PHYSICAL REVIEW D, VOLUME 61, 087501

Stability of the iterated Crank-Nicholson method in numerical relativity
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The iterated Crank-Nicholson method has become a popular algorithm in numerical relativity. We show that
one should carry out exactly two iteratioasd no moreWhile the limit of an infinite number of iterations is
the standard Crank-Nicholson method, it can in fact be worse to do more than two iterations, and it never helps.
We explain how this paradoxical result arises.

PACS numbeps): 04.25.Dm, 04.20-q, 04.70-s

I. INTRODUCTION u]nzgneiijx 3)

There is currently a large worldwide effort underway at-and find that the amplification factdris
tempting to solve Einstein’s equations numerically for astro- o
physically interesting scenarios. The problem is extremely §=1+iasinkAx, (4)
challenging technically. Among the difficulties is that of _ . 2 .
finding a finite-difference scheme that allows a stable timewhegegz.—At/Ax.d§|ncell§| >1 fbcl)r any choice ofe, the
evolution of the system. It is well-known thamplicit differ- meé Ok IS “d”C‘c’iT‘ﬁ itionally unstable. bl h ]
encing schemes tend to be stable. However, the difficulty of ackwards differencing gives a stable scheme:
solving the resulting implicit algebraic equations, especially untlogn gntiogntl
in three spatial dimensions, has led most researchers to stay ' R e S (5)

with explicit methods and their potential instabilities. At 24x
Several years ago, Choptuik] proposed solving the im- for which
plicit Crank-Nicholson schemE2] by iteration. This would
effectively turn it into an explicit scheme, but hopefully by 1
iterating until some convergence criterion was met one §= T iasinkAx" (6)

would preserve the good stability properties of Crank-
Nicholson. The iterated Crank-Nicholson scheme has subs@gow |¢|2<1 for any choice ofe, and so the method is
quently become one of the standard methods used in numefimconditionally stable.

cal relativity. For some examples of its use, $8e5]. The Crank-Nicholson scheme is a second-order accurate

In this note, we point out that when using iterated Crank-method obtained by averaging Eq€) and (5). Now one
Nicholson, one should do exactly two iteratioasid no  finds

more While the limit of an infinite number of iterations is
the implicit Crank-Nicholson method, it can in fact be worse

to do more than two iterations, and it never helps. 1+ SiasinkAx
f=—— )
II. ITERATED CRANK-NICHOLSON METHOD 1- Ei a SinkAXx
To understand this paradoxical result, consider differenc-_. ) . i
ing the simple advective equation Since|¢[*=1, the method is stable. It is the presence of the
quantitiesu"*? on the right-hand side of E@5) that makes
Ju  du the method implicit.
e (1) The first iteration of iterated Crank-Nicholson starts by

calculating an intermediate variabl®u using Eq.(2):
(Many equations in numerical relativity are generalizations . . .
of this form, and the differencing techniques are similar. Up  Ujpa—Ujg
simple first-order accurate differencing scheme is FTI06 At T 2Ax ®)
ward time centered space

(1n+1_
uj

Then another intermediate variabi®u is formed by aver-
e ST ) .
i i YU (2 2ging:
At 2Ax

— 1
(1), n+12_— (1)~n+1+ n
Heren labels the time levels anjdthe spatial grid points. Ui 2( Ui up)- ©

It is a standard textbook result that this scheme is uncon- . . . _
ditionally unstable. One sees this with a von Neumann staFinally the time step is completed by using E@) again
bility analysis: Put with u on the right-hand side:
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n+1_

J u}‘ B (1)u?111/2_(1)u?:r11/2 unstable; levels 2 and 3 are stable provig#a<1; levels 4

= (10 and 5 are unstable; levels 6 and 7 are stable provjged
At 2Ax <1; and so on. Since the stability requirement must hold for
@II wave numbers, it translates inta?/4<1, or At<2Ax.
This is just the Courant conditiofthe 2 occurs because of
the 2 in Eq.(2)].

Now we see the resolution of the paradox: While the mag-
nitude of the amplification factor for iterated Crank-
Nicholson does approach 1 as the number of iterations be-
@yn+i_yn  @Qpn+i2_@yn+ie comes infinite, the convergence is not monotonic. The

! I =t (11)  magnitude oscillates above and below 1 with ever decreasing

At 24x oscillations. All the cases above 1 are unstable, although the
1 instability might be very slowly growing for a large number
(2)u;1+ 2_ _((Z)ﬁ?+1+ uf). (12)  of iterations. _ _

2 The accuracyof the scheme is determined by the trunca-
tion error. This remains second orderAmn andAx from the
first iteration on. Doing more iterations changes the stability

u

[Iterated Crank-Nicholson can alternatively be implemente
by averaging the right-hand side of Ed). For linear equa-
tions, this is completely equivaleht.

Iterated Crank-Nicholson with two iterations is carried
out in the same way. After steg8) and(9), we calculate

Then the final step is computed analogously to @6):

ULy @GRtV ()t behavior, but not the accuracy. Since the smallest number of
] l_ j+1 -1 (13 iterations for which the method is stable is two, there is no
At 2Ax point in carrying out more iterations than this.

Note that there was nothing special about using the ad-
ctive equation(1) for this analysis. Similar behavior is
found for the wave equation, written in first-order form

Any number of iterations can be carried out in the same way o
Now consider the stability of these iterated schemes. If wi

define 8= (a/2)sinkAx, and call the FTCS schem@) the

zeroth-order method, then direct calculation shows that the au

amplification factors are U (18)
O¢=1+2ip, 14
¢ B (14) w N
Mg=1+2ip-2p7 (15 rard (19
@¢=1+2i—28%-2ip° (169  with the standard centered difference formula for the second
derivative term. One recovers the usual Courant condition
Gle=1+2iB—2B2—2ip3+28%, (17 (without the factor of 2 for the stable cases.
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