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Electromagnetic corrections toK—a7r. 1. Chiral perturbation theory
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An analysis of electromagnetic corrections to tdeminanj octetK— 77 Hamiltonian using chiral per-
turbation theory is carried out. Relative shifts in amplitudes at the several percent level are found.

PACS numbds): 13.40.Ks, 13.25.Es

[. INTRODUCTION strong and electroweak chiral Lagrangians which bear on our
analysis. The calculation oK— 77 decay amplitudes is
In this paper, we present a formal analysis of electromageovered in Sec. IV and our concluding remarks appear in
netic (EM) radiative corrections taK —arar transitions: — Sec. V.
Only EM corrections to the dominant octet nonleptonic
Hamiltonian are considered. Such corrections modify not Il. ELECTROMAGNETISM
only the original Al=1/2 amplitude but also inducdl AND THE K— & AMPLITUDES
=3/2,5/2 contributions as well. By the standards of particle ) )
physics, this subject is very ol®]. Yet there exists in the There are three physicél— 7 decay amplitudés
literature no satisfactory theoretical treatment. This is due
largely to complications of the strong interactions at low
energy. Fortunately, the modern machinery of the standard Avs —+o=A 1)
model, especially the method of chiral Lagrangians, provides Kimmm o
the means to perform an analysis which is both correct angye consider first these amplitudes in the limit of exact iso-
structurally complete. That doing so requires no fewer tharypin symmetry and then identify which modifications must
eightdistinct chiral langrangians is an indication of the com-gccyr in the presence of electromagnetism.
plexity of the undertaking. _ _ In the | =0,2 two-pion isospin basis, it follows from the
There is, however, a problem with the usual chiral La-ynjtarity constraint that
grangian methodology. The cost of implementing its calcu-
lational scheme is the introduction of many unknown con- , 1.
stants, the finite counterterms associated with the Ay _=Age'0+ \ﬁAzel %,
regularization of divergent contributions. As regards EM
corrections to nonleptonic kaon decay, it is impractical to
presume that these many unknowns will be inferred phenom-
enologically in the reasonably near future, or perhaps ever. 3
As a consequence, in order to obtain an acceptable phenom- A, o= =A,e%2, 2
enological description, it will be necessary to proceed be- 2
yond the confines of strict chiral perturbation the¢@hPT). , ) , )
In a previous publicatiof3], we succeeded in accomplishing 1€ Phases, and s, are just the =0,2 pion-pion scattering
this task in a limited contexk ™ — -+ 7r° decay in the chiral phase shlfts(Wgtson s theorem and in a CP-mvarlant.
limit. We shall extend this work to a full phenomenological World the moduliA, andA; are real valued. The large ratio

treatment of the&K — 7 decays in the next papp] of this ~ Ao/A2=22 is associated with thal =1/2 rule.
series. When electromagnetism is turned on, several new features

The proper formal analysis, which is the subject of thisaPPear: , L
paper, begins in Sec. Il where we briefly describe the con- (1) Charged external legs experience mass sfftsFig.

struction of K— 77 decay amplitudes in the presence of 1@]. o _
electromagnetic corrections. In Sec. I, we begin to imple- (2 Photon emissioricf. Fig. 1b)] occurs off charged

ment the chiral program by specifying the collection of external legs. This effect is crucial to the cancellation of
infrared singularities.

(3) Final state Coulomb rescatterifigf. Fig. 1(c)] occurs
in KO—atm.

AKOHﬂ+77_EA+f! AKOHWOWOEAQO,

Ago=Age'0—\2A.€' %2,
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We restrict our attention to EM corrections only and omit con- 2The invariant amplitude A is defined via ol ™| K in
sideration ofm,#my. See however Refl]. =i(2m)* 6 (Pour— Pin) (iA).
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.% < 'é A=AP+a AW+ ... (5)

a, b) c)
“ . © Our goal is to determine th@(«) componenthAi(l). The
FIG. 1. Some electromagnetic contributions. fine structure constant thus represents a second perturbative
parameter, and we consider contributions of chiral orders
(4) There are structure-dependent hadronic effects, hiddem(e?p®) and O(e?p?):
in Fig. 1 within the large dark vertices. In this paper, we
consider the leading contributiofsee Fig. 2 which arise 20 2 5
from corrections to tghal =1/2 hamiltonizgn. aAi(l)E-Ai(e )+Ai(e P (6)
(5) There will be modifications of the isospin symmetric
unitarity relations and thus extensions of Watson's theorem. e shall restrict our attention to just the leading electro-
Any successful explanation of EM corrections ¥  magnetic corrections to th&— 7 amplitudes. Since the

—mm decays must account for all these items. weak Al =1/2 amplitude is very much larger than tid
An analysis[5] of the unitarity constraint which allows =3/2 amplitude, our approach is to consider only electro-
for the presence of electromagnetism yields magnetic corrections th | = 1/2 amplitudes. As a class these

arise via processes contained in Fig. 2, whgyés the octet

, 1 . weak coupling defined below in E¢L3).
Ay =(Ag+ SAGTE! %0t 70+ E(Aﬁ SAST)e! (%2 72), We adopt standard usage in our chiral analysis, taking the
matrix U of light pseudoscalar fields and its covariant deriva-
tive D, U as

Ago=(Ag+ SAZ™M e (%0F 70 — \[2( A, + SAEM el (%2t 72),
U=expling®y/F,)  (k=1,....8,

3 : /
Aio= E(Az"‘ SA; SMel(2r72), ©)
DMUE&MU-HG[Q,U]A#, (7

to be compared with the isospin invariant expressions in Eq.

(2). This parametrization holds for the IR-finite amplitudes, where Q=diag(2/3;-1/3,—1/3) is the quark charge matrix
whose proper definition is discussed later in Sec. IVC. Oband A, is the photon field. The remainder of this section
serve that the shiftéA; *™ and y, in A, o are distinct from  summarizes the eight distinct effective Lagrangigstsong,
the corresponding shifts iml, - and Aqy. This is a conse- €lectromagnetic, weak and electrowgakeded in the analy-
quence of aAl =5/2 component induced by electromagne- Sis.

tism. In particular, theAl =5/2 signal can be recovered via

A. Strong and electromagnetic Lagrangians

2
Asgpp= \[g[fh—floo— V24, 0] (4) In the AS=0 sector, we shall employ the strong/
electromagnetic Lagrangian

F2 F2
Il CHIRAL LAGRANGIANS £@="2TH(D,UDFU +2THUT+ Uy, (®

str
The preceding section has dealt with aspects of Khe

— o decays which are free of hadronic complexities. In . .
this section and the next, we use chiral methods to addred¥hereF is the pseudoscalar meson decay constant in lowest
these structure-dependent contributions. The implementatigprder. £ will be used to produce(e’p?) and O(e'p?)
of chiral symmetry via the use of chiral Lagrangians pro-Vertices in our calculation.
vides a logically consistent framework for carrying out a  The LagrangiarC () will generate(via tadpole diagrams
perturbative analysis. strong self-energy effects on the external legs in ke

In chiral perturbation theory, the perturbative quantities of— 7 transitions. In order to regularize these divergent con-
smallness are the momentum scpfeand the mass scale  tributions, one employs the Lagrangif6l ngr). It is not
=2Bym, wherem is the quark mass matrix. In addition, we necessary to write out this well-known set of operators, but
work to first order in the electromagnetic fine structure con-simply to point out that the resulting wave function renor-

stanta: malization factor<Z,. andZ, obey
Y
* 1 _ Zﬂ. \/ZK 9
" P T ©

w

O
up to logarithms. This explains the presenceF«ifFK in
FIG. 2. Leading electromagnetic correctionke- 7. formulas such as Eq$22),(26) in Sec. IV.
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Two other nonweak effective Lagrangians enter the cal- i
culation. The first is associated with electromagnetic effects gems=7 6Mfr. (11
at chiral order®(e?p?),
LOEGemd T(QUQUD), (10)

The second extends the description to chiral o@ée®p?).
where the coupling.sis fixed (in lowest chiral orderfrom  We need only the following subset of the Lagrangian given
the pion electromagnetic mass splitting: in Ref. [7]:

L8 =F2?{x;Tr(D ,UD*U")- TrQ?+ k,Tr(D ,UD*U™) - T QUQU") + k5[ Tr(D,,UTQU) - Tr(D*UTQU)
+Tr(D,UQU")- Tr(D*UQU") ]+ k,Tr(D,UTQU)- Tr(D*UQU") + «s[ Tr(D ,U'D ,UQ) + Tr(D ,UD*U'Q)]
+k¢Tr(D,UTD*UQU'QU+D,UD*UTQUQU")}. (12)

The finite parts of the coefficients,, . . . ,xg remain unconstrained; see however Rf8s-10] for model determinations.

B. Weak Lagrangians
The|AS|=1 octet Lagrangian begins at chiral orgs,

L& =ggTr(\gD ,UD*UT), (13

with gg=6.7x 10"8F2 fit [16] from K— 7 decay rates. We use this to generé@@’p?), O(e'p*) and O(e?p°) vertices.
Two chiral Lagrangians will serve to provide counterterms for removing divergent contributions. Thé& firist the octet
|AS|=1 Lagrangian at chiral ordes*:

LP=NsTie[(UxT+xUMa,U#UT+3,UUT(UxT+ xUT) ]+ NgTrAgUd,UT- Tr(xT9#U — ya*UT)
+N; TN g(Ux T+ xUT) - Trg ,Ug*UT+ NgTrgd ,Ua#UT- Tr(UTx+ xTU) + NgTrag[ 9, U*UT(xUT—Ux")
—(xUT=Ux"a,U*UTT+ NgTrag(UxTUx T+ xUTXUT+Ux YU + Ny Tedg(Ux T+ xUT) - Tr(U Ty + xTU)
+ N Tg(UxTUx T+ xUTxUT=UxTxUT) + NysTig(UxT— xUT) - Tr(UxT— xU™). (14)
At present, little is known of the finite parts of the couplifidé}.

C. Electroweak Lagrangians

The |AS|=1 Lagrangian at chiral ordeP(e’p°) is
LEW= JemaTT(AUQUY), (15)
wheregqmn iS ana priori unknown coupling constant. It has been calculated recently in[BEf.
Jemw=(—0.62+0.19ggéM2 . (16)

We note in passing that despite the presence of just one charge QatrixLagrangian of Eq(15) indeed describe®(e?)
effects. A second factor of) could be decomposed into a combination of the unit matrix and tRe3 3matrix Q

=diag(1,0,0). The contribution fror® would vanish, leaving the form of Eq15).
The second operator that we use to provide counterterm contributions|ié $he 1 Lagrangian at chiral ordeP(e?p?).
In terms of the notatiot. ,=iUd,U", we have

L), =€?gg{s1TAg[Q,L ,QL ], +5, T g(QUQU'L ,L#+L ,L“UQU'Q) +s3TrA¢[Q,L ,UQUTL#]
+5,TrAg[ L, ,UQUT] - TrUQUTLA 4+ s5TrAg(QUQUYUT+ UxTUQUTQ) +s5Trag[x, U], - TIUQU'Q
+5, TN 6(UQUTQYUT+UxTQUQUM) +s4Tr( N, Ud*UT) - TrQ?+s9Tr(Xd, Ua*UT) - TTUQU'Q}. 17
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TR R e L A

(a) U] (c) (d)

FIG. 3. Explicit photon contributions iK* — 7" 7°.

FIG. 4. Diagrams without explicit photon contributions.
The first six operators in the above list appear in R&2]. _ 5
The remaining three are also required for our analysis. To Next come the amplitudes of ordefp?, expressed as
our knowledge, none of the divergent or finite parts of the - | ool
{s,} are yet known. AEPY= A0 g (meD 4 g (€0 (22)

IV. CALCULATION OF LEADING EM CORRECTIONS The superscript “expl” refers to Figs.(a), 1(c) and Fig. 3
where virtual photons arexplicitly present, whereas the su-

The leading EM corrections arise from the processes oferscript “impl” refers to Fig. 4 where EM effects aim-
Fig. 1 and Fig. 2. Contributions to Fig. 2 occur in two dis- plicitly present via EM mass splittings aing,,,, insertions.
tinct classes, those explicitly containing virtual photéRig).  The final termA (% is the counterterm amplitude.

3) and those with no explicit virtual photor(§ig. 4). The

latter are induced by EM mass corrections and by insertions 1. Diagrams with explicit photons

of gemw- IN Figs. 3,4, the larger boldface vertices are where
the weak interaction occurs.

The integrals which occur in our chiral analysis are stan-
dard and already appear in the literatieeg., see Ref.13]

We turn first to the classt () of explicit photonic dia-
grams. For these contributions, it is consistent to take meson
masses in the isospin limit. We find

or Ref.[14]). It suffices here to point out that all divergent 5
parts of the one-loop integrals are ultimately expressible in T Exp)_ (M2 a2y
terms of thed-dimensional integral V2 AY="= (M= M7%)- aB. _(m,)
Os
=f d"k; o 2 2 ET
k2— M2 +E 7M7T_3MK |HF+1
_ iM? M2 _a o d=4.2012%
= 4 —2iMA — —Jog| — , 6™ " Mick,
1672 w?
(18 FK 7T.A(expl)_
o d . . . \/598
wheredk=d%/(2#)¢ is the integration measurg, is the
scale associated with dimensional regularization xarsl the FcF2 M2
singular quantity: g — T AP = 417M3T 7-3 In;2—+1
8

(19 —6ud4e®M2\. (22)

— 11
Az—[T——(Iogm y+1)|.

The quantityB, _, which appears in the above expres-
sion for A®") is associated with the processes of Figs.
1(a), 1(c). As a result of such processes, the weak decay

Each amplitude in the discussion to follow will be expressed
as a sum of a finite contribution and a singular term contain-

ing \. amplitudesA; will develop infrared(IR) singularities in the
, _ presence of electromagnetism. To tame such behavior, an IR
A. Summary of ©(e”) amplitudes regulator is introduced and appears as a parameter in the
We begin with the?(e?p®) amplitudes amplitudes. For our work, this takes the form of a photon
2 squared—masmi. B, _ is given by
2.0
AP = TEGF 7(980M 2+ Jemu), , 1 M2 14 p2
“ B._(m))= 2a(/3)an+ 23 h(B)+
Ag™=0, A ALP 20 1+p . [1+B Mg’
oI=0, ARPI==p (20 + pint ’”KZ_H’
/3 B my,
Although these have already been determined in Rgfwe (23
include them here for the sake of completeness. They are
finite valued and require no regularization procedure. where

093001-4
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B=(1—-4M2/M3)¥? (24)
and
L 1+p1-p
a(B)=1+ 25 In1+'8,
1+ 1-p°
h(,8)=772+lnl_lgln4—lgz—
1+ B—1
+2f(%)_2f(7)’
x 1
f(x)=—f0dtfln|1—t|. (25)

Notice that the functiorB, _ is complex, and both its real
and imaginary parts have a logarithmic singularity ras
—0. The solution to this problem is well known; in order to

PHYSICAL REVIEW D 61 093001

TABLE |. Values of coefficients in Eq(28).

b(™ b(©® ™) c©
i=+- 0.0160 —0.0409 —0.0078 —0.0445
i=00 -0.0170  —0.0224  -0.0371  —0.0176
i=+0 -0.0265  —0.0220 —0.0419  —0.0357

. M2 g

| M T
8™ () =b{" 27" +b{9
: gl m
T ()
+|C +c\9 =
@t ey %9
where

gEgemw/QB- (29)

The coefficients appearing in E(8) are given in Table I.
The finite functions also have imaginary partsAmvhich

get an infrared-finite decay rate, one has to consider the prgyise entirely from the processes in Figcy From direct

cess with emission of softeal photons, whose singularity
will cancel the one coming from softirtual photons. We
shall be more explicit on this point in Sec. IV C.

The amplitudesA®*” and A®") each contain an addi-

tive divergent termproportional tof) and also depend on
the arbitrary scalew introduced in dimensional regulariza-

tion of loop integrals. Both these features will require the

introduction of counterterms.

2. Diagrams without explcit photons

Next comes the classl (™) of diagrams in Fig. 4 not

containing explicit photons. For such contributions, one must

be sure to include all possible effects of chiral or@¥e’p°)

calculation we find

andO(e?p?) and treat the various terms in a consistent man-

ner. Thus for the contributions to Fig. 4, isospin-invariant

meson masses are used in amplitudes invohdl}, < £2)

and£{% x £, whereas electromagnetic mass splittings ap-

pear in amplitudes involving®)x £{?). We write the re-
sults as sums of complex-valued finite amplitudégu) and
divergent parts, essentially the amplitudes

A{™) = ReFi () + 1M () + u®~*DIN

(i=+-,00,+0). (26)
The scale dependence #i(x) comes entirely from its real
part ReFi(u).

We express the Rg in terms of dimensionless ampli-
tudesa(™"

g8Mﬁ (impl)
Refi(,u)=77iE2?Kai P(w), (27)

with 7, _=700=12, 7+0=1. Since theal™(u) coeffi-

cients have rather cumbersome analytic forms, we find it

most convenient to express them in the compact form

FKF7F? B [M&
ImF, =——| —(M2+g)
\/598 16w 2
1 2 2 2
+ ?—2 (MZ—M2%)sMm2 |,
FcF2F?2 B, )
Foos ImFoo=— g~ (Mk—M?)| MZ+g
ZMﬁ—MiéMi}
T 7 |
B Mi
FcF2F2
K—lmf+o=%(Mﬁ—2Mi)(5Mi+g),

8

(30

where 3 is defined in Eq(24). As a check on our calcula-

tion, we have verified that the above results are identical to
those obtained from unitarity.
The singular parts oft ™" are embodied by th® func-

tions

F2FgF2 1, 13 ) )
W’D+_:MK EéMw—‘r?g +MW[105MW+7Q],
8
F2FF2 19
——"Dy=(M2—M? {—5M2+3 ,
\/Egs 00 ( K 71') 3 T g
FZFKF?TD 2l Bamz 18wzl asmz s B8
gg +0— K ? T 1_89 | T gg .
(31

093001-5



CIRIGLIANO, DONOGHUE, AND GOLOWICH PHYSICAL REVIEW D61 093001

U1:K1+K2, U2:K5+K6, U3:_2K3+K4,
(34)

(a) (®) () and the{X;} are combinations of coefficients in tHa S|

= i (2) .
FIG. 5. Counterterm contributions. 1 LagrangianZen,, of Ed. (12):

4 1 2 2

To arrive at the above, we have used both the correspon- X;=— 551— §sz+ §Sg+ §S5—4S6+ §S7+ Sg+Sg,
dence betweelﬁM,zT andgensgiven in Eq.(11) and also the
relation y 4 2 N 4 N 4 i 2
2= gS17 gS2 T gS3 T 3S5T4Sg— 5 S7—Sg— Sy,
9 9 9 3 3

M2 —MZ=MZ. —M%,, (32
. ) ) 2 1 4 2 2
in the evaluation of loop integrals. The latter follows from X3=— §sl— §sz+ §s4+§s5+ §s7,
Dashen’s theoreril5] and is justified since terms violating
Dashen’s theorem would begin to contribute at the higher
chiral ordere?p* 2 2 4.4 2

) X =§Sl+ §SS_§S4+§SS_ §S7,

B. Regularization procedure 2 2

In order to cancel the singular dependence in th& XKoo= §(Sl+32+s3)+§s4+38+59' (39

—a amplitudes, it is necessary to calculate all possible
counterterm amplitudes which can contribute. These enter in 2. Removal of divergences
a variety of ways, as shown in Fig. 5 where the small bold-

face square denotes the counterterm vertex. For Figs, 5 The counterterms themselves have finite and singular

5(b) the counterterm vertex haa S|=1 whereas in Fig. &) parts
it hasAS=0. d—4y 4 N
Ni=nu™ "N+Ni (),
1. Counterterm amplitudes
=und SNt um
Using the Lagrangiang ", £2),, and £Z) we determine Ui=uip® A+ U (),
the counterterm amplitudes to be _
Xi=xiu® N+ X (). (36)
F2FyF2 WA(CI) eZFZ(X1—4U1— §U2> The coefficients; ,u; of the divergent parts of; ,U; have
V295 3 already been specified in the literatutel,7] and hence the
w dependences dfi("”, U(" are known from the renormal-
+ 5M2(8N7—4N8—4N9)} ization group equations. We infer the coefficients in this
" paper by canceling divergences in tt%e?p?) amplitudes.
8 Upon combining results obtained thus far, we find the new
+MZ2| e2F?| X,+4U, + §uz) results
16M2 g
—5Mf,(4N5+8N7+2N8)}, Xo0=~ 3 g7F7 372
o s . 276M2 13 g
F2FF2 8 Xy=9T 5 227 5 22
\/_Z—%Ag%‘E(Mﬁ—Mfr)eze x00—4u1—§u2—2u3}, 2 eF° 2 eF
M2 g
F2FKF2 X2_3 18 F2 7 2F21
T"A$3= M2[e?F2X53— SM2(4Ng+4Ng)]
R , 7 6M2 89 g
+M,n.[e F X4_ 5M7r(2N8+4N9)]1 X3:_§e2F2_1_8e2F21
(33
M2 86 g
where the{N;} are coefficients in théAS|=1 Lagrangian X4_6_2e2|:2_ 9 22’ (37)
£ of Eq. (14), the{U,} are combinations of coefficients in
the AS=0 Lagrangian), of Eq. (12), where we recaly=gemy/Js.
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C. Removal of infrared singularities 1+ ’3 1+ 2 1+
Removal of the infrared divergence from the expression (¥)= ,Eln 1-gt g AR 2B T)
for the decay rate is achieved by taking into account the
procesK’— 7" w7 (ny). For soft photons, whose energy is _f( 1-8 In Bln(l B2 +In2In-— " 1-8
below the detector resolution, this process cannot be ex- 2 -B 1+B8]
perimentally distinguished frol{°— 7+ 7, so the observ- (45)

able quantity involves the inclusive sum over thé =~ and
7 7 (ny) final states. From these explicit expressionsBf _(w) andl ; _(m,,w)
At the order we are working, it is sufficient to consider it is easy to see that the combinationn ReB, _ (m )
just the emission of a single photon. The amplitude for the+|, _ (m,,w) does not depend on the infrared regulator
radiative decay is given in lowest order by m,, However, this combination has a dependence on the
experimental resolutiom. To obtain a meaningful predic-
A —e V2gg (M2 — 2)(ﬂ_ i) (39) tion therefore requires knowledge of the experimental treat-
oy FF2 K “lg-p. g-p_)’ ment of soft photons. A careful discussion of this point will
T appear in Ref[5].
where e and q are the polarization and momentum of the A generalization of the above considerations beyond the

emitted photon, order O(e?p?) in ChPT leads to the following parametriza-
The infrared-finite observable decay rate is tion:
1
I (0)=T, +T,_ ), (39 F+-(“’):WJ d®, G, (@) A +aAP|?,
where (46)

. where, to first order inv,
T+—=—2MKJ dd, | A, |7 (40) G, (0)=1+2aReB, (m)+l, (M, ,w). (47

1 With the prescription of dropping the term proportional to
T, ()= f dd, A, y|2, (41) B, _ in the p(hl())tonlc loop contribution, the electromagnetic
2My amplitudea A" can be read from Eq$20),(22),(26),(33).

andd®, is the differential phase space factor for each pro- D. Finite amplitudes

cess. The infrared diverge(iRD) part of I, is seen to be The physical amplitudes will be complex-valued func-

2 tions, as dictated by unitarity. The real parts are obtained by

['(RD) = \/_gg (M2 M2) combining the finite loop amplitudefEq. (22) for A ()
ZMK T and Egs.(27),(28) along with Table | forA™] with the
counterterm amplitudes of E¢33):
xf db, 2aReB, (m,). (42) o gaM2
ReA i(e p9) — 7; FZ_H([Rmi(|OOP)+ ai(Ct)]- (48)

Equation(42) displays explicitly the singularity and shows
that the imaginary part d.._(m,) has no observable effect |n order to make the scale dependence c&R#& explicit,
at this order. This result has been shown to be true to alle write
orders ina [17,18. ForI", _,(w) we get the following ex-

pression, up to terms of ordes/M :

o
2 Reai('°°p)=bi+ciln1 v (49
\/—98 2 . . . " .
I, [(w)= > (Mg—=M?) Numerical determination of the above quantities will depend
FkFo ongg (obtained from Ref[16]), SMZ andgemy[given in Eq.
(16)]. We obtain the central values
xf dd, 1, (m,,w), (43
b, =11.8<103, c¢,_=7.1x103
where
b00= —0.5% 1073, C00= —3.9% 1073,
I, (m,,w)= a(ﬁ)m(z_v +|:(,3)}, (44) b,o=—1.3x10"3 ¢, o=-2.7x103. (50)
The imaginary parts of the physical amplitudes can be
with either determined from unitarity or read off from Egs.
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(26),(30). Of most interest is the EM shift ind,, as only it
receives thed,/ A, (Al=1/2) enhancement,

B A= 5

2,0 0,2 0,2 2,0
AEPITERD) 4 A (P70
2

22 sM2

_ (€°p?) 7(e%?)
33 M K 0 2 !

(51)

0,2 2,0 . . . .
whereT{® P9 and7{5 P are pion-pioniT-matrix elements in

PHYSICAL REVIEW D61 093001

Our results illustrate several general features:

(1) Since the central values of the amplitudes ha¥g™
+ 6A, ™, the electromagnetic loop corrections are seen to
produceAl=5/2 effects, although the uncertainties of the
counterterm values overwhelm the numerical result.

(2) A phenomenological analysid9] based onSwave
pion-pion scattering lengths and forward dispersion relations
gives 65— 8,=(42+4)°. Yet an isospin analysis ofK
—arar decays yieldss,— §,=(56.7+3.9)°. Presumably this
difference of nearly 15° can be reconciled by subtracting EM

the isospin basis. The above three contributions have physgffects from theK — m decays. The main EM shift should
cally distinct origins; the first involves the direct effect of be in 6, as only this angle experiencesdd =1/2 enhance-

electromagnetism on the=2 decay amplitude, the second Ment. Using Eq(51) to calculate the angle, of Eq. (3), we
arises from final state scattering in which electromagnetisniind

induces leakage fro=0 tol =2, and the third is due to the
shift in two-pion phase space produced by the electromag-

netic mass shift5].

V. FINAL RESULTS AND CONCLUDING REMARKS

0,2
CAEP) 20 2\2M7
72T ) 320|102 T 387 ME

7" | =450,

(55

Despite the presence of many unknown finite counterhis eyaluation, valid at ordeg?p®, is seen to worsen the

terms, it is possible to apply the numerical results of &G)

discrepancy between the two determinations. To reveal the

and obtain rough estimates of the EM corrections. The rédsyplanation behind this puzzle requires more widgk
soning is that since the physical amplitudes are independent (3) Finally, the most important implication of these esti-

of the scaleu, there must be compensating dependence
between the chiral logarithms of E49) and the counter-

mates is that the electromagnetic shiftsAip are not large,
being only a few percent. Naive estimates allow the possi-

terms. Therefore the counterterms must be at least of thgijity that this shift could be much larger, perhaps even being
same order of magnitude as the chiral logarithms or evep major portion ofA,. Our previous work at the leading
larger. We have adopted the operational procedure of assurgrger in the chiral expansion yielded a small effect. One

ing that the counterterm contributioa(® vanishes at the
scaleu=M,, and we assign an uncertainty given hyc;|.
This leads to the numerical values

S(AS™=(0.024+0.026 X107 Mo,
S(AS™ =(0.015-0.022 X 10" 7" My,
S(A; ™ =(—0.005+0.009x10 " Mo,

Agp=(0.012+0.016 X 10~ 7 Mo, (52)

with A= (5.458+0.012)x10 7 Myo and A,=(0.2454
+0.010)<10" 7" Myo. Specifically, for the EM shift
S5(A; M A,) calculated in Ref[3], we now have the ex-
tended result

S(AZ©

- = |+ 0,
A (2.0£2.2)%.

(53

If one allows for the uncertainty igen, in addition to those
in the counterterm values, we find

+e
AT _ —(2.0°39%.

> (54)

In the numerical findings of Eq$52)—(54), the error bars

motivation of the present calculation was to see if the next
order effects upset this conclusion. Our estimates show that
the natural size of the shift iA, remains at the few percent
level.

This has been a complicated calculation with many differ-
ent Lagrangians, describing different aspects of electromag-
netic physics, required to obtain the full effect. These include
explicit photon loops, mass shifts in the mesons propagating
in loops and the short-distance electroweak interaction. Chi-
ral power counting was crucial in sorting out which effects
must be included for a consistent calculation. The resulting
structure is universal and model independent. However, it is
a prelude to more fully predictive applications, as there re-
main unknown low energy constants which are not predicted
by chiral symmetry alone. Different models can be used to
estimate the renormalized constants which appear in the chi-
ral Lagrangians, and these model predictions can then be
readily translated into the physical amplitudes through the
use of our calculation. In a following publication, we attempt
to describe the extent that this may be accomplished using
dispersive techniques to match long and short distance phys-
ics [4].
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