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We express the leading electromagnetic correctior$-inm 7 as integrals over the virtual photon squared
momentumQ?. The highQ? behavior is obtained via the operator product expansion. The&J®lehavior is
calculated using chiral perturbation theory. We model the interme@&teegion using resonance contribu-
tions in order to enforce the matching of these two regimes. Our results confirm our previous estimates that the
electromagnetic corrections provide a reasonably small shift iike3/2 amplitude.

PACS numbd(s): 13.40.Ks, 13.25.Es

[. INTRODUCTION whereD#*(q) is the photon propagator an*”(q,p) de-
scribes the scatteringK(p) — yw . Rotation to Euclidean
In the preceding pap¢f], we calculated the leading elec- momentum space followed by evaluation of the angular in-
tromagnetic corrections tdK—mm nonleptonic decays tegral yields the equivalent form
within chiral perturbation theoryChPT).! The only hadronic
degrees of freedom were the pseudoscalar mesons. Loop in-
tegrals were analyzed in terms of dimensional regularization, a .
and counterterm amplitudes were introduced to cancel all A= J dQ’W(Q%) (i=+-,00+0). (2
divergences. The finite counterterms parametrize the short
distance effects of heavy degrees of freedom. Our ChPT
analysis yielded effects which were estimated to be at th&@o determine th& — 77 amplitudes to ordee?p? in chiral
several percent level. Unfortunately, because of the presengmwer counting requires knowingy,,,(q,p) [or equivalently
of many unknown finite counterterms, the results were acw(Q?)] at orderp? and for all values ofQ?. We have rig-
companied by error bars as large as the signals. orous information onW,,,(q,p) only in the two asymptotic
regimes of(i) low Q?, where ChPT provides the appropriate
couplings, andii) high Q?, where the quark degrees of free-
In this paper we extend the previous calculation to highedom couple to the photon according to the standard elec-
energies by using a “dispersive matching” approach. Herefroweak theory. Our goal will be to match these regions.
active degrees of freedom include not only the ground state Consider the process of building(Qz) from the low-Q?
pseud'oscalar mesons but also thg spin-zero and spin-0@@d. In principle we can use ChPT to genenatg,(q,p) to
low-lying meson resonances. Amplitudes are expressed agderp2Q?". At the lowest energies, the dominant contribu-
integrals over the virtual photon Euclidean squared momenyjon js from the ground state mesons. At intermediate ener-
tum Q. Within chiral perturbation theory, th@” integral is gies resonance degrees of freedom become active, and we

regulated dimensionally, and unknown constants are introzan yse effective Lagrangians to describe their interactions.
duced to parametrize the contributions from intermediate an uch resonance contributions serve to soften the polynomial
high energy. In contrast, the dispersive matching approach is. .o a2 increase$2]. Eventually, the low or interme-

an attempt to construct an intermediate energy contribution ; ‘

. 2 . . . . .
that sucessfully interpolates between the low and high en(-jlateQ description is matched to the high? effects of Fig.

ergy regions. This allows the ful? integral to be calcu-

Method of dispersive matching

lated. Neither of the short distance contributions depicted in Fig.
The K— = amplitude with EM interactions present is 2 plays a dynamical role in the radiative problem but for
given generally to ordee? by different reasons. The process of Figa)2eads merely to an

overall shift in the strength of the weak interaction but does

o[ , . not give rise to mixing between the isospin amplitudes. The
Ai=e J’ d*qD,, (@)W (q,p) (i=+—,00+0), electroweak penguin operators of Fighpdo contribute to
(1) K— a7 decay, but are found to be quite sn{&] and so are

p
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1By “leading” is meant the component which arises from elec- -
tromagnetic corrections to thgarge Al=1/2 amplitude(cf. Fig.
1). This approach will be followed here. FIG. 1. Leading electromagnetic correctionke- 7.
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5 u 5 d dictated by the lowest order chiral Lagrangidotorderp?).
Specifically, in the resonance sector we include the vector
(V), axial vector(A), scalar(S) and pseudoscaldP) octets
and the scala(S1) and pseudoscaldP1l) singlets.

5

A. Ground state mesons

The|AS|=1 octet Lagrangian which governs the spinless
ground state mesons begins at chiral onfer

(a) (b)

FIG. 2. HighQ? electroweak dynamics of quarks.

neglected in the work reported here. Physics of the low-to- L£P=gsTr(\gD ,UD*UT) 3)
intermediateQ? region is therefore the dominating influence 8 K’ '
in our calculation. with gg=6.7x10"8F2 andU=exp(\-®). The correspond-

In Sec. Il, we define the various interaction Lagrangiansng AS=0 strong and electromagnetic Lagrangian is
which are needed in the course of the calculation. We present
a detailed account of the calculational program in Sec. lll, F2
from its content through to the results and some phenomeno- ngr)szr(D#U DAUT) + TWTY(XUT-F uxh, ©@
logical implications. We pay particular attention to the un-
certainties inherent in our calculation, and attempt to provid _ ; _
realistic error estimates. Final remarks appear iﬁ Seg. V. ‘?Nhere x=2Bo diag(m,,mg,mg) and ~ D,U=0,U

+ie[Q,U]A,, with A, being the photon field.

2

Il. EFFECTIVE LAGRANGIANS B. Spin-one resonances

Our starting point will be a tree level calculation of the  The spin-one vector and axial vector resonances which
{WE"(Q?)} including as intermediate states the ground statenter our calculation are represented respectively by the field
mesons and the low lying resonances. Their interactions amatricesR,,, =V, ,A,,,:

P2+ wgl 6 p* K**
V,,= P~ —p’N2+wgl\B  K*O (5)
K* - K*0 —2wg/\/6 »
and
ad\2+1f,/\6 a; Ky
A= a; —a%\2+f,/\6 K9 _ (6)
Ky K —2t.\8]
|
The normalization oR,,, is given by where

i U=uu, u,=iu'D,Uu',
<O|RMV|R(p’)\)>:M_R[p,uev(pi)\)_pveu(p!)\)] (7)
tr=uTFs U uFeIUT,  FAY= e QUARAT— 0PAR).

Analogous to interactions among the spinless ground-state 9
mesons, interactions of the resonances are likewise given in _ .
terms of effective Lagrangiar{#]. For AS=0 vertices we 1he couplingsFy Gy ,Fa have the numerical valugs]

have )

FﬂT
. s Fy=0.154 GeV, Gy=¢", Fa=(F{—F2)12
— LTIV, 47 +1 —=Tr(V,, U u”) (10)

2\2 22

R) _
£(str) -

F Although the effective Lagrangian used to descr|ReS|
+ _AZTr(Auvf/iy)' (8) =1 interactions of the resonances is given most generally by

2\2 [5]
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10
Lr= 2 97K, (11) %Z § LLH‘ g %y:é
k= - Z e @ g
only four of the ten possible operators are relevant to our .\

K— mar analysis, (a) (b (c)

(R) — uy (R) — v
Ki7=Tr(A[R,, . fE7].),  K7=Tr(A[R,,,.f27],), FIG. 3. Contributions taV“”: (a) Born, (b) resonance(c) loop.

KP=iTr(A[R,, [u*u’]]s), KP=iTr(Au,R,,u,), ~ ~
(12) KI=S,Tr(Ax+), K3=S;Tr(Au,u*),

where A=u\gu. Use of the{K{?} introduces eight cou-
plings {g(P} (R=V,A andk=1,2,5,6) into the calculation. KP=iP,Tr(Ax_). (19)
It is convenient to convert these to dimensionless quantities

Ill. DETAILS OF THE CALCULATION

o =255, o =T (=125,
13) We have at hand the tools to construct reliable expres-
sions at low and intermedia@? for the {W,;(Q?)} functions
of Eq. (2). The two major components will be the following:
(1) Tree diagram$Figs. 3a), 3(b)] involving exchange of
Finally, we list effective Lagrangians for the spinlessthe ground state pseudoscalar mes@asrn termg and of
resonances, including the octet scal@rthe singlet scala$, resonances:

C. Spin-zero resonances

and their pseudoscalar analogieand P,. We begin with Within chiral perturbation theory, the vertices in the tree
the strong Lagrangians, diagrams are described by point-like couplings at leading
5 order. However, in QCD we know that the couplings fall off

L= ¢y Tr(Su,uM) + oy Tr(Sx+ ) +CyS; Tr(u,u™) at higherQ?Z. In order to incorporate this feature, we model

_ form factor corrections to the Born terms with vector reso-

S Tr(x+), nance contributions. The set of Born diagraftagiether with
insertions of meson form factoris free of unknown param-
Lol id Tr(Py_)+idmPiTr(x_), (14)  eters.

The remaining vector and axial vector resonance contri-
wherey.=uy'u=u'yu’. The weak Lagrangian for the oc- butions depend on eight unknown weak couplings. Various
tet spinless resonances is phenomenological inputs can be used to fix them, but some
remain unconstrained. In principle this part of the amplitude

octet)._ s PP requires matching to the penguin short distance contribution.
L= ;1 9sKi +§l geKi, (19 The requirement that matching occur successfully affords a
way to further constrain the unknowns. This is further dis-
where cussed in Sec. Il B. The terms involving scalar and pseudo-
scalar resonance exchange will also contain largely uncon-
KS=Tr(A[S,x+1+), K3=Tr(SA)- Tr(x.), strained couplings. At chiral ordere’p?, there are
contributions from mass renormalizations on external legs
K3=Tr(A[S,x-1+), KZ=Tr(A[S,u,uxl,), and also from vertex-like corrections. The net effect at this
order turns out to vanish.
KE=Tr(Au*)-Tr(u,S), Kg=Tr(AS) Tr(u,u*), (2) The low-energy parts of meson loop diagraffsg.
(16)  3(o)l:

We refer to these as thanitarity contributions. They con-

and stitute a genuine lov@? effect distinct from that of the reso-
P . P nance component. In Sec. IlI C we shall describe such uni-
Ki=ITrALP.x-1+),  Ka=ITH(AP-Tr(x-), tarity terms and provide a natural extension toQfl scales,
without introducing new parameters.
an Before proceeding to a description of the calculation, we
introduce a parametrization in terms of reduced amplitudes

6 4

KE=iTr(A[ x4 ,P]),  K{=iTr(A[P,u,u*]).

The weak Lagrangian for the singlets is given by {C} and{W},
2
ﬁ(singlet)zalkP_'_E ai’k_s, (18) MZ o |V|2 a
e P i=1 S 5Ai(em): Ui 982 K _Ci and Wi =7 % _Wi
FoFg 47 FoFg 47
with (20)
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with W0(Q2)

10

c= J dQW(Q?) 21) s
0

and 7, _ = ngo= J2 and n+0=21. In addition, we partition
eachC amplitude into additive components as

C= Ci(ezpo) + ¢ (mtehg) o (unty) 22)

0 0.5 1 1.5 2 2 G V2
; (mtchg) ; Q [ Ve
The matching compone; , encompassing the sum of

the Born+ form factor and resonance contributions, is dis-
cussed in Secs. Il A and Ill B whereas the unitarity compo-
nentC{“"™ is discussed in Sec. IlIC. The contribution of
each component to the full amplitude is given in Tablefl
Sec. V). The functionsC(Q?), S;(Q?% m?) andS,(Q? m?) are given
in Appendix A, and we displayV, _(Q?) as the dashed line

A. Born and resonance diagrams in Fig. 5. Again, this contribution is logarithmically diver-
ent at highQ?. The cusp is due to the singularity related to
he Coulombic rescattering.
'’ The set of Born diagrams, required by chiral symmetry,
provides a good description of the very |0@7 region, in
which the photon “sees” only point-like pseudoscalars. As
2 increases this is no longer true, and one needs to account
r structure dependence in the couplings. In our model this
is accomplished by introducing the low-lying resonances.

FIG. 4. Born(dashed lingand Born plus form factogsolid line)
contributions.

The class of diagrams involving exchanges of the groun
state pseudoscalar mesons and of the low-lying spin-one
spin-zero resonances generates contributions at @Y
and at ordee?p?. However, we already know the?p° con-
tributions because chiral symmetry relates Ke> 77 am-
plitudes to theK " — 7" matrix element and we have calcu- fo
lated this in Ref[2]. Therefore we focus on thefp? piece in
the following. We treat first in some detail the Born contri-

. : : : ; _ . We consider first the diagrams involving pion and kaon
butions and their corrections which arise from the '”Sert'onelectromagnetic form factorsaturated in this model by the
of meson form factors. Then we describe the parameter;

. ; . vector meson resonangedhis is a subclass of all diagrams
dependent spin-one resonance terms and finally the Sp'n'zerrgquired by chiral symmetry but has some nice features. It
resonance terms.

does not introduce any new parameters and improves the
1 Born and form factor contributions high-Q? behavior of _the{Wi(QZ)} while having minimal
_ effect on the model-independent Born contributions at low
The Born diagrams do not contribute W,(Q?) (which Q2. The results of this improved description are shown
involves only ngutral particle)s_NhiIe giving nonzero contri- graphically in Figs. 4 and %solid lineg. The anlytical ex-
butions to bothW, ,(Q?) andW, _(Q?). ForW,,(Q? we  pressions are

find
W o(Q%)= — 3(Q%M?2 23 T @ M2>+Q—23(Q2 M)
+O(Q) Mi (Q%, ﬂ—)i (23 +0 Q2+M§ Mi WVl Qz_’_Mtz) »IVIK
(26)

with

Q2 2\ 312 m2 and

J(Q*>mY)=—||1+4—]| - 1+6—) . (29
6m2 QZ QZ .
Wi_(Q?)
This contribution is logarithmically divergent at hig? and 70
has an infrared @ integrable singularity a@?=0. In addi- 60
tion, it is suppressed by a factor M2/MZ . This suppres- 50
sion is “accidental” in that it is not required by any symme-
try at moderate or high values Q2. The result is shown as
the dashed line in Fig. 4.
The Born contribution toV, _(Q?) is analytically more 1o} M

involved. Once one extracts the infrared divergent singular- . N — oo ., ,
ity [6], it reads Q*[GeV?)

_ FIG. 5. Born(dashed lingand Born plus form factogsolid line)
W, _(Q)=C(QH)+S1(Q%1M2)~S,(Q°M2). (25  contributions.
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- 2 \2 2 2 of the scalar and pseudoscalar resonances contributes a major
W, = 2—"2 C(Q?)+ 5 E— 5 £—5,(Q% part of theK— 777 amplitudes at chiral ordgy* [5]. Dress-
Q°+M; Q°+M \ Q°+ My ing these diagrams with one virtual photon generates contri-

butions to the amplitudé.4 °™ at orderse?p? ande?p?. It is
—Sz(Qz)) , (27) easy to convince_: oneself that diagra_ms with vertices coming
from mass matrix Lagrangians, having already four powers
of the pseudoscalar masses, will contribute at oedef to
whereJ(Q? m?) is defined in Appendix A. Note that the 8.4{™. On the other hand, diagrams involving derivative ver-

new contribution toW. ¢ is not suppressed by12/M2 and ~ tices can give rise to effects of ordefp?, which we are
thus gives a substantial correction to the Born amplitude. Idnterested in. This happens through two classes of contribu-

the case ofl_\/+, , however, the form factor contribution has t'orgi): mass renormalization on external leas and
simply the effect of softening the hig? behavior. (2) vertex correction diagrams, with vir%ual hotons in-
In principle, given the convergence properties of the 9 ' P

“Born + form factor” contributions, their integrations over serted accp(dlng to r_nlr_nmal coupling. . .
Q2 can be performed up to infinity. This contribution is Upon explicitly identifying and calculating these diagrams,

dominated by he low e ermedate cnergy regionshe 1,1 e cancelaon etueen e o cortibutons.
where the formalism is valid. This gives a first clean contri-

. - . Born contributions at orde?p®. The explicit resultgshow-
ggzon to the{C;} coefficients beyond the Born approxima- ing the cancellationcan be found in Appendix B.

2. Resonance contributions B. Matching procedure

Our analysis contains two classes of resonances contribu- /S Stated in the above discussions, the resonance exhange

tions, spin-one and spin-zero. We consider each one sepgontribution provides a good description for tfi/;,(Q%)}

rately in the following. It turns out that the spin-zero contri- 0hly up to some intermediat®® region, beyond which the

butions sum to zero, so that only the spin-one contributiong§luark electroweak and strong interactions provide the correct

are subject to the matching procedure of Sec. Il B. framework. Experience in similar hadronic calculations has
As noted earlier, chiral symmetry requires the presence oshown that the transition or matching region occurs Qr

all possible vector and axial vector resonance exchange di®etween 1h-5 Cij?V and 2 Geﬁgf 2< Q? (GeVz)f‘c‘j]: T?]e .

- - ()2 _genuine short distance contributions were studied in the chi-
grez?lr(r;es ' (I)rr1] pé:gﬁltplr(laeweps;;:giur;e (tj%g;eillb(igg)ihi d\zg:g co&‘f"l limit in Ref. [2]. The outcome was that the short distance

plings of resonances. Since the analytical expressions for thiontribution to the{W;(Q?)} is rather small compared to the
large class of contributions are rather lengthy and do notong distance component. Corrections to the chiral limit can-
illuminate the underlying physics, we refrain from reporting ot dramatically change this qualitative picture. We can
them here. The only feature relevant for our discussion is thénagine assigning a 100% uncertainty to the short distance
general form component around the central value given by the chiral limit
calculation. Even in this case the long distance contribution
— O T would dominate and our ignorance of short distance physics
Wi(Qz)_g gafg)(Qz). (28) would not significantly alter the final answer. For our pur-
poses, the most important feature emerging from this analy-

Explicit calculation shows that the physical amplitudes actus;is is that forQ?> u? the{V_Vi(Qz)} can be set to zero, even
ally depend only on the seven parameters if we do not know the details of this transition.
On the other hand, for low and intermedi&@@ we have

reliable expressions for th@V;(Q?)}, i.e., the most general
parametrization implied by chiral symmetry and the low-
lying part of the hadronic spectrum. The only problem with
these expressions is the presence of a large number of reso-
ance parameters unconstrained by phenomenology. In what
llows we shall present a set of reasonable theoretical con-

91956 053, oVl (29
Let us consider the higp? behavior of the functions
f(1)(Q?) appearing in Eq(28). Many of them go to a con-
stant at highQ? or fall off as 1Q?, thus leading to diver-
gences in the integration process. Such behavior has alrea

been observed in similar calculations of the electromagnetig, .. : . -
‘ T traints to be imposed on them. The underlying strategy is to
mass shift of the kaofi3,7]. This simply means that the use on the one hand the few phenomenological inputs pres-

resonance dommgnce approximation can be trusted only ué)n'tly available and, on the other, to enforce the transition to
to some intermediate energy region and cannot be extendeﬁ high©?2 ) o h — 5

up to Q2—o. In Sec. Il B we shall try to solve both these Le Itg Q reg'or?’ megnlr:rg]; n Ol:rhgase that e (Q7)}
problems(proliferation of unknown parametessd high-Q? ave 1o approach zero in the matching region.

divergencesby requiring that the resonance amplitude con-
tribution match the higl®? behavior of the{W,(Q?)}.

We consider next the spin-zero resonance contributions. Although the{E,ﬂV'A)} of Eq. (13) [see also Eq(28)] are
In the absence of electromagnetism, the tree level exchangmt predictable from a purely theoretical approach, some in-

1. Physical constraints on the "
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formation can be gleaned from the phenomenology of kaon 3 F2
decays and assorted theoretical requirements. _ gV + gV =fy ()= |\7;|2+ 5,
The phenomenology of kaon decays, especially the radia- 242 F2_p2__A Lt
\% A

tive kaon decays, allows in principle the extraction of a large
number of ordep* constants of the weak chiral Lagrangian
[5]. Assuming resonance dominance for these couplings 3 F2
whenever possible, subtracting the short distance contribu- a(lA)—BE(ZA)=fA(M)E .
tion) allows one to extract information on the resonance cou- 2\/5 F2_F2 M

pling constants. The present experimental situation does not, ALY Mi+ w?
however, yet permit a complete implementation of this pro- (34)
gram, as only limited information is available. Frok _

— 2,37 data and assuming resonance saturation of the reAdopting the same argument, we require tat (Q?) and

M%,-f—,u,z

evantO(p*) counterterms, one finds Wyo(Q?) vanish in the matching region:
g —g=0.43, (30 W._(#?)=0 and W, o(u?)=0. (35)

ith a 20% caint iated with th tracti fWe do not include the analogous condition WE)O(QZ) be-
w 4a o uncertainty associa e+ w e+ € extraction Ol.;se this function, independent of any choice of the param-
O(p*) coupling constants]. The K™ — #7171~ transition

. 2 : . . eters, is already very small in the matching regigndoes
provides additional information. The decay amplitude de—not contain any term going to a constant for higR). We
penijs on+0§124parame_tam+, whose expenmentgl value is believe that the conditions in Eq&0),(31),(33),(35) form a
w,.=0.89 43, It receives both long and short distance con-cqnsistent set of physical requirements and provide us with a

tributions. Using resonance saturationgfer=M, and in- ggjig pasis for any attempt to obtain a sensible answer for the
cluding explicitly the penguin contribution we find so-called matching amp"tud({g_(mtchg)}
i .

L M2 3F, 3 m 2. Results
6am2 | SV T M) T oMz 727.,2'09Mp The above constraints are well motivated and reasonable,
B[ ? but are not sufficient to completely fix all of the resonance
2|Fy —y v v parameters. At this stage, we could use specific models of
= W 7@% )_2553 )~ Fvaa(l . 31 resonance behavior to estimate the remaining parameters and
P

then accept the range of model dependence as an estimate of
_ ) our uncertainty. In doing so, however, we have found that
At present no other phenomenological constraints are availnodels generally give a rather small range of resiife

able and we thus turn to a description of the theoretical Onegyception concerr@&”}}cr‘g).) The reason is that the matching

In the first place there are two conditions coming from theegnsiraint is more important than the remaining parameters.
analysis performed in the chiral limiP]. Let us recall the  Therefore, rather than using particular models we elect to
reasoning behind this. In the chiral I|m|t, using soft-pion tgj1ow a more model independent procedure of allowing
method+s, oneé can relate the— == amplitude to the off-  hese remaining parameters to vary completely over their
shellK™-to-7" matrix element. Moreover the invariant am- reasonable physical range and to use the resulting variation

plitude A+, .+ is expressible as to estimate the error bars for our result.
The conditions described above imply a set of linear
A equations for the parametegsV”) . In particular, we can
A= | AR (@7, @ o parametegs”®). In p |
0 express all the parameters in terms of just two coupling con-

stants. That is, using what we believe are well-founded
physical constraints, we select a two-dimensional hyperplane
in the parameter space which we call the reduced parameter
space. We chose as independent variables spanning this
lanex=g!") andy=g%" —g{¥ . By looking at the structure
f the constraints one discovers that the other parameters
depend orx, y andu as

We get one condition by demanding trﬁh(Qz) vanish at
infinity (no quadratic divergences A second condition
comes from demanding tha, . (Q?) have no short dis-
tance component, i.e., that it vanish in the matching regio
defined above. Together these amount to

lim A, (Q)=0 and A, (x%)=0. (33 92 (x,m),  952(x), and g¥R(x,y,u).  (36)
Q%0
We are now in a position to determine the component
Here we have introduced the matching scaland, accord- C{™"® of the full amplitude¢; which is determined via
ing to our previous discussion, let it vary between 1.5 GeVvmatching. The construction described above allows us to ex-
and 2 GeV. The following two constraints then emerge frompress the predictions for eadﬁmmhg) as a linear function of
Eq. (33): x andy:
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11 12 13 14 15

-15 -10 -5 5 10 15

FIG. 6. Probability density function fag{™c" |
y y * FIG. 8. Probability density function fog(i°"?,

(mtchg), - _ _
CYT9(x,y) = (12.2-0.7%+0.0%) = | - 1.0+ 1.3% the K° decay amplitudes can be predicted in our model with

+0.008/|, a reasonably small uncertainty. Problems arise in the expres-
sion for ™9 which displays a fairly strong dependence
C(+rrgchg)(x,y):(_9_2+ 11.4%+3.2y) * | — 4.3+ 6.0 on x.and a moderate one qn(seg Fig. & In this case, even
confining ourselves to the physical region we obtain a spread
+1.0y|, in the answers of about 100%. The only definite prediction
emerging is that this contribution is not big.
ngtChg)(x,y)z(—O.OO35— 1.53) = | —0.0003- 0.4|. Quantitative estimates for our results and the attendant

(37)  uncertainties can be obtained by constructing probability dis-
tributions for the{C(™"9 by means of a survey of the pa-
The uncertainties cited in Eq37) are associated with the rameter space. We scan the region defined bB<x<3,
matching proceduréhe variation of the parameter). Still, —3=<y=3} using Gaussian distributions for the input pa-
this leaves freedom to pick any value fox,y). We can rameters. The choice of the parameters in the distributions is
further narrow our predictions by requiring that all the cou-made in such a way to enhance contributions coming from
plings simultaneouslyas a function of X,y)] have a “natu-  the physical region. In view of this, we choose the central
ral” order of magnitude, which can be shown to 6¥1). values asx=0.8 andy=0 and set variances equal to 0.4.
The existence of a region in the,f) plane such that this The uncertainites cited in our results correspond to a 68%
happens is not guaranteadriori and provides a good con- probability. Results for théc{™"% are given in the second
sistency check for our method. We call this thhysical row of Table I.
regionin the reduced parameter space. Studying the explicit
dependence of the parameters>qry and u we are led to
define the physical region as0.5—1.5 andy: —1—1. . . ) . .
A first qualitative conclusion can be already drawn by Nextwe discuss in detail the class of diagrams schemati-
looking at Eq.(37) with (x,y) restricted to the physical re- cally represented |n_F|g.(6). We are mt_erested in the non-
gion and no further assumptions. The expressions show thitcal part of these diagrams, representing the genuine propa-
C(erichg) depends very weakly on the choice of ) in this gation qf mesons at low energy. The high momentum part of
region, and thus we arrive at a good prediction for this pathese diagrams produceésn general groundg]) local f"‘f'
rameter(see Fig. 6 ngtchg)has a moderate dependencexon fects that can be reabsorbed into the definition of@{@™)

and does not depend at all giisee Fig. 7. This implies that low energy consgar!ts: In our approach, however, the local
component aO(p®) is implicitly contained in the resonance

exchange diagrams and would show up explicitly upon ex-
panding the resonance propagators. Keeping only the low
momentum part of the meson loops ensures that the different
contributions we are including in our calculation do not lead
to double counting. Since the separation of local and nonlo-
cal components in the meson loop diagrams is not free of
ambiguity, we shall be careful to describe and motivate our
prescription in the following.

C. Unitarity diagrams

1. Identification of the O(ep?) contribution

' \ Our task in the following is to identify the part in each
meson loop diagram which, upon contracting the photon

legs, will lead toO(e?p?) contributions. The loop contribu-

FIG. 7. Probability density function fag {79, tions toW,, can be obtained by starting with any meson

2 4

093002-7



CIRIGLIANO, DONOGHUE, AND GOLOWICH PHYSICAL REVIEW D61 093002

T
- >?< ToulP.0) = T,0(00) P, 5 24(00)

(a) ® (e)
1 T,
FIG. 9. Two-photon insertionga) T,,, (b) V,,, (©) S,,. + 57 PaPgs D r7pg(o'q)+ e (40)

loop diagram which contributes t§— 7 and attaching Eyaluation of the integrals in E439) can be done term by
two photons in all possible ways. We focus first on the subterm in the series. The analysis of each term is very simple.
class of diagrams obtained by attaching the following two-The tensor StructurQ”/ap”Tw(p,q)|p:o factorizes out of
photon insertions: the integration oveip, and the two-photon insertion is re-
placed by a meson vertex of ordpF. This makes power
TP,V (pi@),  S,.(pi.a), (38)  counting transparent — aftgr contracting the photon Ieg_s itis
easy to realize thainly the first termin the above expansion
produces an effect of ordefp? in the kaon ampliude. In the

as represented in Fig. 9. _ example considered one has
For definiteness let us refer to the bare topology of Fig.

10. In this case one can ins€ft,,(p,q) on internal and

external legsV,,(p;,q) in the weak vertex an&,,(p;,q) Dmass:f d4

in the strong vertex. The external leg insertions will generate [
wave function and mass renormalizations. The other inser-

Vu(Pi)Vs(pi)
(k=p)*=M5 J[p*~ M3 J?

tions will give rise to diagrams like Xf d4q DHY(q)T ., (0G) + -+ . (41)
D :j 4p Vw(Pi)Vs(pi) This procedure allows us to identify and interpret the rel-
mass [(k—p)>— Mgl][p2_ Mgz]Z evant contributions at orde”p®. The integral ofT ,,(0,0),

weighted by the photon propagator in the above expression,
4 , is exactly the expression for the electromagnetic self-energy
Xf d“qD*"(Q) T ..(p,q), of a charged meson in the chiral limit. Thus the insertion of
T,, in a loop diagram reproduces the effect of inserting the
electromagnetic mass difference into such a loop. Equation
4 V(pi) (41) then represents the meson diagram of Fig. 10 with a
Dweak:f d p[(k— )2—M2 |[p>— M3 ] mass shift insertion on thie, intermediate leg. Analogously,
P P,ILP P2 insertions ofV,, andS,, yield Fig. 10 but with the weak
and strong vertices replacéakspectively by constant verti-
xf d*q DA"(Q)V ,,(pi»9), ces of ordere?p®, proportional to the chiral couplingSemu
andgems[1]. In other words these contributions are the coun-
terparts to what were calleidhplicit diagrams in the ChPT

Vo (pi) calculgtion of Ref. [1]. Their presence in the_ dis_persive
Dstmng:f “p PRV TR matching model is welcome because they provide imaginary
[(k=p)*=Mp, J[p*=Mp,] parts to the amplitudes, ensuring at this order the behavior
required by unitarity. These expressions when parametrized

Xj d*qD**(q)S,,(p,q).- (39) in terms ofgemy and 5Mi, are identical to those obtained in

mr ChPT[see Eq(30) of Ref.[1]]. Corresponding to these con-

tributions will, of course, also be nonvanishing real parts,

We wish to isolate the dominant contributions at low mo-Whose treatment is the subject of the next subsection.

mentum(small p). Therefore we Taylor expand each tensor What bepomes of the (;Iass of cﬁagrams having sepa_rated

insertion aroundp, =0 (in addition we must expand each photon vertices? The basic result is that they start contribut-
| ; H 2.4

coefficient of the Taylor series in powers of the pseudoscalal’d 0 K— 7 amplitudes at ordee“p™. A short argument

meson masses; for notational convenience we do not explid®" this is as follows. Upon contracting the photon legs, it is

itly display this step Considering for example the self- €2SY to recognize that these loop diagrams have the follow-
energy insertion, one has ing peculiarity: their intermediate states always involve a

photon (they contain one photon plus one or two pseudo-
scalar mesonsLet us now consider the diagrams as analytic

Falv) functions of the external four momenta and analyze their
imaginary parts as obtained by using the cutting equations.
() The above obser\_/ation on the structure of the intermediate
Pk —p) states, together with the form of the lowest order vertices and
phase space, implies that the imaginary part of these dia-
FIG. 10. Loop diagram with internal particlés, andP.. grams is of ordee?p*. The long distance portion of the real
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part of the loop, which is all that we are interested in here, D. EM corrections to the isospin amplitudes

will then appear at the same chiral order. Let us consider some phenomenological consequences of

our analysis. We refer the reader to Sec. Il and to Sec. IVC
of Ref.[1] for an introduction to formalism used in the fol-

In the previous subsection we showed that the relevarnibwing. In the presence of electromagnetism, the amplitudes
part of the unitarity contributions at ordefp? can be cal- involving charged particles{, _ and.A, ) contain infrared
culated with a simple recipe: the photon insertion factorizesingularities. For each such amplitude, the infrared singular-
out and one is left with the calculation of meson loop inte-ity can, on general grounds, be isolated in an exponential
grals with mass insertions on internal or external legs andactor that multiplies an infrared-finite amplitude which can
weak or strong vertices replaced by constant vertices. As witself be expressed as an expansion in powers of alpha. Upon
have stated in the introduction to this section, we want taconsidering the emission of soft photons with energy up to
keep only the low energy part of these meson loops, the ongome experimental scale, the infrared divergences disap-
that cannot be mimicked by any local counterterm orpear from the decay rate expressions, leavindependent
resonance-exchange diagram. We can best describe this pifactorsG, _(w), G o(w) which multiply the square moduli
cedure using a simple case, the two-pion loop, which als@f the infrared-finite amplitudes. This process has been ex-
turns out to be the most relevant for the physics. The exterplicitly described in Sec. IVC in Ref[1] for the K°
sion to all other diagrams is then straightforward. —at7" mode.

The basic function entering the description of two-pion  Starting from the infrared-finite amplitudes in tbhkarge
loops isJ .-(S), which is given in dimensional regularization basis, we can define the would-be isospin amplitudes from
by the following linear combinations:

2. Real parts of the unitary amplitudes

2
14
De+logW+1+,8log

2 1
Ap= §A+ -+ §Aoo,

‘Jﬁﬂrr(Mi): L
(4m)?

B+1) |’
(42
where A= g(v‘h—_v‘loo),
D.= i—y+|og477+1 , (43 2
4-d A3 =FAs0. (46)

v is the scale parameter introduced in dimensional regular-

i;ation and,Q is the pion velocity in the kaon rest fr_ame._The In the absence of electromagnetism and any other isospin
divergent piece and the scale dependent logarithm in Eooreaking interaction, we then havi,= A , and the ampli-
(42) are clearzly local effects. Qn the qther hand, the last tern?udes of Eq.(46) truly represent transitions to pure isospin
and the logl7, term are associated with the low energy me-giaas. Using the same logic one can perform an analysis of

son propagation. Finally, an explicit cutoff calculation showsip,q unitarity condition(6], leading to the following param-
that the additive factor of one has to be included in the longyization of theK — # infrared finite amplitudes:

distance part. These considerations lead us to introduce a
separation scalé\g such that the short and long distance

parts are defined as Ay _=(Ag+ SASMei (%0t 70) 4 %(Az'f‘ SASM e (%21 72),

V2
JED(M2)= 5| Detlog— |, (44) A .
(4m) As Ago= (Ag-+ SAEME! B0+ 70— \[2(A,+ SAST) i+ 72),
2
(LD) (M2 = S 4 3 ) ,
o (MiO= 03[ 092 71 Aro= 5 (At 6A M2, (47)
+Blog % . (450  The calculation performed in this paper gives us knowledge
B of the{SAT™. We find the shifts in the isospin amplidudes to

be
There is an inherent ambiguity in the separation sceje

which cannot realistically be assigned a unique value. There-

fore we let it range betweeMy and M, associating the SASM_ V2ggMg @ EC N EC
corresponding variation in the result as the theoretical uncer- (U FKF2 A\ 37— " 3700
tainty. These unitarity corrections come with moderate un- i

certainties except for the case @f, (cf. Table ). =(0.0253+0.007210" "M o,
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TABLE I. The {C;} amplitudes. done in Secs. Il A, lIB and in Sec. llIC. The fourth row
summarizes the total result obtained within the dispersive
Ci- Coo Cio matching approach. For comparison sake, we also cite the
“aasiy o —amay CIPTresulein e fralvow e chiah 2 covectons
e?p? (matching 11.6-0.3 -1.3+0.7 —0.4+45 . ) . -
&2p? (unitarity) 65515 3114 _3.4+12 lier ChPT calculatiorf1] but whose theoretical uncertainties
P Y o T T are substantially smaller for th&’—z*7~ and K°
Total 14.8£3.5 1.8:2.1 —7.1+x74

— 7% modes. Only theK " — 7" #° determination pro-
ChPT 14.112.5 0.9-6.7 —42+46 duces a less precise value. It is not hard to recognize the
reason for this. In our languagé, _ is dominated by the
low-Q? Born contribution. The resonance contribution, im-

\/EgsMﬁ a \2 portant at intermediat®?, introduces only a moderatg un-
A= ——— — = (C+-—Co certainty. On the other hand, 6t o the low-Q? contribution
FkF2 4w is very small, being suppressed by a fadif/M? (see Sec.
=(0.0118+0.006310 "M o, IIIA). C.o is thus dominated by intermedi_afe2 effects,
which are plagued by a substantial uncertainty that our con-
2 straints have not completely eliminated. We could turn to
SAS ™= 9sMk o 2 . model-dependent frameworks to attempt to narrow the
FcF2 4m3 quoted error bars. However, this apparent improvement
would likely be illusory, since our understanding of models
=—(0.0080+0.008910 "M o. (48)  is too weak for any specific model to be trusted in a calcua-

tion such as this. Thus we feel that our quoted error bars are

In our numerical evaluation we have used a valuedgr 5 reasonable measure of present uncertainties. Note, how-
obtained from a fit to data not including radiative correctionsgyer that the uncertainty iéi. o is not much of a problem

[9]. This introduces an ambiguity igg of order @ which  pacause of the overall smaliness of the effect.

affects6AT™ at ordera” and thus is beyond the accuracy we A key result of our calculations is that the electromagnetic

are working at. As a by-product we obtain also the effectivecorrections to the weak amplitudes are smaller than naive

Al'=5/2 amplitude: estimates might indicate. Part of the reason is the partial
cancellation in the leading chiral transition that we detailed

V295 «@ 5 \F in Ref. [2]. In addition, only about a third of the overall
AS/Z:FKFZ EMK E(C+—_COO_ Cio) electromagnetic effect goes into a modification of tke2
i final state—the rest is harmless as it contributes to the much
=(0.0137:0.0097 X 10" "M yo. (49 larger | =0 final state amplitude. Although the work done
here constitutes a crucial step in our study of EM corrections
IV. CONCLUSIONS to nonleptonic kaon decay, there remain several additional

issues which we shall address in a future publicafi6h

The problem of determining electromagnetic correctionsChief among these is how to correctly extract the electro-
to nonleptonic kaon decay is a formidable one and has longhagnetically correctedl — =7 amplitudes from experimen-
resisted understanding. In this paper we have employed tal data. We shall discuss the underlying theory in some de-
“dispersive matching” approach which provides a frame-tail, as well as suggesting the proper procedure to be
work that is, in principle, general and model independentfollowed in the experimental analysis. Another topic to be
This dispersive setting was first advocated by Cottinghantovered, of great current interest in studiesCd? violation,
[10] and has been recently employed in R&f. At a prac- involves the ratioe’/e. The calculation done here leads to a
tical level, however, a rigorous implementation of this pro-value for the EM correction te'/e (commonly denoted as
gram is plagued by a lack of sufficient input data. We have),,). We shall also provide an improved determination of
been able to overcome this obstacle by pointing @i  the phase of'/e.
rather general groungshow long range and intermediate
range processes are expected to dominate the physics and
then performing a calculation which incorporates the rel-
evant ground state and resonance degrees of freedom. All The research described here was supported in part by the
possible tree-level amplitudes and a subset of loop ampliNational Science Foundation. One of (&.C.) acknowl-
tudes are taken into account. The latter component ensuregiges support from M.U.R.S.T.
that our amplitudes have the imaginary parts required by
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unitarity. :
Contributions to thgC;} are shown in Table I. The first APPENDIX A: LOOP FUNCTIONS
row displays terms of orde®p® calculated in Ref[2]. The In this appendix we give the analytic form of the func-

equal values foC, _ andC,, are due to the absence of a tions entering in the Born term &%, _(Q3). It is convenient
A1=5/2 component at lowest order. The second and thirdo express them in terms of four simpler functions arising
rows display terms at ordes®p?, arising from the analyses from the integration over the angular variables:
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APPENDIX B: SCALAR AND PSEUDOSCALAR
C(Q?)=Q? F3(Q?)+3F,(Q?) RESONANCE CONTRIBUTION

Let us define the parametksy, as follows:
L QFAQ)+F(Q%MY)

| e A2ol 2 B1
ZMﬁ ! EM_4’7T O Q . ( )
S,(Q%,m?)=2[F1(Q2m?) — B2F,(Q2,m?)] The scalar and pseudoscalar resonance contribution to the
’ ' ’ ' vertex-correction diagrams at ordep? is given by the fol-
S,(Q?,m?)=2B2[F1(Q?m?) —F,(Q%,m?)], lowing expressions ford, _
~ A, 42 MZ2—M2  4\2___ M2
2 M2\ — 2 M2 2 M2 + K T K
J(Q%,m%)=2F(Q%,m?) +F,(Q%,m"). (A1) Ien :FFKcm(ngS'—i_gg) Mé — FZFKgrmM—%
TheF; are " i "
442
1 m? — === Cq (4MZ—M?%)g?+3| Mg
FuQimd)=——| —1+\/1+4—], 3F%F«
2m? Q ) )
1, 1 V2 .o 4ME+2mg
Q’ 2m? m? MR A VERN =T VY.
Fo(Q2m?)=——|| 1+—| - \/1-4—|, s K 1
8m?* Q? Q 2 a2
y N2 Mo MY (B2)
- 9:1Cq ,
2 2
Fﬂ'FK Msl
5 1 1-8 and for. A, o,
F3(Q%)=——1 log .
BMyQ 1+p Ao 4 MZ—M 4
== 2 Cmgi 2 - 2 Cd Migf_’_ Mi
lem 3F2Fg MZ F2F
: 1 1 1 .. 4Mg+2M?2
am? +—M2) S+M2g5|— + ST
1_3 1+ 2T 9 7793 M% FETFKQZ m Mg
Q? '
—log , 4 M?2
am? — 5 Gidn—7. (B3)
1+8\/ 1+ — F2Fg M3
AR The mass renormalization effect is given by the negative of
2 this expression, with gy replaced byéMi. However, the
Fl Q%)= 1— /Q— ) long distance contribution ofr)MfT is just given byl gy and
2M2Q? 2+am?

thus these terms cancel each other. We neglect any residual
(A2) intermediate energy component that may occur.
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