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Electromagnetic corrections toK\pp. I. Chiral perturbation theory
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An analysis of electromagnetic corrections to the~dominant! octet K→pp Hamiltonian using chiral per-
turbation theory is carried out. Relative shifts in amplitudes at the several percent level are found.

PACS number~s!: 13.40.Ks, 13.25.Es
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I. INTRODUCTION

In this paper, we present a formal analysis of electrom
netic ~EM! radiative corrections toK→pp transitions.1

Only EM corrections to the dominant octet nonlepton
Hamiltonian are considered. Such corrections modify
only the original DI 51/2 amplitude but also induceDI
53/2,5/2 contributions as well. By the standards of parti
physics, this subject is very old@2#. Yet there exists in the
literature no satisfactory theoretical treatment. This is d
largely to complications of the strong interactions at lo
energy. Fortunately, the modern machinery of the stand
model, especially the method of chiral Lagrangians, provi
the means to perform an analysis which is both correct
structurally complete. That doing so requires no fewer th
eightdistinct chiral langrangians is an indication of the co
plexity of the undertaking.

There is, however, a problem with the usual chiral L
grangian methodology. The cost of implementing its cal
lational scheme is the introduction of many unknown co
stants, the finite counterterms associated with
regularization of divergent contributions. As regards E
corrections to nonleptonic kaon decay, it is impractical
presume that these many unknowns will be inferred phen
enologically in the reasonably near future, or perhaps e
As a consequence, in order to obtain an acceptable phen
enological description, it will be necessary to proceed
yond the confines of strict chiral perturbation theory~ChPT!.
In a previous publication@3#, we succeeded in accomplishin
this task in a limited context,K1→p1p0 decay in the chiral
limit. We shall extend this work to a full phenomenologic
treatment of theK→pp decays in the next paper@4# of this
series.

The proper formal analysis, which is the subject of th
paper, begins in Sec. II where we briefly describe the c
struction of K→pp decay amplitudes in the presence
electromagnetic corrections. In Sec. III, we begin to imp
ment the chiral program by specifying the collection

*Email address: vincenzo@het2.physics.umass.edu
†Email address: donoghue@physics.umass.edu
‡Email address: golowich@physics.umass.edu
1We restrict our attention to EM corrections only and omit co

sideration ofmuÞmd . See however Ref.@1#.
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strong and electroweak chiral Lagrangians which bear on
analysis. The calculation ofK→pp decay amplitudes is
covered in Sec. IV and our concluding remarks appear
Sec. V.

II. ELECTROMAGNETISM
AND THE K\pp AMPLITUDES

There are three physicalK→pp decay amplitudes2:

A K0→p1p2[A12 , A K0→p0p0[A00,

A K1→p1p0[A10 . ~1!

We consider first these amplitudes in the limit of exact is
spin symmetry and then identify which modifications mu
occur in the presence of electromagnetism.

In the I 50,2 two-pion isospin basis, it follows from th
unitarity constraint that

A125A0eid01A1

2
A2eid2,

A005A0eid02A2A2eid2,

A105
3

2
A2eid2. ~2!

The phasesd0 andd2 are just theI 50,2 pion-pion scattering
phase shifts~Watson’s theorem!, and in a CP-invariant
world the moduliA0 andA2 are real valued. The large rati
A0 /A2.22 is associated with theDI 51/2 rule.

When electromagnetism is turned on, several new featu
appear:

~1! Charged external legs experience mass shifts@cf. Fig.
1~a!#.

~2! Photon emission@cf. Fig. 1~b!# occurs off charged
external legs. This effect is crucial to the cancellation
infrared singularities.

~3! Final state Coulomb rescattering@cf. Fig. 1~c!# occurs
in K0→p1p2.

- 2The invariant amplitude A is defined via out̂ ppuK& in

5 i (2p)4d (4)(pout2pin)( iA).
©2000 The American Physical Society01-1
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CIRIGLIANO, DONOGHUE, AND GOLOWICH PHYSICAL REVIEW D61 093001
~4! There are structure-dependent hadronic effects, hid
in Fig. 1 within the large dark vertices. In this paper, w
consider the leading contributions~see Fig. 2! which arise
from corrections to theDI 51/2 hamiltonian.

~5! There will be modifications of the isospin symmetr
unitarity relations and thus extensions of Watson’s theor

Any successful explanation of EM corrections toK
→pp decays must account for all these items.

An analysis@5# of the unitarity constraint which allows
for the presence of electromagnetism yields

A125~A01dA0
em!ei (d01g0)1

1

A2
~A21dA2

em!ei (d21g2),

A005~A01dA0
em!ei (d01g0)2A2~A21dA2

em!ei (d21g2),

A105
3

2
~A21dA2

1em!ei (d21g28), ~3!

to be compared with the isospin invariant expressions in
~2!. This parametrization holds for the IR-finite amplitude
whose proper definition is discussed later in Sec. IV C. O
serve that the shiftsdA2

1em andg28 in A10 are distinct from
the corresponding shifts inA12 andA00. This is a conse-
quence of aDI 55/2 component induced by electromagn
tism. In particular, theDI 55/2 signal can be recovered via

A5/25A2

5
@A122A002A2A10#. ~4!

III. CHIRAL LAGRANGIANS

The preceding section has dealt with aspects of theK
→pp decays which are free of hadronic complexities.
this section and the next, we use chiral methods to add
these structure-dependent contributions. The implementa
of chiral symmetry via the use of chiral Lagrangians p
vides a logically consistent framework for carrying out
perturbative analysis.

In chiral perturbation theory, the perturbative quantities
smallness are the momentum scalep2 and the mass scalex
52B0m, wherem is the quark mass matrix. In addition, w
work to first order in the electromagnetic fine structure co
stanta:

FIG. 1. Some electromagnetic contributions.

FIG. 2. Leading electromagnetic correction toK→pp.
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Ai5A i
(0)1aA i

(1)1•••. ~5!

Our goal is to determine theO(a) componentsaA i
(1) . The

fine structure constant thus represents a second perturb
parameter, and we consider contributions of chiral ord
O(e2p0) andO(e2p2):

aA i
(1)[A i

(e2p0)1A i
(e2p2) . ~6!

We shall restrict our attention to just the leading elect
magnetic corrections to theK→pp amplitudes. Since the
weak DI 51/2 amplitude is very much larger than theDI
53/2 amplitude, our approach is to consider only elect
magnetic corrections toDI 51/2 amplitudes. As a class thes
arise via processes contained in Fig. 2, whereg8 is the octet
weak coupling defined below in Eq.~13!.

We adopt standard usage in our chiral analysis, taking
matrix U of light pseudoscalar fields and its covariant deriv
tive DmU as

U[exp~ ilkFk /Fp! ~k51, . . . ,8!,

DmU[]mU1 ie@Q,U#Am , ~7!

whereQ5diag(2/3,21/3,21/3) is the quark charge matri
and Am is the photon field. The remainder of this sectio
summarizes the eight distinct effective Lagrangians~strong,
electromagnetic, weak and electroweak! needed in the analy
sis.

A. Strong and electromagnetic Lagrangians

In the DS50 sector, we shall employ the strong
electromagnetic Lagrangian

L str
(2)5

F0
2

4
Tr~DmUDmU†!1

F0
2

4
Tr~xU†1Ux†!, ~8!

whereF is the pseudoscalar meson decay constant in low
order.L str

(2) will be used to produceO(e0p2) and O(e1p1)
vertices in our calculation.

The LagrangianL str
(2) will generate~via tadpole diagrams!

strong self-energy effects on the external legs in theK
→pp transitions. In order to regularize these divergent co
tributions, one employs the Lagrangian@6# L str

(4) . It is not
necessary to write out this well-known set of operators,
simply to point out that the resulting wave function reno
malization factorsZp andZK obey

1

Fp
2 FK

5
ZpAZK

F3 , ~9!

up to logarithms. This explains the presence ofFp
2 FK in

formulas such as Eqs.~22!,~26! in Sec. IV.
1-2
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Two other nonweak effective Lagrangians enter the c
culation. The first is associated with electromagnetic effe
at chiral orderO(e2p0),

Lems
(0) 5gemsTr~QUQU†!, ~10!

where the couplinggemsis fixed ~in lowest chiral order! from
the pion electromagnetic mass splitting:
09300
l-
ts gems5

Fp
2

2
dMp

2 . ~11!

The second extends the description to chiral orderO(e2p2).
We need only the following subset of the Lagrangian giv
in Ref. @7#:
Lems
(2) 5F2e2$k1Tr~DmUDmU†!•TrQ21k2Tr~DmUDmU†!•Tr~QUQU†!1k3@Tr~DmU†QU!•Tr~DmU†QU!

1Tr~DmUQU†!•Tr~DmUQU†!#1k4Tr~DmU†QU!•Tr~DmUQU†!1k5@Tr~DmU†DmUQ!1Tr~DmUDmU†Q!#

1k6Tr~DmU†DmUQU†QU1DmUDmU†QUQU†!%. ~12!

The finite parts of the coefficientsk1 , . . . ,k6 remain unconstrained; see however Refs.@8–10# for model determinations.

B. Weak Lagrangians

The uDSu51 octet Lagrangian begins at chiral orderp2,

L 8
(2)5g8Tr~l6DmUDmU†!, ~13!

with g8.6.731028Fp
2 fit @16# from K→pp decay rates. We use this to generateO(e0p2), O(e1p1) andO(e2p0) vertices.

Two chiral Lagrangians will serve to provide counterterms for removing divergent contributions. The first@11# is the octet
uDSu51 Lagrangian at chiral orderp4:

L 8
(4)5N5Trl6@~Ux†1xU†!]mU]mU†1]mU]mU†~Ux†1xU†!#1N6Trl6U]mU†

•Tr~x†]mU2x]mU†!

1N7Trl6~Ux†1xU†!•Tr]mU]mU†1N8Trl6]mU]mU†
•Tr~U†x1x†U !1N9Trl6@]mU]mU†~xU†2Ux†!

2~xU†2Ux†!]mU]mU†#1N10Trl6~Ux†Ux†1xU†xU†1Ux†xU†!1N11Trl6~Ux†1xU†!•Tr~U†x1x†U !

1N12Trl6~Ux†Ux†1xU†xU†2Ux†xU†!1N13Trl6~Ux†2xU†!•Tr~Ux†2xU†!. ~14!

At present, little is known of the finite parts of the couplings$Nk%.

C. Electroweak Lagrangians

The uDSu51 Lagrangian at chiral orderO(e2p0) is

Lemw
(0) 5gemwTr~l6UQU†!, ~15!

wheregemw is ana priori unknown coupling constant. It has been calculated recently in Ref.@3#:

gemw5~20.6260.19!g8dMp
2 . ~16!

We note in passing that despite the presence of just one charge matrixQ the Lagrangian of Eq.~15! indeed describesO(e2)
effects. A second factor ofQ could be decomposed into a combination of the unit matrix and the 333 matrix Q̂

5diag(1,0,0). The contribution fromQ̂ would vanish, leaving the form of Eq.~15!.
The second operator that we use to provide counterterm contributions is theuDSu51 Lagrangian at chiral orderO(e2p2).

In terms of the notationLm[ iU ]mU†, we have

Lemw
(2) 5e2g8$s1Trl6@Q,LmQLm#11s2Trl6~QUQU†LmLm1LmLmUQU†Q!1s3Trl6@Q,LmUQU†Lm#1

1s4Trl6@Lm ,UQU†#1•TrUQU†Lm1s5Trl6~QUQU†xU†1Ux†UQU†Q!1s6Trl6@x,U†#1•TrUQU†Q

1s7Trl6~UQU†QxU†1Ux†QUQU†!1s8Tr~l6]mU]mU†!•TrQ21s9Tr~l6]mU]mU†!•TrUQU†Q%. ~17!
1-3
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CIRIGLIANO, DONOGHUE, AND GOLOWICH PHYSICAL REVIEW D61 093001
The first six operators in the above list appear in Ref.@12#.
The remaining three are also required for our analysis.
our knowledge, none of the divergent or finite parts of t
$sn% are yet known.

IV. CALCULATION OF LEADING EM CORRECTIONS

The leading EM corrections arise from the processes
Fig. 1 and Fig. 2. Contributions to Fig. 2 occur in two di
tinct classes, those explicitly containing virtual photons~Fig.
3! and those with no explicit virtual photons~Fig. 4!. The
latter are induced by EM mass corrections and by inserti
of gemw. In Figs. 3,4, the larger boldface vertices are wh
the weak interaction occurs.

The integrals which occur in our chiral analysis are st
dard and already appear in the literature~e.g., see Ref.@13#
or Ref. @14#!. It suffices here to point out that all diverge
parts of the one-loop integrals are ultimately expressible
terms of thed-dimensional integral

A~M2![E dk̃
1

k22M2

5md24F22iM 2l̄2
iM 2

16p2
logS M2

m2 D 1•••G ,

~18!

wheredk̃[ddk/(2p)d is the integration measure,m is the
scale associated with dimensional regularization andl̄ is the
singular quantity:

l̄[
1

16p2 F 1

d24
2

1

2
~ log4p2g11!G . ~19!

Each amplitude in the discussion to follow will be express
as a sum of a finite contribution and a singular term conta
ing l̄.

A. Summary ofO„e2
… amplitudes

We begin with theO(e2p0) amplitudes

A12
(e2p0)52

A2

FKFp
2 ~g8dMp

2 1gemw!,

A 00
(e2p0)50, A10

(e2p0)5
A12

(e2p0)

A2
. ~20!

Although these have already been determined in Ref.@3#, we
include them here for the sake of completeness. They
finite valued and require no regularization procedure.

FIG. 3. Explicit photon contributions inK1→p1p0.
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Next come the amplitudes of ordere2p2, expressed as

A i
(e2p2)5A i

(expl)1A i
(impl)1A i

(ct) . ~21!

The superscript ‘‘expl’’ refers to Figs. 1~a!, 1~c! and Fig. 3
where virtual photons areexplicitly present, whereas the su
perscript ‘‘impl’’ refers to Fig. 4 where EM effects areim-
plicitly present via EM mass splittings andgemw insertions.
The final termA (ct) is the counterterm amplitude.

1. Diagrams with explicit photons

We turn first to the classA (expl) of explicit photonic dia-
grams. For these contributions, it is consistent to take me
masses in the isospin limit. We find

FKFp
2

A2g8

A12
(expl)5~MK

2 2Mp
2 !•aB12~mg!

1
a

4p
F7Mp

2 23MK
2 S ln

Mp
2

m2 11D G
26md24e2MK

2 l̄,

FKFp
2

A2g8

A 00
(expl)50,

FKFp
2

g8
A10

(expl)5
a

4p
Mp

2 F723S ln
Mp

2

m2 11D G
26md24e2Mp

2 l̄. ~22!

The quantityB12 , which appears in the above expre
sion for A12

(expl) , is associated with the processes of Fig
1~a!, 1~c!. As a result of such processes, the weak de
amplitudesAi will develop infrared~IR! singularities in the
presence of electromagnetism. To tame such behavior, a
regulator is introduced and appears as a parameter in
amplitudes. For our work, this takes the form of a phot
squared-massmg

2 . B12 is given by

B12~mg
2!5

1

4p F2a~b!ln
Mp

2

mg
2 1

11b2

2b
h~b!12

1b ln
11b

12b
1 ipS 11b2

b
ln

MK
2 b2

mg
2 2b D G ,

~23!

where

FIG. 4. Diagrams without explicit photon contributions.
1-4
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ELECTROMAGNETIC CORRECTIONS TOK→pp. I. . . . PHYSICAL REVIEW D 61 093001
b5~124Mp
2 /MK

2 !1/2 ~24!

and

a~b!511
11b2

2b
ln

12b

11b
,

h~b!5p21 ln
11b

12b
ln

12b2

4b2

12 f S 11b

2b D22 f S b21

2b D ,

f ~x!52E
0

x

dt
1

t
lnu12tu. ~25!

Notice that the functionB12 is complex, and both its rea
and imaginary parts have a logarithmic singularity asmg
→0. The solution to this problem is well known; in order
get an infrared-finite decay rate, one has to consider the
cess with emission of softreal photons, whose singularity
will cancel the one coming from softvirtual photons. We
shall be more explicit on this point in Sec. IV C.

The amplitudesA12
(expl) and A10

(expl) each contain an addi

tive divergent term~proportional tol̄) and also depend on
the arbitrary scalem introduced in dimensional regulariza
tion of loop integrals. Both these features will require t
introduction of counterterms.

2. Diagrams without explcit photons

Next comes the classA (impl) of diagrams in Fig. 4 not
containing explicit photons. For such contributions, one m
be sure to include all possible effects of chiral orderO(e2p0)
andO(e2p2) and treat the various terms in a consistent m
ner. Thus for the contributions to Fig. 4, isospin-invaria
meson masses are used in amplitudes involvingLemw

(0) 3Lstr
(2)

andLems
(0) 3L 8

(2) , whereas electromagnetic mass splittings
pear in amplitudes involvingLstr

(2)3L 8
(2) . We write the re-

sults as sums of complex-valued finite amplitudesFi(m) and
divergent parts, essentially the amplitudesDi :

A i
(impl)5ReFi~m!1 i ImFi~m!1md24Di l̄

~ i 512,00,10!. ~26!

The scale dependence inFi(m) comes entirely from its rea
part ReFi(m).

We express the ReFi in terms of dimensionless ampl
tudesai

(impl) ,

ReFi~m!5h i

g8MK
2

Fp
2 FK

ai
(impl)~m!, ~27!

with h125h005A2, h1051. Since theai
(impl)(m) coeffi-

cients have rather cumbersome analytic forms, we find
most convenient to express them in the compact form
09300
o-
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ai
(impl)~m!5bi

(M)
dMp

2

F2 1bi
(g) g

F2

1Fci
(M)

dMp
2

F2 1ci
(g) g

F2G ln m

1 GeV
, ~28!

where

g[gemw/g8 . ~29!

The coefficients appearing in Eq.~28! are given in Table I.
The finite functions also have imaginary parts ImFi which

arise entirely from the processes in Fig. 4~c!. From direct
calculation we find

FKFp
2 F2

A2g8

ImF1252
b

16p
FMK

2

2
~dMp

2 1g!

1S 1

b2 22D ~MK
2 2Mp

2 !dMp
2 G ,

FKFp
2 F2

A2g8

ImF0052
b

16p
~MK

2 2Mp
2 !FdMp

2 1g

12
MK

2 2Mp
2

b2

dMp
2

MK
2 G ,

FKFp
2 F2

g8
ImF105

b

32p
~MK

2 22Mp
2 !~dMp

2 1g!,

~30!

whereb is defined in Eq.~24!. As a check on our calcula
tion, we have verified that the above results are identica
those obtained from unitarity.

The singular parts ofA i
(impl) are embodied by theD func-

tions

F2FKFp
2

A2g8

D125MK
2 F1

2
dMp

2 1
13

2
gG1Mp

2 @10dMp
2 17g#,

F2FKFp
2

A2g8

D005~MK
2 2Mp

2 !F19

3
dMp

2 13gG ,
F2FKFp

2

g8
D105MK

2 F19

3
dMp

2 1
89

18
gG1Mp

2 F4dMp
2 1

86

9
gG .
~31!

TABLE I. Values of coefficients in Eq.~28!.

bi
(M) bi

(g) ci
(M) ci

(g)

i 512 0.0160 20.0409 20.0078 20.0445
i 500 20.0170 20.0224 20.0371 20.0176
i 510 20.0265 20.0220 20.0419 20.0357
1-5
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To arrive at the above, we have used both the corresp
dence betweendMp

2 andgemsgiven in Eq.~11! and also the
relation

Mp6
2

2Mp0
2

5MK1
2

2MK0
2 , ~32!

in the evaluation of loop integrals. The latter follows fro
Dashen’s theorem@15# and is justified since terms violatin
Dashen’s theorem would begin to contribute at the hig
chiral ordere2p4.

B. Regularization procedure

In order to cancel the singularl̄ dependence in theK
→pp amplitudes, it is necessary to calculate all possi
counterterm amplitudes which can contribute. These ente
a variety of ways, as shown in Fig. 5 where the small bo
face square denotes the counterterm vertex. For Figs.~a!,
5~b! the counterterm vertex hasuDSu51 whereas in Fig. 5~c!
it hasDS50.

1. Counterterm amplitudes

Using the LagrangiansL 8
(4) , Lemw

(2) andLems
(2) we determine

the counterterm amplitudes to be

F2FKFp
2

A2g8

A12
(ct) 5MK

2 Fe2F2S X124U12
8

3
U2D

1dMp
2 ~8N724N824N9!G

1Mp
2 Fe2F2S X214U11

8

3
U2D

2dMp
2 ~4N518N712N8!G ,

F2FKFp
2

A2g8

A 00
(ct)5~MK

2 2Mp
2 !e2F2FX0024U12

8

3
U222U3G ,

F2FKFp
2

g8
A10

(ct)5MK
2 @e2F2X32dMp

2 ~4N514N8!#

1Mp
2 @e2F2X42dMp

2 ~2N814N9!#,

~33!

where the$Ni% are coefficients in theuDSu51 Lagrangian
L 8

(4) of Eq. ~14!, the$Ui% are combinations of coefficients i
the DS50 LagrangianLems

(2) of Eq. ~12!,

FIG. 5. Counterterm contributions.
09300
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U15k11k2 , U25k51k6 , U3522k31k4 ,
~34!

and the$Xi% are combinations of coefficients in theuDSu
51 LagrangianLemw

(2) of Eq. ~12!:

X152
4

9
s12

1

9
s21

2

9
s31

2

3
s524s61

2

3
s71s81s9 ,

X25
4

9
s12

2

9
s21

4

9
s31

4

3
s514s62

2

3
s72s82s9 ,

X352
2

3
s12

1

3
s21

4

3
s41

2

3
s51

2

3
s7 ,

X45
2

3
s11

2

3
s32

4

3
s41

4

3
s52

2

3
s7 ,

X005
2

9
~s11s21s3!1

2

3
s41s81s9 . ~35!

2. Removal of divergences

The counterterms themselves have finite and sing
parts

Ni5nim
d24l̄1Ni

(r )~m!,

Ui5uim
d24l̄1Ui

(r )~m!,

Xi5xim
d24l̄1Xi

(r )~m!. ~36!

The coefficientsni ,ui of the divergent parts ofNi ,Ui have
already been specified in the literature@11,7# and hence the
m dependences ofNi

(r ) , Ui
(r ) are known from the renormal

ization group equations. We infer thexi coefficients in this
paper by canceling divergences in theO(e2p2) amplitudes.
Upon combining results obtained thus far, we find the n
results

x0052
1

3

dMp
2

e2F223
g

e2F2 ,

x1531
27

2

dMp
2

e2F22
13

2

g

e2F2 ,

x253218
dMp

2

e2F227
g

e2F2 ,

x352
7

3

dMp
2

e2F22
89

18

g

e2F2 ,

x45622
dMp

2

e2F22
86

9

g

e2F2 , ~37!

where we recallg[gemw/g8.
1-6
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C. Removal of infrared singularities

Removal of the infrared divergence from the express
for the decay rate is achieved by taking into account
processK0→p1p2(ng). For soft photons, whose energy
below the detector resolutionv, this process cannot be ex
perimentally distinguished fromK0→p1p2, so the observ-
able quantity involves the inclusive sum over thep1p2 and
p1p2(ng) final states.

At the order we are working, it is sufficient to consid
just the emission of a single photon. The amplitude for
radiative decay is given in lowest order by

A12g5e
A2g8

FKFp
2 ~MK

2 2Mp
2 !S e•p1

q•p1
2

e•p2

q•p2
D , ~38!

where e and q are the polarization and momentum of th
emitted photon.

The infrared-finite observable decay rate is

G12~v!5G121G12g~v!, ~39!

where

G125
1

2MK
E dF12uA12u2, ~40!

G12g~v!5
1

2MK
E

Eg,v
dF12guA12gu2, ~41!

anddFk is the differential phase space factor for each p
cess. The infrared divergent~IRD! part ofG12 is seen to be

G12
(IRD)5

1

2MK
F A2g8

FKFp
2 ~MK

2 2Mp
2 !G 2

3E dF122a ReB12~mg!. ~42!

Equation~42! displays explicitly the singularity and show
that the imaginary part ofB12(mg) has no observable effec
at this order. This result has been shown to be true to
orders ina @17,18#. For G12g(v) we get the following ex-
pression, up to terms of orderv/MK :

G12g~v!5
1

2MK
F A2g8

FKFp
2 ~MK

2 2Mp
2 !G 2

3E dF12I 12~mg ,v!, ~43!

where

I 12~mg ,v!5
a

p Fa~b!lnS mg

2v D 2

1F~b!G , ~44!

with
09300
n
e

e

-

ll

F~b!5
1

b
ln

11b

12b
1

11b2

2b F2 f ~2b!22 f ~b!1 f S 11b

2 D
2 f S 12b

2 D1
1

2
ln

11b

12b
ln~12b2!1 ln 2 ln

12b

11bG .
~45!

From these explicit expressions ofB12(v) andI 12(mg ,v)
it is easy to see that the combination 2a ReB12(mg)
1I 12(mg ,v) does not depend on the infrared regula
mg . However, this combination has a dependence on
experimental resolutionv. To obtain a meaningful predic
tion therefore requires knowledge of the experimental tre
ment of soft photons. A careful discussion of this point w
appear in Ref.@5#.

A generalization of the above considerations beyond
orderO(e2p2) in ChPT leads to the following parametriza
tion:

G12~v!5
1

2MK
E dF12G12~v!uA12

(0) 1aA12
(1) u2,

~46!

where, to first order ina,

G12~v!5112a ReB12~mg!1I 12~mg ,v!. ~47!

With the prescription of dropping the term proportional
B12 in the photonic loop contribution, the electromagne
amplitudeaA12

(1) can be read from Eqs.~20!,~22!,~26!,~33!.

D. Finite amplitudes

The physical amplitudes will be complex-valued fun
tions, as dictated by unitarity. The real parts are obtained
combining the finite loop amplitudes@Eq. ~22! for A i

(expl)

and Eqs.~27!,~28! along with Table I forA i
(impl)# with the

counterterm amplitudes of Eq.~33!:

ReA i
(e2p2)5h i

g8MK
2

Fp
2 FK

@Reai
(loop)1ai

(ct)#. ~48!

In order to make the scale dependence of Reai
(loop) explicit,

we write

Reai
(loop)5bi1ci ln

m

1 GeV
. ~49!

Numerical determination of the above quantities will depe
on g8 ~obtained from Ref.@16#!, dMp

2 andgemw @given in Eq.
~16!#. We obtain the central values

b12511.831023, c1257.131023,

b00520.531023, c00523.931023,

b10521.331023, c10522.731023. ~50!

The imaginary parts of the physical amplitudes can
either determined from unitarity or read off from Eq
1-7
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~26!,~30!. Of most interest is the EM shift inA2, as only it
receives theA0 /A2 (DI 51/2) enhancement,

d~ ImA 2
em!5

b

32p FA 2
(e2p0)T 2

(e0p2)1A 0
(e0p2)T 02

(e2p0)

2
2A2

3b2

dMp
2

MK
2 A 0

(e0p2)T 2
(e0p2)G , ~51!

whereT 2
(e0p2) andT 02

(e2p0) are pion-pionT-matrix elements in
the isospin basis. The above three contributions have ph
cally distinct origins; the first involves the direct effect
electromagnetism on theI 52 decay amplitude, the secon
arises from final state scattering in which electromagnet
induces leakage fromI 50 to I 52, and the third is due to the
shift in two-pion phase space produced by the electrom
netic mass shift@5#.

V. FINAL RESULTS AND CONCLUDING REMARKS

Despite the presence of many unknown finite coun
terms, it is possible to apply the numerical results of Eq.~50!
and obtain rough estimates of the EM corrections. The r
soning is that since the physical amplitudes are indepen
of the scalem, there must be compensatingm dependence
between the chiral logarithms of Eq.~49! and the counter-
terms. Therefore the counterterms must be at least of
same order of magnitude as the chiral logarithms or e
larger. We have adopted the operational procedure of ass
ing that the counterterm contributionai

(ct) vanishes at the
scalem5M r , and we assign an uncertainty given by6uci u.
This leads to the numerical values

d~A0
em!5~0.02460.026!31027 MK0,

d~A2
em!5~0.01560.022!31027 MK0,

d~A2
1em!5~20.00560.005!31027 MK0,

A5/25~0.01260.016!31027 MK0, ~52!

with A05(5.45860.012)31027 MK0 and A25(0.2454
60.010)31027 MK0. Specifically, for the EM shift
d(A2

1em/A2) calculated in Ref.@3#, we now have the ex-
tended result

d~A2
1em!

A2
52~2.062.2!%. ~53!

If one allows for the uncertainty ingemw in addition to those
in the counterterm values, we find

d~A2
1em!

A2
52~2.022.2

14.0!%. ~54!

In the numerical findings of Eqs.~52!–~54!, the error bars
are seen to be almost as large or larger than the signal. In
opinion, this is the best that one can do within a strict ch
perturbation theory approach.
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Our results illustrate several general features:
~1! Since the central values of the amplitudes havedA2

em

ÞdA2
1em, the electromagnetic loop corrections are seen

produceDI 55/2 effects, although the uncertainties of th
counterterm values overwhelm the numerical result.

~2! A phenomenological analysis@19# based onS-wave
pion-pion scattering lengths and forward dispersion relati
gives d02d25(4264)°. Yet an isospin analysis ofK
→pp decays yieldsd02d25(56.763.9)°. Presumably this
difference of nearly 15° can be reconciled by subtracting E
effects from theK→pp decays. The main EM shift shoul
be in d2 as only this angle experiences aDI 51/2 enhance-
ment. Using Eq.~51! to calculate the angleg2 of Eq. ~3!, we
find

g25
A 0

(e0p2)

A 2
(e0p2)

b

32p FT 02
(e2p0)2

2A2

3b2

dMp
2

MK
2 T 2

(e0p2)G.4.5°.

~55!

This evaluation, valid at ordere2p0, is seen to worsen the
discrepancy between the two determinations. To reveal
explanation behind this puzzle requires more work@5#.

~3! Finally, the most important implication of these es
mates is that the electromagnetic shifts inA2 are not large,
being only a few percent. Naive estimates allow the pos
bility that this shift could be much larger, perhaps even be
a major portion ofA2. Our previous work at the leading
order in the chiral expansion yielded a small effect. O
motivation of the present calculation was to see if the n
order effects upset this conclusion. Our estimates show
the natural size of the shift inA2 remains at the few percen
level.

This has been a complicated calculation with many diff
ent Lagrangians, describing different aspects of electrom
netic physics, required to obtain the full effect. These inclu
explicit photon loops, mass shifts in the mesons propaga
in loops and the short-distance electroweak interaction. C
ral power counting was crucial in sorting out which effec
must be included for a consistent calculation. The result
structure is universal and model independent. However,
a prelude to more fully predictive applications, as there
main unknown low energy constants which are not predic
by chiral symmetry alone. Different models can be used
estimate the renormalized constants which appear in the
ral Lagrangians, and these model predictions can then
readily translated into the physical amplitudes through
use of our calculation. In a following publication, we attem
to describe the extent that this may be accomplished u
dispersive techniques to match long and short distance p
ics @4#.
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