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Stability of the iterated Crank-Nicholson method in numerical relativity

Saul A. Teukolsky
Newman Laboratory, Cornell University, Ithaca, New York 14853

~Received 7 September 1999; published 14 March 2000!

The iterated Crank-Nicholson method has become a popular algorithm in numerical relativity. We show that
one should carry out exactly two iterationsand no more. While the limit of an infinite number of iterations is
the standard Crank-Nicholson method, it can in fact be worse to do more than two iterations, and it never helps.
We explain how this paradoxical result arises.

PACS number~s!: 04.25.Dm, 04.20.2q, 04.70.2s
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I. INTRODUCTION

There is currently a large worldwide effort underway a
tempting to solve Einstein’s equations numerically for ast
physically interesting scenarios. The problem is extrem
challenging technically. Among the difficulties is that
finding a finite-difference scheme that allows a stable ti
evolution of the system. It is well-known thatimplicit differ-
encing schemes tend to be stable. However, the difficulty
solving the resulting implicit algebraic equations, especia
in three spatial dimensions, has led most researchers to
with explicit methods and their potential instabilities.

Several years ago, Choptuik@1# proposed solving the im
plicit Crank-Nicholson scheme@2# by iteration. This would
effectively turn it into an explicit scheme, but hopefully b
iterating until some convergence criterion was met o
would preserve the good stability properties of Cran
Nicholson. The iterated Crank-Nicholson scheme has su
quently become one of the standard methods used in num
cal relativity. For some examples of its use, see@3–5#.

In this note, we point out that when using iterated Cran
Nicholson, one should do exactly two iterationsand no
more. While the limit of an infinite number of iterations i
the implicit Crank-Nicholson method, it can in fact be wor
to do more than two iterations, and it never helps.

II. ITERATED CRANK-NICHOLSON METHOD

To understand this paradoxical result, consider differe
ing the simple advective equation

]u

]t
5

]u

]x
. ~1!

~Many equations in numerical relativity are generalizatio
of this form, and the differencing techniques are similar.! A
simple first-order accurate differencing scheme is FTCS~for-
ward time centered space!:

uj
n112uj

n

Dt
5

uj 11
n 2uj 21

n

2Dx
. ~2!

Heren labels the time levels andj the spatial grid points.
It is a standard textbook result that this scheme is unc

ditionally unstable. One sees this with a von Neumann
bility analysis: Put
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n5jneik j Dx ~3!

and find that the amplification factorj is

j511 ia sinkDx, ~4!

where a5Dt/Dx. Since uju2.1 for any choice ofa, the
method is unconditionally unstable.

Backwards differencing gives a stable scheme:

uj
n112uj

n

Dt
5

uj 11
n112uj 21

n11

2Dx
, ~5!

for which

j5
1

11 ia sinkDx
. ~6!

Now uju2,1 for any choice ofa, and so the method is
unconditionally stable.

The Crank-Nicholson scheme is a second-order accu
method obtained by averaging Eqs.~2! and ~5!. Now one
finds

j5

11
1

2
ia sinkDx

12
1

2
ia sinkDx

. ~7!

Sinceuju251, the method is stable. It is the presence of
quantitiesun11 on the right-hand side of Eq.~5! that makes
the method implicit.

The first iteration of iterated Crank-Nicholson starts
calculating an intermediate variable(1)ũ using Eq.~2!:

(1)ũ j
n112uj

n

Dt
5

uj 11
n 2uj 21

n

2Dx
. ~8!

Then another intermediate variable(1)ū is formed by aver-
aging:

(1)ū j
n11/25

1

2
~ (1)ũ j

n111uj
n!. ~9!

Finally the time step is completed by using Eq.~2! again
with ū on the right-hand side:
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uj
n112uj

n

Dt
5

(1)ū j 11
n11/22 (1)ū j 21

n11/2

2Dx
. ~10!

@Iterated Crank-Nicholson can alternatively be implemen
by averaging the right-hand side of Eq.~1!. For linear equa-
tions, this is completely equivalent.#

Iterated Crank-Nicholson with two iterations is carrie
out in the same way. After steps~8! and ~9!, we calculate

(2)ũ j
n112uj

n

Dt
5

(1)ū j 11
n11/22 (1)ū j 21

n11/2

2Dx
, ~11!

(2)ū j
n11/25

1

2
~ (2)ũ j

n111uj
n!. ~12!

Then the final step is computed analogously to Eq.~10!:

uj
n112uj

n

Dt
5

(2)ū j 11
n11/22 (2)ū j 21

n11/2

2Dx
. ~13!

Any number of iterations can be carried out in the same w
Now consider the stability of these iterated schemes. If

defineb5(a/2)sinkDx, and call the FTCS scheme~2! the
zeroth-order method, then direct calculation shows that
amplification factors are

(0)j5112ib, ~14!

(1)j5112ib22b2, ~15!

(2)j5112ib22b222ib3, ~16!

(3)j5112ib22b222ib312b4, ~17!

and so on. As one would expect, these are exactly the s
values one gets by expanding Eq.~7! in powers ofb and
truncating at the appropriate point.

To check stability, computeuju2 for each of these expres
sions. You find an alternating pattern. Levels 0 and 1
ck

n

2

08750
d

y.
e

e

e

e

unstable; levels 2 and 3 are stable providedb2<1; levels 4
and 5 are unstable; levels 6 and 7 are stable providedb2

<1; and so on. Since the stability requirement must hold
all wave numbersk, it translates intoa2/4<1, or Dt<2Dx.
This is just the Courant condition@the 2 occurs because o
the 2 in Eq.~2!#.

Now we see the resolution of the paradox: While the m
nitude of the amplification factor for iterated Cran
Nicholson does approach 1 as the number of iterations
comes infinite, the convergence is not monotonic. T
magnitude oscillates above and below 1 with ever decrea
oscillations. All the cases above 1 are unstable, although
instability might be very slowly growing for a large numbe
of iterations.

The accuracyof the scheme is determined by the trunc
tion error. This remains second order inDt andDx from the
first iteration on. Doing more iterations changes the stabi
behavior, but not the accuracy. Since the smallest numbe
iterations for which the method is stable is two, there is
point in carrying out more iterations than this.

Note that there was nothing special about using the
vective equation~1! for this analysis. Similar behavior is
found for the wave equation, written in first-order form

]u

]t
5v, ~18!

]v
]t

5
]2u

]x2 , ~19!

with the standard centered difference formula for the sec
derivative term. One recovers the usual Courant condit
~without the factor of 2! for the stable cases.
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