8!. In this case, even
confining ourselves to the physical region we obtain a spr
in the answers of about 100%. The only definite predict
emerging is that this contribution is not big.

Quantitative estimates for our results and the attend
uncertainties can be obtained by constructing probability d
tributions for the$C i

(mtchg)% by means of a survey of the pa
rameter space. We scan the region defined by$23<x<3,
23<y<3% using Gaussian distributions for the input p
rameters. The choice of the parameters in the distribution
made in such a way to enhance contributions coming fr
the physical region. In view of this, we choose the cent
values asx50.8 andy50 and set variances equal to 0.
The uncertainites cited in our results correspond to a 6
probability. Results for the$C i

(mtchg)% are given in the second
row of Table I.

C. Unitarity diagrams

Next we discuss in detail the class of diagrams schem
cally represented in Fig. 3~c!. We are interested in the non
local part of these diagrams, representing the genuine pr
gation of mesons at low energy. The high momentum par
these diagrams produces~on general grounds@8#! local ef-
fects that can be reabsorbed into the definition of theO(p4)
low energy constants. In our approach, however, the lo
component atO(p4) is implicitly contained in the resonanc
exchange diagrams and would show up explicitly upon
panding the resonance propagators. Keeping only the
momentum part of the meson loops ensures that the diffe
contributions we are including in our calculation do not le
to double counting. Since the separation of local and non
cal components in the meson loop diagrams is not free
ambiguity, we shall be careful to describe and motivate
prescription in the following.

1. Identification of theO„e2p2
… contribution

Our task in the following is to identify the part in eac
meson loop diagram which, upon contracting the pho
legs, will lead toO(e2p2) contributions. The loop contribu
tions to Wmn can be obtained by starting with any mes

FIG. 8. Probability density function forC10
(mtchg).
2-7
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loop diagram which contributes toK→pp and attaching
two photons in all possible ways. We focus first on the s
class of diagrams obtained by attaching the following tw
photon insertions:

Tmn~p,q!, Vmn~pi ,q!, Smn~pi ,q!, ~38!

as represented in Fig. 9.
For definiteness let us refer to the bare topology of F

10. In this case one can insertTmn(p,q) on internal and
external legs,Vmn(pi ,q) in the weak vertex andSmn(pi ,q)
in the strong vertex. The external leg insertions will gener
wave function and mass renormalizations. The other in
tions will give rise to diagrams like

Dmass5E d4p
Vw~pi !Vs~pi !

@~k2p!22M P1

2 #@p22M P2

2 #2

3E d4qDmn~q!Tmn~p,q!,

Dweak5E d4p
Vs~pi !

@~k2p!22M P1

2 #@p22M P2

2 #

3E d4qDmn~q!Vmn~pi ,q!,

Dstrong5E d4p
Vw~pi !

@~k2p!22M P1

2 #@p22M P2

2 #

3E d4qDmn~q!Smn~p,q!. ~39!

We wish to isolate the dominant contributions at low m
mentum~small p). Therefore we Taylor expand each tens
insertion aroundpi50 ~in addition we must expand eac
coefficient of the Taylor series in powers of the pseudosc
meson masses; for notational convenience we do not ex
itly display this step!. Considering for example the sel
energy insertion, one has

FIG. 9. Two-photon insertions:~a! Tmn , ~b! Vmn , ~c! Smn .

FIG. 10. Loop diagram with internal particlesP1 andP2.
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Tmn~p,q!5Tmn~0,q!1pa

]Tmn

]pa
~0,q!

1
1

2!
papb

]2Tmn

]pa]pb
~0,q!1•••. ~40!

Evaluation of the integrals in Eq.~39! can be done term by
term in the series. The analysis of each term is very sim
The tensor structure]n/]pnTmn(p,q)up50 factorizes out of
the integration overp, and the two-photon insertion is re
placed by a meson vertex of orderpn. This makes power
counting transparent — after contracting the photon legs
easy to realize thatonly the first termin the above expansion
produces an effect of ordere2p2 in the kaon ampliude. In the
example considered one has

Dmass5E d4p
Vw~pi !Vs~pi !

@~k2p!22M P1

2 #@p22M P2

2 #2

3E d4qDmn~q!Tmn~0,q!1•••. ~41!

This procedure allows us to identify and interpret the r
evant contributions at ordere2p2. The integral ofTmn(0,q),
weighted by the photon propagator in the above express
is exactly the expression for the electromagnetic self-ene
of a charged meson in the chiral limit. Thus the insertion
Tmn in a loop diagram reproduces the effect of inserting
electromagnetic mass difference into such a loop. Equa
~41! then represents the meson diagram of Fig. 10 with
mass shift insertion on theP2 intermediate leg. Analogously
insertions ofVmn and Smn yield Fig. 10 but with the weak
and strong vertices replaced~respectively! by constant verti-
ces of ordere2p0, proportional to the chiral couplingsgemw
andgems@1#. In other words these contributions are the cou
terparts to what were calledimplicit diagrams in the ChPT
calculation of Ref.@1#. Their presence in the dispersiv
matching model is welcome because they provide imagin
parts to the amplitudes, ensuring at this order the beha
required by unitarity. These expressions when parametr
in terms ofgemw anddMp

2 , are identical to those obtained i
ChPT@see Eq.~30! of Ref. @1##. Corresponding to these con
tributions will, of course, also be nonvanishing real par
whose treatment is the subject of the next subsection.

What becomes of the class of diagrams having separ
photon vertices? The basic result is that they start contrib
ing to K→pp amplitudes at ordere2p4. A short argument
for this is as follows. Upon contracting the photon legs, it
easy to recognize that these loop diagrams have the foll
ing peculiarity: their intermediate states always involve
photon ~they contain one photon plus one or two pseud
scalar mesons!. Let us now consider the diagrams as analy
functions of the external four momenta and analyze th
imaginary parts as obtained by using the cutting equatio
The above observation on the structure of the intermed
states, together with the form of the lowest order vertices
phase space, implies that the imaginary part of these
grams is of ordere2p4. The long distance portion of the rea
2-8
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ELECTROMAGNETIC CORRECTIONS TOK→pp. II. . . . PHYSICAL REVIEW D 61 093002
part of the loop, which is all that we are interested in he
will then appear at the same chiral order.

2. Real parts of the unitary amplitudes

In the previous subsection we showed that the relev
part of the unitarity contributions at ordere2p2 can be cal-
culated with a simple recipe: the photon insertion factori
out and one is left with the calculation of meson loop in
grals with mass insertions on internal or external legs
weak or strong vertices replaced by constant vertices. As
have stated in the introduction to this section, we want
keep only the low energy part of these meson loops, the
that cannot be mimicked by any local counterterm
resonance-exchange diagram. We can best describe this
cedure using a simple case, the two-pion loop, which a
turns out to be the most relevant for the physics. The ex
sion to all other diagrams is then straightforward.

The basic function entering the description of two-pi
loops isJpp(s), which is given in dimensional regularizatio
by

Jpp~MK
2 !5

1

~4p!2 FDe1 log
n2

Mp
2

111b logS b21

b11D G ,

~42!

where

De[S 2

42d
2g1 log 4p11D , ~43!

n is the scale parameter introduced in dimensional regu
ization andb is the pion velocity in the kaon rest frame. Th
divergent piece and the scale dependent logarithm in
~42! are clearly local effects. On the other hand, the last te
and the logMp

2 term are associated with the low energy m
son propagation. Finally, an explicit cutoff calculation sho
that the additive factor of one has to be included in the lo
distance part. These considerations lead us to introdu
separation scaleLs such that the short and long distan
parts are defined as

Jpp
(SD)~MK

2 ![
1

~4p!2 S De1 log
n2

Ls
2D , ~44!

Jpp
(LD)~MK

2 ![
1

~4p!2 F log
Ls

2

Mp
2

11

1b logS b21

b11D G . ~45!

There is an inherent ambiguity in the separation scaleLs
which cannot realistically be assigned a unique value. Th
fore we let it range betweenMK and M r , associating the
corresponding variation in the result as the theoretical un
tainty. These unitarity corrections come with moderate
certainties except for the case ofC00 ~cf. Table I!.
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D. EM corrections to the isospin amplitudes

Let us consider some phenomenological consequence
our analysis. We refer the reader to Sec. II and to Sec. I
of Ref. @1# for an introduction to formalism used in the fo
lowing. In the presence of electromagnetism, the amplitu
involving charged particles (A12 andA10) contain infrared
singularities. For each such amplitude, the infrared singu
ity can, on general grounds, be isolated in an exponen
factor that multiplies an infrared-finite amplitude which ca
itself be expressed as an expansion in powers of alpha. U
considering the emission of soft photons with energy up
some experimental scalev, the infrared divergences disap
pear from the decay rate expressions, leavingv-dependent
factorsG12(v), G10(v) which multiply the square modul
of the infrared-finite amplitudes. This process has been
plicitly described in Sec. IV C in Ref.@1# for the K0

→p1p2 mode.
Starting from the infrared-finite amplitudes in thecharge

basis, we can define the would-be isospin amplitudes fr
the following linear combinations:

A05
2

3
A121

1

3
A00,

A25
A2

3
~A122A00!,

A 2
15

2

3
A10 . ~46!

In the absence of electromagnetism and any other iso
breaking interaction, we then haveA25A 2

1 , and the ampli-
tudes of Eq.~46! truly represent transitions to pure isosp
states. Using the same logic one can perform an analys
the unitarity condition@6#, leading to the following param-
etrization of theK→pp infrared finite amplitudes:

A125~A01dA0
em!ei (d01g0)1

1

A2
~A21dA2

em!ei (d21g2),

A005~A01dA0
em!ei (d01g0)2A2~A21dA2

em!ei (d21g2),

A105
3

2
~A21dA2

1em!ei (d21g28). ~47!

The calculation performed in this paper gives us knowled
of the$dAI

em%. We find the shifts in the isospin amplidudes
be

dA0
em5

A2g8MK
2

FKFp
2

a

4pS 2

3
C121

1

3
C00D

5~0.025360.0072!1027MK0,
2-9
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dA2
em5

A2g8MK
2

FKFp
2

a

4p

A2

3
~C122C00!

5~0.011860.0063!1027MK0,

dA2
1em5

g8MK
2

FKFp
2

a

4p

2

3
C10

52~0.008060.0088!1027MK0. ~48!

In our numerical evaluation we have used a value forg8
obtained from a fit to data not including radiative correctio
@9#. This introduces an ambiguity ing8 of order a which
affectsdAI

em at ordera2 and thus is beyond the accuracy w
are working at. As a by-product we obtain also the effect
DI 55/2 amplitude:

A5/25
A2g8

FKFp
2

a

4p
MK

2A2

5
~C122C002C10!

5~0.013760.0097!31027MK0. ~49!

IV. CONCLUSIONS

The problem of determining electromagnetic correctio
to nonleptonic kaon decay is a formidable one and has l
resisted understanding. In this paper we have employe
‘‘dispersive matching’’ approach which provides a fram
work that is, in principle, general and model independe
This dispersive setting was first advocated by Cottingh
@10# and has been recently employed in Ref.@3#. At a prac-
tical level, however, a rigorous implementation of this pr
gram is plagued by a lack of sufficient input data. We ha
been able to overcome this obstacle by pointing out~on
rather general grounds! how long range and intermediat
range processes are expected to dominate the physics
then performing a calculation which incorporates the r
evant ground state and resonance degrees of freedom
possible tree-level amplitudes and a subset of loop am
tudes are taken into account. The latter component ens
that our amplitudes have the imaginary parts required
unitarity.

Contributions to the$Ci% are shown in Table I. The firs
row displays terms of ordere2p0 calculated in Ref.@2#. The
equal values forC12 and C10 are due to the absence of
DI 55/2 component at lowest order. The second and th
rows display terms at ordere2p2, arising from the analyse

TABLE I. The $Ci% amplitudes.

C12 C00 C10

e2p0 23.361.7 0 23.361.7
e2p2 ~matching! 11.660.3 21.360.7 20.464.5
e2p2 ~unitarity! 6.561.5 3.161.4 23.461.2
Total 14.863.5 1.862.1 27.167.4

ChPT 14.1612.5 0.966.7 24.264.6
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done in Secs. III A, III B and in Sec. III C. The fourth row
summarizes the total result obtained within the dispers
matching approach. For comparison sake, we also cite
ChPT results in the final row. We obtain EM correctio
whose central values are in reasonable accord with our
lier ChPT calculation@1# but whose theoretical uncertaintie
are substantially smaller for theK0→p1p2 and K0

→p0p0 modes. Only theK1→p1p0 determination pro-
duces a less precise value. It is not hard to recognize
reason for this. In our language,C12 is dominated by the
low-Q2 Born contribution. The resonance contribution, im
portant at intermediateQ2, introduces only a moderate un
certainty. On the other hand, forC10 the low-Q2 contribution
is very small, being suppressed by a factorMp

2 /MK
2 ~see Sec.

III A !. C10 is thus dominated by intermediateQ2 effects,
which are plagued by a substantial uncertainty that our c
straints have not completely eliminated. We could turn
model-dependent frameworks to attempt to narrow
quoted error bars. However, this apparent improvem
would likely be illusory, since our understanding of mode
is too weak for any specific model to be trusted in a calc
tion such as this. Thus we feel that our quoted error bars
a reasonable measure of present uncertainties. Note, h
ever, that the uncertainty inC10 is not much of a problem
because of the overall smallness of the effect.

A key result of our calculations is that the electromagne
corrections to the weak amplitudes are smaller than na
estimates might indicate. Part of the reason is the pa
cancellation in the leading chiral transition that we detai
in Ref. @2#. In addition, only about a third of the overa
electromagnetic effect goes into a modification of theI 52
final state—the rest is harmless as it contributes to the m
larger I 50 final state amplitude. Although the work don
here constitutes a crucial step in our study of EM correctio
to nonleptonic kaon decay, there remain several additio
issues which we shall address in a future publication@6#.
Chief among these is how to correctly extract the elect
magnetically correctedK→pp amplitudes from experimen
tal data. We shall discuss the underlying theory in some
tail, as well as suggesting the proper procedure to
followed in the experimental analysis. Another topic to
covered, of great current interest in studies ofCP violation,
involves the ratioe8/e. The calculation done here leads to
value for the EM correction toe8/e ~commonly denoted as
VEM). We shall also provide an improved determination
the phase ofe8/e.
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APPENDIX A: LOOP FUNCTIONS

In this appendix we give the analytic form of the fun
tions entering in the Born term ofW12(Q2). It is convenient
to express them in terms of four simpler functions arisi
from the integration over the angular variables:
2-10
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C~Q2!5Q2FF3~Q2!13F4~Q2!

1
Q2F4~Q2!1F1~Q2,MK

2 !

2MK
2 G ,

S1~Q2,m2!52@F1~Q2,m2!2b2F2~Q2,m2!#,

S2~Q2,m2!52b2@F1~Q2,m2!2F2~Q2,m2!#,

J̃~Q2,m2!52F1~Q2,m2!1F2~Q2,m2!. ~A1!

The Fi are

F1~Q2,m2!5
1

2m2 S 211A114
m2

Q2D ,

F2~Q2,m2!5
Q2

8m4 F S 11
2m2

Q2 D 2A124
m2

Q2G ,

F3~Q2!5
1

bMK
2 Q2F logS 12b

11b
D

2 logU12bA11
4Mp

2

Q2

11bA11
4Mp

2

Q2

UG ,

F4~Q2!5
1

2Mp
2 Q2 S 12A Q2

Q214Mp
2 D .

~A2!
ng

B

y

09300
APPENDIX B: SCALAR AND PSEUDOSCALAR
RESONANCE CONTRIBUTION

Let us define the parameterI EM as follows:

I EM5
3a

4pE0

L2

dQ2. ~B1!

The scalar and pseudoscalar resonance contribution to
vertex-correction diagrams at ordere2p2 is given by the fol-
lowing expressions forA12 ,

A12

I EM
5

4A2

3Fp
2 FK

cm~2g4
S1g6

S!
MK

2 2Mp
2

MS
2

2
4A2

Fp
2 FK

g̃4
Pd̃m

MK
2

M P
2

2
4A2

3Fp
2 FK

cdF ~4MK
2 2Mp

2 !g1
S13S MK

2

1
1

2
Mp

2 Dg2
SG 1

MS
2

1
A2

Fp
2 FK

g̃2
Sc̃m

4MK
2 12Mp

2

MS1

2

1
4A2

Fp
2 FK

g̃1
Sc̃d

MK
2 2Mp

2

MS1

2
, ~B2!

and forA10,

A10

I EM
52

4

3Fp
2 FK

cmg4
S
MK

2 2Mp
2

MS
2

2
4

Fp
2 FK

cdFMK
2 g1

S1S MK
2

1
1

2
Mp

2 Dg2
S1Mp

2 g3
SG 1

MS
2

1
1

Fp
2 FK

g̃2
Sc̃m

4MK
2 12Mp

2

MS1

2

2
4

Fp
2 FK

g̃4
Pd̃m

Mp
2

M P
2

. ~B3!

The mass renormalization effect is given by the negative
this expression, withI EM replaced bydMp

2 . However, the
long distance contribution ofdMp

2 is just given byI EM and
thus these terms cancel each other. We neglect any res
intermediate energy component that may occur.
’
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